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From RSSI to CSI: Indoor Localization via Channel Response
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The spatial features of emitted wireless signals are the basis of location distinction and determination for
wireless indoor localization. Available in mainstream wireless signal measurements, the Received Signal
Strength Indicator (RSSI) has been adopted in vast indoor localization systems. However, it suffers from
dramatic performance degradation in complex situations due to multipath fading and temporal dynamics.

Break-through techniques resort to finer-grained wireless channel measurement than RSSI. Different
from RSSI, the PHY layer power feature, channel response, is able to discriminate multipath characteristics,
and thus holds the potential for the convergence of accurate and pervasive indoor localization. Channel State
Information (CSI, reflecting channel response in 802.11 a/g/n) has attracted many research efforts and some
pioneer works have demonstrated submeter or even centimeter-level accuracy. In this article, we survey this
new trend of channel response in localization. The differences between CSI and RSSI are highlighted with
respect to network layering, time resolution, frequency resolution, stability, and accessibility. Furthermore,
we investigate a large body of recent works and classify them overall into three categories according to how
to use CSI. For each category, we emphasize the basic principles and address future directions of research
in this new and largely open area.

Categories and Subject Descriptors: C.2.m [Computer-Communication Networks]: Miscellaneous

General Terms: Design, Algorithms

Additional Key Words and Phrases: Indoor localization, RSSI, CSI, human detection

ACM Reference Format:
Yang, Z., Zhou, Z., and Liu, Y. 2013. From RSSI to CSI: Indoor localization via channel response. ACM
Comput. Surv. 46, 2, Article 25 (November 2013), 32 pages.
DOI: http://dx.doi.org/10.1145/2543581.2543592

1. INTRODUCTION

Wireless indoor localization spawns numerous location-based applications in a wide
range of living, production, commence, and public services. This flourish of mobile and
pervasive computing has sharpened the urge for accurate, robust, and off-the-shelf
indoor localization schemes. Compared with outdoor positioning, indoor localization
is more challenging, since GPS signals are rarely accessible, yet room-level or even
submeter precision is often required. Due to the ubiquitous deployment of wireless
networks and devices, the past two decades have witnessed extensive wireless indoor
localization techniques, including acoustic signals [Peng et al. 2007; Yang et al. 2011],
ultrasound [Harter et al. 1999; Priyantha et al. 2000], FM [Chen et al. 2012], infrared
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[Want et al. 1992], RFID [Ni et al. 2004; Zhao et al. 2007], Bluetooth [Bargh and de
Groote 2008], cellular [Otsason et al. 2005; ur Rehman et al. 2008], ZigBee [Zhang
and Ni 2009; Wilson and Patwari 2010], WiFi [Bahl and Padmanabhan 2000; Youssef
and Agrawala 2005; Youssef et al. 2007], UWB [Fontana 2004; Gezici et al. 2005], etc.
In essence, the spatial features of emitted wireless signals lay the basis of location
distinction and determination.

Available in mainstream wireless signal measurements, the Received Signal
Strength Indicator (RSSI) characterizes the attenuation of radio signals during prop-
agation and has been adopted in a large body of indoor localization systems. Although
RSSI (used as either a radio fingerprint or path loss power) can achieve meter-level
localization accuracy in simple environments, it suffers from dramatic performance
degradation in complex situations due to multipath fading and temporal dynamics.
Most of the present reliable RSSI-based positioning systems still stay at room-level
accuracy, answering the location query like which room people or assets are in.

Break-through techniques resort to finer-grained wireless channel measurement
than RSSI. Different from RSSI as the MAC layer superimposition of multipath signals
with fast changing phases, the PHY layer power feature, channel response, is able to
discriminate multipath characteristics. In a conceptual sense, channel response is to
RSSI what a rainbow (color spectrum) is to a sunbeam, where components of different
wavelengths are separated.

Previously, channel response was measured by professional equipment [Nerguizian
et al. 2006; Nerguizian and Nerguizian 2007; Patwari and Kasera 2007; Zhang et al.
2008], obstructing its wide usability. However, the popularity of WiFi and Orthogonal
Frequency Division Multiplexing (OFDM) technology has changed the landscape. In
802.11 a/g/n standards, channel response can be partially extracted from off-the-shelf
OFDM receivers in the format of Channel State Information (CSI), which reveals a
set of channel measurements depicting the amplitudes and phases of every subcarrier
[Halperin et al. 2010]. Some pioneer works based on CSI have demonstrated submeter-
level accuracy for location determination with only WiFi-compatible Network Interface
Cards (NICs) [Wu et al. 2012; Sen et al. 2012b]. Such results definitely advance wireless
indoor localization to a broader range of applications.

As the PHY layer counterpart of RSSI, CSI holds potential for the convergence of
accurate and pervasive indoor localization and has attracted numerous recent research
efforts [Wu et al. 2012; Sen et al. 2012b; Zhang et al. 2012a; Sen et al. 2012a; Xiao et al.
2012b; Zhou et al. 2013].

In this article, we surveyed this new trend of channel response in localization. The
differences between CSI and RSSI are highlighted with respect to network layering,
time resolution, frequency resolution, stability, and accessibility. We also investigated
a large body of recent works and classified them overall into three categories according
to how CSI is used: (i) extracting the radio power of individual multipath compo-
nents as ranging metric or radio fingerprint; (ii) estimating time or angle information
with dedicated signal sources; (iii) analyzing the influence of human presence and
mobility on CSI to implement device-free passive human detection and localization.
For each category, we emphasize the principles and address future avenues in this
new and largely open area of location-aware technologies. We conclude with the de-
velopment and opportunity of channel response measurement in nowadays 802.11
standards.

2. WIRELESS INDOOR LOCALIZATION OVERVIEW

In general, wireless indoor localization schemes map physical measurements derived
from wireless signals into either geometric parameters such as relative distance and
direction from the reference points, or prelabeled landmarks directly. This section
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first reviews conventional physical measurements, followed by two classical mapping
methods, geometric mapping and fingerprinting.

2.1. Physical Measurements

Power, time, and angle features are among conventional physical measurements and
vary in accessibility, complexity, and accuracy.

2.1.1. Power. Signal power is widely used in both geometric mapping (especially in
ranging) and fingerprinting due to its handy access. The MAC layer signature, RSSI,
is one of the most prevalent power features, which is accessible in wireless techniques
ranging from UWB, ZigBee, and WiFi to cellular networks. The main drawback of
RSSI lies in its temporal fluctuations in complex indoor environments, making it a
fickle and coarse-grained feature. The multipath-rich indoor environment complicates
the wireless propagations and derails RSSI-based ranging. More accurate power-based
ranging needs better characterizing and modeling of the small-scale multipath effects
[Wu et al. 2012]. Practical WLAN fingerprinting, on the other hand, compensates for
the unreliability of RSSI by peer-assisted error control [Liu et al. 2012a] or rich sensor
hints [Azizyan et al. 2009].

2.1.2. Time. Typical time features extracted from wireless signals include Time Of
Arrival (TOA) and Time Difference Of Arrival (TDOA) and are commonly employed in
ranging. In general, time-based ranging is impressively accurate under Line-Of-Sight
(LOS) conditions. Unlike power-based schemes, the accuracy of time- based ranging
improves with signal bandwidth. Ultra-Wide Bandwidth (UWB) radio therefore enjoys
sheer prevalence due to its high time resolution and extremely large bandwidth [Gezici
et al. 2005]. Another line of research focuses on long wavelength signals like acoustic
signals on off-the-shelf platforms [Yang et al. 2011; Zhang et al. 2012b; Nandakumar
et al. 2012]. The main drawback of time-based ranging is that external signal sources
are often required, inducing additional energy consumption. Moreover, high-resolution
time-based schemes require a high Analog-Digital Converter (ADC) sampling rate at
the PHY layer.

2.1.3. Angle. Angle information provides an orthogonal dimension with regard to dis-
tance for geometric mapping. Angle can be combined with distance estimates to enable
single-anchored localization. Compared with distance estimates, though, the cost of an-
gle measurements is higher. Directional antennas are often capable of obtaining both
angle and distance estimates while avoiding interferences from other directions, yet
at the cost of dedicated infrastructure [Niculescu and Nath 2004; Pongthawornkamol
et al. 2010; Cidronali et al. 2010]. A tricky alternative is to involve human interaction
in angle estimation [Zhang et al. 2011; Sen et al. 2012a]. Recently, antenna arrays
have also attracted increasing interest with the rapid development of Multiple Input
Multiple Output (MIMO) techniques [Xiong and Jamieson 2012, 2013].

2.2. Mapping Methods

To convert physical measurements into locations, mainstreams adopt either geometric
mapping or fingerprinting.

2.2.1. Geometric Mapping. In geometric mapping, intermediate geometric parameters
such as distance or direction with regard to the reference points are first derived from
certain physical measurements. These relative parameters are then converted into
locations using geometric algorithms (e.g., triangulation). Distance-based mapping,
in particular, is often termed as ranging and is more popular than direction-based
mapping since, in general, direction measurements are more difficult to derive with
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pervasive devices. Nevertheless, direction information is directly measurable at the re-
ceiver, while the derivation of distance involves wireless propagation rules. The preva-
lent Log-normal Distance Path Loss (LDPL) model, for instance, relates the received
signal power to the propagation distance and forms the basis for power-based rang-
ing. Other techniques derive time parameters such as TOA and TDOA and calculate
distances based on geometric relations of propagating paths.

Despite its clear physical underpinning, the performance of geometric mapping heav-
ily relies on LOS conditions. The rich multipath effects indoors, though, often blur
the monotonous relations between physical measurements and distances, complicate
propagation modeling, and degenerate ranging accuracy. Furthermore, as discussed
in Section 2.1, it often involves a high sampling rate and dedicated infrastructure to
obtain the desired time or angle measurements as inputs for geometric mapping.

2.2.2. Fingerprinting. As an alternative to analyzing sophisticated signal propagations,
fingerprinting adopts a pattern-matching approach. The main idea is to collect signal
features of all possible locations in the area of interest to build a fingerprint database
(known as site survey or calibration). Localization is then simply the process of match-
ing the measured fingerprints at an unknown location with those in the database and
returning the location corresponding to the best-fitted fingerprint.

Fingerprinting-based schemes relax the requirements on the physical measurements
to be discriminative and reproducible. Features at each location should differ from all
the others to avoid ambiguity, and the fingerprints of the same location measured at
different times should resemble each other to ensure the effectiveness of the database.

The primary drawback of fingerprinting lies in its cumbersome efforts when building
and updating the database. Recently, there has been active research in reducing or
crowdsourcing this manual labor [Wu et al. 2013; Yang et al. 2012; Wang et al. 2012].

2.3. Summary

Although the scope of this survey is restricted to wireless signals, the current trend
to employ sensor-rich smartphones for indoor localization has extended the concept of
physical measurements to a partially semantic perspective. Some schemes integrate
ambience features (e.g., sound, light, color, WiFi, etc.) to perform logical localization (i.e.,
locations are labeled as Starbucks and McDonalds, etc.) [Azizyan et al. 2009]. Others
utilize human mobility by stitching traces recorded by inertial sensors [Constandache
et al. 2010; Rai et al. 2012]. These sensor hints have improved localization accuracy
in a human-centric and context-aware manner and are complementary to wireless-
based features. In this survey, we mainly focus on signal power features due to their
widespread adoption and easy accessibility and review novel interplays among time,
angle, and power features.

As for the mapping methods, the principles have remained almost identical for
decades, yet careful consideration is needed when designing localization systems with
specific physical measurements. During our review on channel response- based local-
ization, we strive to explain how appropriate features are tailored for different mapping
methods.

3. FROM RSSI TO CHANNEL RESPONSE

The primary hurdle in wireless indoor localization lies in the rich multipath fading and
temporal dynamics indoors. Albeit ubiquitous, traditional power features like RSSI fail
to provide sufficient distinction and robustness in complex indoor environments, as
RSSI is the superimposition of multipath signals with fast changing phases.

Originated from wireless channel sounding, several recent works have dived deep
into the PHY layer and leveraged the finer-grained power feature, channel response,

ACM Computing Surveys, Vol. 46, No. 2, Article 25, Publication date: November 2013.



From RSSI to CSI: Indoor Localization via Channel Response 25:5

Fig. 1. Spatial variations due to multipath.

to discriminate multipath characteristics. This section aims to provide the basics for
this new feature.

3.1. RSSI Variation Due to Multipath Shadowing

In a typical indoor environment, a transmitted signal propagates to the receiver
through multiple paths. Each path contributes to a differently delayed, attenuated,
and phase-shifted signal. Hence, the received signal is a combination of numerous
alias versions of the original signal. The complex baseband signal voltage measured at
the receiver at a specific time, therefore, is denoted as [Patwari and Wilson 2011]:

V =
N∑

i=1

‖Vi‖e− jθi , (1)

where Vi and θi are the amplitude and phase of the ith multipath component (note that
the signal modulation schemes are implicitly considered), and N is the total number of
components. RSSI is then simply the received power in decibels (dB):

RSSI = 10 log2
(‖V ‖2). (2)

As a superposition of multipath components, RSSI not only varies over distance on
the order of the signal wavelength but also fluctuates over time even at a static link. A
slight change in certain multipath components may add up to significant constructive
or destructive relative phases of the delayed signals, which, as a consequence, lead to
considerable fluctuations in RSSI. In fact, the variations of RSSI even at an immobile
receiver in 1 minute can be as large as 5 dB in a typical laboratory environment [Wu
et al. 2012]. Other empirical studies have also shown that RSSI readings vary at both
small (seconds) and large (hours) granularities and can be as high as 7 dB in a typical
student cubicle [Lim et al. 2006].

3.2. Effect of RSSI Variation on Localization

3.2.1. Ranging Bound. In power-based ranging, RSSI is mapped into the distance from
the transmitter by the prevalent Log-normal Distance Path Loss (LDPL) model [Seidel
and Rappaport 1992]:

PL(d)[dB] = PL(d0) + 10n lg
(

d
d0

)
+ Xσ , (3)

where PL(d) denotes the measured path loss at distance d. PL(d0) is the average path
loss at reference point d0 and n is the path loss exponent. Xσ is a zero-mean normal
random variable reflecting the attenuation in decibel caused by shadowing.
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Fig. 2. Destructive phase superposition. Fig. 3. Constructive phase superposition.

The LDPL model characterizes the variation of received signal power over distance
due to path loss and shadowing. Path loss stems from the dissipation of transmission
power in the propagation channel, while shadowing results from the obstacles that
attenuate signal power through absorption, reflection, scattering, and diffraction.

As discussed in Section 2, power-based ranging assumes that RSSI monotonically
decreases with distance. In theory, the average path loss strictly follows such trend.
Due to the random shadowing effect Xσ , though, the monotonic trend only holds on a
relatively large scale, which is bounded by the variance of shadowing σ . The multipath-
rich indoor environment leads RSSI to fluctuate on the order of signal wavelength and
contributes to large shadowing Xσ . As a result, it is almost impossible to distinguish
locations in the vicinity, because the large deviation of multipath shadowing blurs
the monotonic trend. This fundamentally limits the accuracy of RSSI-based ranging.
As illustrated in Figure 1, the combined effects of path loss, shadow, and multipath
contribute to significant variations of the ratio between the received power Pr and
the transmitted power Pt in dB with regard to distance d in logarithm [Goldsmith
2005].

3.2.2. Fingerprint False Match. The complex indoor wireless propagating conditions also
derail the performance of RSSI-based fingerprinting. Concretely, it is common that
environmental dynamics such as humans or moving objects may affect a portion of the
multipath components, which contribute to amplitude fluctuations of received signals.
As an illustration, given the multipath conditions from Transmitter 2 to the Receiver
(Figure 2), the received signals from Transmitter 2 result in destructive phases and
thus reduced RSSI. In contrast, some dynamic obstacles (e.g., moving handhelds in
an office or the opening and closing of doors) in Figure 3 might temporarily alter the
multipath conditions. Consequently, it is possible that the previous destructive phases
turn into constructive ones, hence contributing to enhanced RSSI for Transmitter 2.
These temporal fluctuations of RSSI due to environmental dynamics at a stationary
receiver induce a mismatch between the prestored fingerprints in the database (e.g.,
the 2D vector fingerprint {RSSI1, RSSI2} in Figure 2) and the measured ones even
at the same location ({RSSI1′, RSSI2′} in Figure 3). Thus, the matching performance
degrades as the previous radio map no longer reflects the current statistical signal
characteristics.

3.3. Characterizing Multipath

The fundamental drawback of RSSI is that it fails to capture the multipath effects. To
fully characterize the individual paths, the wireless propagation channel is modeled
as a temporal linear filter, known as Channel Impulse Response (CIR). Under the
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Fig. 4. Multipath propagations, received signals, and channel responses.

time-invariant assumption, CIR h(τ ) is denoted as:

h(τ ) =
N∑

i=1

aie− jθi δ(τ − τi), (4)

where ai, θi, and τi are the amplitude, phase, and time delay of the ith path, respectively.
N is the total number of multipath and δ(τ ) is the Dirac delta function. Each impulse
represents a delayed multipath component, multiplied by the corresponding amplitude
and phase.

In the frequency domain, the constructive and destructive phases also cause
frequency-selective fading, which is characterized as the Channel Frequency Re-
sponse (CFR). CFR consists of amplitude-frequency response and phase-frequency re-
sponse. Figure 4 shows a multipath propagating condition, the transmitted signals and
the received signals, and illustrative channel responses. Given infinite bandwidth, CIR
is equivalent to CFR. And CFR is the Fourier transform of CIR.

Both CIR and CFR depict the small-scale multipath effect and are widely used for
channel measurement. Note that CIR and CFR are with respect to complex amplitude,
while another pair of parameters in terms of signal power is Power Delay Profile (PDP)
and Power Spectrum Density (PSD).

To sum up, channel response is to RSSI what a rainbow is to a sunbeam, where
components of different wavelengths are separated. Channel response possesses finer-
grained frequency resolution and equivalently higher time resolution to distinguish
multipath components, yet at the cost of slight modification of firmware or hardware
on off-the-shelf platforms, just as the prism used to disperse the sunlight. Table I offers
a brief comparison of channel response and RSSI. Note that although CIR resembles a
sequence of RSSI, the underlying time resolution is much higher, and thus differs from
RSSI sequence-based localization [Fang and Lin 2010]. On the other hand, it is possible
to obtain raw received signal power at the PHY sampling rate with a modified wireless
adapter [Golden and Bateman 2007]. To avoid ambiguity, we restrict the concept of
RSSI as the value reported from the MAC layer in this survey.

3.4. Deriving Channel Response

In the time domain, the received signal r(t) is the temporal convolution of transmitted
signal s(t) and channel impulse response h(t):

r(t) = s(t) ⊗ h(t). (5)

Accordingly, the received signal spectrum R( f ) is simply the multiplication of the
transmitted signal spectrum S( f ) and the channel frequency response H( f ) in the
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frequency domain:

R( f ) = S( f ) × H( f ). (6)

As demonstrated in Equations (5) and (6), CIR can be derived from the deconvolu-
tion of received and transmitted signals, while CFR is the ratio of the received and the
transmitted spectrums. Since the calculation of convolution is nontrivial, the common
trick to derive CIR is to convert temporal convolution into multiplication in the fre-
quency domain, followed by an inverse Fourier transform. In case of a flat transmission
power spectrum, CIR is approximated by [Patwari and Kasera 2007]:

h(t) = 1
Ps

F−1{S∗( f )R( f )}, (7)

where F−1 denotes the inverse Fourier transform. R( f ) is the Fourier transform of the
received signal r(t), that is, its spectrum. S∗( f ) is the complex conjugate of the Fourier
transform of the transmitted signal s(t). And Ps approximates the transmitted signal
power, which, under the flat transmission assumption, is nearly a constant within the
band of interest.

Precisely measuring and modeling the wireless channel often involves dedicated
infrastructures such as Vector Network Analyzer (VNA) or Software Defined Radio
(SDR) [Nerguizian et al. 2006; Patwari and Kasera 2007; Zhang et al. 2008]. On the
other hand, although the derivation of CIR/CFR is modulation independent, it might
be more convenient to implement the process on commercial devices with particular
modulation schemes. For instance, if OFDM is adopted, such as in IEEE 802.11a/g/n,
the receivers are then readily capable of calculating CFR/CIR, since the amplitudes
and phases on each subcarrier provide a sampled version of the signal spectrum, while
FFT/IFFT operations are integrated in OFDM receivers.

Recent advances in the wireless community have taken this one step further. Lever-
aging the off-the-shelf Intel 5300 NIC and a modified driver, a group of sampled versions
of CFRs within the WiFi bandwidth are revealed to upper layers in the format of Chan-
nel State Information (CSI) [Halperin et al. 2010]. Each CSI depicts the amplitude and
phase of a subcarrier:

H( fk) = ‖H( fk)‖e j sin(∠H), (8)

where H( fk) is the CSI at the subcarrier with central frequency of fk, and ∠H denotes
its phase. Hence a group of CSIs H( fk), (k = 1, . . . , K), reveals K sampled CFRs at the
granularity of subcarrier level.

In fact, this sample version of CFR has been employed in recent adaptive wireless
communication systems to improve reliability [Halperin et al. 2010] and throughput
[Bhartia et al. 2011], as well as for precise indoor localization on off-the-shelf platforms
[Wu et al. 2012; Sen et al. 2012a; Sen et al. 2012b; Xiao et al. 2012a].

3.5. Summary

In the context of wireless indoor localization with pervasive devices, previous studies
suggested that RSSI-based schemes, at best, can expect localization errors around
3 m and 9 m with probabilities of 50% and 97%, unless more complex environmental
models or additional infrastructures are applied [Elnahrawy et al. 2004]. This survey
has dipped one major environmental issue, multipath, and introduced the concept of
channel response to characterize multipath effects. Recent works have reported 1.2m
and 1.8m with probabilities of 50% and 90%, respectively, for CSI-assisted ranging [Wu
et al. 2012], and mean accuracy of 89% for 1m × 1m boxes by CSI-based fingerprinting
[Sen et al. 2012b]. The fundamental advance, as discussed throughout this section,
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Table I. RSSI vs. Channel Response

Category Layering Resolution Stability Accessibility
Time: Packet level

RSSI MAC Low Handy access
Frequency: N/A
Time: Multipath cluster High for CFR

Channel Response PHY WiFi NIC
Frequency: Subcarrier level as a whole structure

is that RSSI is a coarse-grained and unstable signal power feature, while channel
response, which depicts the multipath effects, opens a much broader designing space.

However, one concern is that the finer-grained channel response might also mean
severer temporal fluctuations, since instead of a single-valued RSSI, now there are a
set of random variables, each representing a propagating path. From an information-
centric perspective, a set of joint random variables (i.e., multipath components) convey
richer information (and naturally more randomness) compared with the summation of
them (i.e., RSSI). It should be noted, though, that by carefully postprocessing the finer-
grained yet potentially more temporally unstable multipath components, it is possible
to derive a more robust and location-specific signal feature. In principle, for geometric
mapping, it is achieved by separating the LOS path, which, if existing, resembles a
marginal random variable, hence possessing a smaller variance than the summation
of all paths. For fingerprinting, the objective is to derive a robust pattern from multipath
components by leaning techniques, while RSSI can be considered as the trivial process
of summating evenly over all paths. In the subsequent sections, we elaborate on the
postprocessing procedures in practice.

4. THE POWER AS POWER

CIR depicts individual multipath components in the time domain and facilitates to
separate the LOS path for accurate ranging. Also, both CIR and CFR offer features
with higher dimensions, and thus finer-grained distinctions, which is appropriate for
fingerprinting. This section reviews recent works on indoor localization with channel
responses as power features. Table II lists several representative systems.

4.1. Mitigating Multipath Shading for Ranging

As discussed in Section 3.2, power-based ranging is based on radiation laws. More
specifically, the power-distance relationship is characterized as [Rappaport 2002]:

Pr = PtGtGrλ
2

(4πd)n , (9)

where Pr and Pt are the received and transmitted signal power, respectively. Gr and
Gt denote the antenna gains at the receiver and transmitter, respectively. λ is the
wavelength of the transmitted signal, d is the transmitted distance, and n is the en-
vironmental attenuation factor. In fact, Equation (9) is where Equation (3) originates
and it is obvious that ranging is effective only when the transmitted distance d equals
the transmitter-receiver distance, that is, when d corresponds to the LOS path.

Note that in Equation (9), the received power actually varies with wavelength, and
hence frequency. On the other hand, as discussed in Section 3.3, frequency diversity
also associates with multipath effects. Therefore, it is possible to resolve the LOS path
and estimate its propagating distance by exploiting frequency diversity at the same
location. And depending on whether multipath mitigation and distance estimation are
integrated or conducted sequentially, two representative approaches follow.

4.1.1. Simultaneous Multipath Distance Estimation. Suppose there are N paths, each with a
propagation distance di, i = 1, . . . , N. And further assume each path reflects only once
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Table II. Channel Response as Power Feature

System Category Platform Performance Limitations
MuD 30% relative Manual frequency sweep

Ranging TelosB
[Zhang et al. 2012a] ranging error Low multipath resolution
FILA Low multipath resolution

Ranging WiFi NIC 1.8 m error
[Wu et al. 2012] Insufficient bandwidth
WBNN-Locate 2 m for 90%

Fingerprinting VNA Not off-the-shelf
[Nerguizian et al. 2006] trained data
PinLoc 89% accuracy Intensive site survey

Fingerprinting WiFi NIC
[Sen et al. 2012b] 6% false positive Spot localization

with a reflection coefficient �i. Assume d1 corresponds to the LOS path and �1 = 1,
by definition. The received power of each path is then represented as a complex value
P(di, �i, λk), with its amplitude proportional to the power of the ith path and its phase
denoting the corresponding time delay, and is measured at wavelength λk:

P(di, �i, λk) = PtGtGr�iλ
2
k

(4πdi)n e− j 2πdi
λk , (10)

where di and �i are the propagation distance and reflection coefficient of the ith path,
respectively.

The total received power Pk measured at frequency fk = c/λk is then the summation
over all the N multipath components:

Pk =
∥∥∥∥∥

N∑
i=1

P(di, �i, λk)

∥∥∥∥∥ . (11)

The set of received power measured at K frequencies is proportional to channel
amplitude-frequency response, that is, the amplitude of CFRs.

Zhang et al. [2012a] built a tracking system named MuD based on a set of equations
as in Equation (11) by assigning n = 2. Orthogonal decomposition is then applied to
these equations and a function P(x, λk) : R

2N → R is obtained:

P(x, λk) = cλ2
k

⎛
⎝(

N∑
i=1

�i cos
( di

λk

)
d2

i

)2

+
(

N∑
i=1

�i sin
( di

λk

)
d2

i

)2⎞⎠
1
2

, (12)

where x = (c, �2, . . . , �N, d1, . . . , dN) ∈ R
2N, and c = PtGtGr

(4π)2 .
The solution to this set of equations is formulated as a curvature fitting problem.

The problem, however, normally has no stable solution. To obtain a feasible solution
for the nonlinear optimization, the authors employed practical constraints to convert
the ill-conditioned numerical problem into a well-conditioned one. The constant c is
hardware related and therefore derivable from hardware manuals or measurable via
chamber training. The number of paths and the propagation distances and reflection
coefficients for the Non-Line-Of-Sight (NLOS) paths are also bounded to simplify the
problem.

MuD is implemented on TelosB nodes by configuring the nodes to rapidly switch
channels for signal measurements at different frequencies. Due to the limited number
of channels provided in ZigBee, at most 16 measurements at different frequencies are
available, which fundamentally bounds the number of resolvable paths.

In a nutshell, this approach combines distance estimation and multipath mitigation
into a set of nonlinear equations exploiting frequency diversity and strives to solve
all parameters simultaneously. Despite its simplicity in building up the equations,
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the large amount of unknown variables and the nonlinearity of the problem make
the theoretical solutions numerically unstable without practical constraints. In terms
of implementation, sequentially measuring multiple channels is similar to a manual
frequency sweep for channel sounding. Nevertheless, high-resolution frequency sweep
involves dedicated channel sounders.

4.1.2. Extracting LOS Path for Ranging. Although frequency diversity reflects multipath
effects from the spectral perspective, the multipath components actually twist in the
frequency domain. Therefore, it might be necessary to resolve all multipath components
as in MuD, even though only the LOS path is needed for ranging. Intuitively, since
different paths propagate to the receiver with distinguishable time delays, it is more
natural to extract only the LOS path from the time domain for ranging and ignore all
other paths.

Wu et al. [2012] proposed to extract the dominant cluster of paths from CIR for
accurate ranging. The prototype, FILA, is implemented on OFDM-based WiFi with
off-the-shelf NICs. Unlike ZigBee, modern radio like OFDM adopts multicarrier modu-
lation, where symbols are transmitted through multiple carriers simultaneously. Thus,
the manual frequency sweep operation in Zhang et al. [2012a] is embedded in multi-
carrier radios, in a parallel manner. Consequently, a sampled version of CFR is already
exposed in the PHY layer. These CFR samples are then converted into CIRs by in-
verse Fourier transform. After obtaining CIR, FILA takes a threshold-based method
to separate the signal power corresponding to the LOS path. More specifically, given a
measured CIR h(τ ), the paths with amplitudes smaller than 50% of the first peak value
in h(τ ) are filtered out, thus retaining the LOS or the shortest NLOS paths.

Instead of applying the radiation rules directly, the filtered CIR samples are once
again converted into the frequency domain. Note in Equation (9), the received power
Pr is a function of the transmitted wavelength λ and therefore the frequency of the
subcarrier. FILA adopts a weighted summation on the filtered CSIs to normalize the
power to the central frequency within the band:

CSIeff = 1
K

∑
k

fk

fc
× ‖A‖k, (13)

where CSIeff is the final input for distance estimation. K is the total number of sub-
carriers. fc is the central frequency, and ‖A‖k is the amplitude of the filtered CSI on
the kth subcarrier. The propagation distance approximating the LOS path dLOS is then
calculated as:

dLOS = 1
4π

[(
v

fc × CSIeff

)2

× σ

] 1
n

, (14)

where v is the velocity of the transmitted wave, n is the attenuation factor, and σ
denotes all other hardware factors including transmitted power, antenna gains, and so
forth. The parameters n and σ are pretrained for each indoor scenario.

Although the ranging accuracy of FILA improves impressively by exploiting CSI
instead of RSSI, the time resolution of the derived CIR samples remains only sufficient
to distinguish clusters of paths rather than individual multipath components due to the
limited bandwidth in current WiFi protocols. We envision that future WiFi protocols
with larger bandwidth would further improve the performance of fine-grained power-
based ranging.

4.2. Exploiting Multipath Signature for Fingerprinting

As discussed in Section 2.2, the signal features extracted for fingerprinting should be
distinguishable across space and reproducible over time. Channel response is a good
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Table III. Fingerprints Extracted from Channel Response

System Bandwidth Domain Feature Fingerprint Modeling
WBNN-Locate Amplitude

200MHz Time 7 Statistical Quantities
[Nerguizian et al. 2006] Phase
[Jin et al. 2010] 60MHz Time Amplitude Vector of CIR Amplitudes
[Patwari and Kasera 2007] 40MHz Time Amplitude Vector of CIR Amplitudes

Amplitude
[Zhang et al. 2008] 40MHz Time Phase-calibrated Vector of CIR

Phase
FIFS Summation over

20MHz Frequency Amplitude
[Xiao et al. 2012a] Independent Subcarrier Power
PinLoc Amplitude Gaussian Mixture Model

20MHz Frequency
[Sen et al. 2012b] Phase for CFR Clusters

candidate for precise fingerprinting since it conveys rich information of the small-scale
multipath characteristics. Both CIR [Nerguizian et al. 2006; Jin et al. 2010] and CFR
[Sen et al. 2012b; Xiao et al. 2012a] have been used in fingerprinting, as well as various
extensions such as Power Delay Profile (PDP) [Triki and Slock 2007] and Power Delay
Doppler Profile (PDDP) [Oktem and Slock 2010]. While the dimensional extension of
channel response with respect to RSSI naturally brings richer information, it involves
several challenges in extracting location-dependent signatures. One major concern is
whether the finer-grained channel response is indeed more location dependent than
RSSI in the presence of temporal dynamics. In terms of implementation, it also in-
volves careful consideration in extracting compressed signatures to avoid the curse
of dimensionality while retaining the spatial discrimination. A brief comparison of
channel response-based fingerprints are listed in Table III.

4.2.1. Location Distinction with Channel Response. One primary challenge in traditional
RSSI-based fingerprinting lies in the temporal fluctuations of RSSI. More specifically,
given a certain extent of variation of measured RSSI, it is often difficult to figure out
whether the variation stems from location change or temporal dynamics. In contrast,
with the ability to characterize multipath components, channel response might be able
to distinguish temporal variations from spatial ones, and hence is more resilient to
environmental dynamics.

This intuition comes from the observation that the propagating paths to different
locations tend to be less similar with those to the same location, even accounting for
the temporal changes of paths. Therefore, from the statistical perspective, the self-
correlation of channel responses measured from a specific location at different times is
stronger than the cross-correlation of those measured at different locations.

Patwari et al. experimentally measured location distinction based on temporal link
signature [Patwari and Kasera 2007], which can be regarded as a normalized version
of CIR amplitudes. Location distinction refers to identifying whether the location of the
transmitter i has changed based on the measurements at the receiver j. Given M − 1
measurements of temporal link signatures, Hi, j = {hm

i, j}M−1
m=1 , where hm

i, j denotes the mth

measurement of the temporal link signature between transmitter i and receiver j. The
temporal variation of Hi, j is calculated as the historical average difference σi, j between
each pair of the M − 1 measurements:

σi, j = 1
(M − 1)(M − 2)

∑
g∈Hi, j

∑
h∈Hi, j\g

‖h − g‖, (15)

where ‖h − g‖ is the Euclidean distance between h and g.
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The Mth measurement hM
i, j is then compared with the history measurements Hi, j :

di, j = 1
σi, j

min
h∈Hi, j

∥∥h − hM
i, j

∥∥, (16)

where di, j is the distance between the new measurement and the history. If di, j is greater
than a predefined threshold γ , then the variation is decided as a location change rather
than normal temporal dynamics. Otherwise, the new measurement is included in the
history for update.

Zhang et al. [2008] reported similar results considering both the amplitude and phase
of CIR . The l2 distance metric between two signatures g and h is defined as a new φ2
distance metric:

‖g − h‖2
φ2

= min
φ∈(0,2π)

‖ge jφ − h‖2
l2 . (17)

φ2 distance is used to minimize the random phase shift between two measurements
due to lack of time and frequency synchronization.

Although channel response-based signatures outperform RSSI-based ones in spatial
discrimination and resilience to temporal variations, the large-scale temporal behavior
(e.g., days or weeks) still varies due to significant changes in multipath characteristics
at the same location. In Zhang et al. [2008], experiments have shown that the large-
scale temporal dynamics of channel response-based signatures tend to be in distinct
states. Therefore, the large-scale temporal dynamics are modeled as a Markov chain
in practice.

4.2.2. CIR-Based Fingerprinting. Since CIR directly portrays the small-scale multipath
wireless channel in the time domain, it is reasonable to take CIR as fingerprint for fine-
grained localization, as the multipath characteristics vary on the order of wavelength.

Nerguizian et al. [2006] implemented a CIR-based fingerprinting localization system
for underground mines with dedicated infrastructure, for example, channel sounders
and Vector Network Analyzers (VNAs). In the WBNN-Locate system, CFR is first ob-
tained by a frequency sweep with central frequency of 2.4GHz and a span of 200MHz.
The sweep space is 1MHz and results in 201 CFR samples, which are then converted
into CIR by inverse Fourier transform. Afterward, up to seven parameters are extracted
from the 201 CIR samples, including the mean excess delay, the rms delay spread, the
maximum excess delay, the total received power, the number of multipath components,
the power of the first path, and the arrival time of the first path. These parameters
are chosen to compress the raw CIR data while retaining the time-spread charac-
teristics. The parameters are then input to an Artificial Neural Network (ANN) for
classification.

Despite the clear physical concept of the extracted parameters, it potentially risks
subjective emphasis on certain parameters to combine heterogeneous inputs such as
maximum excess delay and number of multipath components into a single ANN. A
more natural way to limit the input size is to compress CIR directly. The WBNN-Locate
system is refined in Nerguizian and Nerguizian [2007] by conducting Discrete Wavelet
Transform (DWT) on the original CIR samples. The transformed wavelet coefficients
are then truncated by a predefined threshold.

In the context of ubiquitous computing, though, the high bandwidth (200MHz) and
the dedicated channel sounder are far from pervasive deployment.

4.2.3. CFR-Based Fingerprinting. Instead of transforming CFR into CIR, Sen et al.
[2012b] implemented a meter-level spot localization system called PinLoc with
off-the-shelf Intel 5300 NIC. Although CIR and CFR convey equivalent information
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Fig. 5. Variations of CIR and CFR at three locations.

about the wireless channel, CFR tends to be more preferable given the limited band-
width:

—Most variations of CIR distribute within only a few time indices, while the frequency
diversity spans the entire range of CFR indices, making the structures among CFR
more distinguishable with each other. Figure 5 illustrates the variations of CIR/CFR
amplitudes at three locations.

—The lack of synchronization and insufficient number of samples make it rather error
prone to estimate the first path according to the time indices based on a certain
signal power threshold. On the contrary, there is no alignment issue for CFR since
each component of CFR corresponds to a fixed subcarrier.

The key observation in PinLoc is that the probability density function (pdf) of CFRs
on a single subcarrier at the same location demonstrates clustered distributions on the
complex plane. Thus, the channel response on subcarrier f is modeled as a Gaussian
mixture distribution with U i

f and V i
f as its mean and variance, respectively. Note

that in OFDM systems, each subcarrier fades independently. It is then reasonable to
use a multidimensional Gaussian random vector (Ui, Vi) as one combination of clusters
across all subcarriers, where Ui = (U i

1, . . . ,U i
F ) and Vi = (V i

1, . . . , V i
F ), respectively, and

F = 30. Hence, the channel response for a specific location is modeled as a Gaussian
mixture distribution (wk, Uk, Vk), where wk is the weight of (Uk, Vk). To reduce the
number of cluster combinations while retaining location-dependent features, only K
representative combinations of clusters with larger weights are preserved. For each
packet P with {Pf }F

f =1 as the corresponding CFRs, the log probability of P belonging to
the representative combination of clusters (Ui, Vi) is calculated as:

d(P, Ui) =
F∑

f =1

log V i
f +

F∑
f =1

∥∥Pf − U i
f

∥∥2

(
V i

f

)2 , (18)

which is the log likelihood metric for signature classification.
Another trick in PinLoc is that the localization process is conducted on a set of

1m× 1m grids, known as spots, where CFRs measured at about four randomly picked
locations within the spot are taken as signatures for each spot. The rationale is that
the correlations among signatures across different spots are low, thus indicating high
spatial distinctions. On the other hand, since CFR experiences dramatic change even
at the granularity of wavelength, it is highly possible that CFRs measured even about
1 meter away can have low correlations with all prelabeled signatures. It improves
localization robustness and avoids high probability of not locating in any locations by
taking CFRs measured at different locations within the spot as the candidate set of
signatures for that spot.

ACM Computing Surveys, Vol. 46, No. 2, Article 25, Publication date: November 2013.



From RSSI to CSI: Indoor Localization via Channel Response 25:15

Fig. 6. Complex CFR on two subcarriers: unclustered CFRs due to uniformly distributed phases.

4.3. Designing Issues in Channel Response as Power Features

4.3.1. Bandwidth Limitations. The bandwidth is a major constraint in devising fine-
grained localization systems based on channel response, for it primarily bounds the
time resolution and hence the distinguishable multipath components of the system.
More formally, given the system bandwidth B and the maximum excess delay τmax, the
number of CIR samples relevant to multipath N is approximated as:

N = �B× τmax	. (19)

For instance, given a bandwidth of 60MHz, which yields a time resolution of 16.67ns,
at most 30 CIR samples would correspond to the multipath components since typical
maximum excess delay indoors is less than 500ns [Jin et al. 2010].

The insufficient bandwidth makes each received multipath component look like a
rounded peaked triangular shape rather than a narrow impulse. And the paths are not
resolvable if they arrive within the system time resolution. Hence, in Wu et al. [2012],
only clusters of multipath components are distinguishable with a bandwidth of 20MHz
given 30 samples of CIR.

Bandwidth also affects the accuracy of fingerprinting. According to the simulations
in Jin et al. [2010], given an extreme bandwidth (e.g., 100MHz), the performance gap
among different classification methods is negligible. In terms of current WiFi with a
bandwidth of only 20MHz (without channel bonding), the localization accuracy might
hover around 3m if the features are not carefully designed. To achieve meter-level
precision, more representative features should be extracted from channel responses.

4.3.2. Feature Selection. For fingerprinting schemes, it is nontrivial to select the most
location-dependent features from channel response. Although it is possible to simply
take the raw CIR or CFR samples as signatures, the high dimension complicates the
computational complexity of the training and classification procedures. In addition,
given insufficient bandwidth, a portion of the derived CIR or CFR samples might be
irrelevant to multipath characteristics and has to be filtered out. As listed in Table III,
given limited bandwidths, the robustness of CIR- and CFR-based features differs. CIR
is less sensitive to single path changes since the paths are largely independent in the
time domain. Conversely, the paths are twisted in the frequency domain, leading to
variations over the entire CFRs. In addition, it also involves considerable challenges if
phase information is included in the fingerprint in the presence of location-irrelevant
phase shift [Zhang et al. 2008; Sen et al. 2012b]. As shown in Figure 6, different subcar-
riers or propagating conditions might result in relatively uniform or clustered phase
distributions. Therefore, careful fingerprint modeling is required if phase information
is employed.

Furthermore, the finer-grained channel response signatures increase the burden of
the site survey since more locations might become distinguishable. The quality of each
signature may also need to be considered to assist in selecting more representative and
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Fig. 7. Correlation error.

Fig. 8. Work-flow of MUSIC super-resolution algorithm.

distinct features as previous works for RSSI-based signatures [Chen et al. 2006; Fang
and Lin 2012].

5. BEYOND POWER: INTERPLAY WITH TIME AND ANGLE

As discussed in Section 2.1, time and angle information are typically used for ranging.
Compared with power-based ranging, time- and angle-based geometric mapping do not
rely on channel models. Unlike RSSI, channel response is widely adopted in time or
angle estimation with dedicated signal sources or infrastructure.

5.1. Time Estimation Based on CIR

Two mainstream time-based schemes are UWB and acoustic ranging. UWB signals are
short baseband pulses spanning a wide range of bandwidth simultaneously, thus yield-
ing high time resolution. We refer readers to Gezici et al. [2005] for a comprehensive
survey on UWB-based ranging. Acoustic signals are also prevalent in accurate ranging
due to their relatively low propagating speed [Zhang et al. 2012b; Sun et al. 2011].

Time-based ranging often involves sophisticated signal processing techniques, where
the detection of signal arrival lies in the core. Conventional time estimation techniques
roughly fall into two categories. One method converts CFR into CIR by inverse Fourier
transform and selects the index of the first peak value as the estimated time delay of
the LOS path [Gezici et al. 2005]. The other is based on cross-correlation techniques
like matched filtering [Gezici et al. 2005; Golden and Bateman 2007; Geiger 2010]. But
standard correlation-based methods may fail to resolve multipath components that are
too close to each other. For instance, Pseudo-Noise (PN) correlation estimation is often
incapable of distinguishing signals arriving within the chip interval of the PN sequence
in spread spectrum systems [Dumont et al. 1994; Saarnisaari 1997]. That is, the time
corresponding to the power peak of the LOS path might not coincide with that of the
resultant correlation, as shown in Figure 7. Thus, more sophisticated super-resolution
techniques have been applied for accurate time delay estimation, such as the root
MUltiple SIgnal Classification (Root-MUSIC) algorithm [Dumont et al. 1994; Li and
Pahlavan 2004], the Total Least Squares version of Estimation of Signal Parameters
via Rotational Invariance Technique (TLS-ESPRIT) [Saarnisaari 1997], and so forth.

Li and Pahlavan [2004] employed frequency domain super-resolution and various
diversity techniques for TOA estimation and compared ranging performance with tra-
ditional estimation strategies via simulation. In Li and Pahlavan [2004], CFR is first
sampled with a network analyzer, which generates swept frequency signals centered
at 1GHz. CFR samples are then transformed into a temporal pseudo-spectrum using
Root-MUSIC algorithm. And the TOA of the LOS path is estimated by detecting the
index in the delay axis of the first peak of the pseudo-spectrum. The simplified work
flow of the MUSIC algorithm is illustrated in Figure 8.

ACM Computing Surveys, Vol. 46, No. 2, Article 25, Publication date: November 2013.



From RSSI to CSI: Indoor Localization via Channel Response 25:17

Concretely, rewrite the formula of CIR in Equation (4) as:

h(τ ) =
N∑

i=1

αiδ(τ − τi), (20)

where αi = aie− jθi . The corresponding CFR is then:

H( f ) =
N∑

i=1

αie− j2π f τi . (21)

This formula resembles a harmonic signal model, if the time and frequency variables
in Equation (21) are exchanged. Therefore, spectral estimation techniques suitable for
harmonic signals (e.g., the MUSIC algorithm) can be used for time-domain analysis.

Given K frequencies equally spaced by � f and assuming additive white noise, the
measured CFR samples are denoted as:

x(k) = H( fk) + w(k) =
N∑

i=1

αie− j2π fkτi + w(k), (22)

where fk = f1 + (k− 1)� f, k = 1, . . . , K, and w(k) is the zero-mean additive while noise
with standard variance σk. Equation (22) is then reassembled into vector form as:

x = H + w, (23)

where

x = [x(1) x(2) . . . x(K)]T

H = [H( f1) H( f2) . . . H( fK)]T .

The MUSIC algorithm is based on eigenvalue decomposition of the autocorrelation
matrix of the measured signal vector x:

Rxx = E{xxH}. (24)

If K > N, then the K-dimensional subspace can be divided into two orthogonal sub-
spaces, known as signal subspace and noise subspace by the eigenvectors of Rxx. The
eigenvectors corresponding to the largest N eigenvalues are called signal eigenvectors,
while the remaining are called noise eigenvectors. The multipath delays {τi}N

i=1 are
determined by maximizing the MUSIC pseudo-spectrum, where the optimal solution
should have zero projection in the noise subspace.

As discussed in Li and Pahlavan [2004], it is nontrivial to obtain true correlation
matrix Rxx based on quite a limited number of channel measurements. Hence, several
enhancements and diversity techniques have been proposed to improve the estimation
accuracy of the correlation matrix.

According to the simulation results, the performance of super-resolution techniques
surpasses that by conventional TOA estimation methods with relatively narrow band-
width (e.g., 20MHz). Therefore, it might significantly improve the accuracy of time-
based ranging in WLAN systems with practical super-resolution techniques.

5.2. Designing Issues in Channel Response as Time Features

5.2.1. NLOS Propagation Condition. NLOS propagation induces a positive bias in time-
based ranging. In practice, NLOS conditions can be identified based on the statistics of
the arriving signals and have been explored in UWB systems [Gezici et al. 2005]. For
instance, the variance under NLOS conditions tends to be larger than that in the LOS
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Fig. 9. Direction estimation with directional
antenna.

Fig. 10. Direction estimation with body blocking
effect.

path. NLOS identification and mitigation have also been explored in cellular networks
[Cong and Zhuang 2005] based on the prior NLOS error distribution from multiple base
stations. Bahillo et al. [2010] experimentally verified the viability of prior NLOS mea-
surements correction (PNMC) techniques indoors with WiFi-based customized hard-
ware. PNMC techniques are designed to estimate the portion of NLOS conditions in
the received signals [Mazuelas et al. 2009]. A more comprehensive survey on NLOS
identification in TOA-based localization is provided in Guvenc and Chong [2009]. For
WLAN TOA localization, though, further investigation is still needed into whether
NLOS identification and mitigation techniques are readily applicable on commercial
platforms.

5.2.2. Towards Protocol-Based Ranging. Time-based ranging usually involves external
signal sources and heavily relies on sophisticated signal processing. Recent works
have explored practical WLAN ranging based on MAC layer carrier sense combined
with an RSSI indicator [Giustiniano and Mangold 2011]. The distance is measured by
estimating the MAC idle time during a data/ACK round. Despite the dispersed WiFi
signal employed, the system achieves medium accuracy and requires only a limited
calibration in multipath situations. The key observation is to correlate SNR with the
valid ACK, since the detection time of ACK varies with different levels of SNR. We
envision that the channel responses embedded in standard CSI of current IEEE 802.11
protocol would also open new opportunities to mitigate protocol- or hardware-related
time delays in time-based ranging.

5.3. Distinguishing AOA

Angle information is usually obtained with directional antennas [Niculescu and Nath
2004; Pongthawornkamol et al. 2010; Cidronali et al. 2010] or antenna arrays [Wong
et al. 2008; Xiong and Jamieson 2012, 2013]. In most directional antenna-based
schemes, a rotating directional antenna is used to infer AOA as the direction toward
the strongest peak in received signal strength, as shown in Figure 9. Nevertheless, the
best angle estimation does not necessarily coincide with the direction of the strongest
signal power in multipath-rich indoor scenarios. In Niculescu and Nath [2004], the
strongest two peaks as well as the entire signal power distribution over all directions
are exploited to develop several heuristics for accurate triangulation.

In the context of pervasive computing, though, directional antennas are still far from
handy access. A tricky alternative was proposed in Zhang et al. [2011], by using the so-
called blocking obstacle effect to derive AOA on off-the-shelf mobile phones with little
human intervention. The key insight is that the body of a user holding a smartphone
will block part of the incoming signal. Therefore, the received signal would experience
considerable drop when the user stands close to the phone-AP straight line. Thus, as
the user rotates in place, the received signal power would demonstrate a peak (dip)
when the user faces (backs to) the AP, which resembles an upside-down version of the
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signal power received by a revolving directional antenna. Figure 10 shows this blocking
effect.

As with the case for traditional directional antennas, the proposed system, Borealis,
also has to deal with angle information estimated from noisy raw signal strengths.
Borealis first simplifies the range of angles where signal power drops sharply as a
blocking sector β:

β = 180◦ − 2

(
arctan

2p
b

− arcsin
bp

d
√

4p2 + b2

)
, (25)

where p and d are the user-phone distance and user-AP distance, respectively. Under
general configurations, β ≈ 90◦.

Then, a sliding window-based search is adopted to estimate the optimal direction.
More concretely, the RSSI measurements are grouped by a window of size β, and the
group with the largest relative signal degradation is selected. Afterward, the direction
opposite to its center is estimated as the AP direction.

Formally, for a window Sj of size β, the relative signal degradation is calculated by
subtracting the average signal strength of the window from the average signal strength
outside the window:

Diff( j) =
∑

θ /∈Sj
RSSI(θi)

N − |Sj | −
∑

θ∈Sj
RSSI(θi)

|Sj | , (26)

where |Sj | is the number of measurement within Sj , and RSSI(θi) is the measured
RSSI in dBm at azimuth of θi.

The selected window S∗ is then:

S∗ = arg max
Sj

Diff( j). (27)

The AP direction is estimated as the opposite direction of the central orientation of S∗.
Borealis is designed for outdoor AP localization, while in indoor scenarios, the rich

multipath effects derail the RSSI-based schemes. Sen et al. proposed SpinLoc [Sen
et al. 2012a], which uses the signal power of the LOS path for AP direction estimation.
SpinLoc exploited the sampled CFRs reported by Intel 5300 NIC and converted the
CFRs into CIRs by inverse Fourier transform. The power of the first index in CIR is
taken as the signal strength for the LOS path, known as Energy of the Direct Path
(EDP). A set of EDPs are calculated when the user spins in place. Then the EDPs
are smoothed by a moving average filter. Finally, the opposite direction corresponding
to the lowest EDP is estimated as the AP direction. The angle information is then
converted into location by a simple triangulation method. SpinLoc yields a median
localization accuracy of 7m.

Antenna array-based AOA estimation is another thread of classical approaches.
Compared with traditional rotating directional antennas, antenna arrays are more
preferable due to the increasing popularity of Multiple-Input Multiple-Output (MIMO)
techniques in standard WLAN protocols (e.g., IEEE 802.11n).

For instance, Wong et al. [2008] investigated the feasibility of AOA-based indoor
localization with sets of CIRs measured at a 4×4 MIMO system. The CIR for the mth

channel hm(t) where m = 1, . . . , 16, is estimated by the correlation of a real baseband
PN sequence u(t) and the corresponding received baseband sequence rm(t):

hm(t) =
∫

u(τ )rm(τ + t)dτ. (28)
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Afterward, the AOA estimator can be applied to the measured CIRs. In Wong et al.
[2008], a simple Maximum Likelihood (ML) estimator is employed, which selects the
earliest detectable component in CIR and estimates its AOA:

φ̂ = arg min
φ

M∑
m=1

∥∥∥∥hm(τmin)
h1(τmin)

− e jπ(m−1)cosφ
∥∥∥∥

2

, (29)

where φ̂ is the estimated AOA, and τmin denotes the time delay of the earliest path
among all CIRs of the M linearly spaced antennas.

More advanced AOA estimation algorithms like the Space Alternating Expectation
Maximization (SAGE) [Fessler and Hero 1994] are also explored in Wong et al. [2008].
Experiments have demonstrated a medium localization accuracy of 2m with four
antenna elements. Recently, ArrayTrack [Xiong and Jamieson 2012, 2013] applied the
MUSIC algorithm for AOA estimation and spatial smoothing for NLOS mitigation
with four antenna elements at AP and two at each client. ArrayTrack achieves a
25-cm location accuracy in stationary environments. Despite the impressive accuracy,
the limited number of antennas in current WLAN still poses considerable challenges
in practical angle-based localization in MIMO systems. However, we envision future
commercial WLAN devices would possess folded-more antenna elements to meet the
increasing demands for advanced MIMO techniques.

5.4. Designing Issues in Channel Response as Angle Features

Compared with power and time features, the derivation of angle information involves
relatively dedicated infrastructure. On the other hand, since direction is orthogonal
to distance in localization, angle information is often combined with other schemes to
improve localization accuracy, such as RSSI-based ranging [Cidronali et al. 2010] and
TOA-based ranging [Seow and Tan 2008; Zhang and Wong 2009]. As in the case of
time-based ranging, angle-based methods also have to deal with NLOS and multipath
conditions. The direct path needs to be extracted from the received signals or CIR, as
in Sen et al. [2012a].

Angle information also enables novel localization schemes via frequency changes
from Doppler shifts [Chang et al. 2008]. The key component is Doppler angulation,
which determines the relative angle between a stationary client and reference node
by artificially creating relative movements with a rotating directional antenna on the
reference node. We envision that the current time-invariant channel response would
also be extended to the Doppler domain to depict such fast relative locomotion and
open new possibilities for angle-based geometric mapping.

6. SMART AMBIENCE: ROBUST PASSIVE DETECTION AND LOCALIZATION

The triple convergence of pervasive, context-aware, and human-centric computing has
raised increasing research interest in perceiving surrounding objects (e.g., humans)
from ambient devices, which is termed Device-free passive (DfP) [Youssef et al. 2007].
Common device-free tasks include detecting, counting, locating, tracking, and identify-
ing the users in the area of interest passively. In this survey, we focus on the primary
tasks of detection and localization, that is, detecting the presence of or further locating
a person by already deployed wireless monitors, while the person carries no detectable
devices. This passive manner of detection and localization is accomplished by corre-
lating the impact of human presence on the wireless signals to certain changes of the
received signal features. We refer the readers to Patwari and Wilson [2010] for a com-
prehensive survey on Radio-Frequency (RF) device-free localization and mainly focus
on the principles and how channel response features can be applied.
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6.1. Signal Metrics

As with active localization, a large body of studies on passive detection and local-
ization exploit the handy signature, RSSI, from either WiFi-enabled infrastructure
[Youssef et al. 2007; Kosba et al. 2012] or ZigBee sensors [Zhang et al. 2007; Wilson and
Patwari 2010]. The signal metrics used in these schemes roughly fall into two cate-
gories: (i) shadowing (mean)-based metric [Wilson and Patwari 2010; Chen et al. 2011]
and (ii) variance-based metric [Zhang et al. 2007; Wilson and Patwari 2011; Kosba et al.
2012]. The former manages to detect both immobile and moving users but performs
well only under LOS conditions. The latter is more robust in NLOS environments but
cannot detect stationary users, since they usually induce no significant RSSI variance.

To be able to detect both stationary and mobile users and under both LOS and NLOS
conditions, recent works mostly rely on fingerprinting approaches with sophisticated
probabilistic techniques [Chen et al. 2011; Xu et al. 2012] and employ finer-grained
signal metrics, for example, RSSI histograms [Moussa and Youssef 2009; Zhao et al.
2013].

Very recent works also explored employing CSI-based features in passive detection
[Xiao et al. 2012b; Zhou et al. 2013] and reported a marginal detection rate improve-
ment due to better temporal stability of features extracted from CSI [Xiao et al. 2012b].

6.2. Modeling-Based Passive Detection and Localization

Modeling-based passive detection and localization schemes strive to extend the LDPL
model to correlate the position of targeted object with respect to the static Transmitter-
Receiver (TX-RX) link to certain signal metrics and compensate for the multipath
effect in a probabilistic manner [Zhang and Ni 2009; Wilson and Patwari 2010, 2012;
Patwari and Wilson 2011]. Nevertheless, these models are based on the assumption
that the multipath components are unresolvable, since numbers of passive solutions
are designed with low-cost ZigBee sensors. With the widespread use of WLAN, it is
envisioned that higher- resolution CIR would enable future models under resolvable
multipath components, and taking a deterministic approach.

6.2.1. RSSI-Based Probabilistic Model. Zhang et al. [2007] proposed an RF-based
transceiver-free localization and tracking system by ZigBee sensors deployed on the
ceiling as a mesh network. The affected signal power by human movements is simpli-
fied by a two-way propagating model. As illustrated in Figure 11, the LOS path and
the ground-reflected path dominate all other multipath components in static environ-
ments. Assuming n = 2, the received power from the LOS path P1 is calculated by
Equation (9). Similarly, the received power from the ground-reflected path is:

P2 = PtGtGrλ
2

(4π )2(d2 + h2)
. (30)

When a user steps into the monitored area, the affected signal power is calculated
according to the radar equation [Pozar 1997]:

Pobj = PtGtGrλ
2σ

(4π )3r2
1r2

2

, (31)

where r1, r2 denote the TX-human, RX-human distances, respectively. σ is the radar
cross section of the person. Under common settings, the signal strength difference
between static environment and human presence is approximated as:

�P ≈ Pobj. (32)
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Fig. 11. Two-way model. Fig. 12. Scattering dominant. Fig. 13. Reflection dominant.

It then follows that the received signal would undergo larger variance when the person
presents closer to the midpoint of each Parallel Lines (PL) and Vertical Lines (VL) with
respect to the TX-RX link.

In Zhang and Ni [2009], the model is further approximated as the border of an ellipse
given a fixed signal power variance and is experimentally verified in Zhang et al. [2010].
Patwari and Wilson [2011] theoretically proved that the model holds in a scatter-
dominant environment. As illustrated in Figure 12, when scattering dominates the
multipath propagation, the variance of RSSI increases when the person moves closer
to the TX-RX link. In contrast, in a reflection-dominant environment, the variance of
RSSI is larger when the person locates closer to the TX or RX, as illustrated in Figure 13.

Although the model in Zhang et al. [2007] is built upon a separable multipath at first
sight, it surrenders to a threshold and probabilistic model [Zhang and Ni 2009; Zhang
et al. 2010] as the ultimate signal metric is RSSI.

To compensate for the noise of irrelevant RSSI dynamics, most systems leverage
dense-deployed networks and infer human presence in an ad hoc manner. For instance,
in Radio Tomographic Imaging (RTI) [Wilson and Patwari 2010, 2011], the objective
is to determine a spatial vector x ∈ R

N indicating the location of power attenuation,
from a set of measurements y ∈ R

M, where N and M denote the amount of grids
in the network and the total number of links between sensor pairs. One link and
the corresponding grids are illustrated in Figure 14. In Wilson and Patwari [2010], y
represents the additional attenuation induced by human presence, while in Wilson and
Patwari [2011], the variations of RSSI are used.

More specifically, the RTI problem is formulated as:

y = Wx + n, (33)

where y represents all RSSI differences with respect to the static measurements.
W ∈ R

M×N is the weight matrix where wi j is the corresponding weight of the jth grid
for the ith link. n is the noise vector and x is the image to be estimated. The weight
matrix is determined by an elliptical model with foci at each sensor pair.

6.2.2. CIR-Based Deterministic Model. Modeling-based device-free localization leveraging
CIR is mostly seen in the area of UWB radar [Chang and Sahai 2004]. Given the CIR
measured by UWB transceivers, the excess time delays (i.e., the time delays of {τi}N

i=1 in
Equation (20)) compared with the LOS path delay τ1 reveal the additional propagating
distance compared with the LOS path. As shown in Figure 15, assume that the only
change induced by object presence is a new multipath in the CIR, and consider the
same reflecting path as discussed in Section 6.2.1. Then the object would be located on
an ellipse with TX and RX as foci, and with the major axis decided by the propagating
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Fig. 14. A single affected link of RTI. Fig. 15. CIR-based deterministic model and local-
ization.

distance of the reflecting path. With multiple such ellipses, the intersection estimates
the object’s location.

As with Section 6.2.1, this simplified model can also be extended by considering a
cluster of paths with the single-bounce path being the shortest [Reggiani et al. 2009].
The major distinction is that the models here are deterministic and do not rely on a
dense-deployed network to perform computational-intensive statistical inferences. The
tradeoff, though, is to measure CIRs and separate multipath components.

Note that with current WLAN-based CIR (e.g., those derived from Intel 5300 NIC), it
is only possible to resolve clusters of multipath components [Wu et al. 2012], making it
infeasible to directly apply the aforementioned deterministic models. However, it is at
least possible to harness the CFRs as multiple independent RSSIs measured at differ-
ent frequencies to improve the robustness of the probabilistic models. Future wideband
WLAN standards (e.g., 802.11ac with 180MHz) might enable finer-grained multipath
resolution and, consequently, put deterministic models into pervasive practice.

6.3. Fingerprinting-Based Passive Detection and Localization

In general, fingerprinting-based schemes are more flexible than model-based schemes,
yet at the cost of cumbersome site survey. Youssef et al. grounded the concept of Device-
free Passive (DfP) for WiFi networks and proposed both RSSI mean and variance-based
solutions [Youssef et al. 2007]. Also, enhancements were proposed to prune irrelevant
variations by outlier detection techniques [Kosba et al. 2012], discriminant analysis [Xu
et al. 2012], and so forth, to remove static environment (i.e., empty room) calibration
[Zhao et al. 2013] and to perform more robustly under clustered multipath conditions
[Xu et al. 2012; Zhao et al. 2013]. Similar to Section 4.2, CIR and CFR naturally offer
new possibilities in selecting finer-grained signal features. Recent works have explored
the primary device-free task of detection with off-the-shelf CSI [Xiao et al. 2012b; Zhou
et al. 2013].

Xiao et al. [2012b] implemented an indoor device-free motion detection system named
FIMD to achieve a higher detection rate and robustness to narrow-band interference.
Compared with the state-of-the-art WiFi device RASID [Kosba et al. 2012], FIMD gets
a marginally higher detection rate due to the more temporally stable features extracted
from CSI.

As noted in Xiao et al. [2012b], RSSI demonstrates high variability as susceptible
to the measurement itself. And, consequently, a slow dynamic due to object locomotion
might be hidden by the inherent RSSI variance, which leads to miss detection. As with
CFR-based fingerprinting in Section 4.2.3, FIMD also leverages the frequency diversity
of CFR, yet with the objective to extract variance-based features.
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Recall from Equation (8) that H( fk) denotes the CSI at the subcarrier with central
frequency of fk, and a group of CSIs H( fk), (k = 1, . . . , K) are available on off-the-shelf
WiFi NICs. The input of FIMD is CSIs measured starting from time i and over a sliding
window W with length n+1. More specifically, denote Hi as the group of CSIs measured
at time i:

Hi = [Hi( f1) Hi( f2) . . . Hi( fK)]T . (34)

And let H be the CSIs within the sliding window W :

H = [Hi Hi+1 . . . Hi+n]. (35)

Then the correlations between each column of H are calculated by the correlation
matric C over n + 1 sequential packets:

C =

⎡
⎢⎣

C(i, i) . . . C(i, i + n)
...

. . .
...

C(i + n, i) . . . C(i + n, i + n)

⎤
⎥⎦ , (36)

where C(i, j) is the correlation ratio between Hi and Hj.
The proposed feature V is the maximum eigenvalue of the correlation matrix C:

V = max(eigen(C)/(n + 1)). (37)

The intuition is that in static environments, the correlation between each column
of H (i.e., CSIs of sequential packets) would be high. In contrast, if the eigenvalues of
the correlation matrix decrease significantly, the low correlation might indicate strong
disturbance of channel states due to object motion. In Xiao et al. [2012b], experiments
have shown that the maximum and second maximum eigenvalues are sufficient to
capture the changes. Compared with the variance of RSSI, the proposed features enjoy
two benefits: (i) RSSI is susceptible to transmitted power, while V is independent of
power control, and (ii) such features are robust to narrow-band interferences at 2.4GHz.

Zhou et al. [2013] uses CSI in fingerprinting from another perspective. The per-
formance of the basic monitoring unit in fingerprinting is not as well studied as in
model-based schemes. As discussed in Section 6.2, most existing models of monitoring
units for device-free systems are experimentally fitted and vary in coverage shapes.
In essence, as illustrated in Figure 16, most coverage models demonstrate boundaries
along the TX-RX link, rather than a disk centered at the RX. Therefore, the presence
of user U1 would be more easily detected compared with that of user U2. The disk-like
coverage, in contrast, provides an alternative to decomposing the whole monitoring
network and is also desirable in some applications [Meguerdichian et al. 2001].

In Zhou et al. [2013], the concept of Omnidirectional Passive Human Detection (Omni-
PHD) is introduced, which refers to the problem of passive human detection with a
coverage of disk-like boundary, by employing link-centric unit architectures. And two
levels of Omni-PHD are envisioned:

—Equalized Decision: Determine whether a person presents within a near-disk region
or not, with equally guaranteed confidence along all directions.

—Azimuth Distinction: Discriminate the particular azimuth of the human presence
within a near-disk region, with equally guaranteed confidence along all directions.

Although there are challenges entailed by the link-centric architecture, omnidirec-
tional detection still seems promising for the following reasons:

—While the state of the art exploits the fickle and coarse-grained RSSI, channel re-
sponse features from the PHY layer have opened new possibilities. On one hand,
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Fig. 16. Disk coverage with link structure. Fig. 17. Density distributions of CFR amplitudes.

channel response is more sensitive to human presence. On the other hand, the
structure of channel response is more temporally stable than RSSI, thus possess-
ing stronger resistance to background dynamics.

—By fingerprinting, it is possible to harness the anisotropic propagation circumstances
to virtually tune the shape of the cell coverage.

In Zhou et al. [2013], a K-dimensional vector of the amplitude histograms of CFRs
is employed, and the Earth Mover̄s Distance (EMD) [Rubner et al. 2000] is used as the
metric for signature classification.

Figure 17 demonstrates the density distributions of the CFR amplitudes measured
in a static environment with no one around (uppermost), with no one in the monitored
area but with background human movement (middle), and with one person in the
monitored area (lowermost). The upper two subfigures verify the stability of the CFR
structures while the uppermost and the lowermost confirm that the CFR structures
disperse in case of close obstruction. Hence, the amplitudes of CFR discriminate ir-
relevant background unstableness from the desired local perturbations due to human
locomotion, which is almost impossible with the MAC layer RSSI-based descriptors
[Kleisouris et al. 2010]. Detection rates of about 90% along four directions in typical
office environments have been reported [Zhou et al. 2013].

As a preliminary exploration, though, the channel response distribution is modeled
as a simple histogram, and only the amplitudes of CFRs are used. It is envisioned that
future work would take a deeper scrutiny on feature extraction on passive detection
with more flexible coverage shapes.

7. DISCUSSIONS AND RESEARCH DIRECTIONS

The motivation of wireless indoor localization is dual: using the same wireless devices
to serve as both communication and localization tools. And the finer-grained channel
response features have advanced both goals, where localization has been the primary
focus of this survey. In this section, we briefly summarize the challenges of PHY layer-
assisted indoor localization and also provide two other closely related and largely open
research areas.

7.1. Dive Deeper: PHY Localization

As discussed in Section 3.5, channel response broadens the designing space of wireless
indoor localization but also incurs limitations and challenges.

7.1.1. Multipath Resolvable, yet LOS Path Dependent. The fundamental advance of CSI
from RSSI is its ability to resolve multipath via frequency diversity. For geometric
mapping-based frameworks, though, CSI still fails to overcome the limitation of relying
on the LOS path for accurate distance or direction estimation. One compensation is to
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employ multiple TX-RX links to reduce the possibility of all LOS paths being blocked.
Note that we leave out how multiple CSI-enabled devices cooperate to locate the target.
We refer the readers to Liu and Yang [2011] for localization in a networked perspective.
It might pose new challenges on handling the multiple orthogonal RSSIs introduced
by frequency diversity from different and redundant APs for networked error control
or outlier measurement removal.

7.1.2. Bandwidth, Coverage, and Energy. As discussed in Section 4.3, the system band-
width constrains the resolution of multipath to clusters of components [Wu et al. 2012;
Jin et al. 2010] and also makes it infeasible to apply deterministic models from the
radar communities directly for passive detection [Chang and Sahai 2004; Reggiani
et al. 2009]. While it is reasonable to expect upcoming wireless standards to have
wider bandwidth (e.g., 802.11ac with up to 180MHz), which leads to higher time reso-
lution, it also introduces more transmission power given a constant transmitting range.
To conserve energy as well as prevent interferences with cobandwidth devices, it raises
a tradeoff between bandwidth and coverage, which has to be considered as well if the
systems are to be deployed in large scale. Furthermore, recent trends like Dynamic
Spectrum Access (DSA) tend to use frequency in a fine-grained, noncontiguous, and
demand-adaptive manner [Tan et al. 2010; Yang et al. 2010; Chai et al. 2012]. And it
remains open whether CSI-based features would perform well under such settings.

7.1.3. Toward Truly Mobile and Real-Time. Currently, most existing works leveraging CSI
are mostly proof-of-concept prototypes. In practice, the real-time performance would be
one major concern. Although some reported better real-time performance since multiple
CSIs are available simultaneously [Wu et al. 2012; Xiao et al. 2012b], others stated
minute-long measurements for high-accuracy fingerprinting [Sen et al. 2012b]. Since
current off-the-shelf CSIs are only available with Intel 5300 NIC and the modified
driver [Halperin et al. 2010], it poses a challenge to employ CSIs on mobile handhelds.
Even when CSIs become available on mobile devices, the upcoming device diversity,
device orientation, and placement problems would be of great challenge to apply CSIs
properly.

7.1.4. Combining Spatial Diversity. Compared with RSSI, CSI mainly extends into the
frequency domain. The development of MIMO techniques would certainly bring the
previously prohibitive AOA features into the context of pervasive computing, where
channel response is combined with spatial diversity to tackle multipath. Recent works
[Xiong and Jamieson 2013; Joshi et al. 2013] proposed novel solutions to remove mul-
tipath effects in AOA localization and with more off-the-shelf devices, opening new
directions in wireless indoor localization.

7.2. Twin Applications: RSSI- and CIR-Based Wireless Security

Parallel with wireless localization, recent works on secured wireless communication
have also explored harnessing the location-dependent and information-rich wireless
channels for physical layer authentication [Xiao et al. 2008; Xiao et al. 2009; Jiang
et al. 2013] and encryption key generation [Mathur et al. 2008; Ye et al. 2010].

Similar to location distinction [Patwari and Kasera 2007; Zhang et al. 2008], PHY
layer authentication utilizes the fact that the channel responses in clustered multi-
path environments are location specific and decorrelates with each other on the order
of wavelength, making it difficult to predict or spoof the channel states of the targeted
TX-RX pair. Thus, the intended receiver can track the channel response for each mes-
sage and detect spoofing attacks by comparing the newly measured channel response
with the history. Xiao et al. [2008, 2009] proposed a general channel response-based au-
thentication and spoofing detection framework through theoretical hypothesis testing.

ACM Computing Surveys, Vol. 46, No. 2, Article 25, Publication date: November 2013.



From RSSI to CSI: Indoor Localization via Channel Response 25:27

Very recently, Jiang et al. [2013] designed a spoofing detection prototype on commercial
WiFi, with the impact of environmental dynamics also considered. They reported 8×
detection accuracy over RSSI-based schemes.

Besides the randomness of the wireless channel, physical layer secret key generation
also relies on the reciprocity of the wireless channel within the coherent time. Mathur
et al. [2008] proposed a key extraction scheme from an unauthenticated wireless
channel via the amplitudes of CIR. To enable off-the-shelf applications, they also tested
the feasibility of key generation with coarse-grained RSSI, and as with RSSI-based
localization, have triggered increasing research interests due to the ubiquity of RSSI
[Jana et al. 2009; Liu et al. 2012b]. Nevertheless, with CSI measurable on off-the-shelf
devices now, channel response-based schemes would also be put into pervasive applica-
tions, which enjoy higher bit generation rates. Moreover, spatial diversity can also be
combined to enrich the randomness of wireless channels [Wallace and Sharma 2010].

Physical layer wireless security and localization share the same principle that the
wireless channels, though seemingly random, are location dependent and information
rich. The key distinction is that wireless localization, especially channel response-
based fingerprinting, aims to combat the temporal fluctuations to ensure reproducible
signatures, while some wireless security applications like key generation strive to avoid
temporal correlations to ensure randomness. Therefore, it is scenario specific to extract
proper features from the channel responses.

7.3. Close the Loop: Location-Aware Wireless Communication

Although it is common to consider wireless localization as an application based on
wireless communication, recent works have demonstrated that upper layers might
also benefit a PHY layer or, at least, conduct localization and other wireless tasks
simultaneously. For instance, the coarse-grained sensor readings on mobile devices
have been employed to improve wireless performance via rate adaption [Ravindranath
et al. 2011], while a pioneer work proposed a novel algorithm to locate and identify
the type of coexisted radio interferences at the same time, even if the LOS path is
severely buried by multipath [Joshi et al. 2013]. Since channel response depicts the
location-dependent wireless propagating conditions, it is promising to trigger more
novel location-aware applications.

8. CONCLUSION

In this survey, we briefly reviewed the principles and applications of channel response-
assisted indoor localization. Compared with conventional RSSI, CSI characterizes the
small-scale multipath fading and thus acts as a finer-grained descriptor of the wireless
channel. From the time domain, CIR resolves individual multipath components with
different time delays. Extending to the frequency domain, CFR depicts frequency-
selective fading within the band of interest. Moreover, consisting of both amplitude
and phase, channel response conveys much richer information than a single-valued
RSSI. Therefore, channel response opens new opportunities to both ranging-based and
fingerprinting-based localization schemes. It also holds potential for more robust and
flexible device-free passive applications. As for accessibility, channel response at the
granularity of the subcarrier level is now available on commercial wireless network
cards as well.

Tracing back to decades ago, channel response was only accessible with dedicated
infrastructure and was mainly used for channel modeling. Although channel response-
based indoor localization also dates back almost 10 years ago, the extra instruments
impede ready deployment. Meanwhile, the increasing bandwidth of WLAN standards
has triggered vast frequency-aware optimizations targeting better spectrum utility,
higher throughput, more reliable transmission, and so forth. Nevertheless, it was only
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less than five years ago that upper layer applications were able to obtain a sampled
version of CFRs on off-the-shelf platforms. And this fundamentally raises renewed
interest in channel response-assisted indoor localization, with special emphasis on
finer-grained precision and pervasive deployment.

Despite pioneer works in both geometric and fingerprinting-based schemes, the realm
of indoor localization via channel response still involves considerable challenges. The
current available resolution from channel response features is constrained by the un-
derlying bandwidth, which proves to be only sufficient to differentiate clusters of mul-
tipath components with the current IEEE 802.11n standard. It also remains unsettled
how to extract representative features that are location dependent, temporal stable,
and noise resilient. Nevertheless, we envision with the development of OFDM as well
as MIMO techniques that channel response-assisted indoor localization would embrace
more opportunities in the near future.
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and Integrated Localization System for Indoor Environments based on IEEE 802.11 Round-trip Time
Measurements. EURASIP J. Wireless Commun. Networking 2010, 6, 6:1–6:13.

BAHL, P. AND PADMANABHAN, V. 2000. RADAR: an In-building RF-based user location and tracking system. In
Proceedings of IEEE International Conference on Computer Communications (INFOCOM’00).

BARGH, M. S. AND DE GROOTE, R. 2008. Indoor localization based on response rate of Bluetooth inquiries. In
Proceedings of ACM International Workshop on Mobile Entity Localization and Tracking in GPS-less
Environments (MELT’08).

BHARTIA, A., CHEN, Y.-C., RALLAPALLI, S., AND QIU, L. 2011. Harnessing frequency diversity in Wi-Fi networks.
In Proceedings of ACM International Conference on Mobile Computing and Networking (MobiCom’11).

CHAI, E., LEE, J., LEE, S.-J., ETKIN, R., AND SHIN, K. G. 2012. Building efficient spectrum-agile devices for
dummies. In Proceedings of ACM International Conference on Mobile Computing and Networking
(MobiCom’12).

CHANG, C. AND SAHAI, A. 2004. Object tracking in a 2D UWB sensor network. In Proceedings of Asilomar
Conference on Signals, Systems and Computers (Asilomar’04).

CHANG, H.-L., TIAN, J.-B., LAI, T.-T., CHU, H.-H., AND HUANG, P. 2008. Spinning beacons for precise indoor
localization. In Proceedings of ACM Conference on Embedded Networked Sensor Systems (SenSys’08).

CHEN, X., EDELSTEIN, A., LI, Y., COATES, M., RABBAT, M., AND MEN, A. 2011. Sequential Monte Carlo for simultane-
ous passive device-free tracking and sensor localization using received signal strength measurements. In
Proceedings of ACM International Conference on Information Processing in Sensor Networks (IPSN’11).

CHEN, Y., LYMBEROPOULOS, D., LIU, J., AND PRIYANTHA, B. 2012. FM-based indoor localization. In Proceedings of
ACM International Conference on Mobile Systems, Applications, and Services (MobiSys’12).

CHEN, Y., YANG, Q., YIN, J., AND CHAI, X. 2006. Power-efficient access-point selection for indoor location esti-
mation. IEEE Trans. Knowl. Data Eng. 18, 7, 877–888.

CIDRONALI, A., MADDIO, S., GIORGETTI, G., AND MANES, G. 2010. Analysis and Performance of a Smart Antenna
for 2.45-GHz Single-Anchor Indoor Positioning. IEEE Transactions on Microwave Theory and Techniques
58, 1, 21–31.

CONG, L. AND ZHUANG, W. 2005. Nonline-of-Sight Error Mitigation in Mobile Location. IEEE Trans. Wireless
Commun. 4, 2, 560–573.

CONSTANDACHE, I., BAO, X., AZIZYAN, M., AND CHOUDHURY, R. R. 2010. Did you see Bob?: Human localization using
mobile phones. In Proceedings of ACM International Conference on Mobile Computing and Networking
(MobiCom’10).

ACM Computing Surveys, Vol. 46, No. 2, Article 25, Publication date: November 2013.



From RSSI to CSI: Indoor Localization via Channel Response 25:29

DUMONT, L., FATTOUCHE, M., AND MORRISON, G. 1994. Super-resolution of multipath channels in a spread
spectrum location system. IEEE Electron. Lett. 30, 19, 1583–1584.

ELNAHRAWY, E., LI, X., AND MARTIN, R. 2004. The limits of localization using signal strength: A comparative
study. In Proceedings of IEEE Communications Society Conference on Sensor and Ad Hoc Communica-
tions and Networks (SECON’04).

FANG, S.-H. AND LIN, T.-N. 2010. A dynamic system approach for radio location fingerprinting in wireless local
area networks. IEEE Trans. Commun. 58, 4, 1020–1025.

FANG, S.-H. AND LIN, T.-N. 2012. Principal component localization in indoor WLAN environments. IEEE Trans.
Mobile Comput. 11, 1, 100–110.

FESSLER, J. AND HERO, A. 1994. Space-alternating generalized expectation-maximization algorithm. IEEE
Trans. Signal Process. 42, 10, 2664–2677.

FONTANA, R. 2004. Recent system applications of short-pulse ultra-wideband (UWB) technology. IEEE Trans.
Microwave Theory Tech. 52, 9, 2087–2104.

GEIGER, D. 2010. High resolution time difference of arrival using timestamps for localization in 802.11b/g wire-
less networks. In Proceedings of IEEE Wireless Communications and Networking Conference (WCNC’10).

GEZICI, S., TIAN, Z., GIANNAKIS, G., KOBAYASHI, H., MOLISCH, A., POOR, H., AND SAHINOGLU, Z. 2005. Localization
via ultra-wideband radios: A look at positioning aspects for future sensor networks. IEEE Signal Process.
Mag.e 22, 4, 70–84.

GIUSTINIANO, D. AND MANGOLD, S. 2011. CAESAR: Carrier sense-based ranging in off-the-shelf 802.11 wire-
less LAN. In Proceedings of ACM Conference on Emerging Networking EXperiments and Technologies
(CoNEXT’11).

GOLDEN, S. A. AND BATEMAN, S. S. 2007. Sensor measurements for Wi-Fi location with emphasis on time-of-
arrival ranging. IEEE Trans. Mobile Comput. 6, 10, 1185–1198.

GOLDSMITH, A. 2005. Wireless Communications. Cambridge University Press, New York, NY, USA.
GUVENC, I. AND CHONG, C.-C. 2009. A Survey on TOA Based Wireless localization and NLOS mitigation

techniques. IEEE Commun. Surv. Tutorials 11, 3, 107–124.
HALPERIN, D., HU, W., SHETH, A., AND WETHERALL, D. 2010. Predictable 802.11 packet delivery from wireless

channel measurements. In Proceedings of ACM SIGCOMM Conference (SIGCOMM’10).
HARTER, A., HOPPER, A., STEGGLES, P., WARD, A., AND WEBSTER, P. 1999. The anatomy of a context-aware

application. In Proceedings of ACM International Conference on Mobile Computing and Networking
(MobiCom’99).

JANA, S., PREMNATH, S. N., CLARK, M., KASERA, S. K., PATWARI, N., AND KRISHNAMURTHY, S. V. 2009. On the
effectiveness of secret key extraction from wireless signal strength in real environments. In Proceedings
of ACM International Conference on Mobile Computing and Networking (MobiCom’09).

JIANG, Z., ZHAO, J., LI, X.-Y., HAN, J., AND XI, W. 2013. Rejecting the Attack: Source Authentication for
WiFi Management Frames using CSI Information. In Proceedings of IEEE International Conference on
Computer Communications (INFOCOM).

JIN, Y., SOH, W.-S., AND WONG, W.-C. 2010. Indoor localization with channel impulse response based fingerprint
and nonparametric regression. IEEE Trans. Wireless Commun. 9, 3, 1120–1127.

JOSHI, K., HONG, S., AND KATTI, S. 2013. PinPoint: Localizing Interfering Radios. In Proceedings of USENIX
Symposium on Networked Systems Design and Implementation (NSDI).

KLEISOURIS, K., FIRNER, B., HOWARD, R., ZHANG, Y., AND MARTIN, R. P. 2010. Detecting Intra-room Mobility
with Signal Strength Descriptors. In Proceedings of ACM International Symposium on Mobile ad hoc
Networking and Computing (MobiHoc).

KOSBA, A., SAEED, A., AND YOUSSEF, M. 2012. RASID: A Robust WLAN Device-free Passive Motion Detection
System. In Proceedings of IEEE International Conference on Pervasive Computing and Communications
(PerCom’12).

LI, X. AND PAHLAVAN, K. 2004. Super-Resolution TOA Estimation with Diversity for Indoor Geolocation. IEEE
Trans. Wireless Commun. 3, 1, 224–234.

LIM, H., KUNG, L.-C., HOU, J. C., AND LUO, H. 2006. Zero-Configuration, Robust Indoor Localization: Theory
and Experimentation. In Proceedings of IEEE International Conference on Computer Communications
(INFOCOM).

LIU, H., GAN, Y., YANG, J., SIDHOM, S., WANG, Y., CHEN, Y., AND YE, F. 2012a. Push the Limit of WiFi based
Localization for Smartphones. In Proceedings of ACM International Conference on Mobile Computing
and Networking (MobiCom’06).

LIU, H., YANG, J., WANG, Y., AND CHEN, Y. 2012b. Collaborative Secret Key Extraction Leveraging Received
Signal Strength in Mobile Wireless Networks. In Proceedings of IEEE International Conference on
Computer Communications (INFOCOM’12).

ACM Computing Surveys, Vol. 46, No. 2, Article 25, Publication date: November 2013.



25:30 Z. Yang et al.

LIU, Y. AND YANG, Z. 2011. Location, Localization, and Localizability: Location-awareness Technology for
Wireless Networks. Springer New York.

MATHUR, S., TRAPPE, W., MANDAYAM, N., YE, C., AND REZNIK, A. 2008. Radio-telepathy: Extracting a Secret Key
from an Unauthenticated Wireless Channel. In Proceedings of ACM International Conference on Mobile
Computing and Networking (MobiCom).

MAZUELAS, S., LAGO, F., BLAS, J., BAHILLO, A., FERNANDEZ, P., LORENZO, R., AND ABRIL, E. 2009. Prior NLOS
measurement correction for positioning in cellular wireless networks. IEEE Trans. Vehicular Technol.
58, 5, 2585–2591.

MEGUERDICHIAN, S., KOUSHANFAR, F., POTKONJAK, M., AND SRIVASTAVA, M. 2001. Coverage problems in wireless
ad-hoc sensor networks. In Proceedings of IEEE International Conference on Computer Communications
(INFOCOM’01).

MOUSSA, M. AND YOUSSEF, M. 2009. Smart devices for smart environments: Device-free passive detection
in real environments. In Proceedings of IEEE International Conference on Pervasive Computing and
Communications (PerCom’09).

NANDAKUMAR, R., CHINTALAPUDI, K. K., AND PADMANABHAN, V. N. 2012. Centaur: Locating Devices in an Office
Environment. In Proceedings of ACM International Conference on Mobile Computing and Networking
(MobiCom’12).

NERGUIZIAN, C., DESPINS, C., AND AFFES, S. 2006. Geolocation in mines with an impulse response fingerprinting
technique and neural networks. IEEE Trans. Wireless Commun. 5, 3, 603–611.

NERGUIZIAN, C. AND NERGUIZIAN, V. 2007. Indoor fingerprinting geolocation using wavelet-based Features
Extracted from the Channel impulse response in conjunction with an artificial neural network. In
Proceedings of IEEE International Symposium on Industrial Electronics (ISIE’07).

NI, L. M., LIU, Y., LAU, Y. C., AND PATIL, A. P. 2004. LANDMARC: Indoor location sensing using active RFID.
Wireless Networks 10, 6, 701–710.

NICULESCU, D. AND NATH, B. 2004. VOR base stations for indoor 802.11 positioning. In Proceedings of ACM
International Conference on Mobile Computing and Networking (MobiCom’04).

OKTEM, T. M. AND SLOCK, D. T. M. 2010. Power delay Doppler profile fingerprinting for mobile localization
in NLOS. In Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio
Communications (PIMRC’10).

OTSASON, V., VARSHAVSKY, A., LAMARCA, A., AND DE LARA, E. 2005. Accurate GSM indoor localization. In Pro-
ceedings of ACM International Conference on Ubiquitous Computing (UbiComp’05).

PATWARI, N. AND KASERA, S. K. 2007. Robust location distinction using Temporal link signatures. In Proceedings
of ACM International Conference on Mobile Computing and Networking (MobiCom’07).

PATWARI, N. AND WILSON, J. 2010. RF sensor networks for device-free localization: Measurements, models, and
algorithms. Proceedings of the IEEE 98, 11, 1961–1973.

PATWARI, N. AND WILSON, J. 2011. Spatial models for human motion-induced signal strength variance on static
links. IEEE Trans. Inf. Forensics Security 6, 3, 791–802.

PENG, C., SHEN, G., ZHANG, Y., LI, Y., AND TAN, K. 2007. BeepBeep: A high accuracy acoustic ranging system
using COTS mobile devices. In Proceedings of ACM International Conference on Embedded Networked
Sensor Systems (SenSys’07).

PONGTHAWORNKAMOL, T., AHMED, S., NAHRSTEDT, K., AND UCHIYAMA, A. 2010. Zero-knowledge real-time indoor
tracking via outdoor wireless directional antennas. In Proceedings of IEEE International Conference on
Pervasive Computing and Communications (PerCom’10).

POZAR, D. 1997. Microwave Engineering 2nd Ed. Wiley.
PRIYANTHA, N. B., CHAKRABORTY, A., AND BALAKRISHNAN, H. 2000. The cricket location-support system. In Pro-

ceedings of ACM International Conference on Mobile Computing and Networking (MobiCom’00).
RAI, A., CHINTALAPUDI, K. K., PADMANABHAN, V. N., AND SEN, R. 2012. Zee: Zero-effort Crowdsourcing for indoor

localization. In Proceedings of ACM International Conference on Mobile Computing and Networking
(MobiCom).

RAPPAPORT, T. 2002. Wireless Communications: Principles and Practice (2nd). Prentice Hall PTR.
RAVINDRANATH, L., NEWPORT, C., BALAKRISHNAN, H., AND MADDEN, S. 2011. Improving Wireless Network Perfor-

mance using Sensor Hints. In Proceedings of the USENIX Conference on Networked Systems Design and
Implementation (NSDI’11).

REGGIANI, L., RYDSTROM, M., TIBERI, G., STROM, E., AND MONORCHIO, A. 2009. Ultra-wide band sensor networks
for tracking point scatterers or relays. In Proceedings of IEEE International Symposium on Wireless
Communication Systems (ISWCS’09).

RUBNER, Y., TOMASI, C., AND GUIBAS, L. J. 2000. The earth mover’s distance as a metric for image retrieval. Int.
J. Comput. Vision 40, 2, 99–121.

ACM Computing Surveys, Vol. 46, No. 2, Article 25, Publication date: November 2013.



From RSSI to CSI: Indoor Localization via Channel Response 25:31

SAARNISAARI, H. 1997. TLS-ESPRIT in a time delay estimation. In Proceedings of IEEE Vehicular Technology
Conference (VTC’97).

SEIDEL, S. AND RAPPAPORT, T. 1992. 914 MHz path loss prediction models for indoor wireless communications
in multifloored buildings. IEEE Trans. Antennas and Propagation 40, 2, 207–217.

SEN, S., CHOUDHURY, R. R., AND NELAKUDITI, S. 2012a. SpinLoc: Spin once to know your location. In Proceedings
of ACM Workshop on Mobile Computing Systems and Applications (HotMobile’12).

SEN, S., RADUNOVIC, B., CHOUDHURY, R. R., AND MINKA, T. 2012b. You are facing the Mona Lisa: Spot localization
using PHY layer information. In Proceedings of ACM International Conference on Mobile Systems,
Applications, and Services (MobiSys’12).

SEOW, C. K. AND TAN, S. Y. 2008. Localization of omnidirectional mobile device in multipath environments.
Progress in Electromagnetics Research PIER 85, 323–348.

SUN, Z., PUROHIT, A., CHEN, K., PAN, S., PERING, T., AND ZHANG, P. 2011. PANDAA: Physical arrangement
detection of networked devices through ambient-sound awareness. In Proceedings of ACM International
Conference on Ubiquitous Computing (UbiComp’11).

TAN, K., FANG, J., ZHANG, Y., CHEN, S., SHI, L., ZHANG, J., AND ZHANG, Y. 2010. Fine-grained channel access in
wireless LAN. In Proceedings of ACM SIGCOMM Conference (SIGCOMM’10).

TRIKI, M. AND SLOCK, D. T. M. 2007. Mobile localization for NLOS propagation. In Proceedings of IEEE
International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC’07).

UR REHMAN, W., DE LARA, E., AND SAROIU, S. 2008. CILoS: A CDMA indoor localization system. In Proceedings
of ACM International Conference on Ubiquitous Computing (UbiComp’08).

WALLACE, J. AND SHARMA, R. 2010. Automatic secret keys from reciprocal MIMO wireless channels: Measure-
ment and Analysis. IEEE Trans. Inf. Forensics Security 5, 3, 381–392.

WANG, H., SEN, S., ELGOHARY, A., FARID, M., YOUSSEF, M., AND CHOUDHURY, R. R. 2012. No need to war-drive:
Unsupervised indoor localization. In Proceedings of ACM International Conference on Mobile Systems,
Applications, and Services (MobiSys’13).
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