
Pruning Meta-Trained Networks for On-Device Adaptation
Dawei Gao∗

SKLSDE & BDBC, Beihang University
Beijing, China

david_gao@buaa.edu.cn

Xiaoxi He∗
ETH Zürich

Zürich, Switzerland
hex@ethz.ch

Zimu Zhou
Singapore Management University

Singapore, Singapore
zimuzhou@smu.edu.sg

Yongxin Tong
SKLSDE & BDBC, Beihang University

Beijing, China
yxtong@buaa.edu.cn

Lothar Thiele
ETH Zürich

Zürich, Switzerland
thiele@ethz.ch

ABSTRACT
Adapting neural networks to unseen tasks with few training sam-
ples on resource-constrained devices benefits various Internet-of-
Things applications. Such neural networks should learn the new
tasks in few shots and be compact in size. Meta-learning enables
few-shot learning, yet the meta-trained networks can be over-
parameterised. However, naive combination of standard compres-
sion techniques like network pruning with meta-learning jeop-
ardises the ability for fast adaptation. In this work, we propose
adaptation-aware network pruning (ANP), a novel pruning scheme
that works with existing meta-learning methods for a compact
network capable of fast adaptation. ANP uses weight importance
metric that is based on the sensitivity of the meta-objective rather
than the conventional loss function, and adopts approximation
of derivatives and layer-wise pruning techniques to reduce the
overhead of computing the new importance metric. Evaluations
on few-shot classification benchmarks show that ANP can prune
meta-trained convolutional and residual networks by 85% without
affecting their fast adaptation.

CCS CONCEPTS
• Computing methodologies→ Neural networks.

KEYWORDS
deep neural networks; meta learning; network pruning

ACM Reference Format:
Dawei Gao, Xiaoxi He, Zimu Zhou, Yongxin Tong, and Lothar Thiele. 2021.
Pruning Meta-Trained Networks for On-Device Adaptation. In Proceedings
of the 30th ACM International Conference on Information and Knowledge
Management (CIKM ’21), November 1–5, 2021, Virtual Event, QLD, Australia.
ACM,NewYork, NY, USA, 10 pages. https://doi.org/10.1145/3459637.3482378

∗Both authors contributed equally to the paper

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CIKM ’21, November 1–5, 2021, Virtual Event, QLD, Australia
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8446-9/21/11. . . $15.00
https://doi.org/10.1145/3459637.3482378

1 INTRODUCTION
On-device adaptation refers to learning previously unseen tasks by
updating an initial model on-board. This is desired in internet of
things (IoT) applications including personal drones, home robots
and self-driving vehicles, since uploading newly collected data for
model updating can be infeasible due to unstable wireless connec-
tions, limited bandwidth or privacy concerns. An initial model for
on-device adaptation should allow fast adaptation and should be
compact in size due to the following reasons: (i) Only a limited
amount of training data is available locally, which requires the
model to adapt to new tasks with few samples. This requirement
is reasonable because users are often asked to provide supervision
with a few private data samples so that the general initial model
can be rapidly customized, personalized, or calibrated to new tasks,
users or environments without affecting user experiences. (ii) IoT
applications often run on resource-constrained devices, where a
large model easily overwhelms the computation and memory re-
sources. In contrast to the cloud, IoT platforms powered by systems
on chips (SoCs) or micro-controllers are particularly limited by the
small memory system (𝐾𝐵 to𝑀𝐵) to store model parameters [2].

An effective solution to enable fast adaptation is meta-learning,
where the initial model for deployment is meta-trained, and adap-
tation is implemented and assessed by few-shot learning [8, 25].
Of particular interest is Model-Agnostic Meta-Learning (MAML),
a general gradient-based algorithm that learns the weights of an
given initial architecture, such that the meta-trained model excels
at few-shot learning [8]. Gradient-based algorithms [8, 24, 30] are
suited for on-device adaptation since recent research due to the fea-
sibility of gradient-based training on low-resource devices [12, 22].
Despite allowing fast adaptation, MAML fails to generate a com-
pact model as it only optimised the network parameters, but does
not alter the initial architecture [7]. The initial architecture, how-
ever, has to be over-parameterised for effective meta-training [1].
Consequently, the meta-trained model is also over-parameterised.

An intuitive remedy for compact models is network pruning,
which has the potential to radically remove unimportant parameters
in a neural network without deterioration in inference accuracy
[5]. However, existing pruning methods [6, 13, 15, 16, 21, 29] are
incompatible with meta-learning and may jeopardise the ability of
fast adaptation, as they are designed to retain the inference accuracy
on a known single task. In contrast, the goal of meta-learning (in the
following called meta-objective) is to optimise the ability to adapt
to new tasks following certain distribution, which differs from the

https://doi.org/10.1145/3459637.3482378
https://doi.org/10.1145/3459637.3482378

Vanilla Train

Meta-Train

Low-Resource High-Resource

Task 3

2f

f

Task 2

Task 1

Task 4

Initial Model
ANP g

FSL
4g

Task 1
Initial Model

prune1f 1g

Task 1

1f

3f

Figure 1: Comparison between pruning a vanilla-trained
model and ameta-trainedmodel. Existing pruningmethods
are designed for vanilla-trained networks, where the task is
the same before and after pruning. For example, the vanilla-
trained model 𝑓1 is pruned into a compact model 𝑔1 to de-
ploy on low-resource platforms, where both 𝑓1 and 𝑔1 are op-
timised for Task 1. Our focus is to prune a meta-trained net-
work, where themodel is optimised on batches of tasks. The
pruned meta-trained model should fast adapt to new tasks
after deployment. For example, the weights for the initial
architecture is meta-trained to 𝑓 , which is a good initialisa-
tion for Task 1, 2, and 3. Then 𝑓 is pruned into a compact
model 𝑔, where 𝑔 is expected to adapt into 𝑔4 after few-shot
learning (FSL) and yield high inference accuracy on Task 4.

objective of single task pruning. Therefore, to construct a compact
network capable of fast adaptation, a new network pruning scheme
, which can optimise the topology in accordance with the meta-
objective, is required, as illustrated in Fig. 1.

In this paper, we propose Adaptation-aware Network Pruning
(ANP), a novel network pruning scheme that works in synergy with
meta-learning. While meta-learning optimises the weights, ANP
compresses and optimises the topology. Together we are able to
construct compact neural networks capable of fast adaptation.

At a high level, ANP extends the analysis of second order deriva-
tives for pruning vanilla-trained networks [15, 19] to meta-learning
scenario. That is, ANP calculates weight importance values from
the training data for tasks sampled from a certain distribution and
removes those weights that induces minimal changes on the meta-
objective. However, pruning based on such second order derivatives
of the meta-objective is computation-intensive, as it requires the
global third order derivatives and generalised inverses of Hessian
matrices. ANP avoids calculations of third order derivatives via a
novel approximation approach. It further reduces the computation
overhead by layer-wise pruning such that the generalised inverse
Hessian matrices are obtained efficiently and stably.

Evaluations on Mini-ImageNet [25] and Caltech-UCSD Birds-
200-2011 (CUB) [27] show that ANP can prune common used initial
architectures by 85%with less than 1% accuracy loss in few-shot clas-
sification and it works with different gradient-based meta-learning
methods (e.g., MAML [8, 24, 30]). In contrast, pruning the initial
architecture to the same ratio with existing methods [6, 13] will
lead to a loss of 7.01% to 26.70% in few-shot classification accuracy.

Our main contributions and results are as follows.

• To the best of our knowledge, this is the first investiga-
tion of pruning meta-trained neural networks for model
compression. Due to the inconsistency between the meta-
objective and the weight importance metrics in network
pruning, naive combination of pruning and meta-learning
deteriorates the model adaptability in few-shot learning.

• We design ANP, a novel meta-learning-compatible network
pruning scheme. ANP can prune over-parameterized meta-
trained networks without sacrificing their ability for fast
adaptation. It applies approximation of derivatives and layer-
wise pruning to reduce the computation overhead in pruning
meta-trained deep models.

• Evaluations on few-shot classification benchmarks show that
ANP can prune the initial architectures for meta-learning by
85% while retaining the few-shot classification accuracy.

In the rest of this paper, we review related work in Sec. 2, intro-
duce our ANP method in Sec. 3, present its evaluations in Sec. 4
and conclude in Sec. 5.

2 RELATEDWORK
Our work is relevant to the following threads of research.

Meta-Learning for Few-Shot Learning. Training a deep neu-
ral network upon limited samples i.e., in few-shots, tends to overfit
[10]. Meta-learning has been a successful solution to few-shot learn-
ing [17, 28], where the meta-trained model is able to learn a new
task from a few training samples. In this work, we focus on gradient-
based meta-learning methods [8, 24, 30] for their applicability in
various learning tasks and the potential to enable on-device adapta-
tion. Specifically, we aim to generate an initial model that can fast
adapt to new tasks and is compact in size.

MAML-like algorithms [8, 24, 30] only adaptweights of the initial
architecture without alerting its topology. A few studies [7, 20]
propose to integrate MAML with neural architecture search to
optimise the initial architecture. Since their primary goal is higher
few-shot inference accuracy, the resulting model can even have
more parameters than the initial architecture in MAML [7]. Our
work also adapts the initial architecture, yet with a complementary
objective. Particularly, we sparsify it without sacrificing its ability
of fast adaptation, which results in a much smaller model.

Network Pruning. Given an over-parameterised network well-
trained for a given task, network pruning eliminates unimportant
parameters without major accuracy loss on the inference task [5].
Fine-grained pruning (e.g., weights) [6, 13] results in a higher com-
pression rate whereas coarse-grained pruning (e.g., filters) [4, 23]
is a better fit for acceleration on commodity hardware. Various
importance criteria have been proposed, such as magnitude [13],
second order derivatives [6, 15, 16], and information bottleneck [4].
However, all existing parameter importance metrics are derived
for vanilla-trained networks, i.e., the pruned network targets at the
same task as before pruning. In contrast, we propose a new weight
importance metric for meta-trained networks, where the pruned
network should fast adapt to new tasks unseen before pruning.

A very recent study [26] explored improving the meta-training
procedure via pruning. Specifically, in [26], pruning is applied as
a model capacity constraint to avoid meta-overfitting, where the
pruned parameters are re-activated during the retraining phase.

Its final output is still a large dense network which is unfit for de-
ployment on resource-constrained devices. As will be shown in our
evaluations (see Sec. 4.2), directly combining iterative hard thresh-
olding (equivalent to the “Magnitude” baseline in our work) and
meta-learning method like Reptile [24] as in [26] leads to significant
drop in few-shot classification accuracy at high pruning ratios.

3 METHOD
In this section, we first provides a primer on meta learning (Sec. 3.1)
and then explain our ANP in detail. Specifically, we introduce our
new weight importance metric for pruning meta-trained networks
(Sec. 3.2), followed by derivative approximations (Sec. 3.3) and layer-
wise pruning (Sec. 3.4) for efficient calculating of the weight impor-
tance metric, and finally present the complete algorithm (Sec. 3.5).

3.1 Primer on MAML
Model-Agnostic Meta-Learning (MAML) [8] learns an initial model
𝑓 such that given a new task, 𝑓 can learn it with a few training
samples. MAML is a two-tier gradient decent based optimisation
process. In each iteration of the optimisation,𝑀 tasks with corre-
sponding training datasets {D𝑖 }, 𝑖 ∈ {1, · · · , 𝑀} are sampled from
a certain distribution. We use 𝜽 to represent the current parameters
of 𝑓 . In each iteration, 𝜽 is updated to 𝜽 ′′ as follows.

𝜽 ′𝑖 = 𝜽 − 𝛼 · ∇𝜽 L (𝜽 ,D𝑖) (1)
𝜽 ′′ = 𝜽 − 𝛽 · ∇𝜽 L𝑚 (2)

where

L𝑚 =
1
𝑀

𝑀∑
𝑖=1

L
(
𝜽 ′𝑖 ,D𝑖

)
(3)

is called the meta-objective, L(·, ·) is a loss function, and 𝛼 and
𝛽 are learning rates. The inner-loop gradient decent (1) updates
parameters {𝜽 ′𝑖 } for task-specific objectives. Note that 𝜽 ′𝑖 is the
vector for parameters trained on task 𝑖 . The outer-loop gradient
descent (2) then updates the parameters for the meta-objective.
Since the meta-objective L𝑚 contains first derivatives of 𝜽 in (1),
the gradient in (2) is in effect a second derivative of 𝜽 .

3.2 Weight Importance in Meta-Training
Pruning eliminates unimportant weights in the network, where
the weight importance is assessed by the impact of its removal on
the inference accuracy. A classic and effective approach to quantify
weight importance is an analysis based on second order derivatives,
which measures the change in the objective caused by a weight
change [6, 15, 16, 19]. Weight importance of vanilla-trained neural
networks is defined using the traditional loss functions as the ob-
jective. We now define weight importance for meta-trained neural
networks via an analysis based on the second order derivatives of
the meta-objective as (3).
Defining Weight Importance. To quantify the weight impor-
tance of meta-trained networks, the conventional loss function
is replaced by the meta-objective. Specifically, the Taylor series of
the change in the meta-objective due to a parameter change is

𝛿L𝑚 =

(
𝜕L𝑚
𝜕𝜽

)⊤
𝛿𝜽 + 1

2
𝛿𝜽⊤H𝛿𝜽 +𝑂 (| |𝛿𝜽 | |3) (4)

where H = 𝜕2L𝑚
/
𝜕𝜽 2 is the Hessian matrix of the meta-objective

with respect to 𝜽 .
Similar to the analysis of second derivatives for vanilla-trained

networks [15, 19], the first term vanishes for a well meta-trained
network, and the higher order derivatives can be ignored. Therefore,

𝛿L𝑚 ≈ 1
2
𝛿𝜽⊤H𝛿𝜽 (5)

Then, identifying the 𝑞-th weight in parameter 𝜽 that minimizes the
impact on the meta-objective can be formulated as the following
optimisation problem:

min
𝑞

1
2
𝛿𝜽⊤H𝛿𝜽 s.t. e⊤𝑞𝛿𝜽 + 𝜽𝑞 = 0 (6)

where e𝑞 is the unit vector whose 𝑞-th element is 1 and otherwise
0, and 𝜽𝑞 is the same as 𝜽 except that the 𝑞-th element is set to
0. Forming a Lagrange from (6) as in [15], we find a closed-form
solution for 𝛿𝜽

𝛿𝜽 = −
𝜽𝑞

[H−1]𝑞𝑞
H−1e𝑞 (7)

and the corresponding minimal change in the meta-objective

ΔL𝑚 =
1
2

𝜽 2
𝑞

[H−1]𝑞𝑞
(8)

This term is also considered as the importance of the 𝑞-th element
(weight) in the parameter vector 𝜽 .
Challenges to Compute Hessian. From (8), it seems that the
weight importance metric for pruning vanilla-trained and meta-
trained networks share the same form, except that the Hessian
matrix is defined on the meta-objective rather than the traditional
loss function.We show that naively calculating the Hessian involves
third order derivatives with respect to 𝜽 , which is computation-
intensive for deep neural networks.

Assume 𝜽 ∈ R𝑑 . Then H ∈ R𝑑×𝑑 and each element 𝐻𝑚,𝑛 in H is
computed as

𝐻𝑚,𝑛 =
𝜕2L𝑚
𝜕\𝑚 𝜕\𝑛

(9)

=
1
𝑀

𝑀∑
𝑖=1

𝜕2L(𝜽 ′𝑖 ,D𝑖)
𝜕\𝑚 𝜕\𝑛

(10)

=
1
𝑀

𝑀∑
𝑖=1

𝜕2L (𝜽 − 𝛼 · ∇𝜽 L (𝜽 ,D𝑖),D𝑖)
𝜕\𝑚 𝜕\𝑛

(11)

where (10) and (11) simply substitute L𝑚 and 𝜽 ′𝑖 with (2) and (1).
From (11), each element in H requires computing third order

derivatives with respect to 𝜽 .

3.3 Approximation of Derivatives
We avoid computing the third order derivatives in (11) by approxi-
mating them as follows.

Since 𝜽 ′𝑖 is a function of \𝑚 and \𝑛 , we apply the Faà di Bruno’s
formula [14] to (10):

𝐻𝑚,𝑛 =
1
𝑀

𝑀∑
𝑖=1

𝜕2L(𝜽 ′𝑖 ,D𝑖)
𝜕\𝑚 𝜕\𝑛

=
1
𝑀

𝑀∑
𝑖=1

(∑
𝑘

𝜕L(𝜽 ′𝑖 ,D𝑖)
𝜕\ ′𝑖
𝑘

𝜕2\ ′𝑖
𝑘

𝜕\𝑚 𝜕\𝑛
+

∑
𝑘,𝑙

𝜕2L(𝜽 ′𝑖 ,D𝑖)
𝜕\ ′𝑖
𝑘
𝜕\ ′𝑖
𝑙

𝜕\ ′𝑖
𝑘

𝜕\𝑚

𝜕\ ′𝑖
𝑙

𝜕\𝑛

)
(12)

'i

'i

gradient descent

approximation

Figure 2: Derivative approximation in (17). A small change
Δ𝜽 in 𝜽 induces approximately the same changeΔ𝜽 ′𝑖 as in𝜽 ′𝑖 .
It especially well for a well-meta-trained network, as ∇𝜽L𝑚
is small while ∇𝜽L (𝜽 ,D𝑖) remains large.

From (1), we know

𝜕\ ′𝑖
𝑘

𝜕\𝑚
=

1 − 𝛼 𝜕

2L(𝜽 ,D𝑖)
𝜕\𝑘 𝜕\𝑚

, if 𝑘 =𝑚,

−𝛼 𝜕
2L(𝜽 ,D𝑖)
𝜕\𝑘 𝜕\𝑚

, if 𝑘 ≠𝑚

(13)

Omitting the second derivative 𝜕2L(𝜽 ,D𝑖)
/
𝜕\𝑘 𝜕\𝑚 , we obtain the

first order approximation for 𝜕\ ′𝑖
𝑘

/
𝜕\𝑚

𝜕\ ′𝑖
𝑘

𝜕\𝑚
≈

{1, if 𝑘 =𝑚,

0, if 𝑘 ≠𝑚
(14)

And therefore,
𝜕2\ ′𝑖𝑚

𝜕\𝑚 𝜕\𝑛
= 0 (15)

The first term in (12) is therefore vanished, and according to (14),
we can also simplify the second term with∑

𝑘,𝑙

𝜕2L(𝜽 ′𝑖 ,D𝑖)
𝜕\ ′𝑖
𝑘
𝜕\ ′𝑖
𝑙

𝜕\ ′𝑖
𝑘

𝜕\𝑚

𝜕\ ′𝑖
𝑙

𝜕\𝑛
=
𝜕2L(𝜽 ′𝑖 ,D𝑖)
𝜕\ ′𝑖𝑚 𝜕\ ′𝑖𝑛

𝜕\ ′𝑖𝑚
𝜕\𝑚

𝜕\ ′𝑖𝑛
𝜕\𝑛

=
𝜕2L(𝜽 ′𝑖 ,D𝑖)
𝜕\ ′𝑖𝑚 𝜕\ ′𝑖𝑛

.

(16)
which finally leads to

𝐻𝑚,𝑛 ≈ 1
𝑀

𝑀∑
𝑖=1

𝜕2L(𝜽 ′𝑖D𝑖)
𝜕\ ′𝑖𝑚 𝜕\ ′𝑖𝑛

. (17)

In summary, (17) approximates the computation of the third order
derivatives w.r.t. 𝜽 by calculating the second derivatives w.r.t. 𝜽 ′𝑖 .
Understanding the Derivatives Approximation. The approxi-
mation used for reducing the computation of third derivatives to
second derivatives relies on (14), which suggests that a small change
in the pre-adaptation parameters 𝜽 leads to approximately the same
small change in the post-adaptation parameters 𝜽 ′𝑖 (see Fig. 2). Such
an approximation is reasonable because for a well-meta-trained net-
work, ∇𝜽L𝑚 is small as the network nearly converged. Meanwhile,
∇𝜽L (𝜽 ,D𝑖) is large, as the tasks can substantially differ from
each other. In essence, (14) performs a first order approximation
by omitting 𝜕2L(𝜽 ,D𝑖)

/
𝜕\𝑘 𝜕\𝑚 . Such an approach is supported

by observations in other studies that the second derivatives are
usually close to nought [11]. Prior studies [8, 24] have also shown
that first order approximations can be as effective as full second
derivatives in meta-learning.

3.4 Layer-Wise Pruning
To further reduce the computation, we adapt the layer-wise ap-
proach for pruning vanilla-trained networks [6] and expand it to
the pruning of meta-trained networks.

Layer-Wise Meta-Objective. The pre-activation output vector of
the 𝑙-th layer is denoted as y𝑙 , and the post-activation output vector
is denoted as z𝑙 = 𝜎 (y𝑙), where 𝜎 · is the activation function. We
use a layer-wise loss function

L𝑙 (𝜽 ,D𝑖) =
1
𝐾

𝐾∑
| |ŷ𝑙 − y𝑙 | |2 (18)

where ŷ𝑙 is the pre-activation output after the pruning, 𝐾 is the
number of training samples, and | | · | | is the 𝑙2-norm. Note that the
summation is over all training samples from the same task. The
layer-wise meta-objective is then

L𝑙𝑚 =
1
𝑀

𝑀∑
𝑖=1

L𝑙
(
𝜽 ′𝑖 ,D𝑖

)
(19)

Layer-Wise Hessian. As the network is pruned layer by layer, we
need only the Hessian of L𝑙𝑚 w.r.t. 𝜽 𝑙 , which is the equivalent of 𝜽
for the 𝑙-th layer. From (17), we find

H𝑙 ≈
𝜕2L𝑙𝑚
𝜕 (𝜽 ′𝑖

𝑙
)2

=
1
𝑀

𝑀∑
𝑖=1

𝜕2L𝑙 (𝜽 ′𝑖 ,D𝑖)
𝜕 (𝜽 ′𝑖

𝑙
)2

. (20)

where 𝜽 ′𝑖
𝑙
is the equivalent of 𝜽 ′𝑖 (see (1)) for the 𝑙-th layer.

Similar to [6], H𝑙 is a block diagonal square matrix with each
diagonal blocks being H𝑙𝑘𝑘 = 𝜕2L𝑙𝑚

/
𝜕(𝜽 ′𝑖

𝑙𝑘
)2, where 𝜽 ′𝑖

𝑙𝑘
are the

vectorised incoming weights of the 𝑘-th neuron in the 𝑙-th layer.
All blocks H𝑙𝑘𝑘 are identical and can be calculated as

H𝑙𝑘𝑘 =
1
𝑀

1
𝐾

𝑀∑
𝑖=1

𝐾∑
z𝑙−1 · (z𝑙−1)⊤ (21)

Efficient Computing of Inverse of theHessian.As shown in (7)
and (8), we need the inverse of the Hessian H−1

𝑙
, a block diagonal

square matrix with its diagonal blocks being H−1
𝑙𝑘𝑘

. In ANP, we
calculate H−1

𝑙
recursively over the training samples of all𝑀 tasks

using the Sherman–Morrison–Woodbury formula [18]

H−1
𝑙𝑘𝑘 ,𝑗

=H−1
𝑙𝑘𝑘 ,𝑗−1

−
H−1
𝑙𝑘𝑘 ,𝑗−1

· z𝑙−1, 𝑗 · z⊤𝑙−1, 𝑗 · H
−1
𝑙𝑘𝑘 ,𝑗−1

𝑀 · 𝐾 + z⊤
𝑙−1, 𝑗 · H

−1
𝑙𝑘𝑘 ,𝑗−1

· z𝑙−1, 𝑗

with H−1
𝑙𝑘𝑘 ,0

= 𝛼−1I and H−1
𝑙𝑘𝑘 ,𝑀 ·𝐾 = H−1

𝑙𝑘𝑘

(22)

where 𝛼 ∈ [10−8, 10−4] is a small constant to make H−1
𝑙𝑘𝑘 ,0

mean-
ingful and to which the method is insensitive [15]. Note that the
two summations in (21) are integrated in (22), as the iteration goes
through all𝑀 · 𝐾 samples.

3.5 Putting It Together
Algorithm 1 outlines the process of ANP for 𝐾-shot learning. The
pruning first begins after the network is well-meta-trained (Line 2).
As in MAML, a batch of𝑀 tasks are sampled from a given distribu-
tion 𝑝 (T) (Line 4), and 𝐾 data-points are sampled from each task
(Line 6). Then the post-adaptation 𝜽 ′𝑖 is calculated with gradient de-
scent (1) for each task. As the training samples and post-adaptation
weights are ready, the inverse Hessian can be recursively calculated
with (22) (Line 9). The pruning is done iteratively (Line 3). We use
a tuning parameter 𝛽𝑙 to control the proportion of weights to be
pruned in each iteration. The importance ΔL𝑚 of each weight is
assessed with (8) (Line 10), and 𝛽𝑙 of the least important weights in
each layer are removed, while the remaining weights are updated

Algorithm 1: Adaptation-aware Network Pruning
Input: 𝑝 (T): distribution over tasks
𝛼 : a small constant (10−8 ≤ 𝛼 ≤ 10−4)
𝛽𝑙 : pruning step size hyper-parameter (0 < 𝛽𝑙 < 1)
𝛾𝑝𝑟 : pruning ratio (0 < 𝛾𝑝𝑟 < 1)
Output: Sparse network

1 randomly initialise weights 𝜽
2 meta-train the network until the meta-objective converges
3 while required 𝛾𝑝𝑟 not achieved do
4 sample a batch of𝑀 tasks T𝑖 ∼ 𝑝 (L)
5 for each task T𝑖 do
6 sample 𝐾 data-points from T𝑖 and form datasets D𝑖

7 compute post-adaptation parameters 𝜽 ′𝑖 with Eq. (1)
8 end
9 for all layers do
10 calculate H−1

𝑙𝑘𝑘
recursively using Eq. (22)

11 calculate 𝛿𝜽 and ΔL𝑚 for each weight using Eq. (7)
and Eq. (8), respectively

12 prune 𝛽𝑙 of the weights with the least ΔL𝑚 , and
update the rest with 𝛿𝜽

13 end
14 meta-train the network again until the meta-objective

converges, such that the performance is re-boosted
15 end
16 return the sparse network

using those 𝛿𝜽 calculated with (7). Combining derivatives approxi-
mation (Sec. 3.3) and layer-wise pruning approach (Sec. 3.4), ANP
is able to prune meta-trained neural network effectively.
Extensions beyond MAML. It is worth mentioning that ANP is
not restricted to MAML. Here we briefly explain how to extend
Algorithm 1 to two popular variants of MAML: CAVIA [30], an
improvement of MAML with context parameters, and Reptile [24],
the first order simplification of MAML. On CAVIA, as the number of
the context parameters is limited, we can apply Algorithm 1 only to
the weights i.e., non-context parameters in the initial architecture.
On Reptile, the meta-objective (3) is already omitted. We compute
an averaged importance of weights in the inner loop, then prune
the least important weights as in Algorithm 1.

4 EVALUATION
This section presents the evaluations of our method.

4.1 Experimental Settings
Metrics. Since we aim at pruning meta-trained networks without
sacrificing their ability of fast adaptation, we compare different
methods with the following metrics:

• Pruning Ratio (PR): the ratio of pruned parameters to the
original parameters of the initial architecture.

• Few-Shot Accuracy: the few-shot classification accuracy.
In experiments where many testing tasks are available, we conduct
multi-run testing by repeatedly selecting 5 random tasks for the

few-shot learning test. In Fig. 3, Fig. 4, Fig. 5 and Fig. 6, we use error
bars to represent the standard deviation over multiple runs.
Datasets.We use two standard few-shot classification benchmarks.

• Mini-ImageNet [25]: it is a dataset for image classification,
which contains 60, 000 colour images with 100 classes, each
having 600 images of size 84 × 84. The dataset is split into
64 training classes, 12 validation classes, and 24 test classes
as [8, 30]. We use 5-way 1-shot and 5-way 5-shot settings.

• Caltech-UCSD Birds-200-2011 (CUB) [27]: it is a dataset for
fine-grained classification, which contains 11, 788 images of
200 bird species, each having about 60 images. The dataset
is split into 100 training classes, 50 validation classes, and 50
test classes and the images are resized to 84 × 84 as [3]. We
use the 5-way 1-shot setting.

Initial Architectures.We use two common initial architectures
from gradient-based meta-learning literature [8, 9, 24, 30].

• ConvNet-4: it consists of 4 layers with 3× 3 convolutions fol-
lowed by batch normalisation, ReLU, and 2 × 2 max-pooling.
We use 32-filter convolutions for evaluations as in [3, 8, 30].

• ResNet-12: it consists of 4 residual blocks, each containing
three 3× 3 convolutional layers [3, 9]. In each residual block,
the first two convolution layers are followed by batch normal-
isation and ReLu, and the last convolution layer is followed
by batch normalisation and a skip connection. A 2 × 2 max-
pooling is used after each residual block. The number of
filters in each residual block is 64, 128, 256, and 512.

Methods for Meta-Training. By default, the weights is meta-
trained by MAML [8]. We also compare ANP with baselines using
the more advanced CAVIA method [30] and the popular first-order
method Reptile [24]. The context parameters in CAVIA follow the
default settings, which is a 100 dimensional vector initialized as 0
before each adaptation step and update during the inner training
loops. For Reptile, we follow the hyper-parameter settings in [24].
Table 1 summarises the hyperparameters to meta-train the initial
architecture via MAML, CAVIA and Reptile.

All the experiments use Adam optimizer for meta training and
SGD optimizer for inner training loops with default hyperparame-
ters. When optimizing the initial architectures, the pruned weights
are set as zero and their gradients are masked by point-wise pro-
duction with a zero-one matrix.
Baselines. Since ANP is a pruning scheme for meta-trained net-
works, we compare it with two existing pruning methods.

• Magnitude [13]: a classic pruning method that removes net-
work weights based on their magnitude.

• L-OBS [6]: a representative Hessian-based pruning strategy
that removes weights by a layer-wise Hessian-based metric.

In contrast to ANP, Magnitude and L-OBS are originally designed
for single-task pruning. Therefore, one pruning target task has to
be given for pruning, then the algorithms assess and prune the
weights based on their importance to this pruning target task. In
our experiments, we randomly select a pruning target tasks. During
each pruning iteration, about 10% weights in each layer are pruned,
and the pruned model is retrained for 40 epochs. We repeat this
step-wise pruning iteration until a desired pruning ratio is reached.

Table 1: Hyperparameter setup for meta-training.

Method Backbone Dataset Setup Inner/Outer LR Meta Epoch LR Decay Meta Batch Size # Update Step

MAML [8]
ConvNet-4

Mini-ImageNet 5-way, 1-shot 1.0 × 10−2/1.0 × 10−3 80, 000 - 4 5

5-way, 5-shot 1.0 × 10−2/1.0 × 10−3 80, 000 - 4 5

CUB 5-way, 1-shot 1.0 × 10−2/1.0 × 10−3 80, 000 - 4 5

5-way, 5-shot 1.0 × 10−2/1.0 × 10−3 80, 000 - 4 5

ResNet-12 Mini-ImageNet 5-way, 1-shot 1.0 × 10−2/1.0 × 10−3 100, 000 - 4 5

CUB 5-way, 1-shot 1.0 × 10−2/1.0 × 10−3 100, 000 - 4 5

CAVIA [30] ConvNet-4 Mini-ImageNet 5-way, 1-shot 1.0 × 10−2/1.0 200, 000 0.9 16 2

CUB 5-way, 1-shot 1.0 × 10−3/1.0 200, 000 0.9 16 2

Reptile [24] ConvNet-4 Mini-ImageNet 5-way, 1-shot 1.0 × 10−2/1.0 100, 000 1.0 × 10−5 5 50

CUB 5-way, 1-shot 1.0 × 10−2/1.0 100, 000 1.0 × 10−5 5 50

4.2 Main Experimental Results
Results Organisation.We have conducted extensive experiments
and compared the performance of ANP with the two baselines
on varieties of initial architectures (ConvNet-4 and ResNet-12) ,
meta-training methods (MAML, CAVIA and Reptile), datasets (Mini-
ImageNet and CUB) and FSL setups (5-way 1-shot and 5-way 5-
shot). In general, we conducted five experiments and their results
are organised as follows:

• Exp. 1:We first use ConvNet-4 as initial architecture, MAML
as meta-training methods, and 5-way 1-shot as the FSL setup.
The comparison of ANP with the baselines is shown in Fig. 3,
and the detailed results are listed in Table 2 & Table 3.

• Exp. 2: On the basis of Exp. 1, we change the few-shot learn-
ing setup to 5-way 5-shot. Results are shown in Fig. 4 and
details in Table 4 & Table 5.

• Exp. 3: On the basis of Exp. 1, we change the initial architec-
ture to the more complicated ResNet-12. Results are shown
in Fig. 5 and details in Table 6 & Table 7.

• Exp. 4: On the basis of Exp. 1, we change the meta-training
method to the more advanced CAVIA. Results are shown in
Fig. 6 and details in Table 8 & Table 9.

• Exp. 5: Finally, similar to Exp. 4, we change themeta-training
method to the popular first-order method Reptile. All other
settings are the same as Exp. 1. Results are shown in Fig. 7
and details in Table 10 & Table 11.

All the aforementioned experiments are conducted on both theMini-
ImageNet and CUB dataset. The error bars in the figures represent
the standard error over different tasks chosen for few-shot learning.
Overall Performance. Inducing a decrease in few-shot accuracy
no more than 1%, our ANP achieves a pruning ratio of at least
85% across all the initial architectures, datasets and meta-training
methods. In comparison, given a pruning ratio of 85%, Magnitude
induces a drop of 7.01% to 19.80% in few-shot accuracy, and L-OBS
introduces a drop of 10.05% to 26.70% in few-shot accuracy. In fact,
the baselines already induce over 5.16% loss in few-shot accuracy
at a pruning ratio of 30% even in the best case (5-way 1-shot on
CUB, ResNet-12 as initial architecture, pruned by Magnitude and
meta-trained by MAML).

0 10 20 30 40 50 60 70 80 90
Pruning Ratio(%)

30

33

36

39

42

45

48

A
cc

ur
ac

y(
%

)

Magnitude
L-OBS
ANP

(a) Mini-ImageNet

0 10 20 30 40 50 60 70 80 90
Pruning Ratio(%)

30
32
34
36
38
40
42
44
46

A
cc

ur
ac

y(
%

)

Magnitude
L-OBS
ANP

(b) CUB

Figure 3: 5-way 1-shot accuracy vs. PR of ConvNet-4 meta-
trained by MAML and pruned by Magnitude, L-OBS, or ANP
on (a) Mini-ImageNet and (b) CUB.

Table 2: 5-way, 1-shot accuracy vs. PR of ConvNet-4 meta-
trained by MAML and pruned on Mini-ImageNet.

PR (%) Mini-ImageNet Accuracy (%)

Magnitude L-OBS ANP

0 48.05 ± 0.0053

30 41.16 6.89↓ ± 0.0081 39.52 8.53↓ ± 0.0063 47.34 0.71↓ ± 0.0136

50 40.55 7.50↓ ± 0.0088 35.72 12.33↓ ± 0.0027 47.29 0.76↓ ± 0.0111

80 36.46 11.59↓ ± 0.0189 33.77 14.28↓ ± 0.0057 47.06 0.99↓ ± 0.0165

85 33.40 14.65↓ ± 0.0036 30.22 17.83↓ ± 0.0034 47.09 0.96↓ ± 0.0106

Takeaways. ANP significantly and consistently outperforms both
baselines across different scenarios (1-shot or 5-shot), regardless
of initial architectures (ConvNet-4 or ResNet-12) , meta-training
methods (MAML, CAVIA or Reptile) and datasets (Mini-ImageNet
or CUB). It turns out that ANP can find a topology that is meta-
optimised for potential new tasks and, combined with existing
meta-learning methods which find the meta-optimised weights,
provides in the end a compact network for fast adaptation.
Observations and Comments. From the aforementioned experi-
ment results, we made the following observations. (i) L-OBS gener-
ally performs worse on meta-learning than Magnitude. The reason
may be that L-OBS is able to find a topology more specialised for

Table 3: 5-way, 1-shot accuracy vs. PR of ConvNet-4 meta-
trained by MAML and pruned on CUB.

PR (%) CUB Accuracy (%)

Magnitude L-OBS ANP

0 45.54 ± 0.0120

30 40.02 5.52↓ ± 0.0098 38.67 6.87↓ ± 0.0241 44.82 0.72↓ ± 0.0060

50 39.56 5.98↓ ± 0.0175 36.96 8.58↓ ± 0.0131 44.57 0.97↓ ± 0.0128

80 40.29 5.26↓ ± 0.0171 34.50 11.04↓ ± 0.0145 44.69 0.85↓ ± 0.0105

85 38.53 7.01↓ ± 0.0070 32.19 13.35↓ ± 0.0268 44.59 0.95↓ ± 0.0093

0 10 20 30 40 50 60 70 80 90
Pruning Ratio(%)

39
42
45
48
51
54
57
60
63

A
cc

ur
ac

y(
%

)

Magnitude
L-OBS
ANP

(a) Mini-ImageNet

0 10 20 30 40 50 60 70 80 90
Pruning Ratio(%)

42
45
48
51
54
57
60
63

A
cc

ur
ac

y(
%

)

Magnitude
L-OBS
ANP

(b) CUB

Figure 4: 5-way 5-shot accuracy vs. PR of ConvNet-4 meta-
trained by MAML and pruned by Magnitude, L-OBS, or ANP
on (a) Mini-ImageNet and (b) CUB.

Table 4: 5-way, 5-shot accuracy vs.PR of ConvNet-4 meta-
trained by MAML and pruned on Mini-ImageNet.

PR (%) Accuracy (%)

Magnitude L-OBS ANP

0 62.17 ± 0.0117

30 56.28 5.89↓ ± 0.0085 54.35 7.82↓ ± 0.0083 62.28 0.11↑ ± 0.0037

50 55.05 7.12↓ ± 0.0207 51.27 10.90↓ ± 0.0139 61.21 0.96↓ ± 0.0100

80 50.48 11.69↓ ± 0.0138 46.45 15.72↓ ± 0.0143 61.90 0.27↓ ± 0.0103

85 44.44 17.73↓ ± 0.0045 40.82 21.35↓ ± 0.0085 61.19 0.98↓ ± 0.0020

the “target task” than Magnitude, which leads to actually worse FSL
performance. This is further discussed in Sec. 4.3. (ii) When used
with Reptile, the first-order approximation of ANP is not required.
The significant advantage against the baselines still persists, which
is the consequence of the better optimisation target of ANP: finding
the topology optimised for all potential new tasks instead of the
single “target task”. (iii) In some cases with low pruning ratio (30%
to 50%), ANP is even capable of slightly improving the FSL accuracy.
This is due to the generalisation effect known for network pruning.

4.3 Ablation Study
Why Baseline Pruning Methods Fail. As mentioned in Sec. 4.1,
the baseline methods require one pruning target task during the

Table 5: 5-way, 5-shot accuracy vs.PR of ConvNet-4 meta-
trained by MAML and pruned on CUB.

PR (%) Accuracy (%)

Magnitude L-OBS ANP

0 61.04 ± 0.0268

30 52.21 8.83↓ ± 0.0208 47.07 13.97↓ ± 0.0125 60.39 0.65↓ ± 0.0216

50 51.92 9.12↓ ± 0.0166 43.64 17.40↓ ± 0.0157 60.78 0.26↓ ± 0.0140

80 50.84 10.20↓ ± 0.0212 43.85 17.19↓ ± 0.0344 60.15 0.89↓ ± 0.0155

90 50.24 10.80↓ ± 0.0073 43.52 17.52↓ ± 0.0191 60.07 0.97↓ ± 0.0036

0 10 20 30 40 50 60 70 80 90
Pruning Ratio(%)

30
33
36
39
42
45
48
51

A
cc

ur
ac

y(
%

)

Magnitude
L-OBS
ANP

(a) Mini-ImageNet

0 10 20 30 40 50 60 70 80 90
Pruning Ratio(%)

27
30
33
36
39
42
45
48
51
54

A
cc

ur
ac

y(
%

)

Magnitude
L-OBS
ANP

(b) CUB

Figure 5: 5-way 1-shot accuracy vs. PR of ResNet-12 meta-
trained by MAML and pruned by Magnitude, L-OBS, or ANP
on (a) Mini-ImageNet and (b) CUB.

Table 6: 5-way, 1-shot accuracy vs. PR of ResNet-12 meta-
trained by MAML and pruned on Mini-ImageNet.

PR (%) Accuracy (%)

Magnitude L-OBS ANP

0 50.76 ± 0.0123

30 43.45 7.31↓ ± 0.0058 43.77 6.99↓ ± 0.0117 51.50 0.74↑ ± 0.0028

50 42.93 7.83↓ ± 0.0102 43.07 7.69↓ ± 0.0098 50.87 0.11↑ ± 0.0077

80 38.63 12.13↓ ± 0.0138 30.36 20.40↓ ± 0.0185 50.45 0.31↓ ± 0.0160

90 36.60 14.16↓ ± 0.0242 29.89 20.87↓ ± 0.0156 49.94 0.82↓ ± 0.0128

pruning. Although the pruned networks are meta-trained and there-
fore their weights are considered to be optimised for all the potential
new tasks, their topology, constructed via Magnitude or L-OBS, is
biased to the pruning target task, which leads to sub-optimal per-
formance of fast adaptation. To illustrate this bias, we randomly
selected a 5-way “target task” from the Mini-ImageNet dataset, then
train & prune via both baseline methods (Magnitude and L-OBS)
ConvNet-4 backbones up to a compression ratio of 85%. These com-
pressed models are then tested for few-shot accuracy on not only
the aforementioned “target task”, but also the so-called “other tasks”,
which are tasks again randomly selected from the dataset. Note that
none of the “other tasks” has been used during the pruning. Fig. 8
shows the training accuracy curves on the “target task” and “other
tasks” when performing 5-way, 1-shot learning tests. The few-shot
accuracy results on the multiple “other tasks” are aggregated into

Table 7: 5-way, 1-shot accuracy vs. PR of ResNet-12 meta-
trained by MAML and pruned on CUB.

PR (%) Accuracy (%)

Magnitude L-OBS ANP

0 51.59 ± 0.0151

30 46.43 5.16↓ ± 0.0134 44.00 7.59↓ ± 0.0213 51.02 0.57↓ ± 0.0231

50 40.98 10.61↓ ± 0.0250 39.04 12.55↓ ± 0.0115 50.67 0.92↓ ± 0.0144

80 34.50 17.09↓ ± 0.0112 33.00 18.59↓ ± 0.0203 50.61 0.98↓ ± 0.0070

85 32.00 19.59↓ ± 0.0351 30.09 21.50↓ ± 0.0195 50.60 0.99↓ ± 0.0175

0 10 20 30 40 50 60 70 80 90
Pruning Ratio(%)

20
24
28
32
36
40
44
48

A
cc

ur
ac

y(
%

)

Magnitude
L-OBS
ANP

(a) Mini-ImageNet

0 10 20 30 40 50 60 70 80 90
Pruning Ratio(%)

36
38
40
42
44
46
48
50

A
cc

ur
ac

y(
%

)

Magnitude
L-OBS
ANP

(b) CUB

Figure 6: 5-way 1-shot accuracy vs. PR of ConvNet-4 meta-
trained by CAVIA and pruned by Magnitude, L-OBS, or ANP
on (a) Mini-ImageNet and (b) CUB.

Table 8: 5-way, 1-shot accuracy vs. PR of ConvNet-4 meta-
trained by CAVIA and pruned on Mini-ImageNet.

PR (%) Accuracy (%)

Magnitude L-OBS ANP

0 47.56 ± 0.0076

30 38.71 8.85↓ ± 0.0145 37.86 9.70↓ ± 0.0148 46.74 0.82↓ ± 0.0140

50 34.87 12.69↓ ± 0.0072 34.32 13.24↓ ± 0.0118 47.71 0.15↑ ± 0.0169

80 32.14 15.42↓ ± 0.0060 23.86 23.70↓ ± 0.0100 46.59 0.97↓ ± 0.0103

85 27.76 19.80↓ ± 0.0156 20.86 26.70↓ ± 0.0099 46.57 0.99↓ ± 0.0223

one line with error bars. As we can see, the accuracy on the pruning
“target task” is high, but on “other tasks”, which may notably differ
from the “target task”, the accuracy is low.
Few-Shot Learning: Convergence. Fig. 9 plots the few-shot train-
ing loss and few-shot accuracy curves of a meta-trained & pruned
initial architecture to perform few-shot learning on test tasks. ANP
provides not only a better accuracy, but also a faster convergence.
This is a crucial benefit for resource-constrained devices, as with
fewer training steps the computation cost and power consumption
can be reduced during adaptation. Moreover, in some experiments
(e.g., the loss curve for Magnitude in Fig. 9(a)), the training loss
curve of the baseline methods may even not converge. In contrast,
ANP provides consistent and stable convergence.

Fig. 10, Fig. 11 and Fig. 12 show the loss and accuracy curves
of a meta-trained & pruned ConvNet-4 to perform 5-way, 1-shot

Table 9: 5-way, 1-shot accuracy vs. PR of ConvNet-4 meta-
trained by CAVIA and pruned on CUB.

PR (%) CUB Accuracy (%)

Magnitude L-OBS ANP

0 47.32 ± 0.0235

30 41.77 5.55↓ ± 0.0176 40.67 6.65↓ ± 0.0173 47.15 0.17↓ ± 0.0239

50 41.39 5.93↓ ± 0.0196 40.24 7.08↓ ± 0.0211 47.03 0.29↓ ± 0.0269

80 38.33 8.99↓ ± 0.0225 37.28 10.04↓ ± 0.0237 46.73 0.59↓ ± 0.0163

85 37.91 9.41↓ ± 0.0183 37.26 10.05↓ ± 0.0152 46.85 0.47↓ ± 0.0185

0 10 20 30 40 50 60 70 80 90
Pruning Ratio(%)

27
30
33
36
39
42
45
48
51

A
cc

ur
ac

y(
%

)

Magnitude
L-OBS
ANP

(a) Mini-ImageNet

0 10 20 30 40 50 60 70 80 90
Pruning Ratio(%)

30

33

36

39

42

45

48

A
cc

ur
ac

y(
%

)

Magnitude
L-OBS
ANP

(b) CUB

Figure 7: 5-way 1-shot accuracy vs. PR of ConvNet-4 meta-
trained by Reptile and pruned byMagnitude, L-OBS, or ANP
on (a) Mini-ImageNet and (b) CUB.

Table 10: 5-way, 1-shot accuracy vs. PR of ConvNet-4 meta-
trained by Reptile and pruned on Mini-ImageNet.

PR (%) Accuracy (%)

Magnitude L-OBS ANP

0 48.40 ± 0.0051

30 41.03 7.37↓ ± 0.0074 40.89 7.51↓ ± 0.0213 48.51 0.11↑ ± 0.0151

50 38.34 10.06↓ ± 0.0203 35.15 13.25↓ ± 0.0084 47.98 0.42↓ ± 0.0130

80 31.55 16.85↓ ± 0.0134 29.03 19.37↓ ± 0.0093 47.54 0.86↓ ± 0.0034

85 29.94 18.46↓ ± 0.0241 28.34 20.06↓ ± 0.0124 47.61 0.79↓ ± 0.0210

learning on Mini-ImageNet. The initial architecture is compressed
to a pruning ratio of 30%, 50%, and 80%, respectively. The accuracy
advantage of ANP against baselines increases as the PR increases
as expected. Furthermore, the faster and more stable convergence
with ANP compared to the baselines, which is observed on PR =
85%, can also be observed with PR = 30%, 50%, and 80%.

5 CONCLUSION
In this work, we explored pruning meta-trained deep neural net-
works for few-shot learning on resource-constrained platforms.
Prior pruning methods deteriorate the fast adaptability of meta-
trained networks due to inconsistent weight importance metrics
with the meta-objective. In response, we propose ANP, the first
meta-training-compatible network pruning scheme. ANP defines a
weight importance metric for the meta-objective to find a topology

Table 11: 5-way, 1-shot accuracy vs. PR of ConvNet-4 meta-
trained by Reptile and pruned on CUB.

PR (%) Accuracy (%)

Magnitude L-OBS ANP

0 45.19 ± 0.0195

30 42.39 2.8↓ ± 0.0301 40.36 4.83↓ ± 0.0154 44.92 0.27↓ ± 0.0102

50 38.94 6.25↓ ± 0.0013 36.43 8.76↓ ± 0.0136 45.41 0.22↑ ± 0.0167

80 33.31 11.88↓ ± 0.0093 31.48 13.71↓ ± 0.0103 44.45 0.74↓ ± 0.0112

85 31.24 13.95↓ ± 0.0035 29.59 15.60↓ ± 0.0134 44.30 0.89↓ ± 0.0244

0 5 10 15
Update Steps

20

25

30

35

40

45

A
cc

ur
ac

y(
%

)

Magnitude (Target Task)
Magnitude (Other Task)

(a) Magnitude

0 5 10 15
Update Steps

20

25

30

35

40

45

A
cc

ur
ac

y(
%

)

L-OBS (Target Task)
L-OBS (Other Task)

(b) L-OBS

Figure 8: 5-way 1-shot training accuracy curves on the task
selected for pruning and other tasks of ConvNet-4 meta-
trained by MAML and pruned with (a) Magnitude and (b) L-
OBS on Mini-ImageNet.

0 1 2 3 4 5
Update Steps

1.4

1.4

1.5

1.5

1.6

1.6

1.7

L
os

s ANP 85%
L-OBS 85%
Magnitude 85%

(a) Loss Curves

0 1 2 3 4 5
Update Steps

20

25

30

35

40

45

A
cc

ur
ac

y(
%

)

ANP 85%
L-OBS 85%
Magnitude 85%

(b) Accuracy Curves

Figure 9: 5-way 1-shot (a) training loss and (b) testing accu-
racy curve of ConvNet-4meta-trained byMAML and pruned
by Magnitude, L-OBS, or ANP onMini-ImageNet (PR = 85%).

meta-optimised for learning new tasks in few shots. Evaluations
on few-shot classification benchmarks show that ANP can prune
MAML-like meta-trained convolutional and residual backbones
by 85% with a minimal drop in few-shot classification accuracy.
We envision our work will offer guidelines to enable fast model
adaptation on low-resource platforms.

ACKNOWLEDGEMENT
We are grateful to anonymous reviewers for their constructive com-
ments. Dawei Gao and Yongxin Tong’s work are partially supported
by the National Key Research and Development Program of China

0 1 2 3 4 5
Update Steps

1.4

1.5

1.6

1.7

1.8

1.9

L
os

s

ANP 30%
L-OBS 30%
Magnitude 30%

(a) Loss Curves

0 1 2 3 4 5
Update Steps

20

25

30

35

40

45

A
cc

ur
ac

y(
%

)

ANP 30%
L-OBS 30%
Magnitude 30%

(b) Accuracy Curves

Figure 10: 5-way 1-shot (a) training loss and (b) testing accu-
racy curve of ConvNet-4meta-trained byMAML and pruned
by Magnitude, L-OBS, or ANP onMini-ImageNet (PR = 30%).

0 1 2 3 4 5
Update Steps

1.3

1.4

1.5

1.6

1.7

L
os

s

ANP 50%
L-OBS 50%
Magnitude 50%

(a) Loss Curves

0 1 2 3 4 5
Update Steps

20

25

30

35

40

45

A
cc

ur
ac

y(
%

)

ANP 50%
L-OBS 50%
Magnitude 50%

(b) Accuracy Curves

Figure 11: 5-way 1-shot (a) training loss and (b) testing accu-
racy curve of ConvNet-4meta-trained byMAML and pruned
by Magnitude, L-OBS, or ANP onMini-ImageNet (PR = 50%).

0 1 2 3 4 5
Update Steps

1.2

1.3

1.4

1.5

1.6

1.7

L
os

s ANP 80%
L-OBS 80%
Magnitude 80%

(a) Loss Curves

0 1 2 3 4 5
Update Steps

20

25

30

35

40

45
A

cc
ur

ac
y(

%
)

ANP 80%
L-OBS 80%
Magnitude 80%

(b) Accuracy Curves

Figure 12: 5-way 1-shot (a) training loss and (b) testing accu-
racy curve of ConvNet-4meta-trained byMAML and pruned
by Magnitude, L-OBS, or ANP onMini-ImageNet (PR = 80%).

under Grant No. 2018AAA0101100, the National Science Founda-
tion of China (NSFC) under Grant Nos. 61822201, U1811463 and
62076017, the CCF-Huawei Database System Innovation Research
Plan No. CCF-HuaweiDBIR2020008B, and the State Key Laboratory
of Software Development Environment Open Funding No. SKLSDE-
2020ZX-07. Xiaoxi He and Lothar Thiele’s work was supported by
the Swiss National Science Foundation in the context of the NCCR
Automation. Zimu Zhou’s research was supported by the Singapore
Ministry of Education (MOE) Academic Research Fund (AcRF) Tier
1 grant. Zimu Zhou is the corresponding author.

REFERENCES
[1] Sébastien Arnold, Shariq Iqbal, and Fei Sha. 2021. When MAML Can Adapt Fast

and How to Assist When It Cannot. In Proceedings of International Conference on
Artificial Intelligence and Statistics. PMLR, 244–252.

[2] Colby Banbury, Chuteng Zhou, Igor Fedorov, Ramon Matas, Urmish Thakker,
Dibakar Gope, Vijay Janapa Reddi, MatthewMattina, and Paul Whatmough. 2021.
Micronets: Neural network architectures for deploying tinyml applications on
commodity microcontrollers. Proceedings of Machine Learning and Systems 3
(2021).

[3] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-Chiang Frank Wang, and Jia-Bin
Huang. 2019. A closer look at few-shot classification. In Proceedings of Interna-
tional Conference on Learning Representations.

[4] Bin Dai, Chen Zhu, Baining Guo, and David Wipf. 2018. Compressing neural net-
works using the variational information bottleneck. In Proceedings of International
Conference on Machine Learning. ACM, New York, NY, USA, 1135–1144.

[5] Lei Deng, Guoqi Li, SongHan, Luping Shi, and Yuan Xie. 2020. Model compression
and hardware acceleration for neural networks: a comprehensive survey. Proc.
IEEE 108, 4 (2020), 485–532.

[6] Xin Dong, Shangyu Chen, and Sinno Pan. 2017. Learning to prune deep neural
networks via layer-wise optimal brain surgeon. In Advances in Neural Information
Processing Systems. Curran Associates Inc., Red Hook, NY, USA, 4860–4874.

[7] Thomas Elsken, Benedikt Staffler, Jan Hendrik Metzen, and Frank Hutter. 2020.
Meta-learning of neural architectures for few-shot learning. In Proceedings of
Conference on Computer Vision and Pattern Recognition. IEEE Press, Piscataway,
NJ, USA, 12365–12375.

[8] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. In Proceedings of International
Conference on Machine Learning. ACM, New York, NY, USA, 1126–1135.

[9] Luca Franceschi, Paolo Frasconi, Saverio Salzo, Riccardo Grazzi, andMassimiliano
Pontil. 2018. Bilevel programming for hyperparameter optimization and meta-
learning. In Proceedings of International Conference on Machine Learning. ACM,
New York, NY, USA, 1568–1577.

[10] Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. 2016. Deep
learning. Vol. 1. MIT press Cambridge.

[11] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv:1412.6572

[12] Mary Gooneratne, Khe Chai Sim, Petr Zadrazil, Andreas Kabel, Françoise Beau-
fays, and Giovanni Motta. 2020. Low-rank gradient approximation for memory-
efficient on-device training of deep neural network. In Proceedings of International
Conference on Acoustics, Speech, and Signal Processing. IEEE Press, Piscataway,
NJ, USA, 3017–3021.

[13] Song Han, Huizi Mao, and William J Dally. 2016. Deep compression: compressing
deep neural networks with pruning, trained quantization and huffman coding.
In Proceedings of International Conference on Learning Representations.

[14] Michael Hardy. 2006. Combinatorics of partial derivatives. The Electronic Journal
of Combinatorics 13, R1 (2006), 1.

[15] Babak Hassibi and David G. Stork. 1993. Second order derivatives for network
pruning: Optimal brain surgeon. In Advances in Neural Information Processing
Systems. Curran Associates Inc., Red Hook, NY, USA, 164–171.

[16] Xiaoxi He, Zimu Zhou, and Lothar Thiele. 2018. Multi-task zipping via layer-
wise neuron sharing. In Proceedings of Advances in Neural Information Processing
Systems. Curran Associates Inc., Red Hook, NY, USA, 6016–6026.

[17] Timothy Hospedales, Antreas Antoniou, Paul Micaelli, and Amos Storkey. 2020.
Meta-learning in neural networks: A survey. arXiv:2004.05439

[18] Thomas Kailath. 1980. Linear Systems. Vol. 156. Prentice-Hall Englewood Cliffs,
NJ.

[19] Yann Le Cun, John S. Denker, and Sara A. Solla. 1990. Optimal brain damage. In
Advances in Neural Information Processing Systems. Curran Associates Inc., Red
Hook, NY, USA, 598–605.

[20] Dongze Lian, Yin Zheng, Yintao Xu, Yanxiong Lu, Leyu Lin, Peilin Zhao, Junzhou
Huang, and Shenghua Gao. 2020. Towards fast adaptation of neural architec-
tures with meta learning. In Proceedings of International Conference on Learning
Representations.

[21] Tao Lin, Sebastian U Stich, Luis Barba, Daniil Dmitriev, and Martin Jaggi. 2020.
Dynamic model pruning with feedback. In Proceedings of International Conference
on Learning Representations.

[22] Jie Liu, Jiawen Liu, Wan Du, and Dong Li. 2019. Performance analysis and
characterization of training deep learning models on mobile device. In Proceed-
ings of International Conference on Parallel and Distributed Systems. IEEE Press,
Piscataway, NJ, USA, 506–515.

[23] Zechun Liu, Haoyuan Mu, Xiangyu Zhang, Zichao Guo, Xin Yang, Kwang-Ting
Cheng, and Jian Sun. 2019. Metapruning: Meta learning for automatic neural
network channel pruning. In Proceedings of International Conference on Computer
Vision. IEEE Press, Piscataway, NJ, USA, 3296–3305.

[24] Alex Nichol, Joshua Achiam, and John Schulman. 2018. On first-order meta-
learning algorithms. arXiv:1803.02999

[25] Sachin Ravi and Hugo Larochelle. 2017. Optimization as a model for few-shot
learning. In Proceedings of International Conference on Learning Representations.

[26] Hongduan Tian, Bo Liu, Xiao-Tong Yuan, and Qingshan Liu. 2020. Meta-learning
with network pruning. In Proceedings of European Conference on Computer Vision.
Springer, Berlin, Germany, 675–700.

[27] CatherineWah, Steve Branson, Peter Welinder, Pietro Perona, and Serge Belongie.
2011. The caltech-ucsd birds-200-2011 dataset. Technical Report. California
Institute of Technology.

[28] YaqingWang, Quanming Yao, James T Kwok, and Lionel M Ni. 2020. Generalizing
from a few examples: A survey on few-shot learning. Comput. Surveys 53, 3
(2020), 1–34.

[29] Michael Zhu and Suyog Gupta. 2017. To prune, or not to prune: exploring the
efficacy of pruning for model compression. arXiv:1710.01878

[30] Luisa Zintgraf, Kyriacos Shiarli, Vitaly Kurin, Katja Hofmann, and ShimonWhite-
son. 2019. Fast context adaptation via meta-learning. In Proceedings of Interna-
tional Conference on Machine Learning. ACM, New York, NY, USA, 7693–7702.

https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/2004.05439
https://arxiv.org/abs/1803.02999
https://arxiv.org/abs/1710.01878

	Abstract
	1 Introduction
	2 Related Work
	3 Method
	3.1 Primer on MAML
	3.2 Weight Importance in Meta-Training
	3.3 Approximation of Derivatives
	3.4 Layer-Wise Pruning
	3.5 Putting It Together

	4 Evaluation
	4.1 Experimental Settings
	4.2 Main Experimental Results
	4.3 Ablation Study

	5 Conclusion
	References

