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Abstract

A central issue in on-demand taxi dispatching platforms is
task assignment, which designs matching policies among dy-
namically arrived drivers (workers) and passengers (tasks).
Previous matching policies maximize the profit of the plat-
form without considering the preferences of workers and
tasks (e.g., workers may prefer high-rewarding tasks while
tasks may prefer nearby workers). Such ignorance of pref-
erences impairs user experience and will decrease the profit
of the platform in the long run. To address this problem, we
propose preference-aware task assignment using online sta-
ble matching. Specifically, we define a new model, Online
Stable Matching under Known Identical Independent Distri-
butions (OSM-KIID). It not only maximizes the expected to-
tal profits (OBJ-1), but also tries to satisfy the preferences
among workers and tasks by minimizing the expected total
number of blocking pairs (OBJ-2). The model also features a
practical arrival assumption validated on real-world dataset.
Furthermore, we present a linear program based online al-
gorithm LP-ALG, which achieves an online ratio of at least
1−1/e on OBJ-1 and has at most 0.6 · |E| blocking pairs ex-
pectedly, where |E| is the total number of edges in the com-
patible graph. We also show that a natural Greedy can have
an arbitrarily bad performance on OBJ-1 while maintaining
around 0.5 · |E| blocking pairs. Evaluations on both synthetic
and real datasets confirm our theoretical analysis and demon-
strate that LP-ALG strictly dominates all the baselines on
both objectives when tasks notably outnumber workers.

1 Introduction
On-demand taxi dispatching has gained global popularity as
an economic, efficient and sustainable alternative to urban
transportation (Zhang et al. 2017; Dickerson et al. 2018a;
Tong et al. 2016a; Tong et al. 2016b; Xu et al. 2018). One
essential functionality of on-demand taxi dispatching plat-
forms such as Uber and DiDi is to assign tasks (passen-
gers) to workers (drivers) dynamically. Task assignment in
on-demand taxi dispatching is commonly modeled as online
bipartite matching. Each worker/task has a specific location
attribute and is regarded as a vertex in the bipartite graph.
Tasks arrive sequentially at random, and have to be either
rejected or matched with an available worker shortly upon
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arrival. A worker matched to a task needs to finish a trip pre-
determined by the task. The platform earns profit from the
finished tasks and aims to design matching policies that op-
timize certain objectives, e.g., maximizing the expected total
profit (Tong et al. 2016b; Zhang et al. 2017).

To continently make profits, it is important for taxi dis-
patching platforms to account for human factors such as
preferences of workers and tasks. Prior work has integrated
the preferences of either workers or tasks into the opti-
mization objectives. For example, some researchers propose
to minimize the sum of distances between the origin of
each task and the matched worker over all matches (Bei
and Zhang 2018; Tong et al. 2016a; Bansal et al. 2014).
This way the overall waiting time of all passengers is re-
duced. Others maximize the total utility obtained through
all successful matches, where the utility is defined to de-
pict the workers’ preference on payment (Tong et al. 2016b;
Dickerson et al. 2018a). Despite these pioneer studies, the
preference of only one side (workers or tasks) is considered.
We argue that the matching policies should reflect the pref-
erences of both sides (workers and tasks), which we will
illustrate via the following example.

Image during the rush hours of Monday, Alice requested
a taxi on Uber to take her from home to office for a short-
distance trip. At the same time, Bob appeared on Uber as
driver and he happened to be close to Alice’s home. To mini-
mize the waiting time of Alice, Uber should match Alice and
Bob. However, this might hurt Bob’s interest. This is because
during rush hours passengers far outnumber drivers. Thus
Bob preferred to wait for requests of long-distance rides to
earn more profit. A question arises whether Uber should re-
ject Alice or assign her to Bob. This is a common example
in on-demand taxi dispatching platforms, where the prefer-
ences of workers and tasks may differ or even conflict with
each other. That is, a passenger may prefer to be picked up
immediately by a driver nearby while the driver may prefer
to wait for long-distance rides. How can we design matching
policies to reconcile the preferences of both the workers and
tasks such that they are satisfied to a best degree?

To assign tasks such that the preferences of both workers
and tasks are considered while the profit of the platform is
maximized, we propose a new online stable matching model.
Assume a compatible bipartite graph G = (U, V,E), where
U and V represent the respective set of offline workers and



online tasks. There is an edge f = (u, v) if worker u is ca-
pable of performing task v (i.e., the distance between them
is below a given threshold). At the beginning of the online
phase, all U are there and vertices from V come stochas-
tically. Upon each arrival of an online task v, an immedi-
ate and irrevocable decision is required: either reject v, or
match v with an available neighbor u. Each v is associated
with a profit wv > 0, which the platform can get if v is
matched; each edge f = (u, v) has a distance d(u, v) > 0.
For each u, we say u prefers v over v′ if wv > wv′ ,
i.e., drivers prefer high-rewarding rides. Similarly, we say
v prefers u over u′ if d(u, v) < d(u′, v), i.e., passengers
prefer drivers nearby. For a given matchingM over G, we
define an edge f as a blocking pair or blocking edge iff (1)
f = (u, v) ∈ E, f /∈ M and (2) u prefers v over uM and v
prefers u over vM, where uM and vM are the respective ver-
tices matched to u and v inM1. Our goal is to design an on-
line matching policy such that the following two objectives
are optimized. LetM be the (random) matching obtained.

• Maximization of the expected total profit over all com-
pleted tasks (OBJ-1): maxE[

∑
v∈VM wv], where VM is

the set of tasks matched inM.

• Minimization of the expected number of blocking pairs
(OBJ-2): minE[BP(M)], where BP(M) denotes the
number of blocking pairs inM.

Note that the number of blocking pairs quantifies the degree
of dissatisfaction about their preferences from both workers
and tasks. A matching policy that yields a smaller number
of blocking pairs addresses the preferences among work-
ers and tasks better. We also consider a more practical ar-
rival assumption, called known identical independent distri-
butions (KIID), where each round online tasks arrive follow-
ing an identical independent distribution, which is assumed
known to the algorithm beforehand. This is mainly due to
the fact that we can often learn the arrival patterns of online
tasks via mining massive historical data (Yao et al. 2018;
Li et al. 2018; Wang, Fu, and Ye 2018). KIID has already
been used to capture the arrival pattern of online tasks in
various crowdsourcing applications (Dickerson et al. 2018b;
Singer and Mittal 2013; Singla and Krause 2013). We call
our new model Online Stable Matching under Known Iden-
tical Independent distributions (OSM-KIID).

Competitive Ratio. Competitive ratio is a commonly-used
metric to evaluate the performance of online algorithms.
Consider an online maximization problem for example. Let
ALG(I) = EI∼I [ALG(I)] denote the expected perfor-
mance of ALG on an input I, where the expectation is
taken over the random arrival sequence I . Let OPT(I) =
E[OPT(I)] denote the expected offline optimal, where
OPT(I) refers to the optimal value after we observe the
full arrival sequence I . Then, competitive ratio is defined
as minI

ALG(I)
OPT(I) . It is a common technique to use an LP

to upper bound the OPT(I) (called the benchmark LP) and

1Here assume in the case when u is not matched in M, uM
is a dummy node which has a profit of 0. Similarly when v is not
matched inM, vM is a dummy node such that d(vM, v) =∞.

hence get a valid lower bound on the target competitive ratio.
In our paper, we conduct online competitive ratio analysis
only on the first objective. Specifically, for a given (random)
offline instance I , offline optimal OPT(I) is defined as the
maximum profit (OBJ-1) among all possible stable match-
ings on I .

1.1 Contributions
Our contributions can be summarized in three aspects.

First, we propose a new online stable matching model un-
der KIID (OSM-KIID) to address the preference-aware task
assignment problem in on-demand taxi dispatching applica-
tions. OSM-KIID distinguishes itself from existing online
stable marriage problems as follows.
• Our model considers two objectives, i.e., maximizing

the total profit and minimizing the number of blocking
pairs. Prior studies only optimize the latter one (Khuller,
Mitchell, and Vazirani 1994; Lee 1999; Miyazaki 2014).

• Our model allows partial preference list with ties for each
worker/task and admits a practical arrival assumption, i.e.,
KIID, which is supported by the real dataset.
Second, we present elegant theoretical analysis for our

model. We first construct a linear program (LP (1)), which is
proved a valid upper bound for the expected maximum profit
on the offline optimal stable matching. Then we propose an
effective LP-based online algorithm LP-ALG with provable
performances on both objectives. Let |E| be the number of
edges in the compatible graph.
Theorem 1. LP-ALG achieves an online ratio at least 1−
1/e, while the expected number of blocking pairs is at most
|E| ∗ (e2+e−1)2

4(e−1)e3 ∼ 0.6 ∗ |E|.
Note that the online ratio is evaluated on OBJ-1 against

offline optimal stable matching. We also examine carefully
a natural heuristic, Greedy, which simply assigns each on-
line arriving task to a nearest available worker (breaking ties
in an arbitrary way). Unfortunately, we identify a class of
instances on which Greedy can have an arbitrarily bad per-
formance with respect to OBJ-1.
Theorem 2. For any ε > 0, there exists an instance such
that Greedy achieves an online ratio at most ε with an ex-
pected number of blocking pairs of at least 0.5∗|E|+o(|E|).

Comparing the above two theorems, LP-ALG can signif-
icantly beat Greedy in terms of OBJ-1 in the worst case,
while lose slightly on OBJ-2. Additionally, we show that
the number of blocking pairs in LP-ALG is at most 8
times of that in the optimal non-adaptive2 algorithm which
matches LP-ALG on OBJ-1. We prove that by characteriz-
ing a Pareto line for the optimal non-adaptive online algo-
rithms achieving a constant online ratio for OBJ-1.

Third, we test our model and algorithm on a real dataset
collected from a large on-demand taxi dispatching platform.
We present intensive analysis of the real dataset, which
validates our KIID arrival assumption. Also, we propose

2An algorithm is called non-adaptive if its strategy does not
respond to the random outcomes observed during previous rounds.
Our LP-based LP-ALG belongs to the class of non-adaptive.



several natural baselines, such as Greedy and Greedy-RT
(threshold-based online policies), and test our LP-based
online algorithm against them on both synthetic and real
datasets. Our experimental results confirm our theoretical
analysis, and show our LP-based algorithm can strictly dom-
inate all those baselines (on both objectives) when online
taxi requests outnumber taxi drivers e.g., during rush hours.

1.2 Other Related Work
Our online stable matching can be viewed as an online ver-
sion of the stable marriage problem, which has a combined
flavor from online matching (i.e., maximization of the total
profits over all matches) and stable marriage (i.e., minimiza-
tion the number of blocking pairs). We survey related work
along these two lines as follows.

Online Matching. Online (bipartite) matching problems are
primarily motivated by Internet advertising. In the basic ver-
sion, we are given a bipartite graph G = (U, V,E) where
U and V represent the respective set of offline advertisers
and online keywords or impressions. Upon each arrival of
a keyword v, a central clearinghouse must make an instant
and irrevocable decision to either reject v or assign v to
one of its neighbor u and obtain a profit we for the match
e = (u, v). The goal is to design an efficient online match-
ing algorithm such that the expected total weight (profit)
of all matches is maximized. Following the seminal work
of (Karp, Vazirani, and Vazirani 1990), there has been a large
body of research on related variants (Mehta 2013). Particu-
larly, online matching has been widely applied in on-demand
taxi dispatching for online task assignment to maximize the
number of matches (Zhang et al. 2017; Tong et al. 2017b;
Kazemi and Shahabi 2012).

Stable Marriage. Ever since its introduction in the semi-
nal 1962 paper (Gale and Shapley 1962), the stable mar-
riage problem has been used in many applications, includ-
ing resource allocation (Lee 1999), hospital-doctor match-
ing markets (Deng, Panigrahi, and Waggoner 2017), SDN
controller assignment (Wang et al. 2016), crowdsourcing
(Xia and Muthukrishnan 2017) etc. We refer readers to (Gus-
field and Irving 1989; Manlove 2013) for a more com-
prehensive survey. Relevant to our settings is online stable
marriage (Khuller, Mitchell, and Vazirani 1994; Lee 1999;
Miyazaki 2014; Huzhang et al. 2017; Xia and Muthukrish-
nan 2017). Huzhang et al. try to find a stable arrangement for
house-roommate matching to maximize the social welfare
between roommates (Huzhang et al. 2017). Xia et al. adopt
a global uniform pricing strategy to seek a stable matching
in crowdsourcing (Xia and Muthukrishnan 2017).

2 Main Model
Assume a bipartite graph G = (U, V,E) where U and V
represent the set of workers (offline) and task types3 (on-
line) respectively. We have a finite time (known) horizon T
and for each time t ∈ [T ]

.
= {1, 2, · · · , T}, a vertex v will

be sampled (we also say v arrives) from a known distribu-
tion {pv} such that

∑
v∈V pv = 1. Note that the sampling

3A task type refers to a certain class of tasks who share certain
attributes such as locations (details in Section 6).

process is independent and identical across the T rounds.
We assume integral arrival rates4 for all tasks (i.e., pv ∗ T
are all integers), and without loss of generality (WLOG) we
further assume that pv = 1/T by creating pv ∗ T copies
for each v. In this case, we have T = |V |. Upon the arrival
of each online task v, an immediate and irrevocable deci-
sion is required: either reject v, or match v with an avail-
able neighbor u. Each v is associated with a profit wv > 0
which we can get if v is matched; each edge f = (u, v)
has a distance d(u, v) > 0. For each u, we say u prefers v
over v′ if wv > wv′ . Similarly, we say v prefers u over u′
if d(u, v) < d(u′, v). For a given matchingM over G, we
define an edge f as blocking pair or blocking edge iff (1)
f = (u, v) ∈ E, f /∈ M and (2) u prefers v over uM and
v prefers u over vM, where uM and vM are the respective
vertices matched to u and v inM (uM and vM are dummy
nodes if u, v are not matched, where uM has zero profit and
vM has infinity distance from v). Our goal is to design an
online matching policy such that the two objectives on the
resultant matchingM is optimized (see the definition in the
introduction).

In our paper, we conduct online competitive ratio analysis
only on OBJ-1. Notably, our offline optimal is defined as the
expected maximum profit (OBJ-1) on the offline optimal sta-
ble matching. For a general bipartite graph when each ver-
tex can have an arbitrary preference list, a stable matching
may even not exist (Iwama et al. 1999). However, in our
case, there always exists a stable matching (i.e., a matching
with no blocking pair) in any given offline instance. That is
mainly because the preference order of each worker toward
its neighboring tasks inherits from the same order of their
profits. See the lemma below and we defer the proof to our
full paper5.

Lemma 1. For any given offline instance of OSM-KIID,
there always exists a stable matching with no blocking pair.

3 An LP-based Algorithm
Our benchmark LP is as follows. Recall that our offline
optimal is defined as the expected profit (evaluated on
the first objective) on the offline optimal stable matching.
Note that each v may have multiple copies in an offline
arrival sequence. For two edges sharing a vertex u, say
f1 = (u, v1), f2 = (u, v2), we say f1 dominates f2 iff
wv1 > wv2 . Similarly for two edges sharing a vertex of v,
say f1 = (u1, v), f2 = (u2, v), we say f1 dominates f2

iff v strictly prefer u compared to u′. For each given edge
f = (u, v) ∈ E, let SLf and SRf be the sets of edges inci-
dent to u and v respectively which is dominated by f . Con-
sider any given offline optimal stable matching algorithm.
For each edge f = (u, v) ∈ E, let xf be the probability that
we match uwith v (or one copy of v if multiple arrivals). For

4“Integral arrival rate” is a common assumption in Online
Matching Models under KIID, see e.g., (Haeupler, Mirrokni, and
Zadimoghaddam 2011; Feldman et al. 2009). In this case, we can
simply assume each online vertex is uniformly sampled each time.

5https://drive.google.com/file/d/
1drIYxOsCKhQyrdnpioO7EwmMi0EYcTP8/view?usp=
sharing

https://drive.google.com/file/d/1drIYxOsCKhQyrdnpioO7EwmMi0EYcTP8/view?usp=sharing
https://drive.google.com/file/d/1drIYxOsCKhQyrdnpioO7EwmMi0EYcTP8/view?usp=sharing
https://drive.google.com/file/d/1drIYxOsCKhQyrdnpioO7EwmMi0EYcTP8/view?usp=sharing


each u, let yu be the probability that u is not matched, and
for each v let yv be expected number of unmatched v. For
each worker u (task v), letEu (Ev) be the set of neighboring
edges incident to u (v). Consider the below LP program:

max
∑
v

wv

∑
f∈Ev

xf (1)

s.t.
∑

f∈Ev
xf + yv = 1 ∀v ∈ V (2)∑

f∈Eu
xf + yu = 1 ∀u ∈ U (3)∑

f ′∈SL
f
∪SR

f
xf ′ + yu + yv + xf ≤ 1 + 1

e
∀f = (u, v) ∈ E

(4)

0 ≤ xf , yu, yv ≤ 1 ∀f ∈ E, u ∈ U, v ∈ V (5)

Now we explain constraints in LP (1). Consider con-
straint (2) first. Notice that

∑
f∈Ev

xf denotes the expected
number of matched copies of v while yv is the expected
number of unmatched copies of v. Thus the sum of two
should be equal to the expected arrivals of v, which is 1.
For constraint (3), the first term

∑
f∈Eu

xf is the probability
that u is matched in the offline optimal while yu is the prob-
ability that u is not matched. Thus the sum should be 1. The
highlight point is constraint (4), which is inspired from the
LP program for the offline stable matching (Teo and Sethu-
raman 1997). We add detailed justification in the proof of
Lemma 2.

Lemma 2. The optimal value to LP (1) is a valid upper
bound for the expected profit on the offline optimal stable
matching.

Proof. We show that in any offline stable matching,
{xf , yu, yv} should be feasible to LP (1). Hence LP (1) will
be a valid upper bound for the expected offline optimal.

Constraints (2) (3) and (5) follow directly from the def-
initions of xf , yu and yv . Here we focus on the justifica-
tion of constraint (4). Consider a given f = (u, v), a fixed
(random) instance I and a stable matchingM on I . Let Xv

be the number of copies of v in I , Yu indicate if u is un-
matched, Yv be the number of unmatched copies of v, ZL
indicate if some f ∈ SLf is added in M, and ZR be the
number of edges in SRf added intoM. Let Xf indicate if u
gets matched with one copy of v. Split our discussion into
the following cases:
• Xv = 0. v never comes. In this case Yv = Zv = Xf = 0

and thus ZL + ZR + Yu + Yv +Xf = Zu + Yu ≤ 1.
• Xv = K ≥ 1, i.e., v has K arrivals/copies in I . If Xf =

1, then Yu = ZL = 0 and ZR + Yv ≤ K − 1. Thus
ZL + ZR + Yu + Yv + Xf ≤ K. If Xf = 0 and Yu +
ZL = 1 (u either unmatched or matched to some v′ worse
than v), then Yv + ZR = 0 (none of copies v should be
unmatched or matched to u′ worse than u). In this case
ZL+ZR+Yu+Yv+Xf ≤ 1. IfXf = 0 and Yu+ZL = 0
(u matched with some v′ 6= v but with wv′ ≥ wv), then
ZR+Yv ≤ K. Summarizing all the above cases, we have
ZL + ZR + Yu + Yv +Xf ≤ K.

Let Λ = ZL + ZR + Yu + Yv + Xf . The above analysis
shows that if Xv = 0 which occurs with probability 1/e,
Λ ≤ 1; if Xv ≥ 1, then Λ ≤ Xv . Therefore E[Λ] ≤ 1/e +

Algorithm 1: A simple LP-based non-adaptive algo-
rithm: LP-ALG

1 Suppose v arrives at time t.
2 Sample a neighbor u with probability x∗u,v . If u is

available, then assign v to u; otherwise, reject it.

E[Xv] = 1+1/e. Note that E[Λ] = E[ZL+ZR+Yu+Yv+
Xf ] =

∑
f ′∈SL

f ∪S
R
f
xf ′ + yu + yv +xf . Thus constraint (4)

is justified.

Now we present an LP-based non-adaptive algorithm. Let
{x∗u,v} be an optimal solution to LP (1).

Next, we prove the first main Theorem 1.
Proof. Focus on a given f∗ = (u, v) ∈ E. Let Xf∗ be the
expected number of blocking edges contributed by f∗ (note
that when v has two copies, say v and v′, (u, v) and (u, v′)
can be both blocking edges simultaneously). LetM be the
random matching returned by LP-ALG. Suppose Au is the
event that u is either unmatched or u is matched with some
v′ such that wv′ < wv inM. The complement event of Au,
denoted by ¬Au, can be interpreted as u is matched with
some v′ such that wv′ ≥ wv . Let βu =

∑
f∈Eu,f /∈SL

f∗
x∗f

and x∗u =
∑
f∈Eu

x∗f . Recall that T = |V | = n. Observe
that

Pr[¬Au] =

n∑
t=1

βu
n

(
1− x∗u

n

)t−1

(6)

= βu
1− exp(−x∗u)

x∗u
≥ βu(1− 1/e) (7)

Inequality (7) is because x∗u = 1 − y∗u ≤ 1. Let αu =∑
f∈SL

f∗
xf + yu. Thus βu = 1− αu. Consequently

Pr[Au] = 1− Pr[¬Au] ≤ 1− (1− αu)(1− 1/e)

Assume Au happens. Let C(v) be the set of copies of v
(including v) which arrived. For each v′ ∈ C(v) which is
not matched in M, we assume it is matched to a dummy
node, say ω, which assumes to be worse (i.e., farther) than
any neighbor of v. For each v′ ∈ C(v), if v′ is matched to
some u′ such that u′ is worse than u, then we claim (u, v′) is
a blocking edge. Thus Xf∗ is equal to the number of edges
in f ∈ M , denoted by Hv , such that f has one end in C(v)
while the other end is some u′ which is strictly worse than u
(note that u′ can be ω). Thus,

E[Xf∗ ] = Pr[Au]E[Hv|Au] ≤
(
1−(1−αu)(1−1/e)

)
E[Hv|Au]

Notice that conditioning on Au occurs, each round an
edge f = (u′, v) with u′ being strictly worse than u ar-
rives with probability at most

(∑
f∈SR

f∗
xf + yv

)
/(n −∑

f∈Eu
xf ) ≤

(∑
f∈SR

f∗
xf + yv

)
/(n− 1)

.
= αv/(n− 1).

This implies that E[Hv|Au] ≤ αv n
n−1 ∼ αv . Therefore,

E[Xf∗ ] ≤
(

1− (1− αu)(1− 1/e)
)
αv (8)

From Constraints in LP (1), we see that (1) αu =∑
f∈SL

f∗
xf + yu ≤ 1 due to Constraint (3); (2) αv =



∑
f∈SR

f∗
xf + yv ≤ 1 due to Constraint (2); (3) αu + αv ≤

1 + 1/e due to Constraint (4). Subject to all these three con-
straints, the right hand term in Equation (8) will get the max-
imum value of (e2+e−1)2

4(e−1)e3 ∼ 0.6. By linearity of expectation,
we get our claim for the expected number of blocking edges.

As for the online ratio, observe that for each given edge
f∗ = (u, v) ∈ E, it will be added into the online matching
in LP-ALG with probability at least

x∗f∗

n

∑n
t=1

(
1− x∗u

n

)
≥

x∗f∗(1− 1/e). By linearity of expectation, we get our claim
for the online ratio.

4 A Natural Baseline: Greedy
Algorithm 2: A Natural Baseline: Greedy

1 Suppose v arrives at time t.
2 Reject v if all its neighbors are matched; otherwise

assign v to one nearest available neighbor u
(breaking ties in an arbitrary way).

Now we start to prove Theorem 2.

Proof. Consider a star graph where U = {u}, V = {vj |j ∈
[n]} and T = n ≥ 4/ε. Suppose we use j to denote vj and
edge fj = (u, vj) when the context is clear. Suppose wj

.
=

wvj and let w1 = 1 and wj = ε/(j ∗ n) for all 2 ≤ j ≤ n.
Let A and B are the respective profit and expected num-

ber of blocking edges in Greedy. Observe thatA =
∑

j wj

n ≤
1+ε
n . Observe that whenever v1 comes at least once, offline

optimal stable matching will include (u, v1) and thus we
claim that offline optimal stable matching has an expected
profit OFF-OPT ≥ (1− 1/e). Thus the final online ratio is
at most A/OFF-OPT ≤ 1+ε

n(1−1/e) ≤ ε.
Now we compute the value B. Focus on the first round

t = 1. If vj comes with j ≥ 2, then B will be equal to the
expected number of arrivals of {v`|` < j} during the next
n − 1 rounds. Thus B =

∑n
j=2

1
n

(j−1)(n−1)
n = (n−1)2

2n .
Since |E| = n, we get our claim.

5 Hardness Results
The model in our paper has two objectives which complicate
the hardness analysis. To simplify it, we focus only on those
non-adaptive algorithms which achieves a constant compet-
itive ratio on OBJ-1. Consider a two-dimensional line P
where (x, y) axis represent respectively the online competi-
tive ratio and the expected number of blocking pairs. We say
an online algorithm ALG can never beat the line P (called
Pareto line), if it is impossible that ALG can achieve an on-
line ratio x ∈ [0, 1] and an expected number of blocking
pairs y such that (x, y) falls strictly below the line P . In
other words, any point (x, y) ∈ P can be viewed as an upper
bound of the optimal performance among all possible non-
adaptive algorithms: no non-adaptive algorithm can achieve
a performance, which is strictly better than (x, y) on one ob-
jective while at least as good as (x, y) on the other.

We characterize a non-adaptive algorithm as {xv|v ∈ V }
where each xv ∈ [0, 1]Nv (Nv is the size of Nv , the set of
neighbors of v) such that

∑
u∈Nv

xv,u ≤ 1. A non-adaptive

algorithm NADAP parameterized with {xv} will sample a
neighbor u ∈ Nv with probability xu,v , and assign v to u if
it is available. Obviously it includes our LP-based algorithm
as a special case.

Theorem 3. No non-adaptive algorithm achieveing a
constant competitive ratio could beat the Pareto line(

1
1−1/e

1−exp(−∆)
∆ , |E| ∗ exp(−∆)

)
with ∆ ≥ 1, where the

first and second elements are the respective online ratio and
expected number of blocking pairs, and |E| is the number of
edges in the compatible graph.

Consider a star graph where U = {u}, V = {vj |j ∈ [n]}
and T = n. We use j to denote vj and edge fj = (u, vj)
when the context is clear. Let wj

.
= wvj and w1 > w2 >

· · · > wn. In our case each v has only one neighbor. Thus
each non-adaptive algorithm can be simply captured by a
single vector y ∈ [0, 1]n, where yj indicates the probability
that we match vj with u when vj comes and u is available.
Observe that in any optimal non-adaptive online algorithm,
we are sure y1 = 1. This is because whenever v1 comes and
we match (u, v1), we will get the largest possible profit of
w1 and the smallest number of blocking pairs, which is 0.

Consider a given non-adaptive algorithm NADAP(∆),
which is captured by y with y1 = 1 and ∆ =

∑
j yj ≥ 1.

Let CR(∆) and BP(∆) be the respective competitive ratio
and the expected number of block pairs for NADAP(∆).

Lemma 3.

CR(∆) ≤ 1

1− 1/e

1

∆

(
1− (1− ∆

n
)n
)

Proof. Let us focus on the probability that f1 = (u, v1) is
added. Observe that

Pr[f1 is added] =

n∑
t=1

1

n

(
1−∆

n

)t−1

=
1

∆

(
1−
(
1−∆

n

)n)
Let OFF-OPT be the expected offline stable optimal on the
star graph instance. Thus, we have that

OFF-OPT ≥ (1− 1/e)w1 + (1/e)(1− 1/e)w2

Consider the extreme case when w1 � w2, e.g., w1 =
1, w2 = ε. Then we can simply focus on the profit of
NADAP(∆) by adding f1 and ignore all the rest. The fi-

nal ratio will be almost Pr[f1 is added]
OFF-OPT . Thus we get our

claim.

From Lemma 3, we see that for any ∆ = ω(1) as n→∞
(i.e., ∆ → ∞ as n → ∞), we have that CR(∆) = o(1).
In other words, if we want CR(∆) to get a constant online
ratio, we have to require ∆ is a constant as well.

Lemma 4.

BP(∆) ≥
(

1− ∆

n

)n
n

Proof. With probability
(

1 − ∆
n

)n
, we will end up with u

being not matched. In this case, the number of blocking pairs
will be T = n.



Summarizing the results in Lemmas 3 and 4 yields that of
Theorem 3. From Theorem 1, our LP-ALG achieves a ra-
tio of 1− 1/e while maintains the number of blocking pairs
at most 0.6 ∗ |E|. Applying Theorem 3, we conclude that
for any non-adaptive algorithm achieving a ratio of at least
1−1/e, it will have at least |E|∗exp(−∆) ∼ |E|∗0.1 block-
ing pairs in the worse case, where ∆ ∼ 2.23 is the unique
solution to the equation (1 − exp(−∆))/∆ = (1 − 1/e)2.
Thus we claim that the number of blocking pairs in LP-ALG
is at most 6 times of that in the optimal non-adaptive algo-
rithm which matches LP-ALG on the first objective.

6 Experiment
6.1 Experimental Setup
Dataset. The real dataset is collected through the GAIA ini-
tiative6, hosted by Didi Chuxing7. The dataset includes the
trip records of passengers and the trajectory records of taxis
in Chengdu, China for the month of November, 2016. For
each trip record, we have its starting coordinates (i.e., lati-
tude and longitude), destination coordinates and the time at
which the trip was initiated. For each taxi, we have several
trajectory records, each of them contains the coordinates of
this taxi during certain time intervals.

We experiment with the records during the peak-hour pe-
riod 14:00-14:30, with longitude and latitude ranging from
(104.04, 104.13) and (30.65, 30.73) respectively. We dis-
cretize the map of this range into a grid of 324 cells. Each
cell has a unit size of 500 meters. For each cell k ∈
{1, 2, . . . , 324} and trip length ` ∈ {1, 2, . . . , 10}, we create
a task type v(k, `), which denotes the group of taxi requests
with starting location from the cell k and trip length ` km.
We then extract 4360 tasks whose lengths are between 1km
to 10km from the records.8 This way we create |V | = 3240
task types. Notice that the dataset includes only the success-
fully completed trips. To mimic the imbalance in the num-
bers of drivers and passengers, we uniform sample |U | = m
drivers (workers) from the whole records, where m ranges
from 500 to 1500. For each driver u, we set its location as the
place it appears for the first time in the record. For each task
v of type (k, `), we set its profit wv = ` and set its starting
location as the center of cell k. Each driver u and task v have
a restricted circular range with radius of ru and rv such that
we create an edge (u, v) iff d(u, v) ≤ min(ru, rv), where
d(u, v) refers to Euclidean distance between u and v. We set
ru = rv = 500 meters.

Justification of the KIID Assumption. First, we plot the
average arrivals of each task type on each weekday (i.e.,
Monday, Tuesday, · · · , Friday) over the four weeks in
November 2016. The result is shown in Figure 1(a). The
arrival distribution over different task types shares a nearly
same pattern over the five days. This suggests the arrival dis-
tribution of different task types can be viewed as indepen-
dent and identical over each weekday. Second, we plot the
average arrivals of each task type on each 10-min time in-
terval during the peak-hour period 14:00-14:30 over the 30

6http://gaia.didichuxing.com
7http://www.didichuxing.com
8The extracted tasks account for 90% of the total.

days of November, see Figure 1(b). Again, it shows that the
arrival distribution among different task types shares a sim-
ilar pattern over all intervals. Similar results are observed in
the heatmaps of arrivals among all task types in each case.
More details can be found in our full paper9.
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Figure 1: Arrival distribution of task types on the real dataset
collected from DiDi Chuxing in Chengdu, China: (a) aver-
age arrivals of task types during 14:00-14:30 each weekday
over the 4 weeks in Nov. 2016; (b) average arrivals of task
types during each of the three 10-min intervals of 14:00-
14:30 over the 30 days of Nov. 2016.

LP-based Algorithm and Baselines. We compare our LP-
based non-adaptive algorithm LP-ALG with two baselines:
Greedy as shown in Section 4 and Greedy-RT. The details
are as follows. Let {x∗u,v} be an optimal solution to the
benchmark LP (1). Assume some request v arrives.

• LP-ALG: Sample a neighbor u with probability x∗u,v . If
u is available, and then assign v to u; otherwise, reject it.

• Greedy (Khuller, Mitchell, and Vazirani 1994): Reject v
if none of its neighbors is available; otherwise assign v
to one nearest available neighbor u (breaking ties in an
arbitrary way).

• Greedy-RT (Ting and Xiang 2015; Tong et al. 2016b): At
the very beginning of online phase, we sample a threshold
τu and τv uniformly from two respective pre-calculated
intervals for each driver u and task v. During the online
phase when some request v arrives, assign v to some avail-
able u if u and v satisfy each threshold, i.e., wv > τu and
d(u, v) < τv (breaking ties in an arbitrary way).

Among the above three algorithms, both Greedy and
Greedy-RT are adaptive in the sense that their strategies re-
spond to the outcome of previous strategies and arrivals.

Methodology. We use the first 20 days in November for
training and propose five different approaches to learning the
arrival distribution of different task types each round. They
are Historical Average (use the average as the prediction),
Linear Regression (use a linear regression model with the
number of tasks during the 5 most recent periods), Neural
Network (a neural network with 2 hidden layers and the fea-
tures are the number of tasks during the 5 most recent peri-
ods and the type ID), Gradient Boosted Regression Tree (use
non-parametric regression) and the state-of-the-art approach

9https://drive.google.com/file/d/
1drIYxOsCKhQyrdnpioO7EwmMi0EYcTP8/view?usp=
sharing

http://gaia.didichuxing.com
http://www.didichuxing.com
https://drive.google.com/file/d/1drIYxOsCKhQyrdnpioO7EwmMi0EYcTP8/view?usp=sharing
https://drive.google.com/file/d/1drIYxOsCKhQyrdnpioO7EwmMi0EYcTP8/view?usp=sharing
https://drive.google.com/file/d/1drIYxOsCKhQyrdnpioO7EwmMi0EYcTP8/view?usp=sharing


LinUOTD (Tong et al. 2017a). The results show that Lin-
UOTD outperforms the other methods in the final prediction.
Thus, we use αv to represent the arrival rate in the predicted
result of LinUOTD. We round each αv to a near integral
nv ∈ {0, 1, 2, · · · }, and remove all those v with nv = 0. For
each type v, we create nv copies of type v and in this way
we have T =

∑
v nv task types and each type will have a

unit expected arrival over T rounds (i.e., each pv = 1/T ).
On the real dataset, we test the instances with |U | =

m = {500, 750, 1000, 1250, 1500}. For each instance, we
run LP-ALG and the two baselines over the 10 remaining
days and take the average as the final performance. The com-
petitive ratio is taken as the ratio of the average profits ob-
tained to the benchmark LP value. The blocking pair ratio
is computed as the ratio of the average number of blocking
pairs to the number of edges in the compatible graph.

On the synthetic dataset, we test the same set of instances.
For each instance, however, we run the three algorithms each
for 1000 independent trials. During each trial, we sample an
online task uniformly each time. We take the average over
those 1000 trials as the final performance.

The LP program is solved via the Glop Linear Solver on
a PC with Intel(R) Core(TM) i7-7700HQ 2.80GHz proces-
sor and 16GB Memory. All the LP programs can be solved
within four minutes.
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Figure 2: Experimental results on the real dataset.
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Figure 3: Experimental results on the synthetic dataset.

6.2 Results
Figures 2 and 3 show the results on the real and synthetic
dataset, respectively.

LP-based algorithm LP-ALG always achieves a smaller
number of blocking pairs than the two baselines. This is
mainly due to the fact that LP-ALG is guided by the offline
optimal strategy which is restricted to a stable matching on
each offline instance. The constraint (4) in LP (1) exactly
captures this point. Thus, we can interpret that LP-ALG
first gives priority to small number of blocking pairs and
then tries to maximize OBJ-1. Note that Greedy always tries
to assign an arrival task v to a nearest available worker
in each step, which in some sense helps reduce the num-
ber of blocking pairs incident to v. However, Greedy can
only achieve that goal locally while LP-ALG can make it

in a globally-optimized way by solving a well-designed LP
(i.e., the benchmark LP). Observe that the blocking pair ra-
tio achieved by LP-ALG is always below 0.1, which is far
below 0.6 as analyzed in the worst case in Theorem 1.

As for the competitive ratio, LP-ALG first dominates the
two baselines and then gets close to Greedy, as the num-
ber of drivers increases. Yet the gap between Greedy and
LP-ALG is still notable when there are relatively suffi-
cient workers. The ratio achieved by LP-ALG keeps slightly
above 0.63, which is consistent with our prediction of 1 −
1/e as in Theorem 1. This suggests that our competitive ra-
tio analysis for LP-ALG is nearly tight and the worst case
is close to real scenarios. Comparably, the worst case where
Greedy achieves a very bad ratio as shown in the proof of
Theorem 2 seems far away from real scenarios.

Figures 2 and 3 show that the advantages of high compet-
itive ratio and small number of blocking pairs both diminish
as the number of drivers increases. This is expected since the
more (offline) drivers, the less need for a globally-optimized
strategy like LP-ALG. Our results imply that our LP-based
algorithm will be particularly effective during the peak hours
when online tasks outnumber the drivers.

7 Conclusion
In the paper, we proposed an online stable matching model
under KIID (OSM-KIID) to address the preference-aware
task assignment problem in on-demand taxi dispatching ap-
plications. The model is featured by two objectives: max-
imizing the total profit and minimizing the overall dissatis-
faction about preferences among workers and tasks. We con-
structed an LP, which proves to be a valid upper bound on
the expected maximum profit on the offline optimal stable
matching. We further propose an LP-based online algorithm
LP-ALG, which achieves an online ratio of at least 1− 1/e
on the first objective and maintains at most 0.6∗|E| blocking
pairs. Experimental results confirm our theoretical analysis
on LP-ALG, and show that LP-ALG can beat natural base-
lines such as Greedy when tasks outnumber the drivers.
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