
JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 1

Enabling Resource-efficient AIoT System with
Cross-level Optimization: A survey

Sicong Liu, Member, IEEE, Bin Guo∗, Senior Member, IEEE, Cheng Fang, Ziqi Wang, Shiyan Luo,
Zimu Zhou, Member, IEEE, Zhiwen Yu, Senior Member, IEEE

Abstract—The emerging field of artificial intelligence of things
(AIoT, AI+IoT) is driven by the widespread use of intelligent
infrastructures and the impressive success of deep learning (DL).
With the deployment of DL on various intelligent infrastructures
featuring rich sensors and weak DL computing capabilities, a
diverse range of AIoT applications has become possible. However,
DL models are notoriously resource-intensive. Existing research
strives to realize near-/realtime inference of AIoT live data
and low-cost training using AIoT datasets on resource-scare
infrastructures. Accordingly, the accuracy and responsiveness
of DL models are bounded by resource availability. To this
end, the algorithm-system co-design that jointly optimizes the
resource-friendly DL models and model-adaptive system scheduling
improves the runtime resource availability and thus pushes
the performance boundary set by the standalone level. Unlike
previous surveys on resource-friendly DL models or hand-crafted
DL compilers/frameworks with partially fine-tuned components,
this survey aims to provide a broader optimization space for more
free resource-performance tradeoffs. The cross-level optimization
landscape involves various granularity, including the DL model,
computation graph, operator, memory schedule, and hardware
instructor in both on-device and distributed paradigms. Further-
more, due to the dynamic nature of AIoT context, which includes
heterogeneous hardware, agnostic sensing data, varying user-
specified performance demands, and resource constraints, this
survey explores the context-aware inter-/intra-device controllers
for automatic cross-level adaptation. Additionally, we identify
some potential directions for resource-efficient AIoT systems.
By consolidating problems and techniques scattered over diverse
levels, we aim to help readers understand their connections and
stimulate further discussions.

Index Terms—Resource-efficient AIoT system, cross-level op-
timization, DL inference and training tasks

I. INTRODUCTION

THe Artificial Internet of Things (AIoT), also known
as AI+IoT, was coined in 2017 and quickly gained

widespread attention [1]. On the one hand, the rapid de-
velopment of deep learning (DL) has led to the emergence
of numerous intelligent services. On the other hand, the
richer sensors and enhanced DL computing capabilities of
intelligent infrastructures have given rise to a new category
of devices known as AIoT devices. AIoT devices are distinct
from traditional IoT sensor nodes due to their broader range of
sensing capabilities, ability to perform complex computations
directly on the device, and greater connectivity capabilities.

Sicong Liu, Bin Guo, Cheng Fang, Ziqi Wang, Shiyan Luo, and Zhiwen Yu
were with the Department of Computer Science, Northwestern Polytechnical
University, Xi’an, China. Zhiwen Yu was also with the Harbin Engineer-
ing University, Harbin, China. Zimu Zhou was with the School of Data
Science, City University of Hong Kong. Corresponding authors: Bin Guo
(guobin.keio@gmail.com) and Zhiwen Yu (zhiwenyu@nwpu.edu.cn).

…

Cross-level optimization for AIoT

Computation graph

Operator
reorder

Memory/computing
resource schedulingC

ro
ss

-le
ve

l
(a

lg
or

ith
m

-s
ys

te
m

co
-d

es
ig

n
)

Hardware instruction

DL algorithm (e.g., DL model)

Engine

In
tra

-d
ev

ic
e

co
nt

ro
lle

r

Inter-device controller

Operator
fusion

Operator parallelism

Compiler
frontend

Compiler
backend

On-device system

AIoT App
Performance
requirements

AIoT device
resource

AIoT
sensing data

Distributed system

Heterogeneous AIoT hardware

DL program

Hardware

Software

Scaling

DL-stimulated
AIoT applications AIoT context

Fig. 1: Illustration of cross-level optimization for the resource-
efficient AIoT system, spanning the resource-friendly algo-
rithm, model-adaptive system scheduling, to context-aware
intra-/inter-device controllers.

Moreover, there is a growing trend to integrate DL-powered
intelligence into tiny embedded AIoT devices for two primary
reasons. First, the proliferation of AIoT devices has resulted
in a massive increase in distributed sensing data captured in
various modalities [2]. By executing DL inference and training
tasks on resource-scarce AIoT devices, rather than transmitting
data to remote centers, e.g., cloud, like traditional IoT, we can
save bandwidth and latency while guaranteeing recognition ac-
curacy. Second, AIoT applications such as medical assistance
and security monitoring collect sensitive user information,
posing well-known privacy risks [3]. It is preferable to process
data locally or at trusted nearby devices. However, modern
DL models are notoriously resource-intensive, making it chal-
lenging to achieve real-time inference and low-cost training
on resource-scarce AIoT devices.

Given these challenges, previous research has explored
resource-friendly DL models and resource scheduling tech-
niques, either individually or in combination. First, resource-
friendly DL model compression have been widely investi-
gated to reduce the resource demands of DL models at the
algorithm level. They include standalone model compres-
sion techniques [4], [5], and automated neural architecture
search (NAS) frameworks [6]–[8]. However, despite exten-
sive research on model compression, compressed DL models
typically compromise accuracy to reduce resource demands.
Second, some hand-crafted DL compilers/frameworks fine-
tune diverse system levels to reuse the input data and re-
duce runtime overhead. For example, TVM [9] optimizes
DL operators at the computation graph level, Tensorflow

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 2

Runtime (TFRT) [10] implements efficient execution of the
computing kernel, and TensorflowXLA [11] designs a linear
algebra compiler engine for the TensorFlow framework. Third,
algorithm-system co-design brings better performance. For ex-
ample, MCUNet [12] co-designs the TinyNAS, for DL model
design, and TinyEngine, for code compilation and memory
scheduling. However, algorithm-system co-design is difficult
for non-experts. And existing techniques only manually opti-
mize partial system levels to provide a feasible solution.

To this end, providing a relatively complete picture of the
cross-level optimization space is necessary. This can assist
researchers in finding suitable technique combinations for
their specific requirements more freely and help automated
frameworks build a finer-grained search space to push the
boundary of performance-resource tradeoffs. We summarize
the cross-level optimization space as follows:

• Resource-friendly algorithm level is concerned with spec-
ifying DL models to balance performance and resource
constraints. However, the accuracy of lightweight models
is degraded and bounded by resource budgets.

• Model-adaptive system scheduling level comprises var-
ious fine-grained granularities, e.g., computation graph,
operator, memory, compiler, engine, and instructor. This
level aims at utilizing hardware resources to their fullest
capacity without compromising model accuracy.

Joint optimizing across these levels with bi-directional
feedback can improve runtime resource availability and
performance-resource tradeoff for AIoT. However, no existing
surveys have extensively covered all of these levels. The most
related previous surveys include [13]–[17]. First, many mobile
and embedded DL surveys focus on resource-friendly model
compression [13], [18] from the algorithm level. Second,
surveys on edge computing [15], [16] spanning networking
and computation offloading [14], [16], pay little attention to
the distributed cross-level optimization, e.g., data movement in
partitioned computation graphs and memory allocation across
devices at runtime. Third, [17] maps the DL computation to
hardware. However, it targets DL-oriented compiler optimiza-
tion, which does not co-design the DL models with compilers.
This paper comprehensively analyzes the resource-efficient
AIoT systems, covering all of these levels. As depicted in
Figure 1, it not only encompasses optimization techniques
used in stand-alone fields like on-device DL [19], distributed
DL [20], [21], and tiny systems [22] but also expands the
optimization possibility in the AIoT context.

In particular, the dynamic nature of AIoT context poses
a significant challenge: how to adaptively optimize cross-
level DL systems to meet varying application performance re-
quirements while satisfying resource constraints. The dynamic
context includes a range of factors, including heterogeneous
AIoT resources, agnostic live data, varying user-specified per-
formance demands, and device-imposed resource constraints.
To address these challenges, the AIoT system should also
contain context-aware controllers across these levels:

• Intra-device cross-level controller establishes a control
flow across different system levels to automate the dy-
namic context awareness, optimization technique combi-

nation, and adaptive co-design loop.
• Inter-device cross-level controller judges the complemen-

tarity of distributed AIoT sensing data and resources,
scaling cross-level systems between on-device and dis-
tributed schemes.

Therefore, we identify essential enabling technologies for
diverse tasks. Each of them encompasses cross-layer optimiza-
tion, but with different constraints.

• Cross-level optimization for On-device DL inference (§
III-A). It aims to achieve better real-time performance and
higher accuracy by minimizing DL model redundancy
and maximizing on-device resource capability.

• Cross-level optimization for Distributed DL inference (§
III-B). By aggregating more computing resources and
sensing sources, it can further optimize latency and accu-
racy than the on-device scheme. It operates with a similar
cross-level spectrum but utilizes distributed scheduling.

• Cross-level optimization for on-device DL training (§
IV-A). DL training is more complex than inference. It
aims to reduce training costs and maintain accuracy.

• Cross-level optimization for distributed DL training (§
IV-B). It further coordinates data fusion and resource ag-
gregation to optimize DL training efficacy and efficiency.

• Resource-efficient AIoT applications (§ V). The afore-
mentioned techniques and systems stimulate a wide range
of AIoT applications with flexibility and adaptivity.

In summary, the key contributions of this work can be
summarized as follow:

• To the best of our knowledge, this is the first to describe
the characteristics and architectures of the resource-
efficient AIoT system exactly. It provides a cross-level
spectrum of the system optimization space for AIoT.

• We propose a novel taxonomy of existing techniques,
summarizing how state-of-the-art address issues across
different levels of the resource-efficient AIoT system. Ad-
ditionally, we demonstrate how context-aware controllers
can automatically select cross-level techniques for AIoT.

• We discuss open issues in resource-efficient AIoT sys-
tems and suggest potential future research directions.

This section introduces the background and leads to the
motivation for this survey. In the rest of this paper, we present
fundamentals of the resource-efficient AIoT system in § II,
introduce the enabling techniques across diverse levels for DL
inference and training tasks in § III and § IV, respectively.
And then, we list related AIoT systems and applications in §
V. Finally, we discuss the open issues in § VI and conclude
this paper in § VII.

II. FUNDAMENTALS OF RESOURCE-EFFICIENT AIOT
SYSTEM

This section presents an overview of the resource-efficient
AIoT system, departing from existing related areas.

A. AIoT Paradigms

Artificial Intelligence of Things (AIoT) refers to the integra-
tion of artificial intelligence (AI) technologies with Internet

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 3

2007 2012 2014 2015 2016 2017

3-rd
AI boom

…

Mobile
ML

2006

Wearable
ML

Mobile edge
ML

Edge
ML

On-device
ML

AIoT
(AI+IoT)

…

(a) Development of related areas

2007 2012 2014 2015 2016 2017 2018 2019 2020 2021 2022

3-rd
AI boom

…

Deep
belief nets

AlexNet-8

D
L

m
od

el
re

so
ur

ce
 c

os
t

MCUNet

VGG-16
VGG-19

ResNet-152
DebseNet-161

MobileNet

ShuffleNet
MobileNetV2

MCUNetV2

2006

AI+IoT
(AIoT)

(b) Development of DL models (a showcase of vision fields) and frameworks

Fig. 2: Illustration of various related areas and frameworks.

Mobile/wearable ML

Tiny ML

Edge ML

AIoT (cover mobile/wearable/tiny/edge ML)

Algorithm: on-device DL

Hardware: portable embedded devices (resource scarce)

Algorithm: on-device DL

Hardware: tiny embedded devices (resource extremely-scarce)
System scheduling: intra-device partial-level scheduling

Algorithm: distributed DL

Hardware: embedded + micro devices (resource relatively-sufficient)

Algorithm trend: on-demand scaling between on-device & distributed DL

Hardware: embedded + tiny- devices (resource scarce)

System scheduling trend: intra-device cross-level & inter-device
cross-level scheduling.

System scheduling: intra-device scheduling

System scheduling: inter-device scheduling

Fig. 3: Difference of related paradigms.

of Things (IoT) infrastructures to improve data analytics [23].
The primary computational task in the resource-efficient AIoT
system is data analysis. As depicted in Figure 2, deep learning
(DL) has emerged as the dominant AI methodology for learn-
ing and analyzing data since the third AI boom [24]. And there
is a growing trend to incorporate DL-powered intelligence
into tiny embedded AIoT devices with the advancement of
embedded hardware and on-device DL technologies [25]. In
addition, new development frameworks have been launched
specifically targeting embedded devices, such as TensorFlow
Lite [26], Caffe2 [27], and Pytorch Mobile [28], in order to
promote DL-based AIoT applications.

Several related areas utilize overlapping enabling techniques
but have varying focuses, as shown in Figure 2a and Figure 3.
We differentiate them below.

1) Mobile [29] and Wearable ML [30] focus on mobile
data analytic patterns and application experience (e.g., real-
time response) on portable embedded mobiles and wearables.

2) Tiny ML [31] concerns machine learning aware ar-
chitectures, frameworks, techniques, tools, and approaches
which are capable of performing on-device analytics at tiny
embedded devices with extremely limited resources, e.g., Mi-
croprogrammed control unit (MCU). And TinyML project [32]
aims to improve the efficiency of systems by requiring less
computation, fewer engineers, and fewer data to facilitate the
giant market of tiny embedded applications. It covers the
management of data and the deployment of models.

3) Edge ML presents to keep data near where it’s generated,

avoiding costly and privacy-threatening data transfers [33].
Instead of shipping data centrally to perform data analytics,
edge computing analyzes data using ML at the edge while
maintaining accuracy and latency. The edge includes embed-
ded and micro devices with relatively sufficient resources.

As these related areas evolve, many enabling techniques
and frameworks can facilitate AIoT from different aspects.
Techniques such as DL models for mobile and edge com-
puting [30] and on-device/distributed DL deployment [29],
[33] provide various model compression and offloading algo-
rithms for inference and training. Frameworks such as TFlite
[26], CMix-NN [34], TVM [9], TensorFlow XLA [11],
and oneDNN [35] offer a range of acceleration options and
memory scheduling support for DL. The key distinction lies
in the AIoT system’s ability to integrate these technologies
in a novel, context-aware and cross-level manner. Specifically,
we define some important concepts as follows:

AIoT computing task and paradigm. AIoT data mainly
includes two types, i.e., live sensing data and accumulated
dataset. And their analysis is concentrated in two stages, i.e.,
DL inference and training, respectively.

• Near-/realtime inference of AIoT live data on resource-
scare AIoT devices. The AIoT live data are sensed by
distributed AIoT devices and should be analyzed fastly.

• Low-cost training using AIoT dataset on resource-scare
AIoT devices. The AIoT dataset are sensed and held by
distributed AIoT devices and should be consumed with
low data transmission and training costs, e.g., memory.

Alternatively, inference and training tasks can be performed
on-device or at distributed edges within the networked system,
which enable a plethora of innovative AIoT applications that
go beyond the conventional IoT paradigm in terms of accuracy,
latency, bandwidth, privacy, and energy efficiency [1].

AIoT devices refer to intelligent end/edge devices equipped
with advanced sensors and DL computing capabilities. This
category includes mobiles, wearables, robots, drones, and
other physical devices. In this context, the ”end” device serves
as the primary sensing source. Similarly to edge computing,
the ”edge” refers to devices located between the sensing data
source and the cloud center path. In the realm of AIoT, there
is a preference for prioritizing physically nearby edge devices
to enable cost-effective near-sensing-data computing.

Resource-efficient AIoT system. Unlike software-hardware
co-design approaches [36], [37], our focus is on the system
software, specifically the algorithm-system co-design. This
approach allows for effective utilization of existing hardware

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 4

resources in dynamic AIoT contexts. AIoT applications like
smart home and smart retail rely on a plethora of AIoT devices
equipped with advanced sensors and embedded processors.
Replacing these devices with newer hardware can often be
costly and impractical. Therefore, adopting a strategy that
optimizes the usage of available hardware resources can be
an efficient and cost-effective solution in such scenarios. We
refer to the DL-based system on AIoT devices as resource-
efficient AIoT system in the following part for short. The
resource-efficient AIoT system is responsible for distributing
and federating AIoT sensing data analytics across resource-
constrained and heterogeneous end/edge devices for DL in-
ference and training. It is worth noting that communication
networking for AIoT is outside the scope of this survey.

B. Cross-level Characteristics of AIoT System
We provide an overview of the remarkable cross-level

characteristics and architectures of resource-efficient AIoT
systems. As illustrated in Figure 4, the resource-efficient
AIoT system comprises two key levels: the resource-friendly
algorithm and model-adaptive system scheduling. These levels
should be co-designed to ensure coherent resource usage. We
outline their specific features and functionality below.

1) Resource-friendly algorithm level: dynamically scal-
able, divisible, and composable DL models. The DL models
for AIoT should be dynamically scalable, divisible, and com-
posable in both DL inference and training tasks. First, the DL
model (e.g., structure, parameter size) should be scalable with
diverse compression degree to satisfy the platform-imposed
dynamic resource constraints (i.e., memory, computing, and
battery) and application-specified performance demands (i.e.,
accuracy, latency, energy cost). This scheme will inevitably
bring accuracy fluctuations if the DL models are poorly
designed. Second, DL models’ divisible and composable prop-
erties are necessary to offload computation to distributed AIoT
devices. Particularly, the divisibility of DL models depends on
the internal dependency of DL layers, channels, and operators.
And the composable property of DL models is able to adjust
the system to offload different DL block combinations to
diverse AIoT devices for dynamic resource availability.

2) Model-adaptive system scheduling level: maximizing
runtime hardware capability. This level aims to utilize hard-
ware resources to their fullest capacity without compromising
model accuracy. Even for identical DL model configurations,
mapping different model layers/operators onto diverse memory
units in varying sequences results in different latency and
resource overhead [9], [38], [39]. For example, integrating the
memory fragmentation in the tensor layout of SqueezeNet can
reduce 42% wasted memory fragmentation [40]. Therefore,
designing appropriate strategies at computation graph, opera-
tor, and memory allocation levels to cater to the upper-level
models can enhance runtime resource availability. Notably, this
level can iteratively allow a more flexible DL model design
space for the algorithm level, thereby pushing the limitations
on accuracy-resource trade-offs.

3) Intra-device controller: automating the adaptive on-
device cross-level optimization. The efficacy of various opti-
mization techniques at different levels can vary for the same

Dynamically scalable, divisible, composable DL models

AIoT live
sensing data

Scalable model Divisible model Composable model

Dynamic
demands

Accuracy

Latency

Resource
budgets

Resource level Instruction levelOperator level

Dynamic availability
(barrel effect)On-demand

data fusion

R
es

ou
rc

e
su

pp
or

t
R

es
ou

rc
e

de
m

an
d

Scaling between on-device and distributed systems

2) Model-adaptive system scheduling level

4) Inter-device cross-level controller

1) Resource-friendly algorithm level

3)
 In

tr
a-

de
vi

ce
 c

ro
ss

-le
ve

l c
on

tr
ol

le
r

C
ro

ss
-le

ve
l

te
ch

ni
qu

e
co

m
bi

na
tio

n

Joint optimization

On-demand
resource aggregation AIoT context

Diverse
applications

Fig. 4: Resource-efficient AIoT system architecture, involving
two joint-optimized levels and two context-aware controllers.

DL model. And even within the same level of optimization
techniques, there can be differences in their performance. As
a result, it is imperative to develop an extra control flow to
automate the adaptive optimization of DL models and system
scheduling in a cross-level manner. Also, adaptively adjusting
the cross-level techniques based on dynamic contexts, such
as input data, resource availability, and user demands, is
necessary. The controller monitors the resource availability
of the target platforms and predicts the resource requirements
of the AIoT system based on the current model configurations
and scheduling strategies. The controller automatically adjusts
techniques across different levels if the resource demand
exceeds the supply or does not align with the user-defined
budgets.

4) Inter-device controller: automating the adaptive dis-
tributed cross-level optimization. It scales the cross-level
AIoT system from on-device to distributed schemes for achiev-
ing better performance-resource efficiency trade-off. As shown
in Figure 5, the distributed AIoT devices collaborate on
demand for two motivations:

• On-demand sensing source association. With the pro-
liferation of data-rich sensors (e.g., cameras, LIDAR,
and hyperspectral imagers), different distributed sensing
sources have temporal connections for specific DL train-
ing/inference tasks. Distributed multi-modal data benefit
the environment/object recognization from different van-
tage points with various physical properties [41]–[44].
The inter-device controller needs balance the necessity of
sensing source association within the networked system
to the accuracy of AIoT tasks and the overhead.

• On-demand computing resource aggregation. As men-
tioned above, AIoT prioritizes the on-device scheme,
followed by the distributed collaboration scheme with
nearby edges, to realize near-sensing-data computing
for saving transmission bandwidth and protecting data
privacy [45], [46]. Executing DL models requires large
computing/memory resources that are not always avail-

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 5

Distributed

resource aggregation

Distributed

sensing source association

On-device

On-device

On-demand
scaling

Fig. 5: The inter-device controller scales the cross-level AIoT
system between on-device and distributed schemes for on-
demand sensing source association or resource aggregation.

able in a single AIoT device, significantly when the scale
and complexity of DL models continuously increase.
Scheduling the most suitable distributed devices within
locally connected and resource-constrained edge clusters
is necessary yet challenging [47], [48].

C. Taxonomy of Enabling Techniques

We identify the following essential enabling technologies
for resource-efficient AIoT systems, considering the cross-
level deployment issues mentioned earlier. Figure 6 sum-
marizes our taxonomy, i.e., cross-level optimization for both
resource-efficient DL inference and training tasks.

1) Cross-level Optimization for DL Inference Tasks: There
is a growing trend today to bring DL-powered intelligence into
AIoT devices for various applications, e.g., object recogni-
tion [49]–[52], semantic segmentation [53]–[55], object track-
ing [56]–[58], natural language processing [59], [59], [60], and
recommendation [61]–[63].

Challenges. It is non-trivial to achieve near-/real-time DL
inference with limited resources in AIoT devices, which
is critical for AIoT live data to satisfy the applications’
responsiveness. First, on-device DL inference benefits user
privacy and robustness. However, mainstream DL models,
such as Zero-DCE for low-light video enhancement [64],
are still computation-intensive and fail to achieve real-time
processing on the local AIoT device. Second, distributed DL
inference strives to satisfy stringent demands across multiple
dimensions, e.g., latency, accuracy, and transmission/resource
cost. Moreover, energy savings in DL inference is also crucial
for long-term running applications since most mobile AIoT
devices are battery-powered [65], [66]. Also, it is desired
to adapt the inference accuracy according to the resource
availability and network condition for AIoT at runtime. We
detail different levels of issues in the following part.

On-device DL Inference. Prior efforts explored several
technologies to enable on-device DL inference, accelerate in-
ference, and save memory occupation or energy. (i) resource-
friendly algorithm level compresses DL models to reduce
the resource demand without significantly compromising their
accuracy. Standalone techniques include pruning [67], [68],

[69], low-rank decomposition [70], lightweight architecture
replacement [8], [12], [71], and parameter/activation quan-
tization [72], [73]. Some research [74] also automatically
combines diverse compression techniques to achieve better
performance-resource tradeoffs. Although significant progress
has been made in this field, compressed models typically yield
accuracy degradation. (ii) model-adaptive system scheduling
level spans multiple fine-grained levels, i.e., computational
graph [75]–[77], memory scheduling [12], [78], hardware
instruction [79], [80], compiler front-end/back-end [76], [77],
[81], and engine [12]. For example, existing DL frameworks,
e.g., Tensorflow [82], Pytorch [83], and TVM [9], provide
support in computation graph and operator optimization.
IOS [75] extensively studies the inter-operator parallelism to
accelerate inference. Miao et al. [78] proposed dynamically
swapping data between MCU’s micro-SRAM and external
flash to save SRAM. The suitable underlying scheduling can
further improve resource availability than the algorithm-level
compression models. However, most existing techniques are
manually designed. (iii) intra-device cross-level controller
aims to adaptively select the above-mentioned cross-level
optimization techniques according to the user-specified perfor-
mance demands and the device-imposed resource budgets. For
example, AdaDeep [74] is an automated DNN compression
framework at the algorithm level that uses deep reinforcement
learning to balance performance and resources. MCUNet [12]
performs joint optimization across the algorithm and engine
levels, adapting the optimization strategies according to mem-
ory constraints. However, the combination criteria of cross-
level techniques from a broader space remains a black box.
(iv) inter-device cross-level controller will scale up the system
from the on-device to distributed scheme once the large com-
puting/memory resources required by executing computation-
intensive models locally are unavailable.

Distributed DL Inference. Deploying different parts of DL
models on multiple AIoT devices can harness the collective
computational power of these devices, thereby decreasing
local resource demands and enhancing inference efficiency.
(i) resource-friendly algorithm level involves DL model
partition [84], offloading [85], and performance tradeoff [85],
[86]. According to the operator dependency of DL models
and the resource availability of edge devices, various parts
of DL models can be distributed to multiple devices for
either sequential or parallel processing, resulting in different
performance tradeoffs. For example, [86] jointly carries out
the model partition and offloading to improve accuracy, energy
consumption, and latency. (ii) model-adaptive system schedul-
ing level includes computation graph partition [87], [88],
distributed operator fusion [89], [90], separately data reuse
and memory allocation. For example, Modnn [87] significantly
speeds up DL inference by introducing execution parallelism
among multiple devices [88]. Zhang et al. [91] proposes jointly
optimizing heterogeneous chips’ computing frequency, power,
and memory to achieve the optimal allocation strategy on
distributed devices. This area is relatively less explored. (iii)
inter-device cross-level controller has a similar cross-level
technique spectrum as the on-device inference scheme. And
the fundamental difference lies in the fact that the underlying

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 6

Data parallelism

Model parallelism

Hybrid parallelism

Trained
model

Trained
model

Trained
mdoel

Scale Scale

Inference
results

Inference
results

AIoT live data

…

Data & resource

Performance
requirements

Computation
partition

Knowledge
aggregation

Parallel offloading

Serial offloading

Hybrid offloading

DNN compression

In
tra

-d
ev

ic
e

co
nt

ro
lle

r

Operator reordering

Memory allocation

DNN pruning

Operator parallelism
Memory
allocation

Operator fusion
Computation graph substitution

Resource
constraints Performance

AIoT datasets

Efficient DNN architecture

Sparse updating

Re-computation
Intermediate activation

compression

Operator fusion

On-device
model-

adaptive
system

scheduling
level

Resource
-friendly
algorithm

level

Low-rank decomposition

Lightweight architecture replacement

Parameter/activation quantization

Memory
swapping

Hardware instruction optimization

Resource-
friendly

algorithm
level

On-device
model-

adaptive
system

scheduling
level

Inter-device cross-level controller

Knowledge
transfer

Data fusionResource-
friendly

algorithm
level

Distributed model-adaptive system scheduling level

Resource-
friendly

algorithm
level

Distributed model-adaptive system scheduling level

On-device DL training
(§ IV.A)

Distributed DL training
(§ IV.B)

Distributed DL inference
(§ III.B)

Inter-device cross-level controller

In
tra

-d
ev

ic
e

co
nt

ro
lle

r

Inter-device controller Inter-device controller

On-device DL inference
(§ III.A)

DL-stimulated
AIoT applications (§ V)

Fig. 6: Landscape of the resource-efficient AIoT system according to the proposed technique taxonomy.

operator and resource scheduling for distributed schemes must
be optimized separately and verified globally. This is because
different parts of the model deployed on multiple devices have
separate memory pools and can not reuse data, necessitating
separate optimization at diverse devices. Meanwhile, global
evaluation is required for overall performance, such as the total
latency of distributed execution and transmission. In addition,
the controller selects the most suitable devices within the
closely connected and resource-constrained edge. It involves
the performance profiler [92], adaptive inference serialization
or parallelism [93], and autonomatic optimizer [94].

2) Cross-level Optimization for DL Training Tasks: There
are many demands for DL training on resource-scarce AIoT
devices. For instance, we may need to update pre-trained DL
models locally or nearby when the live sensing data drift to
the original training data and an Internet connection to the
cloud is unavailable. Other requirements for DL training on
AIoT devices are also widespread, such as updating models to
adapt to new applications. These requirements can be fulfilled
using techniques like transfer learning [95] [96] [97] [98],
domain adaptation [99] [100] [101] [102], continuous learn-
ing [103] [104] [105], and personalized federated learn-
ing [106] [107]. Besides, DL model fine-tuning is necessary
after adaptive compression, which has been demonstrated in
various practical scenarios [108] [109] [110] [111].

Challenges. It is intractable to realize low-cost DL training
on AIoT devices. The reasons are three-fold: i) resource
constraint. The bottleneck of embedded resources in AIoT
devices is the memory access bandwidth [112]. While DL
training needs batched memory chunks grouping multiple
data samples for feature learning. Besides, the computation
efficiency will be low if the memory for sufficient batch size
cannot be secured. Because computations are highly sensitive
to memory access schemes, e.g., Cache hit rate [113]; ii)
irregular activation lifecycle. The DL training phase involves
forward propagation and backpropagation to update the model

weights iteratively. Intermediate activations pose high memory
demands, produced during the forward pass and reused during
the backward pass [114]. In the case of DL inference using
only forward propagation, resources occupied by activations
can be directly released. However, during DL training in-
volving both forward and backpropagation, activations must
be retained throughout the process. Model structures, such as
control flow and branching, affect the lifecycle of activations
during backpropagation, which is less regular. Therefore, it is
difficult to determine when data will be accessed for the last
time and when it is safe to release resources. (iii) multiple iter-
ations. Unlike DL inference’s ”one-time” property, DL training
requires optimization across multiple iterations. Therefore,
even small instabilities can be amplified over hundreds of
iterations, potentially leading to the crash of DL training [38].
Additionally, current cloud-based DL training optimization
techniques are not suitable for resource-scare AIoT devices.

On-device DL Training. Given these challenges, we sum-
marize the enabling techniques in § IV-A that ensure sufficient
resource supply and guarantee performance across different
system levels. (i) resource-friendly algorithm level aims to
reduce resource demands, especially memory usage, through
model or training simplification. Techniques include model
quantization [115], model compression [115]–[117], sparse
updating [118], [119], etc. For example, TinyTL [112] presents
the element-wise convolution decomposition to reduce mem-
ory, not parameters, for efficient on-device DL training. (ii)
model-adaptive system scheduling level mainly optimizes
three objects, i.e., intermediate activation, computation graph,
and memory schedule. Precisely, to trim down the intermediate
activation tensor after the forward and before the backward
pass, researchers present the recomputation [120], [121] and
activation compression [122] techniques. They discard or
compress the intermediate activation tensors to reduce the peak
memory during DL training. Optimization techniques at the
computation graph level include operator reordering [123] and

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 7

DL
Framework 1

DL
Framework 2

DL
Framework m

…

DL model
compression

Retraining-free
compression

Retraining
-dependent

compression

DL inference AIoT device 1

User-specified training/inference performance goals & AIoT device-imposed resource constraints

CPU

Accuracy Latency Energy efficiency Hierarchical memory constraintsComputation throughput

Exchange
between

DL frameworks

DL
framework 1

DL
framework 2

DL
framework m

…

Source program

DL model
pre-training

Developers

On-device
DL training

Retrained DL models

Distributed DL
training

DL training

Resources

AIoT
devices

On-device
DL inference

Distributed DL
inference AIoT device 2

MCU

AIoT device 3

FPGA

AIoT device n

TPU

Resources

Datasets

Live data

Retraining trigger

Users

Fig. 7: Workflow of the AIoT system software for resource-efficient DL training and inference tasks on AIoT devices.

operator fusion [124], [125]. Rearranging or fusing operators
in the computation graph can reduce memory usage and access
delay. As for the resource scheduling, prior efforts mainly
operate on memory, which is the lowest level optimization
closest to hardware, including memory allocation [114] and
memory swapping [39], [126]. For example, MoDNN tem-
porarily swaps intermediate activation from graphics process-
ing unit (GPU) memory to host memory to solve the prob-
lem of insufficient training memory and thereby realizes the
optimal compromise between memory footprint and training
speed [126]. (iii) intra-device cross-level controller jointly
control multiple techniques across the above levels to achieve
the best tradeoff between multiple conflicting performance
goals for dynamic AIoT context. For example, adaptive pre-
cision training in [127] dynamically allocates model precision
to balance training energy cost, memory usage, and accuracy.

Distributed DL Training. To coordinate data fusion and
resource aggregation to optimize DL training efficacy and
efficiency on distributed devices. We introduce cross-level
enabling techniques for distributed training in § IV-B. In par-
ticular, (i) resource-friendly algorithm level optimizes the dis-
tributed training algorithm (e.g., pipeline algorithm [128] and
federated learning [129]) and changes the DL model/data par-
tition strategy, which can significantly improve the distributed
system’s computing efficiency. (ii) model-adaptive system
scheduling level, like the on-device training, mainly optimize
operator and memory access for training speedups and re-
source usage reduction, such as memory reallocation [130] and
layer swapping [131] etc. For example, Zico [132] monitors
the memory usage of each DL training task and reclaims the
memory that is no longer needed, making it globally sharable
in the system. (iii) inter-device cross-level controller considers
all cross-level factors like the on-device DL training scheme.
In addition, it considers the communication conditions, such
as time-varying network throughput, to control the distributed
system loop jointly. And it schedules the cross-level tech-
niques separately and evaluates them globally. Specifically, it
selects available devices to minimize overall training delay,
ensure accuracy, and improve resource efficiency [133]. To

address issues such as asynchronous processing and waiting
times resulting from resource-heterogeneous AIoT devices, the
inter-device controller should monitor their heterogeneity in
advance and select suitable devices for collaboration.

D. Workflow Overview
Figure 7 showcases the resource-efficient AIoT system

workflow and relationships of the system blocks for DL
training and inference tasks. The system takes user-provided
inputs, such as DL source programs, and aims to achieve
user-specified performance goals while satisfying the resource
constraints imposed by the AIoT devices. Specifically, the
user/developer specifies the DL source program using various
DL frameworks (e.g., TensorFlow, Pytorch, Mindspore, etc.)
and conducts model training using accumulated AIoT dataset.
After DL pre-training, the model structure files are distributed
to heterogeneous AIoT devices to analyze live data and
provide intelligent services based on the pre-trained model. To
be compatible with different DL frameworks in various AIoT
devices, we can convert them to a unified format and exchange
them (e.g., using ONNX [134]). In the DL inference phase, we
can select and combine the most suitable DNN compression
techniques from the model compression algorithm pools to
reduce the model complexity and resource demands. Most
model compression techniques need to return to the training
stage for several rounds of retraining to fine-tune model
parameters to ensure accuracy [135]. And some recent efforts
also realize the retraining-free model compression techniques,
e.g., through ensemble training of super-nets [136].

The resource-efficient DL inference includes on-device (§
III-A) and distributed (§ III-B) schemes. Particularly, it in-
cludes the runtime compilation front-end optimization (tar-
get platform-independent), the compilation back-end, and
hardware instruction optimization (target platform-dependent).
Both the compiler front-end and the back-end belong to
the model-adaptive system scheduling level mentioned in §
II-B. They convert the DL models designed at the algo-
rithm level into intermediate representations, i.e., computa-
tion graph, for further optimization. Compiler front-end opti-
mization focuses on platform-independent optimization, such

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 8

as constant folding [137] [138] and common subexpression
optimization [139]. And compiler back-end optimization fo-
cuses on platform-dependent optimization, such as operator
fusion [140] [124], and memory allocation [141] [114].

When the accuracy of the DL model drops below a
certain threshold due to changes in application scenarios,
data, performance requirements, etc., the DL training block
is triggered to retrain and update the model. Whether the
DL model is re-trained locally on a single AIoT device or
on multiple locally-connected yet resource-constrained edge
devices depends on how well the supply of device resources
(e.g., memory) matches the computing requirements for train-
ing and the desired training speed. Once the inter-device
controller selects the training scheme, we can proceed to
the on-device DL training optimization block (see § IV-A)
or the distributed DL training block (see § IV-B). As a
separate note, in resource-efficient AIoT system, the compiler
optimization is cross-device [82] [9] on heterogeneous and
distributed AIoT devices, e.g., from GPU-based edge servers
to MCUs, to support intelligent inference/training tasks. The
inter-/intra-device controllers adaptively control the cross-level
optimization strategies according to context information.

E. AIoT Performance Metrics
The resource-efficient AIoT system in both DL training

and inference tasks needs to optimize the user-specified
performance goals (i.e., accuracy, latency, energy efficiency,
computation throughput) and satisfy device-imposed resource
constraints (i.e., hierarchical memory, processor, battery). We
listed the related metrics below:

1) Accuracy. The DL model should be accurate enough
to guarantee a high-quality AIoT task. The model weights
at different scales are well-trained to represent the generic
information of recognition objects [142].

2) Memory. The parameters and activations of DL models
should be appropriately sized to fit into the memory units of
AIoT devices. We can directly calculate the memory needed
to run a DL model using the total number of bits associated
with weights and activations. And we should optimize how the
operations access the data fetched from different memory hier-
archies (e.g., dynamic random access memory (DRAM), static
random access memory (SRAM)) and how the computation is
executed for latency or energy efficiency optimization [8].

• Memory budgets. The memory budget is a tough con-
straint; it decides whether a specific AIoT device can
perform the DL inference or training tasks.

• SRAM utilization. Improving SRAM utilization and re-
ducing DRAM transmission times can improve comput-
ing efficiency [143].

• Cache/register hit rate measures the percentage of times
that the system is able to retrieve data from the cache in
the central processing unit (CPU)/GPU [144] and register
in MCU [145], instead of accessing it from the main
memory. Higher cache/register hit rates mean that the
system can access data more efficiently. We can use
it to estimate the system efficiency in the presence of
time-varying memory resources via run-time measure-
ment [146].

3) Computational cost. It affects the AIoT system’s latency
and energy efficiency. We can model the computational cost
of DL inference and training tasks as the total number of DL
models’ multiply-accumulate (MAC) operations.

4) Latency. The complexity of the DL model for inference
and training should be controllable to meet diverse user
demands on latency. The latency of DL inference/training
tasks executed in AIoT devices strongly depends on the given
device’s architecture and memory hierarchy [147]. And we can
refer to the latency predictor, such as nn-Meter [148], [149],
for platform-aware latency estimation.

5) Energy efficiency. It is an important metric for battery-
powered AIoT devices. Researchers usually formulate it offline
and estimate it online since it is prohibitive to directly connect
to energy monitors for measurement when the device is in
service. The estimation methods include two types:

• Estimation function. The energy consumption of DL
inference includes computation cost and memory access
cost. The former can be formulated as the total energy
cost of the total MACs, i.e.,, Ec = ϵ1C, where ϵ1 and C
denote the energy cost per MAC operation and the total
number of MACs, respectively. The latter depends on the
storage scheme when executing DL models on the user-
given embedded device. And the energy cost of fetching
intermediate activations, i.e., memory access, dominates
in the DL inference phase.

• Arithmetic intensity. The hardware-aware metric, e.g.,
arithmetic intensity, can proxy the degree of reuse of
parameters and activations and the energy cost required
for processing inputs [150], [151].

As a separate note, the widely used parameters number,
MAC amount, or speedup ratio is not a good approximation for
hardware efficiency (e.g., energy cost, latency), which heavily
depends on the underlying memory movement and bandwidth
bound [8]. For example, Jha et al. [151] reported that although
SqueezeNet [152] has 51.8× fewer parameters than AlexNet,
while it consumes 33% more energy due to its larger amount
of activations and data movement. We identify that merely
cutting down the parameter size may lead to an increase in
activation size, which, in turn, increases the memory footprint,
latency, and energy consumption [150].

The dynamic deployment context in continuously running
AIoT applications often results in high levels of unpre-
dictability and variability in terms of performance demands
on the above metrics. This context includes factors such as
agnostic AIoT sensing data, time-varying resource availabil-
ity, dynamic join and exit of AIoT devices, and fluctuating
inference/training request frequency triggered by real-world
requirements. Thus, the resource-efficient AIoT system should
continuously evolve to balance these metrics in a context-
adaptive manner [8], [153].

III. CROSS-LEVEL OPTIMIZATION FOR DL INFERENCE

This section introduces existing efforts associated with the
proposed challenges in cross-level AIoT systems and high-
lights how they have addressed some of them.

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 9

Model-adaptive system scheduling level

Computational graph transformation
Operator parallelismOperator fusion

Memory schedule

Intra-device
controller

Resource-friendly algorithm level
model pruning

Low-rank
decomposition

Lightweight
architecture
replacement

Parameter/activation
quantization

Neural
architecture
search (NAS)

Search
space

Search
strategy

Candidate
comparison

Loop unrolling

Instruction rearrangement

Register blocking

Constant folding
Public expression substitution

Dead code elimination Compiler
frontend

Compiler
backend

Hardware
Instruction

Fine-tune/
retrain model
(Section IV)

Trained
DL model

Performance
demands

Inference results

Engine

On-device AIoT
device resource

Fig. 8: System loop of the algorithm, system scheduling, and intra-device controller for on-device DL inference.

A. On-device DL Inference

An increasing trend in the field of AIoT is integrating DL-
powered intelligence into local devices, allowing for analytics
to be performed where the data is sensed. This approach offers
advantages such as low transmission costs, network condi-
tion independence, and privacy preservation, as highlighted
in [154], [155]. However, deploying DL models on resource-
scarce local devices remains a challenging problem, as dis-
cussed in § II-C. To address this issue, cross-level optimiza-
tion spans multiple levels (e.g., model, computation graph,
memory scheduling, hardware instruction, etc.) is essential.
Additionally, context-aware controllers can further automate
the on-device DL inference process. Figure 8 illustrates the
on-device DL inference optimization pipeline.

1) Resource-friendly algorithm level: Algorithm-level opti-
mization for on-device DL inference is extensively researched
to minimize computation and memory requirements while pre-
serving accuracy [154], [155] [156]–[161]. We briefly discuss
some representative ones below.

a. Pruning. It reduces the model computation cost by
removing redundant parameters [162], channels [69], or con-
nections [163]. According to the grain size of pruning, it
can be divided into synaptic pruning, neuron pruning, etc.
Synaptic pruning cuts down unimportant connections between
neurons, while neuron pruning removes neuron nodes directly.
For example, Hu et al. [67] iteratively prunes neurons and
uses the average percentage of zeros to find the unimportant
activation. [68], [69] determine which channels must be pruned
by minimizing the feature reconstruction error using greedy
and Least Absolute Shrinkage and Selection Operator(i.e.,
LASSO) regression optimizers, respectively.

b. Low-rank decomposition. Since model weight vectors
are mostly distributed in low-rank subspaces, we can only use
a few basis vectors to represent the convolution kernel for
memory savings by combining dimensions or applying low-
rank constraints [164], [165]. As shown in Figure 9,Wi is a
large low-rank matrix which is decomposed into several small
matrices such as W

(1)
i ,W

(2)
i ,W

(3)
i , ...,W

(k)
i .

Pavel Kaloshin [70] decomposed the tensor as a sum of low-
rank and sparse components, approximating the convolution
weights. The convolutional (conv) layers take the most execu-
tion time, and fully connected (fc) layers dominate storage
costs. Lin et al. [166] jointly accelerates conv layers and
compresses fc layers by utilizing low-rank decomposition to

�� ��+1

Decompose
�� ��+1��

(1) ��
(2) ��

(3) ... ��
(�)��

Fig. 9: Illustration of low-rank decomposition technique.

eliminate redundancy between conv kernels and fc matrices.
c. Lightweight architecture. Replacing large model

blocks with lightweight architectures can adapt to resource-
constrained AIoT devices. There are generally two categories,
i.e., block replacement [167] or neural architecture search
(NAS) [168]. For example, Iandola et al. [152] replaced conv
layers by Fire block, composing of a 1×1 conv layer and a
conv layer with mixed 1×1 and 3×3 filters. Lin et al. [169]
replaced conv by a micro multi-layer perceptron embedded
with multiple small kernel conv (Mlpconv). To realize efficient
DL inference on MicroController Unit (MCUs), with 2-3
orders of magnitude smaller memory than mobile phones, Lin
et al. proposed MCUNet [12], Edgar et al. built µNAS [71]
to specialize model architectures for MCUs automatically.

d. Parameter/activation quantization. Quantization [170],
[171] refers to representing 32-bit floating-point model param-
eters with relatively low widths, including weight [172], acti-
vation value [173]. The model parameters can be unified with
layer-wise low-bit-widths (e.g., 16-bit, 8-bit, 2-bit, 1-bit, etc.)
to reduce memory usage significantly, speed up computing,
and reduce power cost. To adapt to the varying memory and
computational limitations, Manuele et al. [72] modeled the DL
inference graph by pure integer operation using mixed low-bit-
width quantization. Under specific RAM and FLASH memory
constraints in MCUs, Manuele et al. [73] use reinforcement
learning to pick the best uniform quantization bitwidths for
model weights and activations.

Discussion. Algorithm-level optimization techniques have
shown great promise in reducing computation and memory
requirements with slightly decreased accuracy. However, the
degree of accuracy decrease is bounded by the runtime re-
source availability. While proposing new algorithms may lead
to a slight improvement in performance-resource tradeoff,e.g.,
latency, over existing techniques, their suitability to AIoT also
depends on the system scheduling on the given hardware.

2) Model-adaptive system scheduling level: Joint optimiza-
tion of system scheduling and upper-level algorithms has the
potential to overcome performance bottlenecks. This level

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 10

Input

Max pool

1x1Conv

BN

Relu

1x1Conv

BN

Relu

1x1Conv

BN

Relu

3x3Conv

BN

Relu

5x5Conv

BN

Relu

Concat

Next input

(a) Part of a neural network

Input

Max pool

Concat

Next input

1x1CBR

1x1CBR 1x1CBR

3x3CBR 5x5CBR

(b) Operator fusion

Fuse

Fig. 10: Illustration of the operator fusion technique. (a)
partial computation graph of GoogleNet, (b) longitudinally
fuse convolution, batchnorm and relu into CBR operator.

aims to utilize hardware resources to their fullest capacity
without compromising model accuracy. The system scheduling
for DL inference mainly includes the compiler front-end
(i.e., device-independent) and compiler back-end (i.e., device-
dependent). Compiler front-end optimization aims to eliminate
redundancy and simplify the computation of the intermediate
representation (i.e., computation graph) during compilation.
It is device-independent and contains constant folding [174],
dead code elimination [174], etc. And compiler back-end
aims to use hardware resources to execute DL inference tasks
fully. It mainly focuses on computation graph-level optimiza-
tion (e.g., operator fusion [81], computation graph substitu-
tion [124], [175]), operator parallelism [75], [176], memory-
level optimization (e.g., memory allocation [177], [178], mem-
ory swapping [78], [179]), and hardware instruction optimiza-
tion (e.g., loop unrolling [180], register blocking [80]). We
introduce some representative enabling techniques below.

a. Operator fusion. Despite the massive size of model
parameters, the intermediate feature maps extracted from the
input data can quickly become too large and consume signif-
icant amounts of memory. This is especially problematic be-
cause these intermediate feature maps are often used as inputs
for multiple operators in the computation graph, leading to
increased memory access and processing delays. One solution
to this problem is to fuse adjacent operators in the computation
graph into a new operator according to certain rules. Figure
10 illustrates an example in GoogleNet. The original operators
include convolution, batchnorm, relu, max pool, and concat,
as shown in Figure 10a. Then convolution, batchnorm and relu
operators are fused into the CBR operator. They have the same
computation results. However, the number of model layers in
Figure 10b is decreased, the data channel is shortened, and the
memory access frequency of the intermediate feature maps is
reduced, so the inference speed is improved. Han et al. [181]
expand the CBR operator fusion to TensorRT.

Existing DL frameworks such as TensorFlow Lite [26],
TVM [9], MNN [182], and Pytorch-Mobile [28] have provided

input

conv
5x5x256

conv
3x3x256

concat

output

input

conv
5x5x256

conv
5x5x256

concat

output

input

conv
5x5x512

concat

output

split

(a) Original graph (b) Intermediate graph (c) Final graph

Fig. 11: Illustration of the computation graph substitution
technique. (a) original computation graph includes convolution
operators, (b) expanding smaller conv kernels, and (c) merging
two conv operators into one.

application programming interfaces (APIs) for operator fusion.
However, most of them only provide fixed operator fusion
patterns, and the operator fusion types are still insufficient to
support diverse DL operators and connections. Niu et al. [77]
proposed a universal fusion framework called DNNFusion.
It divides operators into different types according to their
input and output forms, develops operator fusion plans after
comparing the performance of diverse fused operators, and
conducts extra optimizations such as reducing redundancy
during the fusion code generation. This approach based on
general operator type greatly expands the operator fusion
opportunity. Experimental results show that the operator fusion
space is expanded by 8.8×, and the inference speed exceeds
the advanced frameworks (e.g., MNN [182], TVM [9], Py-
torch [176], TensorFlow Lite [26]) by up to 9.3×. Another
problem is that the operator fusion space and memory ef-
ficiency lack direct mapping, making it difficult to access
optimal memory. Cai et al. [76] proposed an operator fusion
framework, Optimus, based on directed acyclic graphs. It can
be applied to several DL models running on accelerators.
Experiments show that Optimus reduces inference memory
access overhead by 17-75% and improves efficiency by 1.86-
3.66×. Furthermore, automated operator fusion, instead of
manually crafted fusion, can greatly enhance the performance
of complicated or previously unseen operator chains.

b. Computation graph substitution. Computation graph
substitution techniques replace the subgraph with another
functionally equivalent subgraph to reduce the amount of
computation and delay. For better understanding, Figure 11
shows an example. In the original graph (see Figure 11a),
there are two conv operators that have 256 kernels with 3×3
size and 256 kernels with 5×5 size, respectively. We can first
expand all 3×3 kernels to 5×5 (see Figure 11b), merge two
5×256 conv operators into one 5×512 conv operator, and then
separate them using split operator before executing the concat
operator (see Fig. 11c). Via computation graph substitution,
we remove the computational-intensive conv operator. And the
computational cost of the split operator is almost negligible.

Existing DL frameworks (e.g., PyTorch [176], Tensor-
Flow [82]) substitute computation graphs using greedy rules
or manual methods, which, however, cannot guarantee the
selection or combination bring rigorous improvements. Jia
et al. [124] proposed an optimizer for graph substitution.

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 11

GPU thread

Time

Thread 1

Thread 2

Thread 3 Conv-1
Kernel-3 Data

Conv-1
Kernel-2 Data

Conv-1
Kernel-1 Data

Conv-2
Kernel-3 Data

Conv-2
Kernel-2 Data

Conv-2
Kernel-1 Data

...

...

...

...... ...

Fig. 12: Illustration of intra-operator parallelism technique.
The conv operator kernels and data are divided into different
groups and deployed on different threads to execute in parallel.

Time

GPU
Thread

Thread 1

Thread 2 Conv-2 Matmul

t1 t2

Conv-1 Conv-3 Conv-4

Input

Conv-1

Conv-3

Conv-4

Conv-2

Matmul

Output

(a) Computation graph (b) Inter-operator parallelism

Fig. 13: Illustration of inter-operator parallelism technique. (a)
the original computation graph, (b) two conv operators execute
in parallel on different threads during the t1 time period.
During the t2 time period, the matmul operator executes on
thread 2, while the serial execution of two conv operators
execute on thread 1.

They automatically use a cost-based search algorithm on the
graph substitution space to find the optimal solution. Jia et
al. [183] proposes an optimizer (i.e., TASO) to substitute
the computation graph automatically. TASO generates several
candidates for a given list of operators and picks the most
suitable substitutions. Experiments show that TASO outper-
forms existing DL frameworks by 2.8× and significantly
reduces human labor. Fang et al. [175] formally defined the
computation graph substitution problem (i.e., OCGGS) and
narrowed the search space to sample the best solution.

c. Operator parallelism. There are two kinds of operator
parallelism techniques, i.e., intra-operator and inter-operator
parallelism. Mainstream AIoT platforms always equip with
multi-core CPUs and multi-core GPUs. Considering the in-
creasing speed gap of diverse processors (e.g., CPU and GPU),
separate methods are designed for the CPU and GPU to
overcome the memory access bottleneck. For CPU devices,
the cache hides delays in accessing memory to reduce the
pressure on memory bandwidth. GPUs do not use or only
use relatively small caches, mainly through the parallelism of
threads, to hide the memory access delay. When some threads
are stuck due to memory access, another part of the threads
will continue to execute and will not let processing units idle.

Intra-operator parallelism. Existing DL frameworks (e.g.,
TensorFlow [82], PyTorch [176]) can support intra-operator
parallelism, i.e., parallelizing arithmetic operations (e.g., con-

T1

T2

T3

T4

T5

T1

T2

T3

T4

T5

Memory budget

upper limit
Memory budget

upper limit

Tensor life cycle Tensor life cycle

F
re

e
 m

e
m

o
ry

 s
p

a
c

e

(A
d

d
re

s
s

 f
ro

m
 l

o
w

 t
o

 h
ig

h
)

F
re

e
 m

e
m

o
ry

 s
p

a
c

e

(A
d

d
re

s
s
 f

ro
m

 l
o

w
 t

o
 h

ig
h

)

T4

T5

Reallocation

Fig. 14: Illustration of memory allocation technique. After
reallocating the memory position of tensors, the memory peak
is reduced without conflicting access to the tensor.

volution) within a single operator. In the convolution operator,
kernels that will be executed on the same thread are divided
into one group, and then the corresponding data is also
grouped. Then, different groups of conv kernels and data are
deployed on diverse threads for parallel execution, as shown
in Figure 12. However, as high-performance hardware evolves,
intra-operator parallelism is no longer efficient enough.

Inter-operator parallelism. Inter-operator parallelism allows
multiple operators to execute on different threads in parallel, as
shown in Figure 13. Ding et al. [75] proposed an inter-operator
scheduler(i.e., IOS). IOS can search highly optimized parallel
schemes using a dynamic programming algorithm. And this
approach can be generalized to existing DL frameworks.
Experimental results show that IOS increases the inference
speed by 1.1× ∼ 1.5×.

d. Memory allocation DL model parameters and intermedi-
ate activations take up large memory resources during forward
propagation as models become more complex. The default
memory allocation schemes by the operating system (i.e., OS)
always result in memory fragmentations, which cannot be used
for other tasks. To solve this problem, memory reallocation is
necessary. During DL inference, input tensors, weights, and
intermediate activations are all one-offs, we can release them
from memory in time after use. Also, we can allocate the
same memory to different tensors that do not coincide with
the usage time. As shown in Figure 14, T1 ∼ T5 represent a
set of tensors. If we allocate memory for each tensor in order,
it will easily reach the memory limit, like tensors T4 and T5.
And since the lifetime of tensor T4 is completely disjoint with
T1, they can be allocated in the same memory block. Similarly,
T5 and T2 can also share memory.

Sekiyama et al. [184] proposed a profiler-guided memory
allocation method. During propagation, they collected infor-
mation about requested memory blocks and then allocated
memory using a heuristic algorithm to reduce peak memory
footprint. By experimenting on advanced DL models, they
reduced memory footprint by nearly 50% and improved infer-
ence speed by 4×. To consider the layer diversity of compu-
tation and communication, Wei et al. [177] designed a layer-
wise memory allocation framework on Field Programmable
Gate Array(i.e., field-programmable gate array(FPGA)). They
used the layer diversity and the non-overlapping lifespan
information of memory buffers to schedule on-chip memory.

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 12

TABLE I: Summary of model-adaptive system scheduling-level enabling techniques for on-device DL inference.

Category Technique highlight for improving Device Year Ref.
Compiler
frontend

Compiler
backend

Model-adaptive
system

scheduling
level

Computation
graph level

Operator
fusion

Circular fusion, operator classification, reduce redundancy,
reduce computation latency

Mobile
phone

2021 [77] ✓

Directed acyclic graphs, accurate memory cost model,
reduce computation latency

Cloud
server

2022 [76] ✓

Candidate exploration, selection of fusion plans,
code generation of local and distributed operations,

reduce computation latency

MPU 2018 [81] ✓

Computation
graph

substitution

Relaxed graph substitution, backtracking search algorithm, flow-
based graph split algorithm, reduce computation latency

Cloud
server

2019 [124] ✓

The first DL computation graph optimizer,
automated theorem prover, cost-based backtracking search,

reduce computation latency

Cloud
server

2019 [183] ✓

Pruning-based algorithm, sampling heuristic,
reduce computation latency and memory usage

Cloud
server

2020 [175] ✓

Operator
parallelism

Intra-operator parallelism, reduce computation latency
Cloud
server

2016 [82] ✓

Intra-operator parallelism, reduce computation latency
Cloud
server

2019 [176] ✓

Inter-operator parallelism, inter-operator scheduler,
novel dynamic programming algorithm,

reduce computation latency

Cloud
server

2021 [75] ✓

Resource
scheduling

level

Memory
allocation

Novel profile-guided memory optimization, heuristic algorithm,
reduce computation latency and memory usage

Cloud
server

2018 [184] ✓

Memory allocation algorithm, memory bound layers,
reduce computation latency and memory usage

FPGA 2019 [177] ✓

Loop-orderbased memory allocation, fast auto-scheduling
methodology, reduce computation latency and memory usage

Cloud
server

2021 [178] ✓

Memory
swapping

The first memory swapping on MCU, swap data block between
SRAM and FLASH or SD card, reduce memory usage

MCU 2021 [78] ✓

Joint optimization along 3 dimensions, custom-designed genetic
algorithm, reduce computation latency and memory usage

Cloud
server

2020 [185] ✓

Swap model parameters from the external storage into DRAM,
task bounded with subnet, reduce computation latency

Cloud
server

2022 [179] ✓

Hardware
instruction

optimization

Loop
unrolling

A generalized loop-unrolling method for any type
of loop construct, reduce computation latency

Cloud
server

1999 [79] ✓

A semi-automatic and compile-time approach for identifying
the optimal unroll factors, reduce computation latency

Cloud
server

2010 [180] ✓

Register
blocking

A performance model to set the appropriate register
block size, reduce computation latency

MPU 2001 [80] ✓

Instruction
reordering

A flexible multi-criteria instruction reordering heuristic that can
be adapted across architectures, reduce computation latency

Cloud
server

2018 [186] ✓

The hit rate on the hardware accelerator and the memory
allocation policy mapping can also affect its performance.
To search for the best map fastly, many works redesigned
the search space, e.g., state-of-the-art [187]–[190]. However,
the efficiency in these DL frameworks is still slow due to
exhaustive searches. And it does not consider the user-defined
or random-sampled constraints, thereby cannot guarantee the
global optimum. Also, they cannot deterministically assess the
optimality because predicting the needed CPU time and peak
memory in advance is prohibitive. To address this problem,
Symons et al. [178] allocated memory based on the loop order.
It takes advantage of DL models’ nested ”FOR” loop sequence
and assigns them to the most appropriate memory hierarchy.

e. Memory swapping. Memory swapping [185], [191]
refers to the exchange of tensors or data chunks between the
high-cost memory and the low-cost one during computation.
For example, when the device’s memory supply cannot meet
the tensors’ demands, we can swap out partial tensors to
free up space and serve current operations. The focus of

memory swapping in the inference phase differs from that in
the training phase. The training phase focuses more on the
reuse of tensors during backpropagation. While the inference
mainly focuses on forward propagation, e.g., prefetching of
tensors and the write-back after the computation is completed
on memory-scarce AIoT devices, as shown in Figure 15a.
However, memory swapping brings transmission delay. To
solve this problem, some works propose to cover the transmis-
sion delay with the computation delay so that the transmission
delay does not affect the overall delay. When the device
resources are extremely limited, the model can be divided into
several blocks for execution. For example, as shown in Figure
15b, when block 1 is executed, the parameters required by
block 2 are prefetched, and the result is written back to the
low-cost memory after block 1 is executed.

Miao et al. [78] proposed a system solution for deploying
DL models on MCUs. It dynamically swapped model blocks
between the SRAM and flash of MCU. This method trades
time for space, thus not affecting accuracy. Besides, swapping

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 13

High-cost memory
for computation

Low-cost memory
for storage

Prefetch

Write-back

(a) Memory swapping process.

Conv FC

Conv-1 Conv-2 Conv-3
block1 block2 block3

Compute

Input/Output

Time

...
Prefetch

Write-back

(b) Memory swapping delay.

Fig. 15: Illustration of memory swapping techniques for on-
device DL inference.

tensors between GPU and CPU is also efficient because the
GPU is fast with small memory. In contrast, the CPU has
relatively large memory to store temporary tensors. And this
method becomes more promising with the development of
current GPUs. They can realize cross-communication and
computation based on generous communication bandwidth.
Huang et al. [185] proposed a universal swapping system
called SwapAdvisor. It establishes search space with memory
allocation and operator scheduling techniques and uses a
genetic algorithm to determine exactly when and which tensors
to swap before execution. SwapAdvisor breaks through the
GPU memory limit by 12× and increases the inference speed
by 4×. Ji et al. [179] proposed task-aware swapping(i.e., TAS)
for object detection tasks on IoT devices. Since the same type
of task involves the same subnetwork, TAS swapped the model
parameters of the corresponding subnetwork from external
memory to dynamic random access memory(i.e., DRAM)
in time, according to different task types. TAS reduced the
DRAM memory by 34.6% while maintaining accuracy.

f. Hardware instruction optimization. DL inference op-
timization on AIoT devices also includes the following hard-
ware instruction optimization techniques:

Loop unrolling. It is a widely known code conversion
method to improve program execution performance. The un-
rolled loop typically executes fewer instructions than the
original one. As shown in Figure 16, the assembly loop code
on the right is unrolled, and the calculation is reduced from
404 to 229 times. Thus loop unrolling can speed up calcu-
lations. Huang et al. [79] proposes a generic loop unrolling
approach for diverse loop structures (e.g., FOR, WHILE, DO-
WHILE). The loop unrolling support in the GPU compiler is
limited. Giridhar [180] developed a semi-automatic compiler
to identify the optimal unrolling factor based on compile-time
characteristics and the effect of loop unrolling on the program.

Register blocking. It rationally blocks registers to reduce
idleness and increase register multiplexing. Based on matrix-

independent device features, Sparsity [80] proposes a perfor-
mance model to set the appropriate register block size, hence
optimizing the sparse matrix computation speed.

Instruction reordering. It scrambles the instructions of
different execution units to improve the utilization rate of the
pipeline. Rawat et al. [186] proposed a flexible multi-criteria
heuristic based on instruction reordering, which can be adapted
across architectures.This approach alleviates register pressure
while properly controlling the degree of parallelism at the
instruction level.

The compiler or CPU/GPU/TPU processor can reorder
instructions to optimize the execution performance of the pro-
gram. For example, instructions with high delay are advanced,
and data dependence before and after instructions is reduced.
From the source program to the final running instructions,
there are two stages of reordering:

Compiler reordering. During compilation, without affecting
the result of the program, the compiler reorders instructions
based on context analysis to reduce the interaction between
CPU and memory. After rearranging, the CPU can read data
from registers or cache rows as much as possible.

Processor reordering. It includes parallel instruction set
reordering and memory system reordering. First, in the parallel
instruction set reordering, modern processors use Instruction-
Level Parallelism (ILP) to execute multiple instructions. The
processor changes the order in which a statement corresponds
to a device’s instruction. As shown in Figure 17, the CPU
hopes to execute the instruction 1 and instruction 2 in parallel.
However, both them assign value to the same register eax, so
the value saved in the final register eax is not the result of
two addition computations. As a result, the value saved in
register ebx is incorrect. Therefore, instruction 1, instruction
2, and instruction 3 are executed serially. At the same time,
the CPU needs to select one of the subsequent instructions
(i.e., instruction 4) to execute with instruction 1 in parallel.
With the reordered instruction set, parallel execution can be
more efficient. Second, as for the memory system reordering,
since the processor uses cache and read/write buffers, loading
and storing operations is performed out of order. Therefore,
memory system reordering should be well-designed.

3) Intra-device cross-level controller: The controller is
required upon the above optimization techniques to automat-
ically adapt to diverse performance requirements of AIoT
applications and resource budgets of AIoT devices. Liu et
al. proposed AdaDeep [74], which leverages the deep re-
inforcement learning-based optimizer to automatically select
the most appropriate combination of compression techniques
and hyperparameters for a given DL model in a hierarchical
manner. Yang et al. [192] proposed an energy-aware CNN
pruning algorithm, which automatically guides the pruning
process by using the energy estimation of DL model. Edgar et
al. [71] automatically design suitable DL models for MCUs,
achieving high accuracy while achieving low memory usage
and latency. MCUNet [12] is an example of cross-level system
optimization, which can drive better optimization strategies.
They jointly optimize the DL algorithms by TinyNAS and
the memory scheduling by TinyEngine to reduce memory
usage. TinyNAS automatically optimizes the search space

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 14

for(int i = 0; i < 100; i++){
 sum += i;
 }

Compile

mov eax, 0 ;
mov ecx, 100 ;
mov ebx, 0 ;

loop_start:
 add eax, ebx ;
 add ebx, 1 ;
 cmp ebx, ecx ;
 jl loop_start ;

mov [rdi], eax ;

for(int i = 0; i < 100; i+=4){
 sum += i;
 sum += i + 1;
 sum += i + 2;
 sum += i + 3;
 }

Compile

mov eax, 0 ;
mov ecx, 100 ;
mov ebx, 0 ;

loop_start:
 add eax, ebx ;
 add eax, 1 ;
 add eax, ebx ;
 add eax, 2 ;
 add eax, ebx ;
 add eax, 3 ;
 add ebx, 4 ;
 cmp ebx, ecx ;
 jl loop_start ;

mov [rdi], eax ;

Loop unrolling

Fig. 16: An example of loop unrolling technique.
TABLE II: Summary of related intra-device controllers for on-device DL inference.

Category Context awareness Controller Cross-level Optimizated performance Year Ref.

Controller

Latency,
memory

DQN, DDPG Algorithm level Accuracy, energy consumption 2020 [74]

Accuracy / Algorithm level Energy consumption 2017 [192]
Peak memory usage,
model size, latency

Multiobjective constrained
NAS algorithm

Algorithm level
Accuracy, peak memory usage,

model size, latency
2021 [71]

Latency, energy, memory
Two-stage NAS for

tiny memory constraints
Algorithm level & compiler level Latency, memory 2020 [12]

CPU

add eax, ebx ; ×
add eax, ecx ;
mov ebx, eax ;
add edx, esi ;
mov edi, edx ;

add eax, ebx ;

mov ebx, eax ;

add edx, esi ;
add eax, ecx ;

mov edi, edx ;

Core 1 Core 2

Reorder

1

2

3

4

5

1

3

5

4

2

Compile

a=b+c;

d=a+e;

f=g+h;

Fig. 17: Illustration of parallel instruction set reordering tech-
nique. The digits 1 ∼ 5 represent the instruction ID, not the
actual execution order.

to fit the tiny resource constraints in MCUs. TinyEngine
improves the existing inference library with code generator-
based compilation methods to eliminate memory overhead.
MCUNet has improved inference speed by 3.4× and reduced
the peak memory footprint on SRAM by 4.1 ×.

B. Distributed DL Inference

In addition to on-device optimizing to reduce the resource
demands of DL models for local adaptation, distributed DL
inference aims to aggregate more resources from multiple
devices within the networked AIoT systems to improve infer-
ence efficiency. This is achieved by partitioning the intensive
computations of DL inference tasks and offloading diver por-
tions of them to multiple devices. Distributed DL inference is
particularly beneficial given the increasingly complex structure
of modern DL models, which often require memory and

computing resources far beyond the limits of a single AIoT
device. For example, MCUs typically have only 256kb of
memory, while ResNet, a widely-used model, requires 7.2MB
for parameter storage.

Given the challenges mentioned in II-B, we divide dis-
tributed DL inference optimization into the resource-friendly
algorithm level, model-adaptive system scheduling level, and
inter-device controller, as shown in Figure 18. The algorithm
and system scheduling levels focus on improving the resource
efficiency of given heterogeneous hardware from different as-
pects. The inter-device controller automatically selects devices
and cross-level techniques according to dynamic AIoT context.

1) Resource-friendly algorithm level: It mainly specifies
the model partition and offloading schemes for satisfying dis-
tributed inference performance demands and resource budgets.
We classify them as layer-wise and operator-wise categories.
Specifically, the layer-wise scheme refers to partitioning and
offloading the model according to model layers. And the
operator-wise scheme goes deep inside layers, e.g., optimizes
the operator itself or the connection between operators.

Layer-wise scheme. Several studies [84], [196]–[198] have
put forward the layer-wise distributed DL inference. Yun et
al. [84] specialized the lightweight models by knowledge
distillation and selected model partition points to minimize
inference delay and satisfy the resource limitations of end de-
vices (e.g., Raspberry Pi 3B). Wu et al. [85] expressed the data
sampling rate and model offloading problem as a constrained
Markov decision process and obtained a heuristic solution.
He et al. [86] model the arrival process of DL inference tasks
as Poisson distribution. And they established a multi-faceted
evaluation method [199], [200] to profile the inference latency,
accuracy, memory usage, etc. DeeperThings [90] established
the joint optimization of model partition and device selection

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 15

Inter-device
controller

Model partition

Model-adaptive
system scheduling level

Intra-device DL
inference optimization

(Section III.A)

Performance demands

inference results

Trained
model

Model offloading

Operator
schedule

memory
schedule

Resource-friendly
algorithm level

Distributed AIoT
device resource

Cross-device
engine

Cross-device
compilation

Fig. 18: System loop of the algorithm, system scheduling, and inter-device controller for distributed DL inference.

X Y

Z

SUM

(a) Intermediates

x

x

V
First
pass

Second
passX

Xqt

(b) Single-pass

X logSUM + epsU

VT

(c) Sparsity exploitation

Fig. 19: Illustration of code fusion techniques. (a) Code fusion can eliminate the intermediate in the computing, sum(X⊕Y⊕Z);
(b) code fusion can eliminate unnecessary scans of inputs, XT (Xv) → ((Xv)TX)T ; (c) code fusion allows sparsity exploitation
across chains of operations, sum(X ⊕ log(UV T + eps)).

TABLE III: Summary of cross-level optimization techniques for distributed DL inference.

Focus level Technique highlight for improving resource efficiency Offloading Year Ref.

DL model
Multi-dimensional resource management, deep reinforcement learning Serial 2021 [91]

Constrain Markov decision process, Lyapunov optimization Serial 2020 [85]
Single batch inference, use several new model parallel methods Parallel 2020 [93]

Operator

Operator fusion, distributed code generation Hybird 2018 [81]
Scalable convolution layer fusion, improve data reuse Parallel 2018 [89]
Partition computing layer, integer linear programming Parallel 2021 [90]

Convolution layer fusion and tiling, memory usage predictor Hybird 2021 [193]
Partition the full connection layer, cover all layers Parallel 2019 [194]

Vertical partition, weight pruning technique Parallel 2022 [195]

Computation graph

Memory-constrained, joint optimization, knowledge distillation Serial 2022 [84]
Delay-Sensitive, mixed integer nonlinear programming,mec server Hybird 2020 [86]

Distributed model computing system, dynamic partition Parallel 2020 [92]
Reduce non-parallel data transfer time, convolution segmentation Hybird 2017 [87]

Inter-device controller Supports customized flexible fine-grained scheduling Parallel 2021 [94]
Greedy two-dimensional partition, structured models are tightly deployed Hybird 2017 [88]

as a nonlinear programming problem. He et al. [86] designed
a CRA algorithm based on Markov approximation to search
the solution quickly, e.g., 350 ms for a 10-device cluster.

Operator-wise scheme. Most studies focus on integrating
and reallocating operators to reduce memory footprint. Specif-
ically, merging more operators helps reduce the memory
footprint of intermediate outputs and achieve better cross-
operator sparsity development. For example, Boehe et al. [81]
reduced the intermediate activation of the fusion of different
operators and designed a cross-operator sparsity plan to im-
prove computational efficiency. Stahl et al. [194] conducted
research on layer operator fusion and reduced the data trans-
mission time between multiple devices by combining feature
and weight division with communication-aware layer fusion
methods. Further, Farley et al. [193] design an independent

fusion scheme for conv layer and fc layers, which reduces
memory overhead through data reuse. However, these works
lead to high synchronization overhead. To this end, Zhang et
al. [94] presented an adaptive cooperative inference system
that supports mainstream models (e.g., ResNet, GoogleNet).
And it provides a set of APIs to obtain the data location for
enabling fine-grained scheduling and memory reclamation.

2) Model-adaptive system scheduling level: This level aims
to optimize the input data reuse, intermediate data movement,
and memory overhead (e.g., memory fragmentation and re-
cycle) in distributed DL inference [87]–[90], [201], [202]. It
should be optimized separately at each device and verified
globally cross-device. And how DL models offload to multiple
AIoT devices affects the separate system scheduling technique
selection and global performance verification. The existing

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 16

Model-adaptive system
scheduling level

Intra-device
controller

Resource-friendly algorithm level

model pruning

Low-rank
decomposition

Efficient model
architecture

Parameter/activation
quantization

Neural
architecture
search (NAS)

Search
space

Search
strategy

Candidate
comparison

Activation compression

Memory allocation

User-specified
source program

or
pre-trained model

Performance
demands

On-device AIoT
device resource

Operator reordering

Sparse updating

Trained model

Operator fusion

Memory swapping

Engine

Compilation

Fig. 20: System loop of the algorithm, system scheduling, and intra-device controller for on-device DL training.

DL model offloading schemes can be serial [84], [85], [91],
parallel [89], [90], and hybrid [88], [193], [203]. For example,
MoDNN [87] partitions the conv layer and distributes them
to diverse AIoT devices for parallel computing. It partitions
the input of the conv layer according to the matrix size and
balanced unloading and sends them to different devices for
collaborative inference. MeDNN [88] is an improvement of
MoDNN, solving the problem of unbalanced model partition.
It proposes a greedy 2D model segmentation algorithm to per-
form static load balancing according to the computing power
of each device. Further to Mednn, Deepthing [89] proposed
the improved solution. It proposed a scalable method to merge
and partition the convolution layer by dividing the input matrix
into different areas and unloading it to different devices for
inference. It implemented a distributed job-stealing approach
to realize dynamic workload allocation and computational
efficiency balance, improving data reuse by 68% and reducing
latency by ≥ 1.7 times. Another study [193] also explores
the fusion and optimization of CNNs. Besides, it is difficult
for existing operator fusion heuristics to develop distributed
operator fusion schemes for complex models, e.g., DAGs.
Matthias et al. [81] proposed an optimization framework for
systematic inference fusion schemes, Figure 19 shows three
main ways of code fusion.

3) Inter-device cross-level controller: The context-aware
controller can automatically adapt to varying contexts without
re-designing systems, which is necessary for long-term run-
ning applications. Adjusting the distributed inference configu-
rations for dynamic demands and heterogeneous devices is one
of the recent research focuses [93], [94], [182], [204]. Haddi
et al. [93] integrates multiple existing parallelism inference
technologies into an automated framework. Zhang et al. [94]
proposed Deepslicing, an adaptive control system integrating
multipliers and deep reinforcement learning. It also exposes
a set of APIs to users for adaptation. However, the controller
across several AIoT system levels, especially the underlying
system scheduling level, is still lacking.

To be compatible with heterogeneous AIoT devices and
boost the inference efficiency, prior efforts also present the
inter-device schedule frameworks, such as [92], [205]–[207],
adapting to heterogeneous AIoT platforms/clusters. For exam-
ple, Zeng et al. [92] presents Coedge. It involves a distributed
DL inference framework and a fast approximate solution to
determine the optimal platform scheduling strategies. Zhang

et al. [91] considers the embedded chips’ memory limits,
computing frequency, and battery and transforms the hybrid
optimization problem into a Markov decision process. As
a result, it reduces inference delay and pushes the average
accuracy limit caused by pre-determined resource allocation.

Discussion. Table I summarizes the standalone system
scheduling techniques. And Table III illustrates the enabling
techniques for distributed DL inference optimization across
diverse levels. The performance of different levels of op-
timization techniques on the same DL model varies. And
even within the same level of optimization techniques, their
performance also differs. Existing DL frameworks for AIoT
devices already support the techniques mentioned in this
table. However, the criterion for their cross-level combination
in the context of AIoT applications need more exploration.
Moreover, combining diverse techniques across these levels
with an adaptive and automatic controller is still lacking.

IV. CROSS-LEVEL OPTIMIZATION FOR DL TRAINING

DL training adopts batched memory chunks grouping mul-
tiple data samples. And the memory usage increases pro-
portionately to the batch size. Specifically, the computation
efficiency will be low if not secure sufficient batch size. Larger
batch sizes can bring more accurate distribution statistics
for operators like BatchNorm [208] to speed up the training
convergence and increase the accuracy.

We first differentiate the specificities of DL training
from DL inference in terms of memory and computation
demands, as shown in Figure 21. (i) DL training requires more
computation than inference. More memory access during the
training process also brings more memory access delay. For
example, the bottleneck of GPU computing power for the
GPU devices always lies in the memory access bandwidth
and the upgrade of successive generations of GPU focusing
on memory bandwidth proves this point [112].

(ii) DL training requires more memory space than inference.
According to the chain derivative rule of backpropagation,
calculating the gradient and derivative of the weights in the ith

layer requires using the derivative of the i+1th layer and the
input of this layer. Therefore, the intermediate activations A1,
A2 produced during forward propagation need to be saved
till backpropagation calculating the gradients ∆A, ∆B and
updating the weights during backpropagation. In contrast, A1,
A2 in model inference process do not need to be preserved.

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 17

Layer1 Layer2 Layer3
Input(𝐴0)

𝐴1 𝐴2 Output(𝐴3)

In-place
discard

In-place
discard

𝑊1 𝑊2 𝑊3

Forward × 1

(a) DL inference

Layer1 Layer2 Layer3
Input(𝐴0)

𝐴1 𝐴2 Output(𝐴3)

∆𝐴1 ∆𝐴2 ∆𝐴3

Label
Save for BP

∆𝑊3∆𝑊2∆𝑊1

Update

𝑊1 𝑊2 𝑊3

Update Update

Save for BP Save for BP

Forward × N

Backward × N

Forward propagation(FP) Backward propagation(BP)

(b) DL training

Fig. 21: Comparison illustration of DL training and inference.
(a) Inference only requires once forward propagation(FP), and
intermediate activation tensor Ai can be discarded to reduce
memory usage. (b) In training, tensor Ai needs to be saved
for back propagation after the forward propagation.

They can be released right after they have been used, which
brings a bigger memory requirement to the training process.

(iii) DL training needs N rounds of loop iteration, while in-
ference needs only one round. For algorithm level (e.g., model
parameter/activation quantization), if not carefully designed,
the tiny instabilities generated will be amplified in thousands
of iterations and even leads to training crash [38]. Compared
to the ”one-time” property of the model inference process,
DL training needs to consider optimization across multiple
iterations, which also challenges system optimization.

A. On-device DL Training

It is non-trivial to optimize three key performance metrics,
i.e., latency, memory, and accuracy, simultaneously for on-
device DL training. Given challenges towards optimizing
memory usage, latency, and accuracy simultaneously (see §
II-C), we summarize the on-device DL training optimization
techniques into diverse system levels as described in § II-B,
i.e., the resource-friendly algorithm level, model-adaptive sys-
tem scheduling level, and inter-device controller. Figure 20
shows their relationships in the system loop.

1) Resource-friendly algorithm level: We first briefly in-
troduce the algorithm-level techniques, i.e., compressing DL
model structure [116] [209], reducing parameter/activation bit
width [115] [210], and sparse updating [118] [119].

a. Parameter/activation quantization. DL model quan-
tization during training is more complicated than inference
since it brings instability to training [211] [212] [213]. Deng
et al. [115] conducted the first exploration of model quan-
titation in DL training. They implemented reduced-precision
memory access of parameters and saved significant mem-
ory bandwidth using an approximator. Subsequently, Zhou
et al. [210] train DL models with low-bit width weights,
activations, and gradients on diverse devices, e.g., CPU, GPU,
application specific integrated circuit(ASIC), and FPGA, to
speed up training. Besides, Micikevicius et al. [214] maintain

a single-precision copy of weights to prevent information loss
caused by quantification. Thus they preserve gradient values
with small magnitudes and result in half-precision arithmetic.
Huang et al. [127] proposed the adaptive precision training
(APT) method to balance energy cost, memory usage, and
accuracy in DL training. Motivated by [215], they find that
starting DL training with low precision benefits energy and
memory savings. APT dynamically allocates layer-wise bit
precision, allowing model to learn faster. Because once the
training curve reaches a plateau, increasing precision allows
DL training to approach better accuracy with fewer training
epochs. And it uses an application-specific hyperparameter to
balance the abovementioned three metrics automatically. Wang
et al. [216] find that during the backpropagation in training,
mainly the activation maps’ low-frequency component (LFC)
is used. As such, they preserve the high-precision copy of LFC
while compressing the high-frequency component (HFC) into
a low-precision copy. This greatly reduces memory cost while
not dramatically decreasing the precision of backpropagations.
To realize DL training quantization on MCUs lacking DL
training frameworks and low-bit width APIs. Yu et al. [217]
deploy sub-byte models on MCUs efficiently. They propose
a training framework for low-precision models, followed
by direct buffer convolution and packed sub-byte multiply-
accumulation to accelerate on-device training. Lin et al. [38]
proposed quantization-aware scaling to alleviate the gradient
scale mismatch issues caused by mixed bit-precision training.
They stabilized the quantized training by calibrating the gra-
dient scales for MCUs. Instead of improving the quantizer
functions, Lu et al. [218] optimize the training process from
a weight-searching standpoint.

b. Efficient model architecture. DL model compression
is another promising method to optimize the AIoT system
performance for DL training. Bulo et al. [116] proposed in-
place activated batch normalization (BN) that eliminates inter-
mediate results and recovers required information during the
backward pass, leading to a 50% reduction in memory usage.
It can be easily applied on existing models (e.g., ResNet [219],
DenseNet [220]) with a minor increase (about 2%) in training
latency. Besides, Jung et al. [117] split the BN layer into two
sub-layers to restructure BN layers. Because existing memory
access optimization approaches, such as fusing convolution
layers, are ineffective for accelerating BN due to their inability
to optimize mini-batch-related calculations during training.
To significantly reduce main memory accesses and optimize
calculations related to mini-batch, they combined the first sub-
layer with the preceding conv layer and the second sub-layer
with the following conv layer. To reduce memory usage, some
studies also proposed new model structures. e.g., tiny-transfer-
learning (TinyTL) [112] added the lite residual module with
low-dimensional features and group convolution to improve
the model’s migration ability. And it avoids intermediate
activation storage by only training bias and lite residual mod-
ules. This approach leads to a reduction in training memory
costs at near-constant precision. Yang et al. [209] proposed a
reprogramming network, which trains the model using the new
task data to reprogram the intermediate features of a backbone
model, leading to lower training memory and higher accuracy.

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 18

c. Sparse updating. Like pruning in the inference phase,
sparse updating does not change the model structure but
selects a part of the network to update in each training
epoch. Most pruning studies focus on DL inference and are
unsuitable for DL training. Liu et al. [118] utilize dynamic and
sparse graphs (DSGs) in DL training, activating a few neu-
rons during each iteration, resulting in considerable memory
savings with competitive accuracy. Dai et al. [119] proposed
SparseTrain, which employs a stochastic pruning algorithm
for each layer and a sparse architecture with 1-dimensional
convolution dataflow to realize implicit and artificial sparsity
for training acceleration. Lin et al. [38] skipped the gradient
calculation of insignificantly necessary layers and tensors. And
they achieved the near-optimal solution with sparse updating
through an evolutionary search. Kaplan et al. [221] presented
SubTuning, which only trains a carefully selected subset of
layers depending on the fine-tuning profile while freezing
the remaining. They proved that SubTuning fastly obtains
training convergences and even outperforms full fine-tuning
when training data is lacking.

2) Model-adaptive system scheduling level: It further max-
imizes system performance and resource efficiency beyond the
optimization capabilities of the algorithm-level techniques and
thus pushes the limit of performance-resource tradeoff. As
shown in Table IV, it optimizes the intermediate activation
tensors and operators in the computation graph, optimizes
the runtime/compiler of the DL frameworks, and re-allocates
memory/computing resources.

a. Recomputation. In DL training, the intermediate activa-
tions generated during the forward propagation are typically
stored until the backpropagation to calculate the gradient,
which causes a large memory footprint. Experiments have
shown that model’s intermediate activations use much more
memory than parameters [112]. To this end, recomputation
methods [120], [121], [223] discard part of intermediate acti-
vations right after forward computation to save memory usage
and recalculates these activations during backpropagation for
gradient calculation, as shown in Figure 22. Chen et al. [120]
is the first to present the recomputation technique, which splits
the model into several parts and keeps only the first activation
of each part after forward computation. During backpropa-
gation, activations within each part are computed from the
first activation retained. This work realizes significant memory
savings. And the recompense of computing delay for memory
space is also beneficial, especially when sufficient computing
power is available. Following it, Gruslys et al. [222] use
dynamic programming to find a storage strategy that optimizes
computational cost for a given memory budget. Gomez et
al. [121] applied recomputation in ResNets to save memory
footprint during backpropagation. These recomputation meth-
ods were mainly implemented on cloud servers with sufficient
computing power. The recomputation operations may bring
unacceptable additional latency overhead for devices such as
Raspberry Pi and MCUs. [141], [224] apply recomputation
strategies on mobile phones, using slight additional latency in
exchange for significant memory savings.

b. Intermediate activation encoding. Similar to but differ-
ent from recomputation, intermediate activation compression

Input data

CONV

ReLU

CONV

ReLU

CONV

ReLU

Intermediate

activation

LossOutput

Input data

CONV

ReLU
(Checkpoint)

LossOutput

BackwardForward BackwardForward
Recom-
putation

Discard
after

forward
calculation

Derivative

Fig. 22: Illustration of recomputation technique. The interme-
diate activation is discarded after forward computation and
recalculated before backpropagation.

CONV

ReLU

CONV

Intermediate

activation

Compress

Saved for

backward

Decompress

BackwardForward

Fig. 23: Illustration of intermediate activation encoding tech-
nique. Intermediate activation is encoded after forward com-
putation and decoded during backpropagation.

does not directly discard intermediate activations but tem-
porarily encode activations after forward propagation and then
decode them during backpropagation to calculate gradients,
as shown in Figure 23. It thereby strikes a valuable balance
between computing latency and memory savings rather than
simply trading latency for memory resources. Specifically, Jain
et al. [122] proposed Gist, a system that employs layer-specific
encoding schemes, lossless and lossy, to significantly reduce
the memory consumption of targeted feature maps. They store
an encoded representation of feature maps and decode them
for use in the backward pass; the full-fidelity feature maps are
used in their forward pass and relinquished immediately. Evans
et al. [225] proposed JPEG for activations (JPEGACT), a lossy
activation offloading accelerator. They expand the well-known
JPEG algorithm for 2D image encoding to compress model’s
activation. And recently, Hosny et al. [226] proposed BitTrain,
a novel bitmap compression technique using activation sparsity
to reduce the memory footprint during training.

c. Operator reordering. The traditional DL training pro-
cess retains every gradient in the backpropagation and updates
weights uniformly after calculating all gradients. Re-ordering

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 19

TABLE IV: Summary of model-adaptive system scheduling techniques for on-device DL training.

Category Highlight technique for improving resource efficiency Year Ref. Compiler
frontend

Compiler
backend

Model-adaptive
system

scheduling level

Computation
graph
level

Intermediate
activation

Recomputation

Split model and only retain part of activations,
reduce memory usage with extra computation cost

2016 [120] ✓

Use dynamic programming in recomputation,
optimize computation cost

2016 [222] ✓

Recomputation for ResNets, reduce memory usage with
extra computation cost

2017 [121] ✓

Dynamic tensor rematerialization, reduce memory
usage with less computation cost

2020 [223] ✓

Memory-calibrated progressive recomputation on
mobile phone, reduce memory usage

2022 [141] ✓

Progressive recomputation based on memory
worthiness of tensors, reduce memory usage

2022 [224] ✓

Compression

Two Layer-specific encoding schemes, lossless and
lossy, reduce memory usage with extra latency

2018 [122] ✓

Optimized JPEG method for activation compression
and accelerator, reduce memory usage with extra latency

2020 [225] ✓

A bitmap compression technique using activation
sparsity, reduce memory usage with extra latency

2021 [226] ✓

Operator

Reordering
Discard gradients, reduce memory usage 2022 [38] ✓

Re-order operators to reduce the number of
complex operators, reduce computation cost

2022 [227] ✓

Fusion

Relaxed graph substitutions by a backtracking search
algorithm, reduce execution time and memory usage

2019 [124] ✓

Transferable deep reinforcement learning for searching,
reduce execution time

2020 [125] ✓

Account for memory access constraints, a unified
memory function, reduce execution time

2020 [228] ✓

Merge memory-intensive operators into large GPU
kernels, reduce execution time

2020 [229] ✓

Reduce data movement in memory for Transformer,
reduce execution time

2021 [230] ✓

Consider multiple optimization objectives
for memory-intensive computations, reduce latency

2022 [231] ✓

Resource
scheduling

level

Memory allocation

Split tensor into micro-tensor to allocate and
swap memory, reduce memory usage and latency

2019 [232] ✓

Tensor life cycle computation and memory sharing,
reduce memory usage

2022 [114] ✓

Tensor-lifetime-aware memory allocation algorithm,
reduce memory usage, energy cost, and latency

2022 [141] ✓

Memory swapping

The first work on DL memory swapping between
host(CPU) and device(GPU), reduce memory usage

2016 [39] ✓

Dynamically select convolution operators and
memory swapping strategy, reduce device memory usage

2018 [126] ✓

Combine recomputation and memory swapping,
reduce memory usage

2018 [40] ✓

Use categorized topological ordering to simulate
graph execution, reduce memory usage

2019 [233] ✓

Decrease amount of synchronization operations and
memory offload decisions, reduce memory usage

2019 [234] ✓

Joint optimization on operator scheduling, memory
allocation, and swap decisions, reduce memory usage

2020 [185] ✓

Memory management based on dynamic tensor access
pattern, reduce device memory usage

2020 [191] ✓

Optimize tensor management on heterogeneous
memory, reduce memory usage

2021 [235] ✓

Selectively compress tensors before memory swapping,
reduce memory usage

2021 [236] ✓

Memory swapping without high-level information of
computation graphs, reduce memory usage

2022 [237] ✓

Improve prefetching using correlation tables to
speed up memory swapping, reduce memory usage

2023 [238] ✓

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 20

1

2 5

6

7

8

9

1

2 7

9

8

6

CONV1

CONV2

CONV3

Reorder

CONV1

CONV2

CONV3

3 4

CONV4

3 5

4CONV410

10

BackwardForward BackwardForward

(a) By modifying the operator’s execution order, the gradient of
each layer is discarded immediately after the weight is updated.

DWC1

Concat
Reorder

DWC2

Input2Input1

Concat1

DWC

Concat2

Input2Input1

(b) Reording operator can also decrease the number of
computation-intensive operations.

Fig. 24: Illustration of operator reordering technique.

operators within the computation graph during backpropaga-
tion can reduce peak memory usage [38]. Lin et al. [38]
proposed the Tiny Training Engine (TTE) to reorder operators
in DL training. As shown in figure 24a, by modifying the
order of operator execution(exchanging gradient computation
and updating operations) in back-propagation, TTE discards
the ith gradient immediately after updating the ith layer
instead of keeping it throughout the whole training iteration
to achieve memory saving. Immediately freeing up space
occupied by useless tensors benefits memory savings. Besides,
Unity [227] not only changes the operator order but also
reduces the number of computation-intensive operations. As
shown in figure 24b, Unity exchanges the order of two parallel
Depthwise Conv (DWC) operators and a concat operator to
reduce the computation of the convolution process by reducing
one DWC operator.

d. Operator fusion. Operator fusion in DL training focuses
on merging multiple operators into one to boost computation
and memory access efficiency. Suppose two adjacent layers
(ith and i+ 1th layer) in the computational graph are merged,
the intermediate activation generated by the ith layer can
be directly applied to the i+ 1th layer without additional
read and write transactions with the memory. As a separate
note, the computation graph optimization that operation fu-
sion techniques belong to is a broad field. Various operator
fusion techniques have been well explored in existing re-
search [11], [239] and DL frameworks, e.g., TensorFlow [82],
PyTorch [176], NCNN [240], and MindSpore [241]. Since
fixed rule-based operator fusion cannot guarantee that the
performance (e.g., latency) is always optimal [9], [82], [83],
MetaFlow [124] realized relaxed graph substitutions for op-

erator fusion via a backtracking search algorithm to address
this issue. Zhou et al. [125] proposed a transferable deep
reinforcement learning-based optimizer to search for optimiza-
tion policies to improve the optimization efficiency further. It
speeds up the search drastically by making decisions based
on the entire graph rather than on each node individually
compared to previous techniques such as Hierarchical Device
Placement(HDP) [242], Spotlight [243], and Placeto [244].

The operator fusion for computation graph optimization can
also derive novel DL compilers or frameworks. For example,
Zheng et al. [229] introduced a DL training compiler. It
merges memory-intensive operators with data dependencies
and non-homogeneous parallelism into large GPU kernels,
reducing global memory access and context switch overhead.
Hu et al. [228] proposed Jittor, a just-in-time (JIT) compiled
DL framework. It integrated with enhanced operator fusion
rules which accounts for memory access constraints as a
unified function, allowing for unified management of the GPU
memory. Ivanov et al. [230] reduced data movement for the
Transformer by constructing a dataflow graph, identifying
opportunities for data reuse and applying tailored fusion rules.
Zheng et al. [231] proposed AStitch, a compiler that explores
the new operator-stitching optimization space for memory-
intensive computations.

e. Memory allocation. Memory allocation methods are
typically implemented in the compiler backend, which is closer
to hardware resources than the aforementioned techniques
for optimizing computation graphs. In DL training, the time
between the creation and final access of a tensor is referred to
as the tensor’s ”life cycle.” Existing DL frameworks divide
a separate memory space for each tensor in the training
time, much larger than most tensors’ life cycles. Actually, it
is useless to keep memory space for the tensor outside its
life cycle [114]. Recycling memory for tensors by allocating
the same memory for two tensors whose life cycles do not
intersect can save memory usage, as shown in Figure 14.
Moon et al. [114] analyzed all tensors (including input data,
weights, and intermediate activations) that may appear during
the training time and realized memory recycling, greatly
reducing memory usage. Wang et al. [141] identified the
memory allocation optimization problem is a 2DSP-like NP-
hard problem [245]. Since tensors’ life cycles can significantly
impact layout effectiveness, they positioned long-lifecycle
tensors beneath short-lifecycle ones to approximate the ideal
solution to this problem. Nie et al. [232] presented TSPLIT, a
fine-grained model memory allocation method that overcomes
memory constraints while retaining DL training efficiency.
With the tensor-splitting primitive, TSPLIT breaks the opera-
tion boundary of a tensor, allowing flexible memory allocation.

f. Memory swapping. In DL training, the intermediate
activation of a certain model layer is temporarily used in the
layer’s forward and backpropagation. Swapping temporarily
unused intermediate activations from the precious memory
(e.g., GPU) to the larger memory (e.g., CPU) and then swap-
ping back when gradient updating needs them can speed up
computation and reduce memory usage, as shown in Figure
25a. Memory swapping is commonly supported by operating
systems, e.g., virtual address spaces in Windows [246] and

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 21

TABLE V: Summary of related intra-device controllers for on-device DL training.

Category Focus level Context awareness Controller Optimized performance Year Ref.

Controller level

Resource-friendly algorithm level
including quantization

Gradient, energy, memory / Layer-wise quantified precision 2020 [127]

Model-adaptive system
scheduling level including

checkpoints in computation graph
Memory budget Dynamic programming Total computational cost 2016 [222]

Model-adaptive system
scheduling level including

checkpoints in computation graph
Tensor staleness, memory budget Greedy, heuristics Total computational cost 2020 [223]

Model-adaptive system
scheduling level including

memory swapping
Memory budget Genetic algorithm Execution time 2020 [185]

Model-adaptive system
scheduling level including

memory swapping
GPU architecture Bayesian optimization (De)Compression time 2021 [236]

Co-design: resource-friendly
algorithm level including

quantization, sparse updating
& model-adaptive

system scheduling level
including operator reordering

Memory budget Evolutionary search Accuracy 2022 [38]

GPU (Device

memory)

CPU (Host

memory)

Model is trained

on GPU
Out of memory,

swap out data

Training needs,

swap in data

(a) Memory swapping process.

𝑩𝑾𝑫(𝟑)

𝑷𝑹𝑬(𝟐)

𝑩𝑾𝑫(𝟐)

𝑷𝑹𝑬(𝟏)

Wasted

time

Time

Compute

Stream

Memory

Stream

(b) Memory swapping delay.

Fig. 25: Illustration of the memory swapping technique.
BWD(n) and PRE(n) are the backward and prefetch com-
putations for layer(n), respectively.

swaps partitions in Linux [247]. When the memory capacity
of a device is insufficient, data will temporarily swap out to
external memory like disks. However, it brings extra transfer
delay. And memory usage is difficult to predict for random
programs. Notably, this shortcoming can be well solved in DL
training because the forward computation and backpropagation
are in fixed orders (i.e., forward computation from the first
layer to the last layer and backpropagation is contrary),
bringing optimization potential to memory swapping. For
example, the data d2 required by layer2 backward propogation
BWD(2) can be prefetched to GPU memory during BWD(2)

computation. As a result, the d2 transfer delay PRE(2) can
be partially covered by BWD(3), or completely coverd like
PRE(3), as shown in figure 25b.

Rhu et al. [39] proposed vDNN, the first work on memory
swapping for DL training. They propose a runtime memory
manager that virtualizes the memory utilization of models
by enabling the concurrent usage of both GPU and CPU
memory during training. vDNN reduces the average GPU
memory usage of multiple mainstream models by over 90%.
Following vDNN, Chen et al. [126] proposed moDNN, an
intelligent solution capable of dynamically choosing convo-
lution operators, adjusting mini-batch size, and selecting the
suitable memory-swapping strategy to achieve optimal system
performance. It realized fast Fourier transforms and Winograd
with improved performance and increased memory require-
ments. Subsequently, Wang et al. [40] combined the memory
swapping and recomputation methods and realized dynamic
GPU memory scheduling that enabled DL training far beyond
the GPU DRAM capacity. Le et al. [233] formally rewritten
the computation graph and inserted swap-out and swap-in
operations to store intermediate results on CPU memory. By
introducing a categorized topological ordering to simulate
computation graph execution, the memory consumption of
a model can be profiled using operation distances in the
ordering. Shriram et al. [234] proposed vDNN++ t o address
the issues of delayed computation start, high pinned memory
requirements, and GPU memory fragmentation in vDNN [39]
by lowering the number of synchronization operations. Huang
et al. [185] proposed SwapAdvisor to enhance the previously
presented memory swapping methods with manual judgment.
It jointly optimizes three dimensions of given dataflow graphs,
i.e., operator scheduling, memory allocation, and swap deci-
sions. SwapAdvisor explores the wide search space through a
genetic algorithm, improving the GPU’s capability to accom-
modate large models, e.g., WideResNet-152 [155], NasNet-
25 [248], and BRNN-4-8K [249], they need 180GB, 193GB,
and 99GB memory space for training, respectively. Following
it, Peng et al. [191] conducted flexible memory management
control by dynamically tracking the tensor access patterns at

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 22

runtime, which decide when and how to swap memory.
Furthermore, Ren et al. [235] presented Sentinel, a runtime

system that automatically optimizes tensor management on
heterogeneous memory. Specifically, it enables the optimal
memory co-allocation for several tensors with similar lifetime
and memory access frequencies by allocating them to the
same pages to avoid unnecessary data movement. Then Chen
et al. [236] optimize memory swapping time by selectively
compressing tensors based on their sparsity, and size. Li et
al. [237] automatically trace the memory behaviors of model
workloads to schedule memory swapping without perceiv-
ing high-level information of layer structures or computation
graphs, which alleviate the problem of existing solutions
being densely coupled with the fixed model workloads, e.g.,
layer structures or computational graphs. Jaehoon et al. [238]
presented DeepUM, offering GPU memory oversubscription
for models by leveraging compute unified device architecture
(CUDA) unified memory and employing CPU memory as
a backing store. They used a new correlation prefetching
mechanism at UM block level to hide the fault-handling
overhead. Thus it considerably reduces memory swapping time
and increases GPU’s virtual memory capacity.

3) Intra-device cross-level controller: The resource de-
mands of DL training tasks vary. This variability, combined
with the heterogeneous computing/memory resources of AIoT
devices, can provide numerous optimization possibilities. For
instance, when a device has tight memory and rich computing
resources, it may be necessary to frequently employ recompu-
tation techniques, while for a device with sufficient memory,
such strategies can be avoided to reduce unnecessary computa-
tion delay. Furthermore, different training epochs on the same
device can result in diverse performance outcomes. Therefore,
an adaptive controller should be employed in the resource-
efficient AIoT system to adjust the technique configuration
based on the availability of resources and performance de-
mands. A context-aware controller can prevent memory units
from being idle or overloaded, thereby enhancing efficiency.

Table V summarizes existing adaptive controllers integrated
with diverse levels of optimization techniques. For example,
Huang et al. [127] proposed adaptive precision training in
DL training quantization. It dynamically allocated layer-wise
precision and provided an application-specific hyperparameter
for users to achieve the trade-off between training energy
cost, memory usage, and accuracy. In sparse updating, Lin et
al. [38] adopted an evolutionary algorithm to search for the
most important layers for updating and achieve higher training
accuracy under a limited memory budget. In recomputation,
Gruslys et al. [222] utilized dynamic programming to balance
intermediate activations and recomputation caching. With a
tunable memory budget, it can optimize computation costs.
Kirisame et al. [223] extended recomputation methods by
introducing dynamic tensor rematerialization (DTR). DTR is
a greedy online algorithm that is parameterized by eviction
policy. In memory swapping, Huang et al. [185] proposed
SwapAdvisor, which uses a genetic algorithm to search for the
optimal memory swapping scheme for reducing the transfer
delay between CPU and GPU memory. Given the memory
budgets, they used a dataflow engine simulator to quickly

estimate the execution time of each scheme and find the best
one with the lowest latency. Chen et al. [236] proposed a
self-tuning tensor compression framework CSWAP. It used
bayesian optimization to search for the optimal hyperparame-
ters for tensor compression and tackle the heterogeneity caused
by different GPU device architectures and DL frameworks.

B. Distributed DL Training

With the increase in DL model complexity and diversity,
training models on AIoT devices at low cost is still challeng-
ing. To realize this intractable goal, distributed DL training
on multiple AIoT devices is considered as the promising
way [133], [250], [251]. This includes centralized systems
such as model ensembling [252], decentralized systems such as
tree-like topology [253] and parameter server [254], and fully
distributed systems such as peer-to-peer [255]. Distributed DL
training (with/without privacy concerns) partitions the data
or DL models, reducing the memory load on each device
compared to on-device training (as discussed in § IV-A).

Existing effort on distributed DL training (without privacy
concern) mainly includes three categories, i.e., model paral-
lelism, data parallelism, and hybrid parallelism. Figure 27a
shows their difference. When the DL model is too large to feed
into a single device, it is necessary to adopt model parallelism
to assign different parts of the model to diverse AIoT devices
for training and finally merge them into a complete model.
Data parallelism divides huge data into N parts to deploy N
distributed AIoT devices without privacy concerns. Each AIoT
device only processes 1/N of data and aggregates gradients to
the central server for an update. Hybrid parallelism combines
the strengths of the above two schemes. Federated learning is a
widely known data parallelism method with privacy concerns.
And in AIoT federated learning, the data on each AIoT device
is sensed by itself and cannot be re-distributed. It only shares
the model updates among multiple devices. Federated learning
includes asynchronous, semi-synchronous, and synchronous
schemes, as shown in Figure 27b. In this section, from the
cross-level perspective of a resource-efficient AIoT system, we
introduce enabling techniques at different levels, i.e., resource-
friendly algorithm, model-adaptive system scheduling, and
inter-device controller upon them, illustrated in Figure 26.

1) Resource-friendly algorithm level: At the algorithm
level, researchers explore partitioning the DL models for
training parallelism or scheduling various devices in parallel
to improve training efficiency. Federated learning is one of the
widely-used distributed learning schemes. To reduce waiting
time, Xie et al. [257] used asynchronous federated learning
technology, adopting an asynchronous collaboration mode of
upload-on-the-fly to minimize training time for each round.
Then Ouyanget al. [259] proposed a novel federated learning
system that can identify intrinsic similarities between data
points, leading to higher model accuracy and lower com-
munication overhead. In distributed learning without privacy
concerns, Huang et al. [128] proposed GPipe, a scalable
model parallelism library to boost the training efficiency of
giant models, e.g., generative pre-trained transformer (GPT)
and bidirectional encoder representations from transformers

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 23

Inter-device
controller

Resource-friendly
algorithm level

Model
parallelism

Intra-device
DL training

(Section IV.A)

Distributed AIoT
device resource

Performance demands

Trained model

Federated learning
(with privacy concern)

Hybrid parallelism

Model-adaptive system
scheduling level

User-specified
model program

or
pre-trained models Data

parallelism

Operator
schedule

memory
schedule

Cross-device
engine

Cross-device
compilation

Fig. 26: System loop of the algorithm, system scheduling, and inter-device controller for distributed DL training.

Global Dataset

Layer1

Layer2

Layer3

Network Model

Worker2Worker1

Data parallelism

Worker1

Worker2

Worker3

Model parallelism

Worker1

Worker2

Worker3

Worker1

Worker2

Worker3

Hybrid parallelism

Data Partition

Model Partition
Data Partition + Model Partition

(a) Distributed DL training (without privacy concern)

Edge server

…

𝑊!

𝐷𝑎𝑡𝑎" 𝐷𝑎𝑡𝑎#

Data collecting

Local training

𝐷𝑎𝑡𝑎!

𝑊" 𝑊#

Local model
uploading

Global model
aggregation

𝑊! , 𝑊" ,…,𝑊#

End

𝑊!

𝑊!Model
deployment𝑇! 𝑇" 𝑇$

(b) Federated learning (with privacy concern)

Fig. 27: Illustration of different distributed DL training techniques. (a) Distributed learning (without privacy concerns) can
be divided into data parallelism, model parallelism, and hybrid parallelism; (b) Considering different time points of model
updating, federated learning includes asynchronous, semi-synchronous, and synchronous schemes.

(BERT). GPipe partitioned the model across different acceler-
ators and split the mini-batch into smaller micro-batches for
parallelism execution. By splitting batch, GPipe provided an
almost linear speed up, i.e., 3.5 ∼ 20×, with no alterations
to the model parameters. PipeDream-2BW [250] realized
the memory-efficient DL training parallelism by utilizing a
new weight gradient coalescing algorithm and weight double
buffering. It efficiently split the DL model across available
hardware resources considering hardware limits such as ac-
celerator memory capacity and interconnect topologies. Beau-
mont et al. [256] proposed MadPipe to dramatically improve
the training throughput by hybrid parallelism. It gives a more
precise estimation of the memory requirements and a dynamic
programming-based heuristic algorithm, which results in effi-
cient computation-memory allocation and schedule.

2) Model-adaptive system scheduling level: It is intractable
to enable the scalability and adaptivity of the distributed
DL training to fully use varying resources in AIoT devices
(e.g., drone swarms and smart camera arrays) whose resources
dynamically change due to the influence of other on-device
tasks. Cui et al. [130] proposed GeePS, the first GPU-
specialized parameter server design for realizing the data-
parallel DL training on GPUs. Compared to previous CPU-
based parameter server systems, GeePS employs GPU-friendly
caching, data staging, and memory management techniques
to reallocate GPU memory for intermediate layer state cache,
significantly reducing training latency. Wahib [131] proposed a

performance model based on the concurrent analysis of out-of-
core training behavior and combined layer-wise memory swap-
ping and redundant recomputing to decrease memory usage
during training. Regarding scalability, the proposed out-of-core
data parallel method outperforms complicated hybrid model
parallelism in training huge models, e.g., Megatron-LM [262]
and Turning-NLG [263]. Rajbhandari et al. [260] proposed a
zero redundancy optimizer (ZeRO) to optimize memory usage
and improve distributed training speed while increasing the
model size. ZeRO mainly employs two techniques, i.e., reduc-
ing memory state redundancy across data-parallel processes
by splitting the model states rather than repeating them; and
proactively allocating memory based on the lifetime of various
tensors to prevent memory fragmentation.

Md et al. [261] proposed DistGNN, which uses a minimum
vertex-cut graph partitioning algorithm to reduce the transfer
time of features and gradients. DistGNN further accelerates
the shared memory system by using cache blocking, loop re-
ordering, and vectorization with the LIBXSMM library [264],
which considerably boosts distributed training throughput.
Then Lim et al. [132] proposed Zico, the first model system
which aims to reduce the memory consumption for parallelism
training. Zico monitors the memory usage of each training task
through its progress on GPU computation and reclaims the
memory that is no longer needed, making it globally sharable.
As a general approach, Zico outperforms existing GPU-sharing
methods. Recently, Liu et al. [251] presented MAP, a PyTorch-

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 24

TABLE VI: Summary of cross-level optimization techniques for distributed DL training.

Category Highlight technique for improving resource efficiency Year Ref.
Parallelism mode

Data Model Hybrid

Resource-friendly
algorithm level

Distributed
DL training (without

privacy concern)

Compute layers in pipeline to reduce latency caused by distributed training 2019 [128] ✓

Pipelining and weight gradient coalescing to reduce memory usage and latency 2021 [250] ✓

Dynamic programming based heuristic to estimate memory requirements
more precisely, reduce latency

2022 [256] ✓

Federated
learning (with

privacy concern)

Asynchronous federated learning to minimize waiting latency 2019 [257] ✓

Re-parameterization to decrease the convergence time 2020 [258] ✓

Similarity-aware federated learning system to reduce communication overhead 2021 [259] ✓

Model-adaptive
system scheduling level

First GPU-specialized parameter server, reduce latency 2016 [130] ✓

Layer swapping and recomputing; out-of-core training behavior analyzing,
reduce GPU memory usage

2020 [131] ✓

Eliminating memory redundancies with Zero Redundancy Optimizer, reduce
memory usage

2020 [260] ✓

Shared memory, minimum vertex-cut graph partitioning algorithm,
delayedupdate algorithms. Reduce latency

2021 [261] ✓

Sharing global memory among concurrent jobs, reduce training time 2021 [132] ✓

A symbolic profiler to estimate memory and computing statistics to improve
distributed training efficiency

2023 [251] ✓

TABLE VII: Summary of related inter-device controllers for distributed DL training.

Category Focus level Context awareness Controller
Optimizated
performance

Year Ref.

Inter-device
controller level

Federated learning (with
privacy concern)

Resource-friendly algorithm level including
data distribution and device training latency

Heterogeneous device
resources, sample

importance

Greedy heuristic Training time 2021 [265]

Resource-friendly algorithm
level including device conditions

Network bandwidth,
heterogeneous devices

Synchronization scheduler
Energy consumption,

training time, accuracy
2022 [266]

Distributed learning
(without privacy concern)

Resource-friendly algorithm
level including device conditions

Network throughput,
computing resources

/
Energy consumption,

training time
2022 [133]

Resource-friendly algorithm level including memory
estimation and non-contiguous allocations of DL layers

Memory budget,
network bandwidth

Dynamic programming Execution time 2022 [256]

Model-adaptive system scheduling including
checkpoints in computation graph

Memory budget
Markov Chain Monte

Carlo search algorithm
Execution time 2020 [267]

Model-adaptive system scheduling including
checkpoints in computation graph

Memory budget Dynamic programming
The number of
recomputation

2020 [268]

Model-adaptive system scheduling including
model statistics collection and

computation graph static planning

Memory budget / Execution time 2023 [251]

based compiler that implements memory-aware automated
parallelization and provides near-real-time memory and com-
puting statistics. MAP can build distributed execution plans
with high training efficiency. Because it involves a symbolic
profiler to swiftly collect memory and computation overhead,
a cluster detector to gather cluster hardware performance and
topology, and a tense layout manager.

3) Inter-device cross-level controller: Like on-device DL
training, distributed DL training also benefits from the context-
aware controller. On the one hand, imbalances in completion
time among different devices result in significant synchroniza-
tion overheads. On the other hand, DL training parallelism
depends on the degree of the decoupled model layer, channel,
or operator. Table VII summarizes some prior explorations.
In federated learning, the disparate computational capabilities
of the devices involved can result in differences in training
time, which can impact the overall system efficiency. Lai
et al. [265] introduced Oort, a method that enhances the
performance of federated training and testing through guided
participant selection. Oort employs a synchronous federated
learning scheme, selecting participants with similar device
performance for training in each round to mitigate the impact
of hardware differences among devices. To further reduce the

impact of heterogeneous devices, Sun et al. [266] proposed
FedSEA, a semi-asynchronous FL framework for extremely
heterogeneous devices. FedSEA adjusts training parameters
for device heterogeneity and balances the trade-off between
waiting costs and data benefits. MemFlow [267] jointly opti-
mizes memory usage and computation time when searching
for an optimal parallelism training strategy. In detail, it adopts
a Markov chain monte Carlo search algorithm to select the
most suitable degrees of recomputation. Olivier et al. [268]
employed memory-aware scheduling and automatic differenti-
ation to execute a back-propagation graph within the bounded
memory requirement at the cost of computation.

Recently, Liu et al. [251] proposed MAP to search for
the optimal distributed training strategy in two ways, i.e.,
intra-operator parallelism and activation checkpoint. Also, to
automate intra-operator parallel training for large models,
MAP adopted an efficient strategy using a two-stage solver
and recompiled it into a module instance. However, the cross-
level adaptive controller in a broader space for distributed DL
training is still underexplored. According to the dynamically
available resources of different AIoT devices in the distributed
system without privacy concerns, the split data and model sizes
can be dynamically adjusted for diverse devices. To better

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 25

TABLE VIII: Comparison of two types of resource-efficient DL engines for AIoT.

Type Engine DL model parser DL model interpreter DL model optimizer DL model compiler
Compiled engine TVM [9] ✓ ✓ ✓ ✓

OneDNN [35] ✓ ✓ ✓
TensorflowXLA [11] ✓ ✓ ✓

TensorflowRuntime [10] ✓ ✓ ✓
Interpreted engine TensorflowLite [26] ✓ ✓ ✓

CMix-NN [34] ✓ ✓
CMSIS-NN [269] ✓ ✓ ✓

control different devices’ training cycles and synchronization
strategies, Samikwa et al. [133] introduced resource-aware
split-learning (ARES) for adaptive DL distributed training.
ARES presented the device-oriented model partition method,
which adaptively deploys tasks for heterogeneous devices to
reduce the impact of stragglers. To address insufficient mem-
ory issues on individual end devices, Beaumont et al. [256]
uses a dynamic programming-based heuristic to find the best
strategy for distributed memory allocation.

Discussion. The cross-layer optimization of DL training
is essential for achieving efficient and effective AIoT de-
ployments. While both DL training and DL inference (§
III) can benefit from similar optimization approaches and
automated controllers, training poses additional constraints
and challenges due to higher computational and storage re-
quirements and increased sensitivity to errors. On one hand,
both DL training and DL inference share the same cross-layer
optimization space and require automated controllers, whether
implemented on-device or in a distributed manner. Table IV
presents a range of individual optimization techniques that
can be employed for DL training task optimization in AIoT
systems. Similarly, the performance of optimization techniques
can vary significantly, necessitating careful selection and ex-
ploration of their combined usage on AIoT devices. On the
other hand, DL training has higher computational and storage
requirements compared to DL inference, along with increased
sensitivity to errors due to multiple iterations. This implies
that DL training imposes more constraints and challenges
compared to DL inference.

V. RESOURCE-EFFICIENT AIOT APPLICATIONS

This section briefly introduces some enabling systems and
the potential application scenarios in AIoT.

A. DL Engines for AIoT

The engine for resource-efficient DL deployment at AIoT
devices mainly aims at improving the flexibility of memory
scheduling, optimizing the computational efficiency of oper-
ators, and enhancing the underlying adaptability to heteroge-
neous devices. It creates a paradigm shift in how operators are
carried out. As shown in Figure 28, they include interpreted
and compiled engines,We demonstrated how these two differ-
ent deep learning engines play a role in deploying models to
devices.

Interpreted engines generally include the DL model parser,
interpreter, and optimizer. The DL model parser is responsible
for reading and parsing the model file and converting it into

…

DL model program

Code Set Conversion

Drive machine
operation

Itemized Read

Itemized Conversion

Itemized Execute

Machine commands

Compiled Engine Interpreted Engine

AIoT device

…

Fig. 28: Difference of interpreted and compiled engines.

a format suitable for processing by the interpreter. The DL
model optimizer is responsible for transforming the original
DL model into an equivalent model with more efficient in-
ference/training speed; The DL model interpreter accepts the
input data from the application scenarios and executes the
corresponding internal operators of the DNN in sequence ac-
cording to the model architecture and target device’s hardware
schedule configurations to finally output results.

Compiled engines mainly involve the DL model parser and
compiler. The role of the model parser is the same as that
of interpreted engines. The compiler transforms models into
machine code that can be directly processed by the target
deployment platform (such as CPU, GPU, etc. Also, it can
apply various optimization methods during the compilation
process to improve the operating efficiency of machine codes,
such as automatic computing graph scheduling [9].

Table VIII summarizes the state-of-the-art DL deployment
engines on AIoT devices. Recent representative compiled in-
ference engines mainly include TVM [9], oneDNN [35], Ten-
sorFlow XLA [11], TensorFlow Runtime [10], et al.. Different
engines focus on different aspects. For example, TVM [9]
is a cross-platform DL development framework. Compared
with commonly used frameworks such as Tensorflow and
Pytorch, TVM optimizes DNN operators at the computation
graph level by converting operators into descriptions of tensor
changes, generating code, and transmitting it to the CUDA
compiler. TVM does not rely on a specific framework’s
compute library and can be deployed on diverse hardware
platforms. Meanwhile, TVM supports integrating new op-
erators. Unlike the cross-platform characteristics of TVM,
OneDNN [35] emphasizes on DL performance optimization

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 26

with Intel-architecture processors, Intel-architecture graphics
cards, and Xe-architecture graphics cards. The oneDNN en-
gine executes DNN primitives to process data in several
memory objects, reducing memory usage of DL inference.
The primitives are objects encapsulating specific computations,
e.g., forward convolution, data transformation, etc. Compared
to purely functional operations (e.g., conv), primitives can be
specialized for a subset of input parameters. Both TVM and
OneDNN are compatible with various DL frameworks.

Some other engines are deeply optimized for one frame-
work, such as Tensorflow XLA [11] and Tensorflow Run-
time [10]. TensorflowXLA [11] is a linear algebra compiler en-
gine for the TensorFlow framework. In the regular TensorFlow
framework, when a program runs, it invokes a pre-compiled
GPU kernel for each operation, causing the computing kernel
redundancy problem. TensorflowXLA solve this problem by
compiling the computation graph of each DNN into a series
of specially generated computation kernels to speed up DL in-
ference and improve memory usage with model-specific infor-
mation. Tensorflow Runtime (TFRT) [10] mainly optimizes the
DL inference for specific hardware in various fields to enable
scalability. It implements efficient execution of the computing
kernel through specific primitives on the underlying devices.
Meanwhile, it optimizes the parallel operation of the existing
graph and reduces the synchronization overhead. Also, TFRT
provides a lightweight just-in-time operator distribution stack
for asynchronous API calls to improve computing efficiency.

TFlite [26] is a lightweight engine that is mainly applied
to DL inference on mobile devices. TFlite not only provides
a series of core operators according to the requirements of
mobile platforms but also supports custom operators. And
TFlite defines a new DNN file format, removing the parsing
step before revisiting data, and greatly reduces the memory
footprint of the code. In addition, TFlite designed an optimized
interpreter that uses static graphic sorting and a custom (less
dynamic) memory allocator to ensure minimal load, and
execution latency. CMix-NN [34] is a framework specifically
supporting DNN inference on MCU. Compared with other
frameworks, CMix-NN focuses on effectively compressing
DNNs. Specifically, CMix-NN supports DNN quantization
strategies for diverse DNN layer, filter channel, and activation.
CMSIS-NN [269] is an edge DNN inference framework for
the internet of things (IOT) scenarios. It can directly interact
with the underlying hardware, improving computing efficiency
by up to 5× in the MCU tests.

Discussion. Building upon the aforementioned techniques,
engine systems can assist the algorithm layer in achieving
cross-layer optimization of AIoT systems. Compiled engines
offer advantages such as reduced memory consumption and
simplified deployment, while interpreted engines excel in
adapting to various hardware architectures at runtime. The
choice between them depends on the specific requirements
and constraints of the AIoT system. Compiled engines, with
their lower memory footprint and absence of additional graph
interpretation, offer improved support for heterogeneous AIoT
devices. However, their runtime and dynamic adaptation capa-
bilities remain limited. On the other hand, interpreted engines
excel in executing DL inference and training tasks across

diverse AIoT devices. They possess the ability to interpret
the computation graph based on specific hardware instructions
during runtime. This flexibility allows for efficient utilization
of the underlying hardware resources, enabling optimal per-
formance across different AIoT device configurations.

B. Resource-efficient AIoT system for Diverse Applications

The remarkable success of DL has fostered a growing num-
ber of intelligent applications/services on AIoT devices [248],
[282]–[285]. Table IX summarizes three typical AIoT appli-
cations, e.g., image classification, semantic segmentation, and
speech recognition. And we note that the algorithm-system
co-design that jointly optimizes the resource-friendly DL
models and model-adaptive resource scheduling can improve
the runtime resource availability and thus pushes the limit of
performance-resource tradeoff set by standalone levels.

1) Cross-level optimization for image classification: Image
classification has a wide range of applications, including
object classification [286], human face recognition [287],
remote-sensing image recognition [288], image spectrum anal-
ysis [289] etc. There are many attempts at the algorithm
and system scheduling levels. Qian et al. [290] proposed the
recurrent aggregation operator (ReX) to extract informative
information and avoid memory-intensive large-scale early ac-
tivations. ReX integrates important features of intermediate
activations by using two RNNs and compresses them into a
low-dimensional vector, which greatly reduces the memory
footprint in the early exit module.

2) Cross-level optimization for semantic segmentation: In
contrast to image classification, which only requires a single
label for the entire image, semantic segmentation requires
labels for each pixel. It is the pixel-level segmentation of
different objects. Therefore, semantic segmentation is more
memory exhaustive than image classification, especially on
large images [291]. To realize on-device semantic segmen-
tation on the AIoT device, Jin et al. [277] designed an
adaptive built-in memory module to decrease memory usage.
We note that cross-level algorithm and system scheduling co-
design will be beneficial. Wang et al. [275] presents Lednet
based on an asymmetric encoding and decoding structure.
And they designed two new operators, i.e., channel splitting
and shuffling, which reduced the computing cost of the entire
network and improved the computing speed.

3) Cross-level optimization for speech recognition: Speech
recognition has a broad application area, such as smart
home [292], [293] and intelligent driving [294], [295]. Diverse
studies have investigated compressing memory for various
aspects of speech recognition applications, including data
separation [296], lightweight models [280], [281], and system
deployment [297]. For example, Shangguan et al. [278] sup-
ported the lightweight conversion of various speech recogni-
tion models, such as RNN and LSTM, by integrating different
computational graph optimization techniques. Han et al. [298]
proposed load-balance-aware pruning to ensure high hardware
utilization. And they design a system scheduler that encodes
the compressed model to multiple PEs for parallelism and
schedules the complicated LSTM data flow.

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 27

TABLE IX: Summary of resource-efficient AIoT system optimization for enabling diverse resource-aware applications.

Applications Technique highlight for improving resource efficiency Focus level Optimization Year Ref.

Image classification

Hyperspectral analysis, less parameters Computation graph Improve accuracy 2020 [270]

Quickly reduce the size of the image DL model Reduce parameters 2020 [271]

Reduce early activation Operetor Increase inputs 2021 [272]

Quantum computing,few memory Inter-device controller Reduce data storage 2022 [273]

Semantic segmentation

Space pyramid DL model Improve computing speed 2019 [274]

Asymmetric codec structure Computation graph Reduce memory 2019 [275]

Trapezoidal up-sampling Operator Improve computing speed 2020 [276]

Built-in memory module Memory scheduling Improve accuracy 2021 [277]

Speech recognition

End-to-end neural network architecture Computation graph Reduce parameters 2019 [278]

Finite-size beam search decoding Computation graph Improve accuracy 2020 [279]

Low rank matrix substitution DL model Reduce parameters 2020 [280]

Streaming oriented speech separation technology Inter-device controller Improve computing speed 2020 [281]

Result
Feedback

Video
Collection

Voice command recognition Video stream Classification Key image segmentation

Scheduling: compilation optimization

Controller: dynamic model architecture

Controller: adaptive freeze training

Algorithm: low rank decomposition

Scheduling: efficient operator

Scheduling: Image memory retrieval

Algorithm: trapezoidal up-sampling

Scheduling: asymmetric codec structure

Fig. 29: An example of cross-level optimization for resource-efficient video analysis in smart city scenarios.

4) AIoT-powered application scenarios: Above advances
in applications have driven increasing solutions in various
AIoT scenarios, including smart homes [299]–[302], smart
factories [303]–[305], and smart cities [306]–[308].

Smart home. Current smart home scenarios involve
video/voice recognition and environmental awareness to re-
alize automated appliance operations, e.g., curtain controlling
and TV turning on/off. Deeperthings [90] proposed a collabo-
rative optimization framework at three levels: communication,
computing, and memory usage. By integrating communication
and perception layers to achieve cross-layer overall optimiza-
tion and balancing memory usage between different devices,
the efficient inference is ultimately achieved in resource-
constrained situations. Given the diversity and complexity of
scenarios, the resource-efficient AIoT system deployed in open
environments should dynamically adjust itself. Also, cross-
level optimization must be jointly explored.

Smart city. In urban construction and city life, resource-
efficient AIoT systems have stimulated plenty of applications,
e.g., traffic flow prediction [303], street map estimation [304],
and air quality prediction [305]. Specifically, accurate traffic
flow prediction serves lane planning [309] and indicator time
regulation [310]. As shown in Figure 29, We used monitoring
as an example to analyze how optimization technologies at
different levels are applied to the systems of smart cities
Summarily, resource-efficient AIoT systems in smart cities
usually comprise heterogeneous devices with a large physical
span. To ensure efficient collaboration, it is necessary to
provide unified management of cross-device resources at the
algorithm and underlying system levels.

Smart industry. Resource-efficient AIoT systems are grad-
ually integrated into engineering management and process
optimization to in the industrial field. The specific function-
ality includes product defect detection, manufacturing process
optimization, predictive operation and maintenance, equipment
failure warning, production process planning, etc. To avoid
the fragmented ecosystem of DL models in AIoT industry,
Ren et al. [311] proposed a framework using Semantic Web
technologies to enable the joint management of TinyML
models and IoT devices at scale, from modeling information
to discovering possible combinations and benchmarking, and
eventually facilitate TinyML component exchange and reuse.

C. Resource-efficient AIoT System on Heterogeneous Devices

Diverse AIoT devices are always heterogeneous regarding
memory, computing, and battery resources. And it is non-
trivial to deploy resource-efficient AIoT system on heteroge-
neous devices. Specifically, we select three types of repre-
sentative AIoT devices, i.e., the cheapest but with extremely
constrained MCU devices, the most ubiquitous ARM-based
mobile devices (e.g., smartphones, wearables, robots), and
typical GPU-based edge servers with weak resources (e.g.,
NVIDIA DGX, HPE ProLiant DL380 Gen10). As an indis-
pensable interface, smartphones often serve as the control
center of AIoT clusters. The MCU is very cheap but has
extremely limited computing and memory resources. And the
FPGA chip stands out with the advantages of high flexibility,
low power consumption, and strong expansibility. Table X
summarizes how to optimize resource-efficient AIoT systems
in MCU, ARM, and FPGA devices.

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 28

(a) DLAU (b) WPU

Fig. 30: Two different FPGA architectures for convolution
acceleration, in which DLAU mainly adopts a three-layer
pipeline, and WPU uses a sparse network design.

1) Resource-efficient AIoT system on MCUs: MCU is
widely used for simple tasks in autopilot, medical care, office
equipment, etc. And its small size and low cost make it
suitable for large-scale deployment, e.g., the daily inspec-
tion of the lake surface [312]. However, the MCU’s tightly-
limited memory resources constrain the efficient execution of
DL inference/training tasks. Many studies [12], [71], [123],
[226], [313]–[317] have been conducted for DL deployment
on MCUs. SpArSe [318] is a network architecture search
(NAS) framework designed for DL inference on MCUs.
Micronets [313] also leverage NAS for specifying DNN ar-
chitectures. To map the MCU-imposed memory, latency, and
energy constraints to the NAS search framework, they found
an important basis, i.e., model latency varies linearly with
the model operation (op) counts before searching models in
space. And they used these discoveries in NAS to reduce
memory utilization and operands. µNAS [71] is another NAS
system for MCNS, emphasizing RAM size, memory size, and
processor speed. MCUNets [12] integrates Tiny NAS and Tiny
Engine to optimize the resource-efficient AIoT systems on
MCUs. They find that for a DNN with the same size, the
larger the amount of computation, the higher the accuracy.
With this insight, Tiny NAS greatly reduces the search space
and improves search efficiency. TinyEngine is a compilation
engine that reduces the memory occupation in DNN operation
by optimizing the loop operation. Facing the huge memory
cost of the first few CNN layers, MCUNetsV2 [123] makes
longitudinal cutting to execute a small part of models and
finally integrate the results of all cut parts.

2) Resource-efficient AIoT system on ARMs: Compared to
MCUs, ARM-based devices have more powerful computing
power and are widely used in mobile devices such as robots
and drones. To accelerate DNN inference/training on ARM de-
vices, many researches [240], [320], [321], [323], [327]–[330]
have been proposed. It is reported that the conv layers in DNNs
consume most of the computation due to the high computa-
tional amount [331]. Huang et al. [319] realized the parallel
conv computing based on the fast Fourier transform, which
optimized the memory occupation and reduced the latency of
multi-core parallel. To further improve non-uniform memory

access in many-core CPUs, Huang et al. [322] proposed a
fast Fourier convolution method based on NUMA awareness,
conducting data rearrangement and parallelizing complex ma-
trix multiplications to reduce remote memory accesses and
thus improves the calculation of CNNs. Meng et al. [320]
proposed FastConv, a template-based open-source library for
automatic code generation, which can automatically generate
high-performance CNN kernel and improve the performance
of the conv layers on ARM devices. Meanwhile, Li et al. [321]
focued on maximizing the parallelism of the algorithm to
fully utilize the multiple processing cores available on modern
ARM CPUs. They propose several optimizations, including a
parallel tile processing scheme, a memory layout optimiza-
tion, and an efficient data rearrangement technique. Zhou
et al. [323] optimized convolution layers through pipeline
strategy. It computed the 3× 3 convolution on the ARM CPU
by means of a single instruction and multiple data. And it
improved the computational efficiency by increasing the data
reuse rate. Tencent et al. [240] presented NCNN framework,
an ARM-based DNN optimization framework that integrates
various memory management techniques. It utilizes multi-core
parallel to accelerate the DNN calculation. The cross-platform
characteristics of NCNN greatly benefit users in transplanting
the DL models to the AIoT terminals and reducing the latency
and memory occupation of DNNs.

3) Resource-efficient AIoT system on FGPAs: FGPA is
developed based on programmable array logic and univer-
sal array logic. The main feature of FGPAs is that they
are customizable and can independently change the circuit
structure and expand the chips according to the amount and
way of calculation [203], [324]. When deploying DNNs on
FPGAs, such special features can maximize computational
efficiency and reduce energy costs. Therefore, in AIoT ap-
plication scenarios, FPGA is becoming a promising intelligent
perception, computing, and control platform [332]. Existing ef-
forts [325], [326], [333]–[336] have begun to study resource-
efficient DNN deployments with FGPAs. Wang et al. [324]
proposed DLAU, a scalable accelerator architecture for the
large-scale deployment of DNNs on FGPA. In previous stud-
ies, the DL acceleration mainly includes loop unrolling [337],
tiling [189], switching [338], etc. These methods, however,
without hardware redesigning, can hardly give full play to
the programmable characteristics of FGPA. To this end, Ma
et al. [203] designed the specific data stream to accelerate
DL execution, as shown in Figure 30(a). To optimize memory
accesses, they minimize data traffic and improve computation
performance through quantitative analysis of multiple design
variables, e.g., energy, and latency. Xie et al. [325] proposed
the DL model construction algorithm and the accelerator for
realizing sparse data selection logic on FGPAs, as shown in
Figure 30(b). Most of the existing work requires the off-chip
DDR memory to store parameters and the expensive DSP
module for DL computation on FGPAs. To overcome this
issue, Meng et al. [326] proposed FixyFGPA, a DL inference
accelerator, which supports high sparsity and low precision
computation by integrating dense and sparse computation units
in FPGAs. Still, it performs poorly in complex computation.
Peng et al. [333] presents a novel two-position accelerator by

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 29

TABLE X: Summary of resource-efficient system software over heterogeneous AIoT devices.

Device type Technique highlight Focus level Resource efficiency improvements Year Ref.

MCU

Sparse architecture search, NN-structure pruning Computation graph Reduce memory 2019 [226]

Constraint mapping, NAS DL model Reduce memory, reduce latency, reduce energy 2021 [313]

Matrix multiplication optimization DL model Reduce memory,reduce latency 2021 [71]

Cooperation of NAS and Engine, calculation library optimization Memory scheduling Reduce Memory 2020 [12]

Patch-to-patch inference, optimization of receptive field Operator Reduce memory 2021 [123]

ARM

Parallel convolution algorithm based on Fast Fourier transform Compiler Reduce memory, reduce latency 2017 [240]

Data rearrangement, complex matrix multiplication DL model Reduce memory, reduce latency 2020 [319]

Code automatically generates open source library Compiler Reduce memory, improve accuracy 2022 [320]

Adjust data layout, convolution based on Winograd Intra-device controller Reduce memory, reduce latency 2021 [321]

Pipeline strategy, improve data reuse Computation graph Reduce memory, reduce latency 2021 [322]

Fine memory management and data structure design Memory scheduling Reduce memory, improve accuracy 2022 [323]

FPGA

Pipeline strategy, scalable accelerator architecture Computation graph Reduce latency; reduce energy 2016 [324]

Simpler sparse data selection logic Memory scheduling Improve resource utilization 2018 [203]

Support high sparsity, low precision calculation Computation graph Reduce latency 2021 [325]

Two-bit convolution accelerator DL model Reduce latency 2021 [326]

combining the deep complex network with the binary neural
network to speed up inference on FGPAs.

VI. OPEN ISSUES AND FUTURE DIRECTIONS

This section discusses existing challenges and potential mis-
leading directions related to resource-efficient AIoT systems
and enabling technologies.

A. Cross-level AIoT System

Despite various optimization techniques at a single level,
e.g., algorithm, computation graph, compiler, operator, hard-
ware instruction, without considering their cooperation, we
discuss the open issues as below.

(i) Cross-level co-design. Prior efforts in cross-level
co-design mainly include algorithm-hardware [339]–[341],
compiler-hardware [342], [343], and algorithm-system [12],
[344], [345] co-design. The algorithm-system co-design is a
promising way to address the increasing complexity of DL
models for complicated application problems and optimize
the runtime execution of those models on AIoT hardware.
While the hardware re-design in the first two types is costly
for existing AIoT applications and suitable for brand-new
construction. Some of the key open issues in cross-level
algorithm-system co-design include: First, Runtime resource-
efficient algorithm. The challenge is how to propagate the
feedback of the runtime system execution to the algorithm
design. State-of-the-art on algorithm-system co-design like
PCONV [346], PatDNN [344], and CoCoPIE [345] simulta-
neously optimize the model compression algorithms and run-
time operator/memory scheduling mechanisms. They leverage
some fixed resource-friendly patterns to guide model design.
Specifically, DL models are specified with a specific shape
to maximize and sustain instruction-level and thread-level
parallelism. Second, Model-adaptive runtime compiler/engine.
Most of the existing works at the compiler and engine level for
operator/memory scheduling only manually optimize partial
factors. For example, the co-design MCUNet is composed of

TinyNAS and TinyEngine. TinyNAS searches for the most
efficient model architecture running on TinyEngine. At the
same time, the TinyEngine library generates codes for the
network search space of TinyNAS to eliminate instruction
and memory redundancy. Moreover, it is non-trivial to make
the compiler/engine to be compatible with various hardware
backends of AIoT devices. They consist of multiple processing
units with different architectures and capabilities, e.g., Jet-
sons [347], Raspberry Pis [144], FPGAs [348].

(ii) Cross-level adaptive controller. Given heterogeneous
AIoT devices and diverse performance demands, it is nec-
essary to automate the adaptive optimization control across
multiple levels, e.g., DL model, operator, memory allocation,
compiler, engine, and hardware instructions. The adaptive
controller at the algorithm level with automatic search, e.g.,
neural architecture search (NAS), is widely explored [349]–
[351]. While the adaptive controller across algorithm and
system levels is less explored. The challenges are from three
aspects: First, the combined search space should consider the
complex cross-level dependency and collaborations in different
techniques, as mentioned in III and IV. Second, the perfor-
mance validation of candidates is non-trivial because the cross-
level algorithm and system co-design cover multiple phases,
i.e., offline model design and parameter training, runtime
compiler, and accuracy testing. Integrating their validation and
verification together is desired yet challenging, especially as
the design becomes more complex. Third, the runtime search
algorithm, i.e., boosting the efficiency and efficacy of solving
constrained multi-objective optimization problems, is a long-
term open problem [352] [353].

B. Context-aware AIoT System Evolution
As discussed in § II-E, to ensure that the deployed AIoT sys-

tem can maintain continuous and stable high-quality services
in the long-term life cycle, the resource demands of the AIoT
system should be evolvable. That is, the AIoT system can be
compatible with the dynamic nature of the deployment context
(e.g., the dynamic resource availability, diverse performance

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 30

demands) and integrates the adaptation loop to adjust all
the system blocks. The AIoT system evolution requirements
include DL model structure scaling and weight retraining.
The former is always caused by mismatching between model
resource demand and device resource supply, and the latter is
usually required by model accuracy degradation in live sensing
data. In particular, the evolvable AIoT system may need to deal
with the following problems.

(i) Resource availability monitoring. The key resources
affecting DL model deployment (e.g., memory budget) and
performance outcome (e.g., latency, energy efficiency) in AIoT
devices include memory, computing, and battery. All of them
exhibit high dynamics over time [8]. For example, the battery-
powered device will gradually consume energy as the device
runs, and the available memory or computing resources will
be encroached upon by other applications/tasks running on a
device. The dynamic nature of available resources in AIoT
devices is also related to the operating system (OS) resource
scheduling. A fast and accurate resource monitor that can
interact with heterogeneous and cross-platform OS is needed.

(ii) Resource demand prediction and performance profiling
of DL inference/training tasks. The resource demand of de-
ployed AIoT systems contains energy cost, computation, and
memory usage. And systematic formulation of these resource
demands can predict the most suitable DL inference/training
configurations in advance. The AIoT system performance
involves DL inference accuracy, inference latency, and training
convergence latency. The inference accuracy is coupled with
the DNN parameter weights, and dramatic accuracy drop
trigger DNN retraining for weight evolving. As mentioned in
§ II-E, the total computation amount and memory usage for
DL inference and training tasks can be directly calculated by
the DNN structure and training configurations (e.g., iteration
number, batch size). While the prediction of energy demand
and latency is non-trivial since its measurement is not straight-
forward. They heavily depend on the underlying operator
scheduling, data flow, and memory bandwidth bound [146].
Measuring energy cost and latency in real-world devices is
infeasible or too costly [148]. However, it is highly desirable
for many tasks, e.g., searching for the most suitable DNN
structure with latency demands from a vast space.

(iii) Dynamic context awareness and system evolution trig-
ger. The dynamic context awareness block detects the mis-
match between resource supply and demand or the dramatic
accuracy drop to trigger the adaptation block. The triggering
station for resource supply-demand mismatch can be further
modeled as the noticeable context changes. We note that
the onset of the accuracy drop is not always the optimal
trigger time point for DNN retraining, which may increase
unnecessary retraining workload and even lag some necessary
evolution tasks. A suitable trigger is also desired for evolving
efficiency and efficacy.

(iv) Automated system loop. The self-evolutionary AIoT
system needs an automated loop consisting of the resource
monitor, the runtime resource demand and performance pro-
filer, the evolution trigger, and the optimizer. The resource
monitor tracks the memory/computing resource supply of
the available AIoT devices. The resource demand profiler

predicts the DL inference tasks’ memory, computing, and
energy resource demands with the current configurations. If
the resource demand exceeds the supply or the accuracy
drop exceeds a pre-defined threshold, the evolution trigger
notifies the optimizer, adjusting the DL inference/training
configurations. The automated control loop routinely checks
for system changes and performs on-demand evolution.

C. Distributed AIoT Resource Aggregation in DL infer-
ence/training Tasks

Efficiently aggregating memory and computing resources
within the networked AIoT system for seamless communica-
tion and the provision of complex services is an active and
research-intensive domain, which has several open issues.

• How to uniformly manage heterogeneous resources (e.g.,
SRAM, DRAM, CPU/GPU, battery) within the net-
worked AIoT system? They should be organized and
managed in a unified manner to enable efficient DNN
training or inference tasks.

• How to combine operator scheduling, memory allocation,
and hardware instruction mechanisms within the net-
worked AIoT system. Specifically, the computing power
of AIoT devices is subject to the barrel effect of memory,
computing, and battery resources. The shortest board of
the barrel restricts the overall computing capability. Thus,
monitoring the AIoT device resources with normalized
assessment necessary is necessary.

• How to balance multiple performance goals in the re-
source aggregation process (e.g., energy efficiency and
latency)? We need to establish the hierarchical depen-
dence between several internal factors (e.g., DL model,
operator, memory, instructions) of the AIoT system and
the external environment (e.g., input).

• How to develop hybrid distributed resource aggrega-
tion methods that combine both synchronous and asyn-
chronous communication schemes to balance the trade-off
between convergence speed and system stability.

• How to deal with the opportunistic connection problem
of AIoT devices for guaranteeing resource availability?

Advanced research in areas such as edge intelligence [354]
and federated learning [106] intersects with some of the issues
mentioned above, but it cannot comprehensively address them.
To tackle these challenges, it is important to decouple resource
aggregation methods from the DL inference/training tasks and
develop them as a general-purpose middleware function that
can actively perceive, analyze, and select AIoT resources to
meet diverse demands.

D. Intelligence Enhancement in Distributed DL Training

AIoT devices have been extensively deployed in numerous
domains. Their wide array of sensors allows for the collection
of massive amounts of data, facilitating the execution of
DL tasks and enabling different intelligent applications. In
practical AIoT systems, a large number of distributed devices
continuously sense the environment and hold accumulated
datasets. However, real-world scenarios present several chal-
lenges that must be addressed to ensure reliable and efficient

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 31

data transmission, synchronization, and coordination among
these devices. These challenges include:

(i) Intrinsic linkages of distributed holding datasets.. To
fully leverage the distributed devices’ computing power and
accumulated datasets, studying the intrinsic linkages between
distributed datasets in different AIoT sub-clusters and design-
ing corresponding distributed DL training systems is essential.
In particular, the inherent correlation, redundancy, and hystere-
sis of distributed datasets can drive the design of distributed
training systems, leading to high-quality, responsive, and low-
cost distributed DL training.

(ii) Temporal collaboration of distributed devices. In real-
world AIoT systems, each device may have different training
power and speed. Asynchronous communication methods have
been proposed to mitigate this problem to some extent [355],
but extreme temporal differences still pose a significant chal-
lenge to participant collaboration. Specifically, the challenge
is effectively promoting collaboration among participant de-
vices with different temporal patterns. For example, existing
distributed DL training systems often partition the dataset by
data category to highlight the Non-IID nature of the data [356].
However, the data distribution collected by AIoT devices is
clearly more diverse and challenging. Possible directions for
distributed DL training can consider:

• The temporal correlation of the distributed data at di-
verse sub-clusters of AIoT devices varies. Distributed
DL model/data aggregation and communication mecha-
nisms in AIoT system’s distributed learning for syn-/asyn-
chronic datasets/models should be different.

• The spatial correlation of the distributed data in dis-
tributed DNN training, e.g., physically nearby devices
have the potential for better collaboration gains.

• We can divide the participating AIoT devices into diverse
roles in distributed DL training, e.g., collaborators, com-
petitors, and supervisors.

E. Inference and Training Task Balance in Resource-
constrained AIoT Devices

Resouce-constrained AIoT devices always load lightweight
Dl models, such as compressed DL models. However, DL
models with shallow or sparse structures are highly susceptible
to data drift, which occurs when the live data stream captured
by the devices diverges from the data used for training,
leading to a drop in accuracy in real-world applications. Some
efforts [357]–[359] have proven that DL models deployed in
AIoT devices should be continuously retrained using newly
captured live data to maintain accuracy.

However, AIoT devices provide limited resources to execute
computation. Introducing training tasks into AIoT devices will
likely deprive resources of the inference tasks for training,
leading to decreased inference performance. The more re-
sources we allocate to the task of DL retraining, the faster the
training process will be, and we can obtain a high-accuracy
inference model earlier. However, the limited resources allo-
cated to the inference task during the training process may
decrease the overall performance of DL inference. On the
other hand, allocating too few resources to the retraining task

may slow down the retraining speed and delay the accuracy
improvement of the updated model, which could impact the
timely inference accuracy gain. Therefore, it is crucial to trade
off the accuracy improvement from training with real-time
inference performance. We discuss open issues in more detail:

• How to allocate resources for maximizing the inference
accuracy when the training task deprives a certain amount
of memory, regarding the tunable data flow in memory
units. For example, we can share memory resources
between the inference and training tasks via memory
reallocation, recomputation, and swapping techniques.

• How to select promising DL training tasks and allocate
computing resources among them in AIoT devices.

• How to select DL training configurations (e.g., epoch) and
inference configurations (e.g., sampling rate) to maximize
inference accuracy with minimum resource usage.

Making accurate decisions on resource allocation and per-
formance assessment is challenging in advance DL training.
Furthermore, due to the dynamic nature of AIoT context, the
optimal resources and configurations may change over time.
The best decision at the current training may become sub-
optimal for future training phases.

F. Memory-computation Feedback and Joint-optimization

Memory and computation cost of DL models are two crucial
metrics tunable in AIoT systems to affect overall performance,
e.g., delay, and energy cost. However, previous studies have
shown that memory and computation optimization are often
conflicting goals. For instance, recomputation techniques can
save memory space by discarding and recalculating interme-
diate activations, but they can also introduce extra computing
delay [120], [121], [223]. Further research is needed to balance
these two metrics best and enable memory-computation joint
optimization in AIoT systems.

(i) Near- and in-memory computing. The underlying mem-
ory schedule techniques have not kept up with computation
optimization advances in latency and energy reduction over
the years, referred to as the memory wall [360]. The devel-
opment of DL has exacerbated this problem as the frequent
movement of a large amount of data, including input data
and intermediate activations between memory and compute
units. They seriously impacted the latency and energy cost
of DL training and inference tasks. To address this issue,
some studies [361]–[365] physically relocate compute units
(multi-core, GPU, FPGA) closer to memory to reduce data
transport costs. Near-memory and in-memory computing em-
bed computation in the memory array. As compute units
become more intimately connected with memory, finer-grained
parallelism can be proposed to improve energy efficiency and
latency [366]–[369]. However, these compute units placed next
to memory have problems such as less supporting computing
types and weak computing power. Thus, designing at the
system level, rather than the hardware level, to deploy data-
intensive operators (such as ReLU) in near-memory compute
units is promising, especially for ubiquitous AIoT devices
without hardware replacement. DL operators need to access a
large amount of data for computing, which causes considerable

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 32

data transfer delay and lower computing demands. Also, we
can carefully allocate DL operators to the near- and in-memory
units to reduce memory access costs and improve computation
efficiency at the operator and instructor levels.

(ii) Memory-aware computing in runtime/compiler opti-
mization. Memory-computation joint optimization for AIoT
can be achieved by co-designing the DL algorithm and en-
gine. At the algorithm level, we can interleave computation-
intensive and data-intensive operators to balance the workload
of compute units near memory. At the engine level, we can
optimize the computation graph and generate execution code
to reduce access delay for data-intensive operators. These can
be achieved by optimizing the inner layers of the loop.

VII. CONCLUSION

Artificial Intelligence of Things (AIoT) combines AI tech-
nologies with IoT infrastructures, enhancing the efficiency and
efficacy of data analysis. However, due to the heterogeneous
and dynamic nature of AIoT hardware, co-designed cross-
level AIoT system and adaptive controllers are needed to
expand the boundaries of system performance beyond what
can be achieved by algorithm-level techniques alone. These
co-designed systems can push the boundaries of resource-
performance tradeoffs for AIoT. Specifically, the cross-level
AIoT system spans on-device and distributed DL train-
ing/inference algorithms, computation graphs, operators, mem-
ory schedules, hardware instructions, etc. With the contin-
uous development of DL technologies and AIoT devices,
the AIoT system expands the cyber-physical space to the
human space, providing low-cost, high-quality, and inclusive
ubiquitous intelligence for a wide range of AIoT application
domains. Given the heterogeneous and dynamic nature of
AIoT hardware, co-designed cross-level AIoT systems, and
adaptive controllers can further expand the boundaries of sys-
tem performance, including accuracy and resource consump-
tion, beyond what can be achieved with algorithm-level or
system-level techniques alone. We hope this survey will raise
awareness and stimulate discussion among researchers and de-
velopers on AIoT system. This paper elucidates many aspects
of distributed device collaboration (i.e., network topology
establishment), and data exchange in real-world inference and
training tasks. These insights are invaluable for communication
researchers, as they provide a deeper understanding of the
intricacies involved. More heuristics and insights are needed to
ensure resource-efficient AIoT systems. For example, reliable
and real-time communication can further enhance network
efficiency in AIoT deployments.

ACKNOWLEDGMENTS

This work was partially supported by the National Science
Fund for Distinguished Young Scholars (62025205) and the
National Natural Science Foundation of China (No. 62032020,
62102317).

REFERENCES

[1] A. Ghosh, D. Chakraborty, and A. Law, “Artificial intelligence in
internet of things,” CAAI Transactions on Intelligence Technology,
vol. 3, no. 4, pp. 208–218, 2018.

[2] “Cisco annual internet report (2018–2023) white paper,” https:
//www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/
annual-internet-report/white-paper-c11-741490.html.

[3] M. U. Hassan, M. H. Rehmani, and J. Chen, “Privacy preservation in
blockchain based iot systems: Integration issues, prospects, challenges,
and future research directions,” Future Generation Computer Systems,
vol. 97, pp. 512–529, 2019.

[4] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[5] P. P. Ray, “A review on tinyml: State-of-the-art and prospects,” Journal
of King Saud University-Computer and Information Sciences, 2021.

[6] P. Guo, B. Hu, and W. Hu, “Mistify: Automating dnn model porting
for on-device inference at the edge,” in NSDI, 2021.

[7] L. Liu, H. Li, and M. Gruteser, “Edge assisted real-time object detec-
tion for mobile augmented reality,” in The 25th annual international
conference on mobile computing and networking, 2019, pp. 1–16.

[8] S. Liu, B. Guo, K. Ma, Z. Yu, and J. Du, “Adaspring: Context-adaptive
and runtime-evolutionary deep model compression for mobile applica-
tions,” Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, vol. 5, no. 1, pp. 1–22, 2021.

[9] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, H. Shen, M. Cowan,
L. Wang, Y. Hu, L. Ceze et al., “{TVM}: An automated {End-to-End}
optimizing compiler for deep learning,” in 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 18), 2018,
pp. 578–594.

[10] tensorflow, “Tensorflowruntime,” https://blog.tensorflow.org/2020/04/
tfrt-new-tensorflow-runtime.html.

[11] ——, “tensorflowxla,” https://www.tensorflow.org/xla?hl=zh-cn.
[12] J. Lin, W.-M. Chen, Y. Lin, C. Gan, S. Han et al., “Mcunet: Tiny deep

learning on iot devices,” Advances in Neural Information Processing
Systems, vol. 33, pp. 11 711–11 722, 2020.

[13] H. Benmeziane, K. El Maghraoui, H. Ouarnoughi, S. Niar, M. Wistuba,
and N. Wang, “Hardware-aware neural architecture search: Survey and
taxonomy.” in IJCAI, 2021, pp. 4322–4329.

[14] P. Joshi, H. Afli, M. Hasanuzzaman, C. Thapa, and T. Scully,
“Enabling deep learning for all-in edge paradigm,” arXiv preprint
arXiv:2204.03326, 2022.

[15] X. Wang, Y. Han, V. C. Leung, D. Niyato, X. Yan, and X. Chen,
“Convergence of edge computing and deep learning: A comprehensive
survey,” IEEE Communications Surveys & Tutorials, vol. 22, no. 2, pp.
869–904, 2020.

[16] J. Chen and X. Ran, “Deep learning with edge computing: A review,”
Proceedings of the IEEE, vol. 107, no. 8, pp. 1655–1674, 2019.

[17] M. Li, Y. Liu, X. Liu, Q. Sun, X. You, H. Yang, Z. Luan, L. Gan,
G. Yang, and D. Qian, “The deep learning compiler: A comprehen-
sive survey,” IEEE Transactions on Parallel and Distributed Systems,
vol. 32, no. 3, pp. 708–727, 2020.

[18] K. Zhang, H. Ying, H.-N. Dai, L. Li, Y. Peng, K. Guo, and H. Yu,
“Compacting deep neural networks for internet of things: Methods
and applications,” IEEE Internet of Things Journal, vol. 8, no. 15,
pp. 11 935–11 959, 2021.

[19] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[20] S. Tang, L. Chen, K. He, J. Xia, L. Fan, and A. Nallanathan, “Com-
putational intelligence and deep learning for next-generation edge-
enabled industrial iot,” IEEE Transactions on Network Science and
Engineering, 2022.

[21] Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
intelligence: Paving the last mile of artificial intelligence with edge
computing,” Proceedings of the IEEE, vol. 107, no. 8, pp. 1738–1762,
2019.

[22] P. Nauth, Embedded intelligent systems. Walter de Gruyter, 2009.
[23] I. Ghosh, “Aiot: when artificial intelligence meets the internet of

things,” Visual Capitalist, vol. 12, 2020.
[24] “The third wave of ai,” https://elleknowsmachines.com/

third-wave-of-ai/.
[25] S. S. Saha, S. S. Sandha, and M. Srivastava, “Machine learning for

microcontroller-class hardware-a review,” IEEE Sensors Journal, 2022.
[26] “Tensorflow lite,” https://www.tensorflow.org/lite.
[27] “Caffe2,” https://caffe2.ai/.
[28] “Pytorch mobile,” https://pytorch.org/mobile/home/.
[29] S. Nazir, Y. Ali, N. Ullah, and I. Garcı́a-Magariño, “Internet of things

for healthcare using effects of mobile computing: a systematic literature
review,” Wireless Communications and Mobile Computing, vol. 2019,
pp. 1–20, 2019.

https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://blog.tensorflow.org/2020/04/tfrt-new-tensorflow-runtime.html
https://blog.tensorflow.org/2020/04/tfrt-new-tensorflow-runtime.html
https://www.tensorflow.org/xla?hl=zh-cn
https://elleknowsmachines.com/third-wave-of-ai/
https://elleknowsmachines.com/third-wave-of-ai/
https://www.tensorflow.org/lite.
https://caffe2.ai/
https://pytorch.org/mobile/home/

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 33

[30] G. Cicceri, F. De Vita, D. Bruneo, G. Merlino, and A. Puliafito, “A deep
learning approach for pressure ulcer prevention using wearable com-
puting,” Human-centric Computing and Information Sciences, vol. 10,
no. 1, pp. 1–21, 2020.

[31] P. P. Ray, “A review on tinyml: State-of-the-art and prospects,” Journal
of King Saud University-Computer and Information Sciences, vol. 34,
no. 4, pp. 1595–1623, 2022.

[32] S. Han. Tinyml project. [Online]. Available: https://tinyml.mit.edu/
[33] J. Mendez, K. Bierzynski, M. Cuéllar, and D. P. Morales, “Edge in-

telligence: Concepts, architectures, applications and future directions,”
ACM Transactions on Embedded Computing Systems, 2022.

[34] A. Capotondi, M. Rusci, M. Fariselli, and L. Benini, “Cmix-nn: Mixed
low-precision cnn library for memory-constrained edge devices,” IEEE
Transactions on Circuits and Systems II: Express Briefs, vol. 67, no. 5,
pp. 871–875, 2020.

[35] Intel, “onednn,” https://github.com/oneapi-src/oneDNN.
[36] T. Wan, B. Shao, S. Ma, Y. Zhou, Q. Li, and Y. Chai, “In-sensor

computing: Materials, devices, and integration technologies,” Advanced
Materials, p. 2203830, 2022.

[37] F. Zhou and Y. Chai, “Near-sensor and in-sensor computing,” Nature
Electronics, vol. 3, no. 11, pp. 664–671, 2020.

[38] J. Lin, L. Zhu, W.-M. Chen, W.-C. Wang, C. Gan, and
S. Han, “On-device training under 256kb memory,” arXiv preprint
arXiv:2206.15472, 2022.

[39] M. Rhu, N. Gimelshein, J. Clemons, A. Zulfiqar, and S. W. Keckler,
“vdnn: Virtualized deep neural networks for scalable, memory-efficient
neural network design,” in 2016 49th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2016, pp. 1–13.

[40] L. Wang, J. Ye, Y. Zhao, W. Wu, A. Li, S. L. Song, Z. Xu, and
T. Kraska, “Superneurons: Dynamic gpu memory management for
training deep neural networks,” in Proceedings of the 23rd ACM SIG-
PLAN symposium on principles and practice of parallel programming,
2018, pp. 41–53.

[41] T. Li, J. Huang, E. Risinger, and D. Ganesan, “Low-latency speculative
inference on distributed multi-modal data streams,” in Proceedings
of the 19th Annual International Conference on Mobile Systems,
Applications, and Services, 2021, pp. 67–80.

[42] S. Petridis, T. Stafylakis, P. Ma, F. Cai, G. Tzimiropoulos, and
M. Pantic, “End-to-end audiovisual speech recognition,” in 2018 IEEE
international conference on acoustics, speech and signal processing
(ICASSP). IEEE, 2018, pp. 6548–6552.

[43] Y. Tian, J. Shi, B. Li, Z. Duan, and C. Xu, “Audio-visual event
localization in unconstrained videos,” in Proceedings of the European
Conference on Computer Vision (ECCV), 2018, pp. 247–263.

[44] V. Radu, C. Tong, S. Bhattacharya, N. D. Lane, C. Mascolo, M. K.
Marina, and F. Kawsar, “Multimodal deep learning for activity and
context recognition,” Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, vol. 1, no. 4, pp. 1–27, 2018.

[45] Z. Ning, P. Dong, X. Wang, M. S. Obaidat, X. Hu, L. Guo, Y. Guo,
J. Huang, B. Hu, and Y. Li, “When deep reinforcement learning meets
5g-enabled vehicular networks: A distributed offloading framework for
traffic big data,” IEEE Transactions on Industrial Informatics, vol. 16,
no. 2, pp. 1352–1361, 2019.

[46] H. Lin, S. Zeadally, Z. Chen, H. Labiod, and L. Wang, “A survey
on computation offloading modeling for edge computing,” Journal of
Network and Computer Applications, vol. 169, p. 102781, 2020.

[47] J. Verbraeken, M. Wolting, J. Katzy, J. Kloppenburg, T. Verbelen, and
J. S. Rellermeyer, “A survey on distributed machine learning,” Acm
computing surveys (csur), vol. 53, no. 2, pp. 1–33, 2020.

[48] D. C. Nguyen, M. Ding, P. N. Pathirana, A. Seneviratne, J. Li, and
H. V. Poor, “Federated learning for internet of things: A comprehensive
survey,” IEEE Communications Surveys & Tutorials, vol. 23, no. 3, pp.
1622–1658, 2021.

[49] J. Tan, C. Wang, B. Li, Q. Li, W. Ouyang, C. Yin, and J. Yan,
“Equalization loss for long-tailed object recognition,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
2020, pp. 11 662–11 671.

[50] M. Zhou, Y. Bai, W. Zhang, T. Zhao, and T. Mei, “Look-into-
object: Self-supervised structure modeling for object recognition,” in
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2020, pp. 11 774–11 783.

[51] A. T. Abu-Jassar, Y. M. Al-Sharo, V. Lyashenko, and S. Sotnik,
“Some features of classifiers implementation for object recognition in
specialized computer systems,” TEM Journal, vol. 10, no. 4, p. 1645,
2021.

[52] W. Xu, Z. Yang, D. W. K. Ng, M. Levorato, Y. C. Eldar, and
M. Debbah, “Edge learning for b5g networks with distributed signal

processing: Semantic communication, edge computing, and wireless
sensing,” IEEE Journal of Selected Topics in Signal Processing, 2023.

[53] Y. Yuan, X. Chen, and J. Wang, “Object-contextual representations
for semantic segmentation,” in Computer Vision–ECCV 2020: 16th
European Conference, Glasgow, UK, August 23–28, 2020, Proceedings,
Part VI 16. Springer, 2020, pp. 173–190.

[54] W. Wang, T. Zhou, F. Yu, J. Dai, E. Konukoglu, and L. Van Gool,
“Exploring cross-image pixel contrast for semantic segmentation,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 7303–7313.

[55] E. Xie, W. Wang, Z. Yu, A. Anandkumar, J. M. Alvarez, and P. Luo,
“Segformer: Simple and efficient design for semantic segmentation
with transformers,” Advances in Neural Information Processing Sys-
tems, vol. 34, pp. 12 077–12 090, 2021.

[56] Q. Wang, L. Zhang, L. Bertinetto, W. Hu, and P. H. Torr, “Fast
online object tracking and segmentation: A unifying approach,” in
Proceedings of the IEEE/CVF conference on Computer Vision and
Pattern Recognition, 2019, pp. 1328–1338.

[57] Y. Zhang, P. Sun, Y. Jiang, D. Yu, F. Weng, Z. Yuan, P. Luo,
W. Liu, and X. Wang, “Bytetrack: Multi-object tracking by associating
every detection box,” in Computer Vision–ECCV 2022: 17th European
Conference, Tel Aviv, Israel, October 23–27, 2022, Proceedings, Part
XXII. Springer, 2022, pp. 1–21.

[58] T. Meinhardt, A. Kirillov, L. Leal-Taixe, and C. Feichtenhofer, “Track-
former: Multi-object tracking with transformers,” in Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition,
2022, pp. 8844–8854.

[59] A. Galassi, M. Lippi, and P. Torroni, “Attention in natural language
processing,” IEEE transactions on neural networks and learning sys-
tems, vol. 32, no. 10, pp. 4291–4308, 2020.

[60] P. Liu, W. Yuan, J. Fu, Z. Jiang, H. Hayashi, and G. Neubig, “Pre-train,
prompt, and predict: A systematic survey of prompting methods in
natural language processing,” ACM Computing Surveys, vol. 55, no. 9,
pp. 1–35, 2023.

[61] S. Wang, L. Hu, Y. Wang, L. Cao, Q. Z. Sheng, and M. Orgun,
“Sequential recommender systems: challenges, progress and prospects,”
arXiv preprint arXiv:2001.04830, 2019.

[62] M. Naumov, D. Mudigere, H.-J. M. Shi, J. Huang, N. Sundaraman,
J. Park, X. Wang, U. Gupta, C.-J. Wu, A. G. Azzolini et al., “Deep
learning recommendation model for personalization and recommenda-
tion systems,” arXiv preprint arXiv:1906.00091, 2019.

[63] S. Wu, F. Sun, W. Zhang, X. Xie, and B. Cui, “Graph neural networks
in recommender systems: a survey,” ACM Computing Surveys, vol. 55,
no. 5, pp. 1–37, 2022.

[64] C. Guo, C. Li, J. Guo, C. C. Loy, J. Hou, S. Kwong, and R. Cong,
“Zero-reference deep curve estimation for low-light image enhance-
ment,” in Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 2020, pp. 1780–1789.

[65] J. Flinn and M. Satyanarayanan, “Energy-aware adaptation for mobile
applications,” ACM SIGOPS Operating Systems Review, vol. 33, no. 5,
pp. 48–63, 1999.

[66] L. Benini and G. d. Micheli, “System-level power optimization:
techniques and tools,” ACM Transactions on Design Automation of
Electronic Systems (TODAES), vol. 5, no. 2, pp. 115–192, 2000.

[67] H. Hu, R. Peng, Y.-W. Tai, and C.-K. Tang, “Network trimming: A data-
driven neuron pruning approach towards efficient deep architectures,”
arXiv preprint arXiv:1607.03250, 2016.

[68] J.-H. Luo, J. Wu, and W. Lin, “Thinet: A filter level pruning method
for deep neural network compression,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 5058–5066.

[69] Y. He, X. Zhang, and J. Sun, “Channel pruning for accelerating
very deep neural networks,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 1389–1397.

[70] P. Kaloshin, “Convolutional neural networks compression with
low rank and sparse tensor decompositions,” arXiv preprint
arXiv:2006.06443, 2020.

[71] E. Liberis, Ł. Dudziak, and N. D. Lane, “µnas: Constrained neural
architecture search for microcontrollers,” in Proceedings of the 1st
Workshop on Machine Learning and Systems, 2021, pp. 70–79.

[72] M. Rusci, A. Capotondi, and L. Benini, “Memory-driven mixed low
precision quantization for enabling deep network inference on micro-
controllers,” Proceedings of Machine Learning and Systems, vol. 2, pp.
326–335, 2020.

[73] M. Rusci, M. Fariselli, A. Capotondi, and L. Benini, “Leveraging
automated mixed-low-precision quantization for tiny edge microcon-
trollers,” in IoT Streams for Data-Driven Predictive Maintenance and

https://tinyml.mit.edu/
https://github.com/oneapi-src/oneDNN

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 34

IoT, Edge, and Mobile for Embedded Machine Learning. Springer,
2020, pp. 296–308.

[74] S. Liu, J. Du, K. Nan, Z. Zhou, H. Liu, Z. Wang, and Y. Lin, “Adadeep:
a usage-driven, automated deep model compression framework for
enabling ubiquitous intelligent mobiles,” IEEE Transactions on Mobile
Computing, vol. 20, no. 12, pp. 3282–3297, 2020.

[75] Y. Ding, L. Zhu, Z. Jia, G. Pekhimenko, and S. Han, “Ios: Inter-operator
scheduler for cnn acceleration,” Proceedings of Machine Learning and
Systems, vol. 3, pp. 167–180, 2021.

[76] X. Cai, Y. Wang, and L. Zhang, “Optimus: An operator fusion
framework for deep neural networks,” ACM Transactions on Embedded
Computing Systems (TECS), 2022.

[77] W. Niu, J. Guan, Y. Wang, G. Agrawal, and B. Ren, “Dnnfusion:
accelerating deep neural networks execution with advanced operator
fusion,” in Proceedings of the 42nd ACM SIGPLAN International
Conference on Programming Language Design and Implementation,
2021, pp. 883–898.

[78] H. Miao and F. X. Lin, “Enabling large neural networks on tiny
microcontrollers with swapping,” arXiv preprint arXiv:2101.08744,
2021.

[79] J.-C. Huang and T. Leng, “Generalized loop-unrolling: a method
for program speedup,” in Proceedings 1999 IEEE Symposium on
Application-Specific Systems and Software Engineering and Technol-
ogy. ASSET’99 (Cat. No. PR00122). IEEE, 1999, pp. 244–248.

[80] E.-J. Im and K. Yelick, “Optimizing sparse matrix computations for
register reuse in sparsity,” in Computational Science—ICCS 2001:
International Conference San Francisco, CA, USA, May 28–30, 2001
Proceedings, Part I 1. Springer, 2001, pp. 127–136.

[81] M. Boehm, B. Reinwald, D. Hutchison, A. V. Evfimievski, and P. Sen,
“On optimizing operator fusion plans for large-scale machine learning
in systemml,” arXiv preprint arXiv:1801.00829, 2018.

[82] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “{TensorFlow}: a system
for {Large-Scale} machine learning,” in 12th USENIX symposium on
operating systems design and implementation (OSDI 16), 2016, pp.
265–283.

[83] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito,
Z. Lin, A. Desmaison, L. Antiga, and A. Lerer, “Automatic differenti-
ation in pytorch,” 2017.

[84] S. Yun, W. Choi, and I.-M. Kim, “Cooperative inference of dnns for
delay-and memory-constrained wireless iot systems,” IEEE Internet of
Things Journal, 2022.

[85] W. Wu, P. Yang, W. Zhang, C. Zhou, and X. Shen, “Accuracy-
guaranteed collaborative dnn inference in industrial iot via deep re-
inforcement learning,” IEEE Transactions on Industrial Informatics,
vol. 17, no. 7, pp. 4988–4998, 2020.

[86] W. He, S. Guo, S. Guo, X. Qiu, and F. Qi, “Joint dnn partition
deployment and resource allocation for delay-sensitive deep learning
inference in iot,” IEEE Internet of Things Journal, vol. 7, no. 10, pp.
9241–9254, 2020.

[87] J. Mao, X. Chen, K. W. Nixon, C. Krieger, and Y. Chen, “Modnn:
Local distributed mobile computing system for deep neural network,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2017. IEEE, 2017, pp. 1396–1401.

[88] J. Mao, Z. Yang, W. Wen, C. Wu, L. Song, K. W. Nixon, X. Chen,
H. Li, and Y. Chen, “Mednn: A distributed mobile system with
enhanced partition and deployment for large-scale dnns,” in 2017
IEEE/ACM International Conference on Computer-Aided Design (IC-
CAD). IEEE, 2017, pp. 751–756.

[89] Z. Zhao, K. M. Barijough, and A. Gerstlauer, “Deepthings: Distributed
adaptive deep learning inference on resource-constrained iot edge
clusters,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 37, no. 11, pp. 2348–2359, 2018.

[90] R. Stahl, A. Hoffman, D. Mueller-Gritschneder, A. Gerstlauer, and
U. Schlichtmann, “Deeperthings: Fully distributed cnn inference on
resource-constrained edge devices,” International Journal of Parallel
Programming, vol. 49, no. 4, pp. 600–624, 2021.

[91] W. Zhang, D. Yang, H. Peng, W. Wu, W. Quan, H. Zhang, and
X. Shen, “Deep reinforcement learning based resource management
for dnn inference in industrial iot,” IEEE Transactions on Vehicular
Technology, vol. 70, no. 8, pp. 7605–7618, 2021.

[92] L. Zeng, X. Chen, Z. Zhou, L. Yang, and J. Zhang, “Coedge:
Cooperative dnn inference with adaptive workload partitioning over
heterogeneous edge devices,” IEEE/ACM Transactions on Networking,
vol. 29, no. 2, pp. 595–608, 2020.

[93] R. Hadidi, J. Cao, M. S. Ryoo, and H. Kim, “Toward collaborative
inferencing of deep neural networks on internet-of-things devices,”
IEEE Internet of Things Journal, vol. 7, no. 6, pp. 4950–4960, 2020.

[94] S. Zhang, S. Zhang, Z. Qian, J. Wu, Y. Jin, and S. Lu, “Deepslicing:
collaborative and adaptive cnn inference with low latency,” IEEE
Transactions on Parallel and Distributed Systems, vol. 32, no. 9, pp.
2175–2187, 2021.

[95] S. J. Pan, X. Ni, J.-T. Sun, Q. Yang, and Z. Chen, “Cross-domain
sentiment classification via spectral feature alignment,” in Proceedings
of the 19th international conference on World wide web, 2010, pp.
751–760.

[96] R. Chattopadhyay, Q. Sun, W. Fan, I. Davidson, S. Panchanathan,
and J. Ye, “Multisource domain adaptation and its application to early
detection of fatigue,” ACM Transactions on Knowledge Discovery from
Data (TKDD), vol. 6, no. 4, pp. 1–26, 2012.

[97] L. Duan, I. W. Tsang, and D. Xu, “Domain transfer multiple kernel
learning,” IEEE Transactions on Pattern Analysis and Machine Intel-
ligence, vol. 34, no. 3, pp. 465–479, 2012.

[98] M. Oquab, L. Bottou, I. Laptev, and J. Sivic, “Learning and transferring
mid-level image representations using convolutional neural networks,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 1717–1724.

[99] Q. Wang, O. Fink, L. Van Gool, and D. Dai, “Continual test-time
domain adaptation,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2022, pp. 7201–7211.

[100] K. Shen, R. M. Jones, A. Kumar, S. M. Xie, J. Z. HaoChen, T. Ma,
and P. Liang, “Connect, not collapse: Explaining contrastive learning
for unsupervised domain adaptation,” in International Conference on
Machine Learning. PMLR, 2022, pp. 19 847–19 878.

[101] R. Gal, O. Patashnik, H. Maron, A. H. Bermano, G. Chechik, and
D. Cohen-Or, “Stylegan-nada: Clip-guided domain adaptation of image
generators,” ACM Transactions on Graphics (TOG), vol. 41, no. 4, pp.
1–13, 2022.

[102] B. Xie, L. Yuan, S. Li, C. H. Liu, X. Cheng, and G. Wang, “Active
learning for domain adaptation: An energy-based approach,” in Pro-
ceedings of the AAAI Conference on Artificial Intelligence, vol. 36,
no. 8, 2022, pp. 8708–8716.

[103] F. Xu, Z. Pan, and R. Xia, “E-commerce product review sentiment
classification based on a naı̈ve bayes continuous learning framework,”
Information Processing & Management, vol. 57, no. 5, p. 102221,
2020.

[104] M. Irfan, Z. Jiangbin, M. Iqbal, and M. H. Arif, “A novel lifelong
learning model based on cross domain knowledge extraction and
transfer to classify underwater images,” Information Sciences, vol. 552,
pp. 80–101, 2021.

[105] J. Yuan, S. E. Liu, A. Shylendra, W. A. Gaviria Rojas, S. Guo,
H. Bergeron, S. Li, H.-S. Lee, S. Nasrin, V. K. Sangwan et al., “Re-
configurable mos2 memtransistors for continuous learning in spiking
neural networks,” Nano letters, vol. 21, no. 15, pp. 6432–6440, 2021.

[106] W. Huang, M. Ye, and B. Du, “Learn from others and be yourself in
heterogeneous federated learning,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp.
10 143–10 153.

[107] X. Fang and M. Ye, “Robust federated learning with noisy and
heterogeneous clients,” in Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, 2022, pp. 10 072–10 081.

[108] W. Tang, G. Hua, and L. Wang, “How to train a compact binary neural
network with high accuracy?” in Proceedings of the AAAI conference
on artificial intelligence, vol. 31, no. 1, 2017.

[109] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuoglu,
“Hierarchical representations for efficient architecture search,” arXiv
preprint arXiv:1711.00436, 2017.

[110] A. Tjandra, S. Sakti, and S. Nakamura, “Tensor decomposition for
compressing recurrent neural network,” in 2018 International Joint
Conference on Neural Networks (IJCNN). IEEE, 2018, pp. 1–8.

[111] Z. Zhong, J. Yan, W. Wu, J. Shao, and C.-L. Liu, “Practical block-
wise neural network architecture generation,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2018,
pp. 2423–2432.

[112] H. Cai, C. Gan, L. Zhu, and S. Han, “Tinytl: Reduce memory,
not parameters for efficient on-device learning,” Advances in Neural
Information Processing Systems, vol. 33, pp. 11 285–11 297, 2020.

[113] S. Liu, C. Zheng, Y. Huang, and T. Q. Quek, “Distributed reinforcement
learning for privacy-preserving dynamic edge caching,” IEEE Journal
on Selected Areas in Communications, vol. 40, no. 3, pp. 749–760,
2022.

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 35

[114] J. J. Moon, P. Kapoor, J. H. Lee, M. J. Ham, and H. S. Lee,
“Nntrainer: Light-weight on-device training framework,” arXiv preprint
arXiv:2206.04688, 2022.

[115] Z. Deng, C. Xu, Q. Cai, P. Faraboschi, and H. Packard, “Reduced-
precision memory value approximation for deep learning,” Hewlett
Packard Labs, HPL-2015-100, 2015.

[116] S. R. Bulo, L. Porzi, and P. Kontschieder, “In-place activated batchnorm
for memory-optimized training of dnns,” in Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2018, pp.
5639–5647.

[117] W. Jung, D. Jung, B. Kim, S. Lee, W. Rhee, and J. H. Ahn, “Restruc-
turing batch normalization to accelerate cnn training,” Proceedings of
Machine Learning and Systems, vol. 1, pp. 14–26, 2019.

[118] L. Liu, L. Deng, X. Hu, M. Zhu, G. Li, Y. Ding, and Y. Xie,
“Dynamic sparse graph for efficient deep learning,” arXiv preprint
arXiv:1810.00859, 2018.

[119] P. Dai, J. Yang, X. Ye, X. Cheng, J. Luo, L. Song, Y. Chen, and
W. Zhao, “Sparsetrain: Exploiting dataflow sparsity for efficient con-
volutional neural networks training,” in 2020 57th ACM/IEEE Design
Automation Conference (DAC). IEEE, 2020, pp. 1–6.

[120] T. Chen, B. Xu, C. Zhang, and C. Guestrin, “Training deep nets with
sublinear memory cost,” arXiv preprint arXiv:1604.06174, 2016.

[121] A. N. Gomez, M. Ren, R. Urtasun, and R. B. Grosse, “The reversible
residual network: Backpropagation without storing activations,” Ad-
vances in neural information processing systems, vol. 30, 2017.

[122] A. Jain, A. Phanishayee, J. Mars, L. Tang, and G. Pekhimenko,
“Gist: Efficient data encoding for deep neural network training,” in
2018 ACM/IEEE 45th Annual International Symposium on Computer
Architecture (ISCA). IEEE, 2018, pp. 776–789.

[123] J. Lin, W.-M. Chen, H. Cai, C. Gan, and S. Han, “Memory-efficient
patch-based inference for tiny deep learning,” Advances in Neural
Information Processing Systems, vol. 34, pp. 2346–2358, 2021.

[124] Z. Jia, J. Thomas, T. Warszawski, M. Gao, M. Zaharia, and A. Aiken,
“Optimizing dnn computation with relaxed graph substitutions,” Pro-
ceedings of Machine Learning and Systems, vol. 1, pp. 27–39, 2019.

[125] Y. Zhou, S. Roy, A. Abdolrashidi, D. Wong, P. Ma, Q. Xu, H. Liu,
P. Phothilimtha, S. Wang, A. Goldie et al., “Transferable graph opti-
mizers for ml compilers,” Advances in Neural Information Processing
Systems, vol. 33, pp. 13 844–13 855, 2020.

[126] X. Chen, D. Z. Chen, and X. S. Hu, “modnn: Memory optimal dnn
training on gpus,” in 2018 Design, Automation & Test in Europe
Conference & Exhibition (DATE). IEEE, 2018, pp. 13–18.

[127] T. Huang, L. Tao, and J. T. Zhou, “Adaptive precision training for
resource constrained devices,” in 2020 IEEE 40th International Con-
ference on Distributed Computing Systems (ICDCS). IEEE, 2020, pp.
1403–1408.

[128] Y. Huang, Y. Cheng, A. Bapna, O. Firat, D. Chen, M. Chen, H. Lee,
J. Ngiam, Q. V. Le, Y. Wu et al., “Gpipe: Efficient training of
giant neural networks using pipeline parallelism,” Advances in neural
information processing systems, vol. 32, 2019.

[129] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y.-C. Liang, Q. Yang,
D. Niyato, and C. Miao, “Federated learning in mobile edge networks:
A comprehensive survey,” IEEE Communications Surveys & Tutorials,
vol. 22, no. 3, pp. 2031–2063, 2020.

[130] H. Cui, H. Zhang, G. R. Ganger, P. B. Gibbons, and E. P. Xing, “Geeps:
Scalable deep learning on distributed gpus with a gpu-specialized
parameter server,” in Proceedings of the eleventh european conference
on computer systems, 2016, pp. 1–16.

[131] M. Wahib, H. Zhang, T. T. Nguyen, A. Drozd, J. Domke, L. Zhang,
R. Takano, and S. Matsuoka, “Scaling distributed deep learning work-
loads beyond the memory capacity with karma,” in SC20: International
Conference for High Performance Computing, Networking, Storage and
Analysis. IEEE, 2020, pp. 1–15.

[132] G. Lim, J. Ahn, W. Xiao, Y. Kwon, and M. Jeon, “Zico: Efficient
gpu memory sharing for concurrent dnn training.” in USENIX Annual
Technical Conference, 2021, pp. 161–175.

[133] E. Samikwa, A. Di Maio, and T. Braun, “Ares: Adaptive resource-
aware split learning for internet of things,” Computer Networks, vol.
218, p. 109380, 2022.

[134] “Open neural network exchange,” https://onnx.ai/.
[135] D. Gudovskiy, A. Hodgkinson, and L. Rigazio, “Dnn feature map

compression using learned representation over gf (2),” in Proceedings
of the European Conference on Computer Vision (ECCV) Workshops,
2018, pp. 0–0.

[136] Y. Wu, Y. Gong, P. Zhao, Y. Li, Z. Zhan, W. Niu, H. Tang, M. Qin,
B. Ren, and Y. Wang, “Compiler-aware neural architecture search
for on-mobile real-time super-resolution,” in Computer Vision–ECCV

2022: 17th European Conference, Tel Aviv, Israel, October 23–27,
2022, Proceedings, Part XIX. Springer, 2022, pp. 92–111.

[137] K.-C. Tai, “Constant folding within an expression by semantic at-
tributes,” Computer Languages, vol. 4, no. 3-4, pp. 131–137, 1979.

[138] S. Glesner and J. O. Blech, “Classifying and formally verifying integer
constant folding,” Electronic Notes in Theoretical Computer Science,
vol. 82, no. 2, pp. 410–425, 2004.

[139] J. Cocke, “Global common subexpression elimination,” in Proceedings
of a symposium on Compiler optimization, 1970, pp. 20–24.

[140] T. Elgamal, S. Luo, M. Boehm, A. V. Evfimievski, S. Tatikonda,
B. Reinwald, and P. Sen, “Spoof: Sum-product optimization and
operator fusion for large-scale machine learning.” in CIDR, 2017.

[141] Q. Wang, M. Xu, C. Jin, X. Dong, J. Yuan, X. Jin, G. Huang,
Y. Liu, and X. Liu, “Melon: Breaking the memory wall for resource-
efficient on-device machine learning,” in Proceedings of the 20th
Annual International Conference on Mobile Systems, Applications and
Services, 2022, pp. 450–463.

[142] M. J. Fenske, E. Aminoff, N. Gronau, and M. Bar, “Top-down
facilitation of visual object recognition: object-based and context-based
contributions,” Progress in brain research, vol. 155, pp. 3–21, 2006.

[143] W.-F. Lin, S. K. Reinhardt, and D. Burger, “Reducing dram latencies
with an integrated memory hierarchy design,” in Proceedings HPCA
Seventh International Symposium on High-Performance Computer Ar-
chitecture. IEEE, 2001, pp. 301–312.

[144] “Raspberry pi series processors,” https://www.raspberrypi.com/
products/.

[145] “Microcontrollers and microprocessors,” https://www.microchip.com/
en-us/products/microcontrollers-and-microprocessors.

[146] S. Liu, X. Li, Z. Zhou, B. Guo, M. Zhang, H. Shen, and Z. Yu,
“Adaenlight: Energy-aware low-light video stream enhancement on
mobile devices,” Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, vol. 6, no. 4, pp. 1–26, 2023.

[147] J.-W. Lai, “Opportunity and challenge of chiplet-based hpc and aiot,”
in 2021 International Symposium on VLSI Design, Automation and Test
(VLSI-DAT). IEEE, 2021, pp. 1–2.

[148] L. L. Zhang, S. Han, J. Wei, N. Zheng, T. Cao, Y. Yang, and Y. Liu,
“Nn-meter: Towards accurate latency prediction of deep-learning model
inference on diverse edge devices,” in Proceedings of the 19th Annual
International Conference on Mobile Systems, Applications, and Ser-
vices, 2021, pp. 81–93.

[149] S. I. Venieris and C.-S. Bouganis, “Latency-driven design for fpga-
based convolutional neural networks,” in 2017 27th International
Conference on Field Programmable Logic and Applications (FPL).
IEEE, 2017, pp. 1–8.

[150] N. K. Jha and S. Mittal, “Modeling data reuse in deep neural networks
by taking data-types into cognizance,” IEEE Transactions on Comput-
ers, vol. 70, no. 9, pp. 1526–1538, 2020.

[151] N. K. Jha, S. Mittal, and G. Mattela, “The ramifications of making deep
neural networks compact,” in 2019 32nd International Conference on
VLSI Design and 2019 18th International Conference on Embedded
Systems (VLSID). IEEE, 2019, pp. 215–220.

[152] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and¡ 0.5 mb model size,” arXiv preprint arXiv:1602.07360,
2016.

[153] H. Wang, B. Guo, J. Liu, S. Liu, Y. Wu, and Z. Yu, “Context-aware
adaptive surgery: A fast and effective framework for adaptative model
partition,” Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, vol. 5, no. 3, pp. 1–22, 2021.

[154] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Proceedings of the AAAI conference on artificial intelligence, vol. 31,
no. 1, 2017.

[155] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv
preprint arXiv:1605.07146, 2016.

[156] Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey of model
compression and acceleration for deep neural networks,” arXiv preprint
arXiv:1710.09282, 2017.

[157] J. Cheng, P.-s. Wang, G. Li, Q.-h. Hu, and H.-q. Lu, “Recent advances
in efficient computation of deep convolutional neural networks,” Fron-
tiers of Information Technology & Electronic Engineering, vol. 19, pp.
64–77, 2018.

[158] Y. Deng, “Deep learning on mobile devices: a review,” in Mobile
Multimedia/Image Processing, Security, and Applications 2019, vol.
10993. SPIE, 2019, pp. 52–66.

https://onnx.ai/
https://www.raspberrypi.com/products/
https://www.raspberrypi.com/products/
https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors
https://www.microchip.com/en-us/products/microcontrollers-and-microprocessors

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 36

[159] T. Choudhary, V. Mishra, A. Goswami, and J. Sarangapani, “A com-
prehensive survey on model compression and acceleration,” Artificial
Intelligence Review, vol. 53, pp. 5113–5155, 2020.

[160] X. He, Z. Zhou, and L. Thiele, “Multi-task zipping via layer-wise neu-
ron sharing,” in Advances in Neural Information Processing Systems,
2018, pp. 6019–6029.

[161] D. Gao, X. He, Z. Zhou, Y. Tong, and L. Thiele, “Pruning meta-
trained networks for on-device adaptation,” in Proceedings of the ACM
International Conference on Information & Knowledge Management,
2021, pp. 514–523.

[162] S. Srinivas and R. V. Babu, “Data-free parameter pruning for deep
neural networks,” arXiv preprint arXiv:1507.06149, 2015.

[163] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[164] M. Jaderberg, A. Vedaldi, and A. Zisserman, “Speeding up convo-
lutional neural networks with low rank expansions,” arXiv preprint
arXiv:1405.3866, 2014.

[165] C. Tai, T. Xiao, Y. Zhang, X. Wang et al., “Convolutional neural net-
works with low-rank regularization,” arXiv preprint arXiv:1511.06067,
2015.

[166] S. Lin, R. Ji, C. Chen, D. Tao, and J. Luo, “Holistic cnn compression
via low-rank decomposition with knowledge transfer,” IEEE transac-
tions on pattern analysis and machine intelligence, vol. 41, no. 12, pp.
2889–2905, 2018.

[167] S. Mehta, M. Rastegari, L. Shapiro, and H. Hajishirzi, “Espnetv2: A
light-weight, power efficient, and general purpose convolutional neural
network,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2019, pp. 9190–9200.

[168] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “Mnasnet: Platform-aware neural architecture search
for mobile,” in Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, 2019, pp. 2820–2828.

[169] M. Lin, Q. Chen, and S. Yan, “Network in network,” arXiv preprint
arXiv:1312.4400, 2013.

[170] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing deep
convolutional networks using vector quantization,” arXiv preprint
arXiv:1412.6115, 2014.

[171] J. Wu, C. Leng, Y. Wang, Q. Hu, and J. Cheng, “Quantized convo-
lutional neural networks for mobile devices,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2016,
pp. 4820–4828.

[172] M. Courbariaux, Y. Bengio, and J.-P. David, “Binaryconnect: Train-
ing deep neural networks with binary weights during propagations,”
Advances in neural information processing systems, vol. 28, 2015.

[173] Z. Li, B. Ni, W. Zhang, X. Yang, and W. Gao, “Performance guar-
anteed network acceleration via high-order residual quantization,” in
Proceedings of the IEEE international conference on computer vision,
2017, pp. 2584–2592.

[174] F. C.-T. Chow, A portable machine-independent global optimizer–
Design and measurements. Stanford University, 1984.

[175] J. Fang, Y. Shen, Y. Wang, and L. Chen, “Optimizing dnn computation
graph using graph substitutions,” Proceedings of the VLDB Endowment,
vol. 13, no. 12, pp. 2734–2746, 2020.

[176] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances
in neural information processing systems, vol. 32, 2019.

[177] X. Wei, Y. Liang, and J. Cong, “Overcoming data transfer bottle-
necks in fpga-based dnn accelerators via layer conscious memory
management,” in Proceedings of the 56th Annual Design Automation
Conference 2019, 2019, pp. 1–6.

[178] A. Symons, L. Mei, and M. Verhelst, “Loma: Fast auto-scheduling on
dnn accelerators through loop-order-based memory allocation,” in 2021
IEEE 3rd International Conference on Artificial Intelligence Circuits
and Systems (AICAS). IEEE, 2021, pp. 1–4.

[179] C. Ji, Z. Zhu, X. Wang, W. Zhai, X. Zong, A. Chen, and M. Zhou,
“Task-aware swapping for efficient dnn inference on dram-constrained
edge systems,” International Journal of Intelligent Systems, vol. 37,
no. 10, pp. 8155–8169, 2022.

[180] G. S. Murthy, M. Ravishankar, M. M. Baskaran, and P. Sadayappan,
“Optimal loop unrolling for gpgpu programs,” in 2010 IEEE Inter-
national Symposium on Parallel & Distributed Processing (IPDPS).
IEEE, 2010, pp. 1–11.

[181] H. Vanholder, “Efficient inference with tensorrt,” in GPU Technology
Conference, vol. 1, 2016, p. 2.

[182] X. Jiang, H. Wang, Y. Chen, Z. Wu, L. Wang, B. Zou, Y. Yang, Z. Cui,
Y. Cai, T. Yu et al., “Mnn: A universal and efficient inference engine,”
Proceedings of Machine Learning and Systems, vol. 2, pp. 1–13, 2020.

[183] Z. Jia, O. Padon, J. Thomas, T. Warszawski, M. Zaharia, and A. Aiken,
“Taso: optimizing deep learning computation with automatic generation
of graph substitutions,” in Proceedings of the 27th ACM Symposium
on Operating Systems Principles, 2019, pp. 47–62.

[184] T. Sekiyama, T. Imamichi, H. Imai, and R. Raymond, “Profile-
guided memory optimization for deep neural networks,” arXiv preprint
arXiv:1804.10001, 2018.

[185] C.-C. Huang, G. Jin, and J. Li, “Swapadvisor: Pushing deep learning
beyond the gpu memory limit via smart swapping,” in Proceedings
of the Twenty-Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems, 2020, pp. 1341–
1355.

[186] P. S. Rawat, A. Sukumaran-Rajam, A. Rountev, F. Rastello, L.-N.
Pouchet, and P. Sadayappan, “Associative instruction reordering to
alleviate register pressure,” in SC18: International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE,
2018, pp. 590–602.

[187] R. Venkatesan, Y. S. Shao, M. Wang, J. Clemons, S. Dai, M. Fojtik,
B. Keller, A. Klinefelter, N. Pinckney, P. Raina et al., “Magnet: A
modular accelerator generator for neural networks,” in 2019 IEEE/ACM
International Conference on Computer-Aided Design (ICCAD). IEEE,
2019, pp. 1–8.

[188] Y. Shen, M. Ferdman, and P. Milder, “Maximizing cnn accelerator
efficiency through resource partitioning,” ACM SIGARCH Computer
Architecture News, vol. 45, no. 2, pp. 535–547, 2017.

[189] A. Parashar, P. Raina, Y. S. Shao, Y.-H. Chen, V. A. Ying, A. Mukkara,
R. Venkatesan, B. Khailany, S. W. Keckler, and J. Emer, “Timeloop:
A systematic approach to dnn accelerator evaluation,” in 2019 IEEE
international symposium on performance analysis of systems and
software (ISPASS). IEEE, 2019, pp. 304–315.

[190] A. Stoutchinin, F. Conti, and L. Benini, “Optimally schedul-
ing cnn convolutions for efficient memory access,” arXiv preprint
arXiv:1902.01492, 2019.

[191] X. Peng, X. Shi, H. Dai, H. Jin, W. Ma, Q. Xiong, F. Yang, and
X. Qian, “Capuchin: Tensor-based gpu memory management for deep
learning,” in Proceedings of the Twenty-Fifth International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2020, pp. 891–905.

[192] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing energy-efficient convo-
lutional neural networks using energy-aware pruning,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
2017, pp. 5687–5695.

[193] J. Farley and A. Gerstlauer, “Memory-aware fusing and tiling of
neural networks for accelerated edge inference,” arXiv preprint
arXiv:2107.06960, 2021.

[194] R. Stahl, Z. Zhao, D. Mueller-Gritschneder, A. Gerstlauer, and
U. Schlichtmann, “Fully distributed deep learning inference on
resource-constrained edge devices,” in International Conference on
Embedded Computer Systems. Springer, 2019, pp. 77–90.

[195] S. Naveen and M. R. Kounte, “Memory optimization at edge for
distributed convolution neural network,” Transactions on Emerging
Telecommunications Technologies, vol. 33, no. 12, p. e4648, 2022.

[196] L. Zeng, E. Li, Z. Zhou, and X. Chen, “Boomerang: On-demand
cooperative deep neural network inference for edge intelligence on the
industrial internet of things,” IEEE Network, vol. 33, no. 5, pp. 96–103,
2019.

[197] J. Chen, S. Chen, Q. Wang, B. Cao, G. Feng, and J. Hu, “iraf: A
deep reinforcement learning approach for collaborative mobile edge
computing iot networks,” IEEE Internet of Things Journal, vol. 6, no. 4,
pp. 7011–7024, 2019.

[198] S. Zhang, Y. Li, X. Liu, S. Guo, W. Wang, J. Wang, B. Ding, and
D. Wu, “Towards real-time cooperative deep inference over the cloud
and edge end devices,” Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, vol. 4, no. 2, pp. 1–24, 2020.

[199] G. Pan, H. Zhang, S. Xu, S. Zhang, and X. Chen, “Joint optimization
of dnn inference delay and energy under accuracy constraints for ar ap-
plications,” in GLOBECOM 2022-2022 IEEE Global Communications
Conference. IEEE, 2022, pp. 2230–2235.

[200] J. Li, W. Liang, Y. Li, Z. Xu, X. Jia, and S. Guo, “Throughput
maximization of delay-aware dnn inference in edge computing by
exploring dnn model partitioning and inference parallelism,” IEEE
Transactions on Mobile Computing, 2021.

[201] H.-J. Jeong, H.-J. Lee, C. H. Shin, and S.-M. Moon, “Ionn: Incremental
offloading of neural network computations from mobile devices to edge

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 37

servers,” in Proceedings of the ACM symposium on cloud computing,
2018, pp. 401–411.

[202] A. E. Eshratifar, M. S. Abrishami, and M. Pedram, “Jointdnn: An
efficient training and inference engine for intelligent mobile cloud
computing services,” IEEE Transactions on Mobile Computing, vol. 20,
no. 2, pp. 565–576, 2019.

[203] Y. Ma, Y. Cao, S. Vrudhula, and J.-s. Seo, “Optimizing the convolution
operation to accelerate deep neural networks on fpga,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 26, no. 7,
pp. 1354–1367, 2018.

[204] S. Laskaridis, S. I. Venieris, M. Almeida, I. Leontiadis, and N. D.
Lane, “Spinn: synergistic progressive inference of neural networks over
device and cloud,” in Proceedings of the 26th annual international
conference on mobile computing and networking, 2020, pp. 1–15.

[205] F. Zhang, J. Fang, B. Wah, and P. Torr, “Deep fusionnet for point cloud
semantic segmentation,” in European Conference on Computer Vision.
Springer, 2020, pp. 644–663.

[206] E. Li, Z. Zhou, and X. Chen, “Edge intelligence: On-demand deep
learning model co-inference with device-edge synergy,” in Proceedings
of the 2018 Workshop on Mobile Edge Communications, 2018, pp. 31–
36.

[207] E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge ai: On-demand ac-
celerating deep neural network inference via edge computing,” IEEE
Transactions on Wireless Communications, vol. 19, no. 1, pp. 447–457,
2019.

[208] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in International
conference on machine learning. PMLR, 2015, pp. 448–456.

[209] L. Yang, A. S. Rakin, and D. Fan, “Rep-net: Efficient on-device
learning via feature reprogramming,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2022, pp.
12 277–12 286.

[210] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou, “Dorefa-net:
Training low bitwidth convolutional neural networks with low bitwidth
gradients,” arXiv preprint arXiv:1606.06160, 2016.

[211] A. L. Friesen and P. Domingos, “Deep learning as a mixed
convex-combinatorial optimization problem,” arXiv preprint
arXiv:1710.11573, 2017.

[212] B. Zhuang, C. Shen, M. Tan, L. Liu, and I. Reid, “Towards effective
low-bitwidth convolutional neural networks,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2018,
pp. 7920–7928.

[213] A. Finkelstein, U. Almog, and M. Grobman, “Fighting quantization
bias with bias,” arXiv preprint arXiv:1906.03193, 2019.

[214] P. Micikevicius, S. Narang, J. Alben, G. Diamos, E. Elsen, D. Garcia,
B. Ginsburg, M. Houston, O. Kuchaiev, G. Venkatesh et al., “Mixed
precision training,” arXiv preprint arXiv:1710.03740, 2017.

[215] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in International conference
on machine learning. PMLR, 2015, pp. 1737–1746.

[216] G. Wang, Z. Liu, Z. Jiang, N. Liu, N. Zou, and X. Hu, “Towards
memory efficient training via dual activation precision,” arXiv preprint
arXiv:2208.04187, 2022.

[217] J. Yu, A. Lukefahr, R. Das, and S. Mahlke, “Tf-net: Deploying sub-
byte deep neural networks on microcontrollers,” ACM Transactions on
Embedded Computing Systems (TECS), vol. 18, no. 5s, pp. 1–21, 2019.

[218] Q. Lu, W. Jiang, X. Xu, J. Hu, and Y. Shi, “Quantization through
search: A novel scheme to quantize convolutional neural networks in
finite weight space,” in Proceedings of the 28th Asia and South Pacific
Design Automation Conference, 2023, pp. 378–383.

[219] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[220] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017,
pp. 4700–4708.

[221] G. Kaplun, A. Gurevich, T. Swisa, M. David, S. Shalev-Shwartz, and
E. Malach, “Subtuning: Efficient finetuning for multi-task learning,”
arXiv preprint arXiv:2302.06354, 2023.

[222] A. Gruslys, R. Munos, I. Danihelka, M. Lanctot, and A. Graves,
“Memory-efficient backpropagation through time,” Advances in neural
information processing systems, vol. 29, 2016.

[223] M. Kirisame, S. Lyubomirsky, A. Haan, J. Brennan, M. He, J. Roesch,
T. Chen, and Z. Tatlock, “Dynamic tensor rematerialization,” arXiv
preprint arXiv:2006.09616, 2020.

[224] I. Gim and J. Ko, “Memory-efficient dnn training on mobile devices,”
in Proceedings of the 20th Annual International Conference on Mobile
Systems, Applications and Services, 2022, pp. 464–476.

[225] R. D. Evans, L. Liu, and T. M. Aamodt, “Jpeg-act: accelerating deep
learning via transform-based lossy compression,” in 2020 ACM/IEEE
47th Annual International Symposium on Computer Architecture
(ISCA). IEEE, 2020, pp. 860–873.

[226] A. Hosny, M. Neseem, and S. Reda, “Sparse bitmap compression for
memory-efficient training on the edge,” in 2021 IEEE/ACM Symposium
on Edge Computing (SEC). IEEE, 2021, pp. 14–25.

[227] C. Unger, Z. Jia, W. Wu, S. Lin, M. Baines, C. E. Q. Narvaez,
V. Ramakrishnaiah, N. Prajapati, P. McCormick, J. Mohd-Yusof et al.,
“Unity: Accelerating {DNN} training through joint optimization of
algebraic transformations and parallelization,” in 16th USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI 22),
2022, pp. 267–284.

[228] S.-M. Hu, D. Liang, G.-Y. Yang, G.-W. Yang, and W.-Y. Zhou, “Jittor: a
novel deep learning framework with meta-operators and unified graph
execution,” Science China Information Sciences, vol. 63, pp. 1–21,
2020.

[229] Z. Zheng, P. Zhao, G. Long, F. Zhu, K. Zhu, W. Zhao, L. Diao, J. Yang,
and W. Lin, “Fusionstitching: boosting memory intensive computations
for deep learning workloads,” arXiv preprint arXiv:2009.10924, 2020.

[230] A. Ivanov, N. Dryden, T. Ben-Nun, S. Li, and T. Hoefler, “Data
movement is all you need: A case study on optimizing transformers,”
Proceedings of Machine Learning and Systems, vol. 3, pp. 711–732,
2021.

[231] Z. Zheng, X. Yang, P. Zhao, G. Long, K. Zhu, F. Zhu, W. Zhao, X. Liu,
J. Yang, J. Zhai et al., “Astitch: enabling a new multi-dimensional
optimization space for memory-intensive ml training and inference
on modern simt architectures,” in Proceedings of the 27th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2022, pp. 359–373.

[232] X. Nie, X. Miao, Z. Yang, and B. Cui, “Tsplit: Fine-grained gpu
memory management for efficient dnn training via tensor splitting,”
in 2022 IEEE 38th International Conference on Data Engineering
(ICDE), 2022, pp. 2615–2628.

[233] T. D. Le, H. Imai, Y. Negishi, and K. Kawachiya, “Automatic gpu
memory management for large neural models in tensorflow,” in Pro-
ceedings of the 2019 ACM SIGPLAN International Symposium on
Memory Management, 2019, pp. 1–13.

[234] S. Shriram, A. Garg, and P. Kulkarni, “Dynamic memory management
for gpu-based training of deep neural networks,” in 2019 IEEE In-
ternational Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 2019, pp. 200–209.

[235] J. Ren, J. Luo, K. Wu, M. Zhang, H. Jeon, and D. Li, “Sentinel:
Efficient tensor migration and allocation on heterogeneous memory
systems for deep learning,” in 2021 IEEE International Symposium on
High-Performance Computer Architecture (HPCA). IEEE, 2021, pp.
598–611.

[236] P. Chen, S. He, X. Zhang, S. Chen, P. Hong, Y. Yin, X.-H. Sun,
and G. Chen, “Cswap: A self-tuning compression framework for
accelerating tensor swapping in gpus,” in 2021 IEEE International
Conference on Cluster Computing (CLUSTER). IEEE, 2021, pp. 271–
282.

[237] J. Li, X. Wang, X. Chen, G. Li, X. Dong, P. Zhao, X. Yu, Y. Yang,
W. Cao, L. Liu et al., “An application-oblivious memory scheduling
system for dnn accelerators,” ACM Transactions on Architecture and
Code Optimization (TACO), vol. 19, no. 4, pp. 1–26, 2022.

[238] J. Jung, J. Kim, and J. Lee, “Deepum: Tensor migration and prefetching
in unified memory,” in Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, Volume 2, ser. ASPLOS 2023. New York, NY,
USA: Association for Computing Machinery, 2023, p. 207–221.
[Online]. Available: https://doi.org/10.1145/3575693.3575736

[239] J. Roesch, S. Lyubomirsky, M. Kirisame, L. Weber, J. Pollock, L. Vega,
Z. Jiang, T. Chen, T. Moreau, and Z. Tatlock, “Relay: A high-level
compiler for deep learning,” arXiv preprint arXiv:1904.08368, 2019.

[240] Tencent, “Ncnn,” https://github.com/Tencent/ncnn/.
[241] Huawei, “Mindspore,” https://github.com/mindspore-ai/mindspore.
[242] A. Mirhoseini, A. Goldie, H. Pham, B. Steiner, Q. V. Le, and J. Dean,

“Hierarchical planning for device placement,” 2018.
[243] Y. Gao, L. Chen, and B. Li, “Spotlight: Optimizing device placement

for training deep neural networks,” in International Conference on
Machine Learning. PMLR, 2018, pp. 1676–1684.

[244] R. Addanki, S. B. Venkatakrishnan, S. Gupta, H. Mao, and M. Al-
izadeh, “Placeto: Learning generalizable device placement algorithms

https://doi.org/10.1145/3575693.3575736
https://github.com/Tencent/ncnn/
https://github.com/mindspore-ai/mindspore

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 38

for distributed machine learning,” arXiv preprint arXiv:1906.08879,
2019.

[245] A. Bortfeldt, “A genetic algorithm for the two-dimensional strip pack-
ing problem with rectangular pieces,” European Journal of Operational
Research, vol. 172, no. 3, pp. 814–837, 2006.

[246] “Windows virtual address spaces,” https://learn.microsoft.com/en-us/
windows-hardware/drivers/gettingstarted/virtual-address-spaces.

[247] “The linux kernel documentation,” https://www.kernel.org/doc/html/
latest/index.html#.

[248] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transferable
architectures for scalable image recognition,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2018,
pp. 8697–8710.

[249] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural net-
works,” IEEE transactions on Signal Processing, vol. 45, no. 11, pp.
2673–2681, 1997.

[250] D. Narayanan, A. Phanishayee, K. Shi, X. Chen, and M. Zaharia,
“Memory-efficient pipeline-parallel dnn training,” in Proceedings of
ICML. PMLR, 2021, pp. 7937–7947.

[251] Y. Liu, S. Li, J. Fang, Y. Shao, B. Yao, and Y. You, “Map: Memory-
aware automated intra-op parallel training for foundation models,”
arXiv preprint arXiv:2302.02599, 2023.

[252] R. Mcdonald, M. Mohri, N. Silberman, D. Walker, and G. Mann,
“Efficient large-scale distributed training of conditional maximum
entropy models,” Advances in neural information processing systems,
vol. 22, 2009.

[253] A. Agarwal, O. Chapelle, M. Dudı́k, and J. Langford, “A reliable
effective terascale linear learning system,” The Journal of Machine
Learning Research, vol. 15, no. 1, pp. 1111–1133, 2014.

[254] J. Wei, W. Dai, A. Qiao, Q. Ho, H. Cui, G. R. Ganger, P. B.
Gibbons, G. A. Gibson, and E. P. Xing, “Managed communication and
consistency for fast data-parallel iterative analytics,” in Proceedings of
the Sixth ACM Symposium on Cloud Computing, 2015, pp. 381–394.

[255] M. Li, L. Zhou, Z. Yang, A. Li, F. Xia, D. G. Andersen, and A. Smola,
“Parameter server for distributed machine learning,” in Big learning
NIPS workshop, vol. 6, no. 2, 2013.

[256] O. Beaumont, L. Eyraud-Dubois, and A. Shilova, “Madpipe: Memory
aware dynamic programming algorithm for pipelined model paral-
lelism,” in 2022 IEEE International Parallel and Distributed Process-
ing Symposium Workshops (IPDPSW). IEEE, 2022, pp. 1063–1073.

[257] C. Xie, S. Koyejo, and I. Gupta, “Asynchronous federated optimiza-
tion,” arXiv preprint arXiv:1903.03934, 2019.

[258] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” Proceedings of
Machine learning and systems, vol. 2, pp. 429–450, 2020.

[259] X. Ouyang, Z. Xie, J. Zhou, J. Huang, and G. Xing, “Clusterfl: a
similarity-aware federated learning system for human activity recogni-
tion,” in Proceedings of the 19th Annual International Conference on
Mobile Systems, Applications, and Services, 2021, pp. 54–66.

[260] S. Rajbhandari, J. Rasley, O. Ruwase, and Y. He, “Zero: Memory
optimizations toward training trillion parameter models,” in SC20: In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2020, pp. 1–16.

[261] V. Md, S. Misra, G. Ma, R. Mohanty, E. Georganas, A. Heinecke,
D. Kalamkar, N. K. Ahmed, and S. Avancha, “Distgnn: Scalable dis-
tributed training for large-scale graph neural networks,” in Proceedings
of the International Conference for High Performance Computing,
Networking, Storage and Analysis, 2021, pp. 1–14.

[262] M. Shoeybi, M. Patwary, R. Puri, P. LeGresley, J. Casper, and B. Catan-
zaro, “Megatron-lm: Training multi-billion parameter language models
using model parallelism,” arXiv preprint arXiv:1909.08053, 2019.

[263] C. Rosset, “Turing-nlg: A 17-billion-parameter language model by
microsoft,” Microsoft Blog, vol. 1, no. 2, 2020.

[264] A. Heinecke, G. Henry, M. Hutchinson, and H. Pabst, “Libxsmm:
accelerating small matrix multiplications by runtime code generation,”
in SC’16: Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE,
2016, pp. 981–991.

[265] F. Lai, X. Zhu, H. V. Madhyastha, and M. Chowdhury, “Oort: Efficient
federated learning via guided participant selection.” in OSDI, 2021, pp.
19–35.

[266] J. Sun, A. Li, L. Duan, S. Alam, X. Deng, X. Guo, H. Wang,
M. Gorlatova, M. Zhang, H. Li et al., “Fedsea: A semi-asynchronous
federated learning framework for extremely heterogeneous devices,”
2022.

[267] N. Band, “Memflow: Memory-aware distributed deep learning,” in
Proceedings of ACM SIGMOD, 2020, pp. 2883–2885.

[268] O. Beaumont, J. Herrmann, G. Pallez, and A. Shilova, “Optimal
memory-aware backpropagation of deep join networks,” Philosophical
Transactions of the Royal Society A, vol. 378, no. 2166, p. 20190049,
2020.

[269] L. Lai, N. Suda, and V. Chandra, “Cmsis-nn: Efficient neural network
kernels for arm cortex-m cpus,” arXiv preprint arXiv:1801.06601,
2018.

[270] M. E. Paoletti, J. M. Haut, X. Tao, J. Plaza, and A. Plaza, “Flop-
reduction through memory allocations within cnn for hyperspectral
image classification,” IEEE Transactions on Geoscience and Remote
Sensing, vol. 59, no. 7, pp. 5938–5952, 2020.

[271] O. Saha, A. Kusupati, H. V. Simhadri, M. Varma, and P. Jain, “Rnnpool:
efficient non-linear pooling for ram constrained inference,” Advances
in Neural Information Processing Systems, vol. 33, pp. 20 473–20 484,
2020.

[272] S. Oh, J. Choi, J.-K. Kim, and J. Kim, “Quantum convolutional neural
network for resource-efficient image classification: A quantum random
access memory (qram) approach,” in 2021 International Conference on
Information Networking (ICOIN). IEEE, 2021, pp. 50–52.

[273] D. Liang, J. Shiomi, N. Miura, and H. Awano, “Distrihd: A memory
efficient distributed binary hyperdimensional computing architecture
for image classification,” in 2022 27th Asia and South Pacific Design
Automation Conference (ASP-DAC). IEEE, 2022, pp. 43–49.

[274] T. Emara, H. E. Abd El Munim, and H. M. Abbas, “Liteseg: A novel
lightweight convnet for semantic segmentation,” in 2019 Digital Image
Computing: Techniques and Applications (DICTA). IEEE, 2019, pp.
1–7.

[275] Y. Wang, Q. Zhou, J. Liu, J. Xiong, G. Gao, X. Wu, and L. J.
Latecki, “Lednet: A lightweight encoder-decoder network for real-time
semantic segmentation,” in 2019 IEEE International Conference on
Image Processing (ICIP). IEEE, 2019, pp. 1860–1864.

[276] I. Krešo, J. Krapac, and S. Šegvić, “Efficient ladder-style densenets
for semantic segmentation of large images,” IEEE Transactions on
Intelligent Transportation Systems, vol. 22, no. 8, pp. 4951–4961, 2020.

[277] Y. Jin, D. Han, and H. Ko, “Memory-based semantic segmentation
for off-road unstructured natural environments,” in 2021 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS).
IEEE, 2021, pp. 24–31.

[278] Y. Shangguan, J. Li, Q. Liang, R. Alvarez, and I. McGraw, “Optimizing
speech recognition for the edge,” arXiv preprint arXiv:1909.12408,
2019.

[279] J. Guo, G. Tiwari, J. Droppo, M. Van Segbroeck, C.-W. Huang,
A. Stolcke, and R. Maas, “Efficient minimum word error rate training
of rnn-transducer for end-to-end speech recognition,” arXiv preprint
arXiv:2007.13802, 2020.

[280] G. I. Winata, S. Cahyawijaya, Z. Lin, Z. Liu, and P. Fung, “Lightweight
and efficient end-to-end speech recognition using low-rank trans-
former,” in ICASSP 2020-2020 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2020, pp.
6144–6148.

[281] Q. Wang, I. L. Moreno, M. Saglam, K. Wilson, A. Chiao, R. Liu, Y. He,
W. Li, J. Pelecanos, M. Nika et al., “Voicefilter-lite: Streaming targeted
voice separation for on-device speech recognition,” arXiv preprint
arXiv:2009.04323, 2020.

[282] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[283] S. Li, W. Song, L. Fang, Y. Chen, P. Ghamisi, and J. A. Benediktsson,
“Deep learning for hyperspectral image classification: An overview,”
IEEE Transactions on Geoscience and Remote Sensing, vol. 57, no. 9,
pp. 6690–6709, 2019.

[284] Z. Weng and Z. Qin, “Semantic communication systems for speech
transmission,” IEEE Journal on Selected Areas in Communications,
vol. 39, no. 8, pp. 2434–2444, 2021.

[285] N. Das, S. Chakraborty, J. Chaki, N. Padhy, and N. Dey, “Fun-
damentals, present and future perspectives of speech enhancement,”
International Journal of Speech Technology, vol. 24, pp. 883–901,
2021.

[286] B. Zhao, J. Feng, X. Wu, and S. Yan, “A survey on deep learning-
based fine-grained object classification and semantic segmentation,”
International Journal of Automation and Computing, vol. 14, no. 2,
pp. 119–135, 2017.

[287] P. Gupta, N. Saxena, M. Sharma, and J. Tripathi, “Deep neural network
for human face recognition,” International Journal of Engineering and
Manufacturing (IJEM), vol. 8, no. 1, pp. 63–71, 2018.

https://learn.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/virtual-address-spaces
https://learn.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/virtual-address-spaces
https://www.kernel.org/doc/html/latest/index.html#
https://www.kernel.org/doc/html/latest/index.html#

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 39

[288] H. You, S. Tian, L. Yu, and Y. Lv, “Pixel-level remote sensing image
recognition based on bidirectional word vectors,” IEEE Transactions
on Geoscience and Remote Sensing, vol. 58, no. 2, pp. 1281–1293,
2019.

[289] M. Protasov, G. Reshetova, and V. Tcheverda, “Fracture detection by
gaussian beam imaging of seismic data and image spectrum analysis,”
Geophysical prospecting, vol. 64, no. 1, pp. 68–82, 2016.

[290] X. Qian, R. Hang, and Q. Liu, “Rex: an efficient approach to reducing
memory cost in image classification,” 2022.

[291] W. Sun and R. Wang, “Fully convolutional networks for semantic
segmentation of very high resolution remotely sensed images combined
with dsm,” IEEE Geoscience and Remote Sensing Letters, vol. 15,
no. 3, pp. 474–478, 2018.

[292] B. L. R. Stojkoska and K. V. Trivodaliev, “A review of internet of
things for smart home: Challenges and solutions,” Journal of cleaner
production, vol. 140, pp. 1454–1464, 2017.

[293] M. Alaa, A. A. Zaidan, B. B. Zaidan, M. Talal, and M. L. M. Kiah, “A
review of smart home applications based on internet of things,” Journal
of Network and Computer Applications, vol. 97, pp. 48–65, 2017.

[294] S. Feng, X. Yan, H. Sun, Y. Feng, and H. X. Liu, “Intelligent
driving intelligence test for autonomous vehicles with naturalistic and
adversarial environment,” Nature communications, vol. 12, no. 1, p.
748, 2021.

[295] Q.-T.-A. Khan, S. Abbas, M. A. Khan, A. Fatima, S. Alanazi, and N. S.
Elmitwally, “Modelling intelligent driving behaviour using machine
learning,” 2021.

[296] T. Yoshioka, H. Erdogan, Z. Chen, and F. Alleva, “Multi-microphone
neural speech separation for far-field multi-talker speech recognition,”
in 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing (ICASSP). IEEE, 2018, pp. 5739–5743.

[297] V. Pratap, Q. Xu, J. Kahn, G. Avidov, T. Likhomanenko, A. Hannun,
V. Liptchinsky, G. Synnaeve, and R. Collobert, “Scaling up online
speech recognition using convnets,” arXiv preprint arXiv:2001.09727,
2020.

[298] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo,
S. Yao, Y. Wang et al., “Ese: Efficient speech recognition engine with
sparse lstm on fpga,” in Proceedings of the ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 2017, pp. 75–84.

[299] D. Liciotti, M. Bernardini, L. Romeo, and E. Frontoni, “A sequential
deep learning application for recognising human activities in smart
homes,” Neurocomputing, vol. 396, pp. 501–513, 2020.

[300] S. Mekruksavanich and A. Jitpattanakul, “Lstm networks using smart-
phone data for sensor-based human activity recognition in smart
homes,” Sensors, vol. 21, no. 5, p. 1636, 2021.

[301] S. Schneider, A. Baevski, R. Collobert, and M. Auli, “wav2vec:
Unsupervised pre-training for speech recognition,” arXiv preprint
arXiv:1904.05862, 2019.

[302] A. Radford, J. W. Kim, T. Xu, G. Brockman, C. McLeavey, and
I. Sutskever, “Robust speech recognition via large-scale weak supervi-
sion,” arXiv preprint arXiv:2212.04356, 2022.

[303] Y. Liu, J. James, J. Kang, D. Niyato, and S. Zhang, “Privacy-preserving
traffic flow prediction: A federated learning approach,” IEEE Internet
of Things Journal, vol. 7, no. 8, pp. 7751–7763, 2020.

[304] E. J. Hoffmann, Y. Wang, M. Werner, J. Kang, and X. X. Zhu, “Model
fusion for building type classification from aerial and street view
images,” Remote Sensing, vol. 11, no. 11, p. 1259, 2019.

[305] X. Yi, J. Zhang, Z. Wang, T. Li, and Y. Zheng, “Deep distributed
fusion network for air quality prediction,” in Proceedings of the 24th
ACM SIGKDD international conference on knowledge discovery &
data mining, 2018, pp. 965–973.

[306] G. Manogaran, M. Alazab, P. M. Shakeel, and C.-H. Hsu, “Blockchain
assisted secure data sharing model for internet of things based smart
industries,” IEEE Transactions on Reliability, vol. 71, no. 1, pp. 348–
358, 2021.

[307] Y. Shahzad, H. Javed, H. Farman, J. Ahmad, B. Jan, and M. Zubair,
“Internet of energy: Opportunities, applications, architectures and
challenges in smart industries,” Computers & Electrical Engineering,
vol. 86, p. 106739, 2020.

[308] M. Andronie, G. Lăzăroiu, M. Iatagan, C. Ut,ă, R. S, tefănescu, and
M. Cocos, atu, “Artificial intelligence-based decision-making algorithms,
internet of things sensing networks, and deep learning-assisted smart
process management in cyber-physical production systems,” Electron-
ics, vol. 10, no. 20, p. 2497, 2021.

[309] T. Liebig, N. Piatkowski, C. Bockermann, and K. Morik, “Dynamic
route planning with real-time traffic predictions,” Information Systems,
vol. 64, pp. 258–265, 2017.

[310] N. G. Polson and V. O. Sokolov, “Deep learning for short-term
traffic flow prediction,” Transportation Research Part C: Emerging
Technologies, vol. 79, pp. 1–17, 2017.

[311] H. Ren, D. Anicic, and T. Runkler, “How to manage tiny ma-
chine learning at scale: An industrial perspective,” arXiv preprint
arXiv:2202.09113, 2022.

[312] K. Yang, Z. Yu, and Y. Luo, “Analysis on driving factors of lake surface
water temperature for major lakes in yunnan-guizhou plateau,” Water
Research, vol. 184, p. 116018, 2020.

[313] C. Banbury, C. Zhou, I. Fedorov, R. Matas, U. Thakker, D. Gope,
V. Janapa Reddi, M. Mattina, and P. Whatmough, “Micronets: Neural
network architectures for deploying tinyml applications on commodity
microcontrollers,” Proceedings of Machine Learning and Systems,
vol. 3, pp. 517–532, 2021.

[314] B. Sudharsan, J. G. Breslin, and M. I. Ali, “Rce-nn: a five-stage pipeline
to execute neural networks (cnns) on resource-constrained iot edge
devices,” in Proceedings of the 10th International Conference on the
Internet of Things, 2020, pp. 1–8.

[315] A. Maskey and M. Cho, “Cubesatnet: Ultralight convolutional neural
network designed for on-orbit binary image classification on a 1u
cubesat,” Engineering Applications of Artificial Intelligence, vol. 96,
p. 103952, 2020.

[316] C.-W. Hung, S.-X. Zeng, C.-H. Lee, and W.-T. Li, “End-to-end deep
learning by mcu implementation: an intelligent gripper for shape
identification,” Sensors, vol. 21, no. 3, p. 891, 2021.

[317] Y. Wu, Z. Wang, Y. Shi, and J. Hu, “Enabling on-device cnn training
by self-supervised instance filtering and error map pruning,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 39, no. 11, pp. 3445–3457, 2020.

[318] I. Fedorov, R. P. Adams, M. Mattina, and P. Whatmough, “Sparse:
Sparse architecture search for cnns on resource-constrained microcon-
trollers,” Advances in Neural Information Processing Systems, vol. 32,
2019.

[319] Q. Wang, D. Li, X. Huang, S. Shen, S. Mei, and J. Liu, “Optimizing fft-
based convolution on armv8 multi-core cpus,” in European Conference
on Parallel Processing. Springer, 2020, pp. 248–262.

[320] J. Meng, C. Zhuang, P. Chen, M. Wahib, B. Schmidt, X. Wang,
H. Lan, D. Wu, M. Deng, Y. Wei et al., “Automatic generation of
high-performance convolution kernels on arm cpus for deep learning,”
IEEE Transactions on Parallel and Distributed Systems, vol. 33, no. 11,
pp. 2885–2899, 2022.

[321] D. Li, D. Huang, Z. Chen, and Y. Lu, “Optimizing massively parallel
winograd convolution on arm processor,” in 50th International Confer-
ence on Parallel Processing, 2021, pp. 1–12.

[322] X. Huang, Q. Wang, S. Lu, R. Hao, S. Mei, and J. Liu,
“Numa-aware fft-based convolution on armv8 many-core cpus,”
in 2021 IEEE Intl Conf on Parallel & Distributed Process-
ing with Applications, Big Data & Cloud Computing, Sustainable
Computing & Communications, Social Computing & Networking
(ISPA/BDCloud/SocialCom/SustainCom). IEEE, 2021, pp. 1019–1026.

[323] X. Zhou, Y. Dou, R. Li, P. Zhang, and Y. Liu, “A pipelining strategy for
accelerating convolution neural networks on arm cpus,” Concurrency
and Computation: Practice and Experience, vol. 34, no. 2, p. e6102,
2022.

[324] C. Wang, L. Gong, Q. Yu, X. Li, Y. Xie, and X. Zhou, “Dlau: A
scalable deep learning accelerator unit on fpga,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 36,
no. 3, pp. 513–517, 2016.

[325] X. Xie and C. Wu, “Wpu: A fpga-based scalable, efficient and soft-
ware/hardware co-design deep neural network inference acceleration
processor,” in 2021 International Conference on High Performance Big
Data and Intelligent Systems (HPBD&IS). IEEE, 2021, pp. 1–5.

[326] J. Meng, S. K. Venkataramanaiah, C. Zhou, P. Hansen, P. Whatmough,
and J.-s. Seo, “Fixyfpga: Efficient fpga accelerator for deep neural
networks with high element-wise sparsity and without external memory
access,” in 2021 31st International Conference on Field-Programmable
Logic and Applications (FPL). IEEE, 2021, pp. 9–16.

[327] X. Chang, H. Pan, D. Zhang, Q. Sun, and W. Lin, “A memory-
optimized and energy-efficient cnn acceleration architecture based on
fpga,” in 2019 IEEE 28th International Symposium on Industrial
Electronics (ISIE). IEEE, 2019, pp. 2137–2141.

[328] A. Rios-Navarro, R. Tapiador-Morales, A. Jimenez-Fernandez,
C. Amaya, M. Dominguez-Morales, T. Delbruck, and A. Linares-
Barranco, “Performance evaluation over hw/sw co-design soc memory
transfers for a cnn accelerator,” in 2018 IEEE 18th International
Conference on Nanotechnology (IEEE-NANO). IEEE, 2018, pp. 1–4.

JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, APRIL 2023 40

[329] H. Fu, Z. Niu, C. Zhang, J. Ma, and J. Chen, “Visual cortex inspired
cnn model for feature construction in text analysis,” Frontiers in
computational neuroscience, vol. 10, p. 64, 2016.

[330] S. Wang, G. Ananthanarayanan, Y. Zeng, N. Goel, A. Pathania, and
T. Mitra, “High-throughput cnn inference on embedded arm big. little
multicore processors,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 39, no. 10, pp. 2254–2267,
2019.

[331] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, and A. Rabinovich, “Going
deeper with convolutions,” IEEE Computer Society, 2014.

[332] P. Liu, W. Qingqing, and W. Liu, “Enterprise human resource manage-
ment platform based on fpga and data mining,” Microprocessors and
Microsystems, vol. 80, p. 103330, 2021.

[333] H. Peng, S. Zhou, S. Weitze, J. Li, S. Islam, T. Geng, A. Li, W. Zhang,
M. Song, M. Xie et al., “Binary complex neural network acceleration
on fpga,” in 2021 IEEE 32nd International Conference on Application-
specific Systems, Architectures and Processors (ASAP). IEEE, 2021,
pp. 85–92.

[334] G. Korol and F. G. Moraes, “A fpga parameterizable multi-layer
architecture for cnns,” in Proceedings of the 32nd Symposium on
Integrated Circuits and Systems Design, 2019, pp. 1–6.

[335] M. Zainab, A. R. Usmani, S. Mehrban, and M. Hussain, “Fpga
based implementations of rnn and cnn: A brief analysis,” in 2019
International Conference on Innovative Computing (ICIC). IEEE,
2019, pp. 1–8.

[336] L. Petrica, T. Alonso, M. Kroes, N. Fraser, S. Cotofana, and M. Blott,
“Memory-efficient dataflow inference for deep cnns on fpga,” in 2020
International Conference on Field-Programmable Technology (ICFPT).
IEEE, 2020, pp. 48–55.

[337] X. Yang, M. Gao, Q. Liu, J. Setter, J. Pu, A. Nayak, S. Bell, K. Cao,
H. Ha, P. Raina et al., “Interstellar: Using halide’s scheduling lan-
guage to analyze dnn accelerators,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2020, pp. 369–383.

[338] K. Udagawa, Y. Saito, and H. Saruwatari, “Human-in-the-loop
speaker adaptation for dnn-based multi-speaker tts,” arXiv preprint
arXiv:2206.10256, 2022.

[339] C. Hao, X. Zhang, Y. Li, S. Huang, J. Xiong, K. Rupnow, W.-m. Hwu,
and D. Chen, “Fpga/dnn co-design: An efficient design methodology
for iot intelligence on the edge,” in Proceedings of the 56th Annual
Design Automation Conference 2019, 2019, pp. 1–6.

[340] Y. Li, C. Hao, X. Zhang, X. Liu, Y. Chen, J. Xiong, W.-m. Hwu, and
D. Chen, “Edd: Efficient differentiable dnn architecture and implemen-
tation co-search for embedded ai solutions,” in 2020 57th ACM/IEEE
Design Automation Conference (DAC). IEEE, 2020, pp. 1–6.

[341] W. Jiang, X. Zhang, E. H.-M. Sha, L. Yang, Q. Zhuge, Y. Shi, and J. Hu,
“Accuracy vs. efficiency: Achieving both through fpga-implementation
aware neural architecture search,” in Proceedings of the 56th Annual
Design Automation Conference 2019, 2019, pp. 1–6.

[342] X. Wang, M. Magno, L. Cavigelli, and L. Benini, “Fann-on-mcu: An
open-source toolkit for energy-efficient neural network inference at the
edge of the internet of things,” IEEE Internet of Things Journal, vol. 7,
no. 5, pp. 4403–4417, 2020.

[343] A. Garofalo, M. Rusci, F. Conti, D. Rossi, and L. Benini, “Pulp-nn:
accelerating quantized neural networks on parallel ultra-low-power risc-
v processors,” Philosophical Transactions of the Royal Society A, vol.
378, no. 2164, p. 20190155, 2020.

[344] W. Niu, X. Ma, S. Lin, S. Wang, X. Qian, X. Lin, Y. Wang, and
B. Ren, “Patdnn: Achieving real-time dnn execution on mobile devices
with pattern-based weight pruning,” in Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2020, pp. 907–922.

[345] S. Liu, B. Ren, X. Shen, and Y. Wang, “Cocopie: Making mobile
ai sweet as pie–compression-compilation co-design goes a long way,”
arXiv preprint arXiv:2003.06700, 2020.

[346] X. Ma, F.-M. Guo, W. Niu, X. Lin, J. Tang, K. Ma, B. Ren, and
Y. Wang, “Pconv: The missing but desirable sparsity in dnn weight
pruning for real-time execution on mobile devices,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 34, no. 04, 2020,
pp. 5117–5124.

[347] “Nvidia jetson embedded systems,” https://www.nvidia.com/en-us/
autonomous-machines/embedded-systems/.

[348] “Xilinx zynq-7000 fpgas,” https://www.xilinx.com/products/
silicon-devices/soc/zynq-7000.html.

[349] D. Baymurzina, E. Golikov, and M. Burtsev, “A review of neural
architecture search,” Neurocomputing, vol. 474, pp. 82–93, 2022.

[350] Y. Kim, Y. Li, H. Park, Y. Venkatesha, and P. Panda, “Neural architec-
ture search for spiking neural networks,” in Computer Vision–ECCV
2022: 17th European Conference, Tel Aviv, Israel, October 23–27,
2022, Proceedings, Part XXIV. Springer, 2022, pp. 36–56.

[351] X. Liu, J. Zhao, J. Li, B. Cao, and Z. Lv, “Federated neural architecture
search for medical data security,” IEEE transactions on industrial
informatics, vol. 18, no. 8, pp. 5628–5636, 2022.

[352] K. Yu, C. Sciuto, M. Jaggi, C. Musat, and M. Salzmann, “Evalu-
ating the search phase of neural architecture search,” arXiv preprint
arXiv:1902.08142, 2019.

[353] L. Li and A. Talwalkar, “Random search and reproducibility for neural
architecture search,” in Uncertainty in artificial intelligence. PMLR,
2020, pp. 367–377.

[354] H. Hua, Y. Li, T. Wang, N. Dong, W. Li, and J. Cao, “Edge computing
with artificial intelligence: A machine learning perspective,” ACM
Computing Surveys, vol. 55, no. 9, pp. 1–35, 2023.

[355] Y. Chen, X. Sun, and Y. Jin, “Communication-efficient federated deep
learning with layerwise asynchronous model update and temporally
weighted aggregation,” IEEE transactions on neural networks and
learning systems, vol. 31, no. 10, pp. 4229–4238, 2019.

[356] Y. Huang, L. Chu, Z. Zhou, L. Wang, J. Liu, J. Pei, and Y. Zhang, “Per-
sonalized cross-silo federated learning on non-iid data,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 35, no. 9, 2021,
pp. 7865–7873.

[357] R. Bhardwaj, Z. Xia, G. Ananthanarayanan, J. Jiang, N. Karianakis,
Y. Shu, K. Hsieh, V. Bahl, and I. Stoica, “Ekya: Continuous learning
of video analytics models on edge compute servers,” in USENIX NSDI,
2022.

[358] R. T. Mullapudi, S. Chen, K. Zhang, D. Ramanan, and K. Fatahalian,
“Online model distillation for efficient video inference,” in Proceedings
of the IEEE/CVF International conference on computer vision, 2019,
pp. 3573–3582.

[359] M. Khani, P. Hamadanian, A. Nasr-Esfahany, and M. Alizadeh, “Real-
time video inference on edge devices via adaptive model streaming,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, 2021, pp. 4572–4582.

[360] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications
of the obvious,” ACM SIGARCH computer architecture news, vol. 23,
no. 1, pp. 20–24, 1995.

[361] M. Wordeman, J. Silberman, G. Maier, and M. Scheuermann, “A 3d
system prototype of an edram cache stacked over processor-like logic
using through-silicon vias,” in 2012 IEEE International Solid-State
Circuits Conference. IEEE, 2012, pp. 186–187.

[362] Q. Zhu, B. Akin, H. E. Sumbul, F. Sadi, J. C. Hoe, L. Pileggi,
and F. Franchetti, “A 3d-stacked logic-in-memory accelerator for
application-specific data intensive computing,” in 2013 IEEE interna-
tional 3D systems integration conference (3DIC). IEEE, 2013, pp.
1–7.

[363] Q. Zhu, T. Graf, H. E. Sumbul, L. Pileggi, and F. Franchetti, “Accel-
erating sparse matrix-matrix multiplication with 3d-stacked logic-in-
memory hardware,” in 2013 IEEE High Performance Extreme Com-
puting Conference (HPEC). IEEE, 2013, pp. 1–6.

[364] V. Seshadri, K. Hsieh, A. Boroum, D. Lee, M. A. Kozuch, O. Mutlu,
P. B. Gibbons, and T. C. Mowry, “Fast bulk bitwise and and or in
dram,” IEEE Computer Architecture Letters, vol. 14, no. 2, pp. 127–
131, 2015.

[365] V. Seshadri, Y. Kim, C. Fallin, D. Lee, R. Ausavarungnirun, G. Pekhi-
menko, Y. Luo, O. Mutlu, P. B. Gibbons, M. A. Kozuch et al.,
“Rowclone: Fast and energy-efficient in-dram bulk data copy and ini-
tialization,” in Proceedings of the 46th Annual IEEE/ACM International
Symposium on Microarchitecture, 2013, pp. 185–197.

[366] N. E. Jerger, L.-S. Peh, and M. Lipasti, “Virtual circuit tree multicast-
ing: A case for on-chip hardware multicast support,” ACM SIGARCH
Computer Architecture News, vol. 36, no. 3, pp. 229–240, 2008.

[367] Y. Kang, W. Huang, S.-M. Yoo, D. Keen, Z. Ge, V. Lam, P. Pattnaik,
and J. Torrellas, “Flexram: Toward an advanced intelligent memory
system,” in 2012 IEEE 30th International Conference on Computer
Design (ICCD). IEEE, 2012, pp. 5–14.

[368] Y. Wang, T. Tang, L. Xia, B. Li, P. Gu, H. Yang, H. Li, and
Y. Xie, “Energy efficient rram spiking neural network for real time
classification,” in Proceedings of the 25th edition on Great Lakes
Symposium on VLSI, 2015, pp. 189–194.

[369] C. Liu, B. Yan, C. Yang, L. Song, Z. Li, B. Liu, Y. Chen, H. Li, Q. Wu,
and H. Jiang, “A spiking neuromorphic design with resistive crossbar,”
in Proceedings of the 52nd Annual Design Automation Conference,
2015, pp. 1–6.

https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html
https://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html

	Introduction
	Fundamentals of Resource-efficient AIoT system
	AIoT Paradigms
	Cross-level Characteristics of AIoT System
	Taxonomy of Enabling Techniques
	Cross-level Optimization for DL Inference Tasks
	Cross-level Optimization for DL Training Tasks

	Workflow Overview
	AIoT Performance Metrics

	Cross-level Optimization for DL inference
	On-device DL Inference
	Resource-friendly algorithm level
	Model-adaptive system scheduling level
	Intra-device cross-level controller

	Distributed DL Inference
	Resource-friendly algorithm level
	Model-adaptive system scheduling level
	Inter-device cross-level controller

	Cross-level Optimization for DL training
	On-device DL Training
	Resource-friendly algorithm level
	Model-adaptive system scheduling level
	Intra-device cross-level controller

	Distributed DL Training
	Resource-friendly algorithm level
	Model-adaptive system scheduling level
	Inter-device cross-level controller

	Resource-efficient AIoT Applications
	DL Engines for AIoT
	Resource-efficient AIoT system for Diverse Applications
	Cross-level optimization for image classification
	Cross-level optimization for semantic segmentation
	Cross-level optimization for speech recognition
	AIoT-powered application scenarios

	Resource-efficient AIoT System on Heterogeneous Devices
	Resource-efficient AIoT system on MCUs
	Resource-efficient AIoT system on ARMs
	Resource-efficient AIoT system on FGPAs

	Open Issues and Future Directions
	Cross-level AIoT System
	Context-aware AIoT System Evolution
	Distributed AIoT Resource Aggregation in DL inference/training Tasks
	Intelligence Enhancement in Distributed DL Training
	Inference and Training Task Balance in Resource-constrained AIoT Devices
	Memory-computation Feedback and Joint-optimization

	Conclusion
	References

