
Appendix

A. ALQ Initialization
A.1. Initialization Algorithm

We adapt the network sketching in [9], and propose a
structured sketching algorithm below for ALQ initialization
(see Alg. 1)2. Here, the subscript of the layer index l is rein-
troduced for a layerwise elaboration in the pseudocode. This
algorithm partitions the pretrained full precision weightswl

of the lth layer into Gl groups with the structures mentioned
in A.2. The vectorized weightswl,g of each group are quan-
tized with Il,g linear independent binary bases (i.e. column
vectors inBl,g) and corresponding coordinates αl,g to min-
imize the reconstruction error. This algorithm initializes
the matrix of binary basesBl,g, the vector of floating-point
coordinates αl,g, and the scalar of integer bitwidth Il,g in
each group across layers. The initial reconstruction error is
upper bounded by a threshold σ. In addition, a maximum
bitwidth of each group is defined as Imax. Both of these two
parameters determine the initial bitwidth Il,g.

Algorithm 1: Structured Sketching of Weights

Input: {wl}Ll=1, {Gl}Ll=1, Imax, σ
Output: {{αl,g,Bl,g, Il,g}Gl

g=1}Ll=1

for l← 1 to L do
for g ← 1 to Gl do

Fetch and vectorize wl,g from wl ;
Initialize ε = wl,g, i = 0 ;
Bl,g = [] ;
while ‖ε�wl,g‖22 > σ and i < Imax do

i = i+ 1;
βi = sign(ε);
Bl,g = [Bl,g,βi];
/* Find the optimal point

spanned by Bl,g */
αl,g = (BT

l,gBl,g)−1BT
l,gwl,g ;

/* Update the residual
reconstruction error */

ε = wl,g −Bl,gαl,g ;

Il,g = i;

Theorem A.1. The column vectors inBl,g are linear inde-
pendent.

Proof. The instruction αl,g = (BT
l,gBl,g)−1BT

l,gwl,g en-
sures αl,g is the optimal point in span(Bl,g) regarding the
least square reconstruction error ε. Thus, ε is orthogonal
to span(Bl,g). The new basis is computed from the next

2Circled operation in Alg. 1 means elementwise operations.

iteration by βi = sign(ε). Since sign(ε) • ε > 0,∀ε 6= 0,
we have βi /∈ span(Bl,g). Thus, the iteratively generated
column vectors in Bl,g are linear independent. This also
means the square matrix ofBT

l,gBl,g is invertible.

A.2. Experiments on Group Size

Researchers propose different structured quantization in
order to exploit the redundancy and the tolerance in the
different structures. Certainly, the weights in one layer can
be arbitrarily selected to gather a group. Considering the
extra indexing cost, in general, the weights are sliced along
the tensor dimensions and uniformly grouped.

According to [9], the squared reconstruction error of a
single group decays with Eq.(27), where λ ≥ 0.

‖ε‖22 ≤ ‖wg‖22(1− 1

n− λ
)Ig (27)

If full precision values are stored in floating-point datatype,
i.e. 32-bit, the storage compression rate in one layer can be
written as,

rs =
N × 32

I ×N + I × 32× N
n

(28)

where N is the total number of weights in one layer; n is
the number of weights in each group, i.e. n = N/G; I is the
average bitwidth, I = 1

G

∑G
g=1 Ig .

We analyse the trade-off between the reconstruction error
and the storage compression rate of different group size n.
We choose the pretrained AlexNet [20] and VGG-16 [40],
and plot the curves of the average (per weight) reconstruction
error related to the storage compression rate of each layer
under different sliced structures. We also randomly shuffle
the weights in each layer, then partition them into groups
with different sizes. We select one example plot which
comes from the last convolution layer (256× 256× 3× 3)
of AlexNet [20] (see Fig. 3). The pretrained full precision
weights are provided by Pytorch [30].

We have found that there is not a significant difference
between random groups and sliced groups (along original
tensor dimensions). Only the group size influences the trade-
off. We argue the reason is that one layer always contains
thousands of groups, such that the points presented by these
groups are roughly scattered in the n-dim space. Further-
more, regarding the deployment on a 32-bit general micro-
processor, the group size should be larger than 32 for efficient
computation. In short, a group size from 32 to 512 achieves
relatively good trade-off between the reconstruction error
and the storage compression.

These above demonstrated three structures in Fig. 3 do not
involve the cross convolutional filters’ computation, which
leads to less run-time memory than other structures. Ac-
cordingly, for a convolution layer, grouping in channel-wise
(wc,:,:,:), kernel-wise (wc,d,:,:), and pixel-wise (wc,:,h,w)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1/r
s

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

lo
g
(

2
)

9(k)

256(p)

2304(c)

16

32

128

256

512

2048

Figure 3. The curves about the logarithmic L2-norm of the aver-
age reconstruction error log(‖ε‖22) related to the reciprocal of the
storage compression rate 1/rs (from the last convolution layer of
AlexNet). The legend demonstrates the corresponding group sizes.
’k’ stands for kernel-wise; ’p’ stands for pixel-wise; ’c’ stands for
channel-wise.

are appropriate. Channel-wise wc,: and subchannel-wise
wc,d:d+n grouping are suited for a fully connected layer.
The most frequently used structures for current popular net-
work are pixel-wise (convolution layers) and (sub)channel-
wise (fully connected layers), which exactly coincide the
bit-packing approach in [31], and could result in a more effi-
cient deployment. Since many network architectures choose
an integer multiple of 32 as the number of output channels
in each layer, pixel-wise and (sub)channel-wise are also effi-
cient for the current storage format in 32-bit microprocessors,
i.e. in 4 Bytes (32-bit integer).

B. Pseudocode and Complexity Analysis
B.1. Pruning in α Domain

In each execution of Step 1 (Sec. 3.2), 30% of αi’s are
pruned. Iterative pruning is realized in mini-batch (general 1
epoch in total). Due to the high complexity of sorting all fα,i,
sorting is firstly executed in each layer, and the top-k% fαl,i

of the lth layer are selected to resort again for pruning. k is
generally small, e.g. 1 or 0.5, which ensures that the pruned
αi’s in one iteration do not come from a single layer. Again,
αl is vectorized {αl,g}Gl

g=1; Bl is concatenated {Bl,g}Gl
g=1

in the lth layer. There are nl weights in each group, and Gl

groups in the lth layer.
The number of total layers is usually smaller than 100,

thus, the sorting complexity mainly depends on the sorting
in the layer, which has the largest card(αl). The number
of the sorted element fαl,i, i.e. card(αl), is usually smaller
than an order of 104 for a general network in ALQ.

The pruning step in Sec. 3.2 is demonstrated in Alg. 2.
Here, assume that there are altogether T times pruning itera-

tions in each execution of Step 1; the total number of αi’s
across all layers is M0 before pruning, i.e.

M0 =
∑
l

∑
g

card(αl,g) (29)

and the desired total number of αi’s after pruning is MT .

Algorithm 2: Pruning in α Domain

Input: T , MT , k, {{αl,g,Bl,g, Il,g}Gl
g=1}Ll=1,

Training Data
Output: {{αl,g,Bl,g, Il,g}Gl

g=1}Ll=1

Compute M0 with Eq.(29) ;
Determine the pruning number at each iteration
Mp = round(M0−MT

T) ;
for t← 1 to T do

for l← 1 to L do
Update ŵt

l,g = Bt
l,gα

t
l,g ;

Forward propagate convolution ;

Compute the loss `t ;
for l← L to 1 do

Backward propagate gradient ∂`t

∂ŵt
l,g

;

Compute ∂`t

∂αt
l,g

with Eq.(14) ;
Update momentums of AMSGrad in α

domain ;
for αt

l,i in αt
l do

Compute f tαl,i
with Eq.(13) ;

Sort and select Top-k% f tαl,i
in ascending

order ;

Resort the selected {f tαl,i
}Ll=1 in ascending

order ;
Remove Top-Mp α

t
l,i and their binary bases ;

Update {{αt+1
l,g ,B

t+1
l,g , It+1

l,g }
Gl
g=1}Ll=1 ;

B.2. Optimizing Binary Bases and Coordinates

Step 2 is also executed in batch training. In Step 2
(Sec. 3.3), 10−3 is used as the learning rate in optimizing
Bg , and gradually decays in each epoch; the learning rate is
set to 10−5 in optimizing αg, and also gradually decays in
each epoch.

B.2.1 OptimizingBg with Speedup

The extra complexity related to the original AMSGrad
mainly comes from two parts, Eq.(19) and Eq.(23). Eq.(19)
is also the most resource-hungry step of the whole pipeline,
since it requires an exhaustive search. For each group,
Eq.(19) takes both time and storage complexities ofO(n2Ig),
and in general n >> Ig ≥ 1. Since Hq is a diagonal

matrix, most of matrix-matrix multiplication in Eq.(23) is
avoided through matrix-vector multiplication and matrix-
diagonalmatrix multiplication. Thus, the time complexity
trims down toO(nIg+nI2g +I3g +nIg+n+n+nIg+I2g)

.
=

O(n(I2g + 3Ig + 2)). In our settings, optimizing Bg with
speedup usually takes around twice as long as optimizing
αg (i.e. the original AMSGrad step).

Optimizing Bg with speedup (Sec. 3.3) is presented in
Alg. 3. Assume that there are altogether Q iterations. It is
worth noting that the bitwidth Il,g does not change in this
step; only the binary basesBl,g and the coordinates αl,g are
updated over Q iterations.

Algorithm 3: OptimizingBg with Speedup

Input: Q, {{αl,g,Bl,g, Il,g}Gl
g=1}Ll=1, Training Data

Output: {{αl,g,Bl,g, Il,g}Gl
g=1}Ll=1

for q ← 1 to Q do
for l← 1 to L do

Update ŵq
l,g = Bq

l,gα
q
l,g ;

Forward propagate convolution ;

Compute the loss `q ;
for l← L to 1 do

Backward propagate gradient ∂`q

∂ŵq
l,g

;

Update momentums of AMSGrad ;
for g ← 1 to Gl do

Compute all values of Eq.(20) ;
for j ← 1 to nl do

UpdateBq+1
l,g,j according to the

nearest value (see Eq.(19)) ;

Update αq+1
l,g with Eq.(23) ;

B.2.2 Optimizing αg

Since αg is floating-point value, the complexity of optimiz-
ing αg is the same as the conventional optimization step,
(see Alg. 4). Assume that there are altogether P iterations.
It is worth noting that both the bitwidth Il,g and the binary
basesBl,g do not change in this step; only the coordinates
αl,g are updated over P iterations.

B.3. Whole Pipeline of ALQ

The whole pipeline of ALQ is demonstrated in Alg. 5.
For the initialization, the pretrained full precision weights

(model) {wl}Ll=1 is required. Then, we need to specify the
structure used in each layer, i.e. the manner of grouping
(for short marked with {Gl}Ll=1). In addition, a maximum
bitwidth Imax and a threshold σ for the residual reconstruc-
tion error also need to be determined (see more details in A).

Algorithm 4: Optimizing αg

Input: P , {{αl,g,Bl,g, Il,g}Gl
g=1}Ll=1, Training Data

Output: {{αl,g,Bl,g, Il,g}Gl
g=1}Ll=1

for p← 1 to P do
for l← 1 to L do

Update ŵp
l,g = Bl,gα

p
l,g ;

Forward propagate convolution ;

Compute the loss `p ;
for l← L to 1 do

Backward propagate gradient ∂`p

∂ŵp
l,g

;

Compute ∂`p

∂αp
l,g

with Eq.(14) ;
Update momentums of AMSGrad in α

domain ;
for g ← 1 to Gl do

Update αp+1
l,g with Eq.(21) ;

After initialization, we might need to retrain the model with
several epochs of B.2 to recover the accuracy degradation
caused by the initialization.

Then, we need to determine the number of outer iterations
R, i.e. how many times the pruning step (Step 1) is executed.
A pruning schedule {Mr}Rr=1 is also required. Mr deter-
mines the total number of remained αi’s (across all layers)
after the rth pruning step, which is also taken as the input
MT in Alg. 2. For example, we can build this schedule by
pruning 30% of αi’s during each execution of Step 1, as,

Mr+1 = Mr × (1− 0.3) (30)

with r ∈ {0, 1, 2, ..., R − 1}. M0 represents the total
number of αi’s (across all layers) after initialization.

For Step 1 (Pruning inαDomain), other individual inputs
include the total number of iterations T , and the selected
percentages k for sorting (see Alg. 2). For Step 2 (Optimiz-
ing Binary Bases and Coordinates), the individual inputs
includes the total number of iterations Q in optimizingBg

(see Alg. 3), and the total number of iterations P in optimiz-
ing αg (see Alg. 4).

B.4. STE with Loss-aware

In this section, we provide the details of the proposed
STE with loss-aware optimizer. The training scheme of STE
with loss-aware is similar as OptimizingBg with Speedup
(see B.2.1), except that it maintains the full precision weights
wg . See the pseudocode of STE with loss-aware in Alg. 6.

For the layer l, the quantized weights ŵg is used during
forward propagation. During backward propagation, the
loss gradients to the full precision weights ∂`

∂wg
are directly

Algorithm 5: Adaptive Loss-aware Quantization

Input: Pretrained FP Weights {wl}Ll=1,
Structures {Gl}Ll=1, Imax, σ,
T , Pruning Schedule {Mr}Rr=1,
k, P , Q, R, Training Data

Output: {{αl,g,Bl,g, Il,g}Gl
g=1}Ll=1

/* Initialization: */

Initialize {{αl,g,Bl,g, Il,g}Gl
g=1}Ll=1 with Alg. 1 ;

for r ← 1 to R do
/* Step 1: */
Assign Mr to the input MT of Alg. 2 ;
Prune in α domain with Alg. 2 ;
/* Step 2: */
Optimize binary bases with Alg. 3 ;
Optimize coordinates with Alg. 4 ;

approximated with ∂`
∂ŵg

, i.e. via STE in the qth iteration as,

∂`q

∂wq
g

=
∂`q

∂ŵq
g

(31)

Then the first and second momentums in AMSGrad are
updated with ∂`q

∂wq
g

. Accordingly, the loss increment around
wq

g is modeled as,

fqste = (gq)T(wg −wq
g) +

1

2
(wg −wq

g)THq(wg −wq
g)

(32)
Since wg is full precision, wq+1

g can be directly obtained
through the above AMSGrad step without projection updat-
ing,

wq+1
g = wq

g − (Hq)−1gq = wq
g − aqmq/

√
v̂q (33)

For more details about the notations, please refer to Sec. 3.1.
Similarly, the loss increment caused byBg (see Eq.(17) and
Eq.(18)) is formulated as,

fqste,B = (gq)T(Bgα
q
g −wq

g)+

1

2
(Bgα

q
g −wq

g)THq(Bgα
q
g −wq

g)
(34)

Thus, the jth row inBq+1
g is updated by,

Bq+1
g,j = argmin

Bg,j

‖Bg,jα
q
g − (wq

g,j − g
q
j/H

q
jj)‖ (35)

In addition, the speedup step (see Eq.(22) and Eq.(23)) is,

αq+1
g = −((Bq+1

g)THqBq+1
g)−1×

((Bq+1
g)T(gq −Hqwq

g))
(36)

So far, the quantized weights are updated in a loss-aware
manner as,

ŵq+1
g = Bq+1

g αq+1
g (37)

Algorithm 6: STE with Loss-aware

Input: Q, {{αl,g,Bl,g, Il,g}Gl
g=1}Ll=1, Training Data

Output: {{αl,g,Bl,g, Il,g}Gl
g=1}Ll=1

for q ← 1 to Q do
for l← 1 to L do

Update ŵq
l,g = Bq

l,gα
q
l,g ;

Forward propagate convolution ;

Compute the loss `q ;
for l← L to 1 do

Backward propagate gradient ∂`q

∂ŵq
l,g

;

Directly approximate ∂`q

∂wq
l,g

with ∂`q

∂ŵq
l,g

;

Update momentums of AMSGrad ;
for g ← 1 to Gl do

Update wq+1
l,g with Eq.(33) ;

Compute all values of Eq.(20) ;
for j ← 1 to nl do

UpdateBq+1
l,g,j according to the

nearest value (see Eq.(35)) ;

Update αq+1
l,g with Eq.(36) ;

C. Implementation Details
C.1. LeNet5 on MNIST

The MNIST dataset [22] consists of 28× 28 gray scale
images from 10 digit classes. We use 50000 samples in
the training set for training, the rest 10000 for validation,
and the 10000 samples in the test set for testing. The test
accuracy is reported, when the validation dataset has the
highest top-1 accuracy. We use a mini-batch with size of
128. The used LeNet5 is a modified version of [21]. For
data preprocessing, we use the official example provided by
Pytorch [30]. We use the default hyperparameters proposed
in [32] to train LeNet5 for 100 epochs as the baseline of full
precision version.

The network architecture is presented as,
20C5 - MP2 - 50C5 - MP2 - 500FC - 10SVM.

The structures of each layer chosen for ALQ are kernel-
wise, kernel-wise, subchannel-wise(2), channel-wise respec-
tively. The subchannel-wise(2) structure means all input
channels are sliced into two groups with the same size, i.e.
the group size here is 800/2 = 400. After each pruning, the
network is retrained to recover the accuracy degradation with
20 epochs of optimizing Bg and 10 epochs of optimizing
αg. The pruning ratio is 80%, and 4 times pruning (Step 1)
are executed after initialization in the reported experiment
(Table 2). In the end, i.e. after the retraining of the last
pruning step, we add another 50 epochs of optimizing steps
(Sec. 3.3) to further increase the final accuracy (also applied

in the following experiments of VGG and ResNet18/34).
ALQ can fast converge in the training. However, we

observe that even after the convergence, the accuracy still
continue increasing slowly along the training, which is sim-
ilar as the behavior of STE-based optimizer. During the
retraining after each pruning step, as long as the training
loss is (almost) converged with a few epochs, we can further
proceed the next pruning step. We have tested that the final
accuracy level is approximately the same whether we add
plenty of epochs each time to slowly recover the accuracy
to the original level or not. Thus, we choose a fixed mod-
est number of retraining epochs after each pruning step to
save the overall training time. In fact, this benefits from the
feature of ALQ, which leverages the true gradient (w.r.t. the
loss) to result a fast and stable convergence. The final added
plenty of training epochs aim to further slowly regain the
final accuracy level, and we use a gradually decayed learn-
ing rate in this process, e.g. 10−4 decays with 0.98 in each
epoch.

C.2. VGG on CIFAR10

The CIFAR-10 dataset [19] consists of 60000 32 × 32
color images in 10 object classes. We use 45000 samples
in the training set for training, the rest 5000 for validation,
and the 10000 samples in the test set for testing. We use a
mini-batch with size of 128. The used VGG net is a modified
version of the original VGG [40]. For data preprocessing, we
use the setting provided by [33]. We use the default Adam
optimizer provided by Pytorch [32] to train full precision pa-
rameters for 200 epochs as the baseline of the full precision
version. The initial learning rate is 0.01, and it decays with
0.2 every 30 epochs.

The network architecture is presented as,
2×128C3 - MP2 - 2×256C3 - MP2 - 2×512C3 - MP2 -
2×1024FC - 10SVM.

The structures of each layer chosen for ALQ are channel-
wise, pixel-wise, pixel-wise, pixel-wise, pixel-wise, pixel-
wise, subchannel-wise(16), subchannel-wise(2), subchannel-
wise(2) respectively. After each pruning, the network is
retrained to recover the accuracy degradation with 20 epochs
of optimizingBg and 10 epochs of optimizingαg . The prun-
ing ratio is 40%, and 5/6 times pruning (Step 1) are executed
after initialization in the reported experiment (Table 3).

In order to demonstrate the convergence of ALQ statisti-
cally, we plot the train loss curves (the mean of cross-entropy
loss) of quantizing VGG on CIFAR10 with ALQ in 5 suc-
cessive trials (see Fig. 4a). We also plot one of them with
detailed training steps of ALQ (see Fig. 4b).

C.3. ResNet18/34 on ILSVRC12

The ImageNet (ILSVRC12) dataset [38] consists of 1.2
million high-resolution images for classifying in 1000 object
classes. The validation set contains 50k images, which are

0 20 40 60 80 100 120 140 160 180

epoch

0

0.02

0.04

0.06

0.08

0.1

0.12

lo
s
s

(a)

0 20 40 60 80 100 120 140 160 180

epoch

0

0.02

0.04

0.06

0.08

0.1

0.12

lo
s
s

(b)
Figure 4. The train loss of VGG on CIFAR10 trained by ALQ.
(a) The train loss of 5 trials. (b) A detailed example train loss.
’Magenta’ stands for initialization; ’Green’ stands for optimizing
Bg with speedup; ’Blue’ stands for optimizing αg; ’Red’ stands
for pruning in α domain. Please see this figure in color.

used to report the accuracy level. We use mini-batch with
size of 256. The used ResNet18/34 is from [11]. For data
preprocessing, we use the setting provided by [34]. We use
the ResNet18/34 provided by Pytorch [32] as the baseline of
full precision version. The network architecture is the same
as "resnet18/resnet34" in [35].

The structures of each layer chosen for ALQ are all pixel-
wise except for the first layer (kernel-wise) and the last layer
(subchannel-wise(2)). After each pruning, the network is
retrained to recover the accuracy degradation with 10 epochs
of optimizingBg and 5 epochs of optimizing αg . The prun-
ing ratio is 15%, and 5/9 times pruning (Step 1) are executed
after initialization in the reported experiments (Table 4).

For quantizing a large network with an average low
bitwidth (e.g. ≤ 2.0), we find that adding our STE with
loss-aware steps in the end can result an around 1% ∼ 2%
higher accuracy (see Table 4) than adding the optimizing
steps of Sec. 3.3. Thus, we add another 50 epochs of STE
with loss-aware in the end for quantizing ResNet18/34. The
learning rate is 10−4, and gradually decays with 0.98 per
epoch. Here, STE with loss-aware is just used in the end to
further seeking a higher final accuracy.

We think this is due to the fact that several layers have
already been pruned to an extremely low bitwidth (< 1.0-
bit). With such an extremely low bitwidth, maintained full
precision weights help to calibrate some aggressive steps of
quantization, which slowly converges to a local optimum
with a higher accuracy for a large network. Recall that
maintaining full precision parameters means STE is required
to approximate the gradients, since the true-gradients only
relate to the quantized parameters used in the forward propa-
gation. However, for the quantization bitwidth higher than
two (> 2.0-bit), the quantizer can already take smooth steps,
and the gradient approximation brought from STE damages
the training process inevitably. Thus in this case, the true-
gradient optimizer (our optimization steps in Sec. 3.3) can
converge to a better local optimum, faster and more stable.

