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1 Introduction

Federated learning has emerged as a promising par-adigm for
collaborative model training that facilitates cooperation among
multiple parties while ensuring data privacy [1]. Successful
alignment of data across parties is crucial for effective
federated learning [2]. This alignment involves harmonizing
heterogeneous data from different parties to identify shared
data for joint model training.

Private set intersection (PSI) is a technique that allows the
alignment of common entities between parties without
revealing additional information. However, efficiently
performing data alignment with PSI in federated learning [3],
especially when dealing with highly unbalanced data, remains
challenging due to the low efficiency.

In this paper, we propose a new data alignment solution
called @-ESF. It incorporates a-indisting-uishability, a client-
side privacy requirement metric, and Bucket-ESF, a novel
PSI-oriented index, to achieve efficient data alignment. a-ESF
operates in two phases: pruning and verification, which can
significantly improve efficiency in cases of unbalanced
dataset. More details can be found in supplementary material.

2 o-ESF overview
This section presents an overview of «@-ESF, a practical
framework for efficient data alignment even in case of
extreme dataset unbalance.

Methodologies. The efficiency bottleneck of data alignment
lies in the computation time of encoding on server-side
dataset. Our solution breaks this bottleneck from two aspects.
(i) Exploit indexing to convert per-query server-side
encoding overhead to one-off pre-processing. In practice, the
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server-side usually processes data alignment requests from
multiple clients. This allows pre-computing the server-side
encoding and sharing the results among clients to amortize the
server-side encoding overhead.

(i) Harness asymmetric privacy requirements to prune
server-side dataset for data alignment. Real-world federated
learning applications often impose less stringent privacy
control on the client-side, which holds the potentials to prune
server-side dataset.

Solution workflow. We implement the methodologies above
via «a-ESF, which consists of a one-off secure index
construction step, and a two-phase processing framework
(asymmetric privacy based pruning and encryption based
verification) for data alignment (see Fig. 1).

e Secure index construction. We devise Bucket-ESF, a
novel two-level PSl-oriented index that allows fast
search while complying with privacy constraints. The
first level partitions the server-side entire dataset into |B|
buckets. And the second level is an encrypted data
structure EncSum Filter, which stores a ciphertext E(u)
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Fig.1 Overview of @-ESF framework
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Fig. 2 Experimental results of varying « on real datasets. (a) Running time; (b) communication cost

into the array ESF according to three hash functions.
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The index construction is a one-off effort that serves
multiple data alignment requests.

e Asymmetric privacy based pruning. Given a private
dataset D¢ held by a client C, we propose to apply a-
indistinguishability as a metric to quantify the client-
side privacy requirement. That is,

1
Vs e Dg,Pr(se Dg) < —. 2)
a

On this basis, we design pruning strategies that reduce
the server-side dataset for further processing while
ensuring the a-indis-tinguishability of the client. This
module is the core that detaches the server-side data
size from execution time, which notably improves the
efficiency of unbalanced data alignment.

e Encryption based verification. We propose a
homomorphic encryption based verification procedure
upon the pruned Bucket-ESF index. It returns the data
alignment result to the client without revealing any
extra information to either party. We further propose a
ciphertext-compression technique, which can compress
multiple elements into one ciphertext to reduce the
encryption and communication overhead.

3 Experimental evaluation
Setups. We evaluate our solutions on a real dataset collected
from a leading mobile telecom operator (MTO) in China. Our

a-ESF is compared with existing PSI based data alignment
solutions (KKRT [4], CM [5], SpOT [6], and CLR [7]).

Overall performance. We vary the client-side privacy
requirement from 100 to 1 million to evaluate the performance
of our «@-ESF solutions. As shown in Fig.2, our a-ESF
notably outperforms all the baselines in running time. When
the client-side privacy requirement is a = 10%, our a-ESF is
134x faster than the runner-up solution (KKRT). The
communication cost of a-ESF is relatively sensitive to the
privacy requirements. This is because our solution needs to
transmit more EncSum Filters from the server to the client as
a increases.

Performance on effectiveness. Figure 3 shows the model
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Fig.3 Model performance with data alignment solution

performance of vertical federated learning with our data
alignment solution. By involving the server-side data via our
data alignment solution, the performances of all clients and the
federated model increase significantly. The accuracy gain of
the data alignment based federated learning is up to 3.93%,
which demonstrates the effectiveness of the data alignment in
federated learning.

4 Conclusion

In this paper, we propose a-ESF, an efficient data alignment
algorithm for federated learning. It is featured with two core
techniques: a-indistinguisha-bility-based server-side dataset
pruning, and a novel PSI-oriented index for rapid search on
server-side encryption. Extensive experiments show that our
a-ESF is significantly faster than prior arts in case of billion-
scale dataset unbalance, and it can improve the efficacy of
federated learning.
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