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1 Introduction

On-device deep learning (DL) on mobile and embedded IoT
devices drives various applications [1] like robotics image
recognition [2] and drone swarm classification [3]. Efficient
local data processing preserves privacy, enhances
responsiveness, and saves bandwidth. However, current on-
device DL relies on predefined patterns, leading to accuracy
and efficiency bottlenecks. It is difficult to provide feedback
on data processing performance during the data acquisition
stage, as processing typically occurs after data acquisition.

Harnessing the potential of swarms formed by physically
adjacent mobile and embedded devices in IoT scenarios, we
advocate a paradigm shift towards Swarm DL by drawing
inspiration from swarm intelligence [4]. This shift entails
moving from reactive on-device DL, which responds to given
input data, to proactive systems known as swarm deep
learning (Swarm DL). Conceptually, swarm intelligence
involves the collective intelligent behavior of multiple agents,
each acting proactively based on simple patterns in a self-
organized, self-adaptive, self-evolved manner, leading to
enhanced global performance. Building upon on-device DL as
the foundation, Swarm DL proactively scales data acquisition
and processing and provides bi-directional optimization
feedback for them, forming a closed system loop. This
paradigm aims to maximize implicit complementarity and
minimize redundancy in both data acquisition and processing
within the swarm, fostering a more efficient and scalable IoT
system.

Specifically, Swarm DL achieves swarm intelligence by
utilizing IoT devices equipped with advanced sensors and DL
computing capabilities as active agents, with two major
visions: Proactive Data Acquisition for DL and Proactive
Data Processing by DL. To achieve these two visions, it is
necessary to expand current research, facing two challenges:
(i) from independent data collection and processing
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optimization to bidirectional optimization. (ii) from reactive
data processing to active data collection and processing.

To handle these challenges in practical IoT environments,
we propose a generic system framework, named DeepSwarm.
We define modular design for DeepSwarm and identify
optimization opportunities and techniques to deploy Swarm
DL on resource-limited and decentralized mobile and
embedded platforms. DeepSwarm pinpoints a set of proactive
strategies inter- and intra-devices that contribute to a self-
organized, self-adaptive, and self-evolving Swarm DL system.

2 Scope and framework
In this section, we introduce Swarm DL and a general
framework, DeepSwarm, comprising two functional modules.

2.1 The concept of Swarm DL

As mentioned above, Swarm DL extends reactive on-device
DL, which focuses on resource-efficient DL given input data
on individual IoT devices, to a distributed setting inspired by
proactive swarm intelligence. As shown in Fig. 1, compared
with related concepts, Swarm DL exhibits unique
characteristics of self-organization, self-adaptive, and self-
evolving.

o Self-organized Swarm DL emphasizes the bottom-up
emergence of collective behaviors among devices. Each
agent achieves dynamic optimization of global system
performance and resource efficiency by proactively
triggering local operations for data acquisition and
processing.

o Self-adaptive Each agent in Swarm DL exhibits greater
pro-activity, participating in both DL inference on the
device and adaptation, with a higher proportion of
agents dedicated to adaptation.

o Self-evolving Swarm DL is real-time and human
independent, consisting of mobile agents that actively
learn from data through bidirectional feedback,
optimizing data collection (supply) and processing
(demand) for each device.
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Fig.1 Comparison of Swarm DL and related concepts
2.2 The DeepSwarm framework shifts. This mitigates subsequent resource costs (e.g.,

To realize the vision of Swarm DL, we present a generic
system framework, DeepSwarm (see Fig.2). DeepSwarm
takes a modular design and decomposes the requirements of
the Swarm DL into two modules: proactive swarm data
acquisition for DL and proactive swarm data processing by
DL. These two modules work in synergy with bi-directional
feedback to optimize the system performance (e.g., accuracy,
latency) and resource efficiency (energy efficiency, memory
fragmentation). It functions with heterogeneous AloT
hardware (e.g., CPU, GPU, or MCU-equipped embedded
devices), adapts to dynamic application contexts (i.e., data
distribution drifts and runtime resource availability), and
generalizes to various AloT applications (e.g., mobile health,
smart homes, autonomous vehicles, industrial automation).

2.3 Proactive swarm data acquisition module

This module coordinates the self~organization of distributed
agents and sensors, drawing inspiration from swarm
intelligence. Each agent actively engages in data resampling,
sensing parameter adjustment, and association with other
agents by analyzing information extracted from cross-modal,
cross-task, and cross-clock sensor data, aiming to maximize
fusion quality and minimize redundancy of agent data.
Additionally, it aims to achieve complementary
enhancement as early as possible, addressing challenges
such as modal information loss, clock asynchrony, and data

Diverse applications

sampling, computing, transmission bandwidth) as early as
possible. Specifically, we emphasize the simultaneous
assessment of the explicit and implicit importance of data on
the performance of subsequent data processing tasks at
runtime. The explicit data importance estimation is data-
driven and has abundant existing works. While implicit data
complementarity profiling is system-driven and non-trivial,

requiring a comprehensive consideration of dynamic system
factors.

2.4 Proactive swarm data processing module

This module encompasses data processing tasks, including DL
inference and adaptation. Traditional on-device DL systems
primarily focus on inference, especially in task-specific
embedded devices. In contrast, Swarm DL agents exhibit
higher proactivity, engaging in both inference and
adaptation, even with a greater emphasis on adaptation.
Balancing resource allocation for DL inference and adaptation
presents a novel challenge in this context. Specifically, the
primary objective in Swarm DL is to perform data processing
tasks in a self~adaptive and self-evolutionary manner, akin to
general swarm intelligence. Technically, unlike approaches
solely optimizing DL algorithms, DeepSwarm also addresses
system asynchrony in resource competition and varied
resource availability among agents, managing peak memory
usage, and optimizing system delay and accuracy tradeoffs.
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Fig. 2

Illustration of DeepSwarm, a generic system framework to realize bio-directional optimization of Swarm DL
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Table 1 Performance comparison of different DL model adaptation methods
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Accuracy gain of

Accuracy of mobile model after adaptation

Accuracy gain of mobile model

global model
Method TIoU =0.50 IoU =0.50
ToU =0.50 Mobile  Mobile - Mobile o0~ Mobile  Mobile  Mobile o0
model A model B model C model A model B model C

Domain adaptation None 0.504 0.469 0.497 0.49 14.3% 48.9% 13.7% 23.4%
NestEvo without data generation 1.3% 0.504 0.475 0.501 0.505 14.3% 50.8% 15.5% 27.2%
Original mobile model None 0.441 0.315 0.437 0.397 None

Only mobile model adaptation 0 0.501 0.478 0.493 0.491 13.6% 51.7% 12.8% 23.7%
NestEvo 9.13% 0.571 0.543 0.584 0.566 29.5% 72.4% 33.6% 42.6%

3 Challengs and opportunities
Embracing the co-design principle, we identify the following
challenges and opportunities:

e Self-adaptive  Non-blocking DL Inference with
misaligned, incomplete, and asynchrony data. Existing
approaches relying on statistical analysis or divergence
measures can not work well in real-time for local agents
without access to global data. Challenges include
identifying non-redundant data correlation, runtime
sampling rate adaptation, and dynamically elastic DL
model.

e Test-time Self-evolutionary DL Adaptation. The
asynchronism of distributed multi-modal data streams
poses challenges, leading to system delays (if waiting
for slow devices) or a decrease in accuracy (if not
waiting for slow data). Multi-task co-adaptation via data
and computing reuse is an opportunity yet a challenge
for agents lacking data and computational resources.

e Swarm DL-adaptive  Adaptive  Operator/System
Resource Scheduling. Tailoring the system scheduling
to characteristics of swarm data and tasks, such as
tensor/operator life cycles and dependencies,
enhances parallelism, increases data reuse, and reduces
memory fragmentation during swarm data processing.

4 Experiment result and analysis

Mobile video applications today have attracted significant
attention. The compressed DL model is widely used to enable
on-device video inference, which, however, is vulnerable to
the non-stationary data drift of the live video captured from
dynamically changing mobile environments. To combat data
drifts, present a Swarm DL adaptation system based on the
DeepSwarm framework, which enables each agent to
continuously update using newly collected sensor data from
local and other agents The system consists of three
components: data drift-aware video frame sampling,
feedback-aware DL adaption trigger, and adaptive DL
adaptation & resource scheduling. See more details in the
supplementary material. We compare our system with four
baselines, i.e., domain adaptation [5], DeepSwarm without
data fusion from other agents, original agent DL model, and
single-agent adaptation [6]. Table 1 demonstrates that
DeepSwarm achieves the best overall performance in terms of
accuracy, enhancing average accuracy by over 40% compared
to the original models for the mobile model and by 9% for the
global model.

5 Conclusion

Inspired by the collective intelligence observed in natural
swarms, where individual proactive actions contribute to
superior global performance, we advocate for a shift towards
Swarm DL. By harnessing the potential of physically adjacent
mobile devices in IoT scenarios, we present DeepSwarm, a
closed-loop system framework architecture. DeepSwarm
facilitates bidirectional optimization between data acquisition
and processing, aiming to push the performance boundaries of
on-device DL Specifically, DeepSwarm addresses the
requirements of proactive Swarm DL by decomposing them
into layers: self-organized swarm data acquisition and self-
adaptive, self-evolutionary swarm data processing.
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