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Abstract Personalized Federated Learning (PFL)
enables the training of customized deep models on
decentralized, heterogeneous data while preserving
privacy. However, existing PFL methods primar-
ily optimize the final layer, overlooking intermedi-
ate layers, which degrades backbone training, es-
pecially in non-IID settings. In this work, we pro-
pose FedAIMS (Federated Adaptive Intermediate
Supervision), a novel PFL framework that incor-
porates intermediate supervision to enhance model
training. FedAIMS adopts prototype-based feature
alignment to provide effective intermediate super-
vision and adaptive supervision sampling to reduce
computational overhead for resource-limited clients.
Experiments on diverse datasets show that FedAIMS
outperforms state-of-the-art PFL baselines by up to
36.76% in accuracy.

Keywords Personalized Federated Learning; In-

termediate Supervision; Data Heterogeneity

1 Introduction

Personalized Federated Learning (PFL) [1] is an
emerging paradigm for training customized deep
models on decentralized, heterogeneous data. Un-
like generic federated learning (GFL) [2], which
learns a single global model, PFL tailors models
for individual clients while keeping raw data local-
ized. This makes it particularly valuable in privacy-
sensitive, user-centric IoT applications, such as voice
assistants [3], activity recognition [4], and health
monitoring [5], intrusion detection [6] etc.

Among recent PFL advances, architecture par-
titioning strategies [7–12] have gained increasing
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attention due to their compatibility with deep neu-
ral networks. These approaches divide models into
a global backbone and personalized heads, allow-
ing shared knowledge transfer while adapting to lo-
cal data distributions. Yet existing methods focus
on personalizing the final output layer, neglecting
intermediate feature representations. This limita-
tion leads personalized heads to overfit local data,
which in turn negatively impacts backbone train-
ing [11, 13, 14], especially in non-IID settings.

To address this limitation, we introduce interme-
diate supervision to PFL, leveraging supervision
signals from intermediate layers to improve back-
bone training and overall model performance. In
centralized deep learning, deep supervision [15] en-
hances feature transparency by injecting auxiliary
tasks at intermediate layers. However, applying in-
termediate supervision in PFL has two challenges.

• Effective auxiliary tasks for PFL: Unlike cen-
tralized training with large datasets, PFL clients
operate on sparse, non-shareable data, limit-
ing the use of traditional auxiliary tasks e.g.
self-supervised classification [15, 16].

• High computational costs for clients. Many
PFL clients are resource-constrained edge de-
vices. Naively applying supervision to all in-
termediate layers significantly increases train-
ing overhead, making deployment infeasible.

In this paper, we propose FedAIMS, (Federated
Adaptive InterMediate Supervision), a lightweight
yet effective PFL framework with intermediate su-
pervision. It is built upon two components. We in-
troduce prototype-based feature alignment accom-
panied by personalized adapters for additional su-
pervision for intermediate blocks. To reduce the
training workload, we propose an adaptive super-
vision sampling strategy that reduces the local aux-
iliary task scale without compromising accuracy.

Our main contributions are:
• To the best of our knowledge, this is the first

work that integrates intermediate supervision
into personalized federated learning.

• We propose FedAIMS, a novel adaptive in-
termediate supervision framework for PFL,
balancing supervision and efficiency through
feature alignment and adaptive sampling.

• Experiments on diverse datasets show that
FedAIMS outperforms PFL baselines [7–11,
17, 18] by up to 36.76% in accuracy.

2 Related Work

2.1 Personalized Federated Learning

Different from the traditional challenges of devices
collaboration [19,20], Personalized Federated Learn-
ing (PFL) [1] addresses the limitations of Generic
Federated Learning (GFL) [2,21–26], which strug-
gles with low accuracy on heterogeneous client data.
Instead of enforcing a single global model, PFL
enables clients to collaboratively train models tai-
lored to their local data. PFL approaches differ
in their personalization strategies: (i) Architecture
Partitioning. Split the model into global and per-
sonalized components [7–12], allowing partial pa-
rameter sharing while preserving client-specific rep-
resentations. (ii) Model-wise Personalization. Ap-
ply regularization constraints [17,27] to balance lo-
cal and global adaptation or use knowledge distil-
lation [28,29] to transfer knowledge without direct
parameter sharing. (iii) Similarity-based Person-
alization. Leverage clustering [30, 31] or collab-
orative graphs [32, 33] to group clients based on
inferred data similarities, refining models through
selective knowledge exchange.

Among these strategies, architecture partitioning
has gained significant attention due to its alignment
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with deep neural networks. By exploiting the lay-
ered structure of deep models, which naturally sep-
arate shared features from task-specific representa-
tions, it enables effective knowledge transfer while
allowing fine-grained personalization. Representa-
tive methods include: FedRep [9], which selects
a linear classifier as the personalized module and
alternates between updating shared and personal-
ized parts to ensure stable optimization; FedBABU
[11], which freezes the classifier during federated
training, and fine-tunes it locally to better capture
client-specific representations; and mask-based ap-
proaches [34,35], which dynamically determine per-
sonalized sub-networks within a shared model by
applying sparse masks.

While architecture partitioning based PFL lever-
ages deep model modularity, existing solutions fo-
cus solely on optimizing the final output layer, over-
looking hierarchical feature representations learned
at intermediate layers. In contrast, we exploit inter-
mediate layers as additional supervision signals to
enhance model personalization.

2.2 Intermediate Supervision in Deep Learning

Intermediate supervision, or deep supervision [15],
adds auxiliary objectives to the hidden layers [15]
or side branches [16] of deep neural networks to
improve training effectiveness. It has been used
in various tasks such as image classification [15],
face recognition [36], pose estimation [37], speech
recognition [38], etc.

Originally proposed for self-improvement within
a model, intermediate supervision has also gained
popularity in knowledge distillation, where a large
teacher model guides a smaller student model [39].
For instance, FitNets [40] aligns the hidden layer
outputs of the student with those of the teacher, su-
pervising the intermediate representations. Beyond

feature activations, attention maps [41], probability
distributions [42], and latent factors [43] are also
commonly used for intermediate supervision.

Recently, intermediate supervision has been ap-
plied to federated learning. For example, FedIntR
[44] introduces a contrastive loss at every block of
the local models as representation regularization to
improve accuracy. Our work introduces two key
advancements. (i) We adapt intermediate supervi-
sion to personalized federated learning, addressing
the challenge of heterogeneous data distributions
across clients with fine-grained regularization on
hidden layers. (ii) We propose lightweight yet ef-
fective intermediate supervision strategies, account-
ing for the communication cost of federated learn-
ing and resource constraints of local training.

3 Problem Statement
Scope. We consider personalized federated learn-
ing (PFL) [1] of deep neural networks with edge
devices, as common in applications such as voice
assistants [3], activity recognition [4], health mon-
itoring [5], intrusion detection [6] etc. Assume n
clients {c1, . . ., cn}, with {D1, . . ., Dn} as their local
datasets, where the distribution of {Di} often varies
across clients. PFL trains n personalized models
{θ1, . . ., θn} by optimizing the objective below:

min
n∑

i=1

piFi(θi; Di) (1)

where pi =
|Di |∑n

i=1 |Di |
, and Fi is the local objective of

client i, for example, the cross-entropy loss of the
model’s output.

As mentioned in Sec. 2.1, we focus on archi-
tecture partitioning based PFL [7–12] because it
utilizes the modularity in neural networks. Specifi-
cally, the model θi is partitioned into a global shared
backbone ϕi and personalized head ψi, which is
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typically a linear classifier. Architecture partition-
ing based PFL relies on ϕi to maintain global knowl-
edge while ψi to fit local distributions. During local
training, both the global backbone ϕi and the per-
sonalized head ψi are updated at clients, but only
the backbone ϕi is uploaded to the server for ag-
gregation via e.g. FedAvg [2].
Problem. We aim to improve the accuracy of θi

by introducing auxiliary tasks [15] at intermediate
blocks of neural networks during PFL. Formally,
we extend the objective in naive PFL i.e., Eq. (1) to
PFL with intermediate supervision:

min
n∑

i=1

pi

αm Fi(θi; Di)︸    ︷︷    ︸
main task

+

m−1∑
j=1

α jA
j
i (θi; Di)︸     ︷︷     ︸

auxiliary task

 (2)

where Fi(θi; Di) is the main task for client i, which
corresponds to the original local objective in naive
PFL. A j

i (θi; Di) for 1 ≤ j ≤ m − 1 is the auxiliary
task added to block j of θi. α j is a task-specific
coefficient for block j, and

∑m
j=1 α j = 1 [45]. m is

the total number of blocks in model θi.
The rationale to induce intermediate supervision

in PFL is two-fold.
• As previously mentioned, intermediate super-

vision improves transparency of hidden lay-
ers within a single model. In PFL, the per-
sonalized heads tend to bias towards local
datasets and negatively affect the training of
the backbone [11, 13, 14]. Intermediate su-
pervision allow the backbone to learn more
discriminative and robust features [15], thus
eliminating the bias from personalized heads.
• Intermediate supervision exploits the outputs

of the hidden layers as regularization without
extra cost, and it is compatible with architec-
ture partitioning based PFL strategies.

Challenges. Implementing intermediate supervi-
sion in practical PFL systems faces two challenges.

• How to design auxiliary tasks suited for fed-
erated learning? Auxiliary tasks for self-
improving of a single model [15, 16] under-
perform in federated learning due to the spar-
sity of local datasets. Intermediate supervi-
sion in knowledge distillation [40, 41] often
requires sharing of raw data, which is prohib-
ited in federated learning. Hence, we need
new auxiliary tasks that are cross-client and
privacy-preserving.

• How to enable efficient training with inter-
mediate supervision? Adding supervision to
all intermediate blocks as Eq. (2) may im-
pose notable computation overhead to clients.
Since clients in many practical PFL appli-
cations are resource-constrained devices, a
computational-efficient intermediate supervi-
sion mechanism is desired.

4 Method

This section presents FedAIMS (Federated Adaptive
InterMediate Supervision). Table. 1 lists the major
notations that will be used throughout this paper.

4.1 FedAIMS Overview

Key Idea. FedAIMS enables lightweight yet effec-
tive intermediate supervision in PFL through feder-
ated prototype alignment and adaptive supervision
sampling. Instead of enforcing supervision at all
intermediate layers, FedAIMS employs prototype-
based feature alignment to guide intermediate rep-
resentations (see Sec. 4.2). To minimize compu-
tational overhead at clients, FedAIMS adaptively
selects one intermediate block per client for super-
vision rather than involve all blocks (see Sec. 4.3).
Workflow. Each communication round in FedAIMS
consists of three steps.
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Fig. 1 FedAIMS overview. The process for the server mainly consists of supervision sampling (see Line 4 in Algorithm 1),
model aggregation (see Line 15 in Algorithm 1), prototype aggregation (see Line 16 in Algorithm 1). The local objectives of
clients consist of a classification task and prototype regularization.

Table 1 Summary of major notations.

Notation Definition

n number of clients
m number of blocks
Di; |Di| local dataset of client i; size of Di

D; |D| dataset of all clients; size of |D|
θi model of client i, composed of ϕi and ψi

ϕ; ϕi globally shared model backbone at server/client i
ψi personalized head of client i
A

j
i auxiliary task of block j in client i

Fi main task of client i
Φi local objective of client i
Φ global objective
E epoch number
pi aggregation weight of client i
R j

i regularization term added to block j in client i
C j

i,k prototype of class k of block j in client i
C j

g,k global prototype of class k of block j

σ
j
i adapter of block j at client i

• Step 1: Sampling. The server samples clients
for training and clusters them into groups.
Each cluster is assigned to supervise a spe-
cific intermediate block.

• Step 2: Local Training. Clients utilize the
aggregated global prototype to supervise the
sampled intermediate block via an adapter.

• Step 3: Aggregation. The server collects lo-
cal models and prototypes from clients, per-
forming weighted averaging to update both
model parameters and prototypes [2, 46].

Algorithm 1 illustrates the detailed procedures
of FedAIMS. In each communication round, the
server first samples a subset of clients C (line 3).
It then allocates a specific supervised block to each
selected client (line 4). Afterwards, the server trans-
mits both the model backbone ϕt and the global
prototype Cm

g to the clients (lines 7-8). Each client
first computes its local prototype Cm

i (line 9) and
then updates its full model θt

i along with the corre-
sponding adapter σbi,t

i (lines 11-12). Finally, the
updated backbone and local prototype are uploaded
to the server (line 13). All received backbones
and prototypes are aggregated at the server (lines
15-16). The received backbones are also used to
update the similarity matrix (line 17).

4.2 Federated Prototype Alignment

As discussed in Sec. 3, intermediate supervision
in federated learning must be both cross-client and
privacy-preserving. FedAIMS employs prototypes
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Algorithm 1: FedAIMS
Input: Clients’ model parameters θ1, ..., θn

Output: Personalized models θT
1 , ..., θ

T
n

1 for round t do
2 // sampling

3 sample clients C for current round
4 {bi} ← Supervision Sampling(C, s)
5 // local training

6 for client i ∈ C do
7 receive ϕt,Cm

g from server
8 replace local backbone ϕt

i ← ϕt

9 calculate local prototype Cm
i via

Eq. (3)
10 calculate overall training objective

Φi via Eq. (12)
11 update full model

θt+1
i ← θt

i − η∇θΦi(θt
i; Di)

12 update adapter
σbi,t+1

i ← σbi,t
i − η∇σΦi(θt

i; Di)
13 upload ϕt+1

i ,Cm
i to server

14 // aggregation

15 aggregate backbone ϕt+1 ←
∑

i∈C piϕ
t+1
i

16 aggregate prototype via Eq. (4)
17 update similarity matrix s with {ϕt

i|i ∈ C}

for feature-level supervision, which shares global
knowledge across clients without exchanging raw
data. While prototype-based alignment has been
used in PFL to improve personalized head train-
ing [46, 47], we re-purpose it for intermediate su-
pervision to enhance the global backbone.

• Each client computes per-class prototypes for
its intermediate blocks, which are then ag-
gregated at the server into a global prototype
for intermediate supervision (Sec. 4.2.1).

• To reduce communication overhead, instead
of transmitting prototypes for all intermedi-

ate blocks, clients only send the last block’s
prototype. An adapter then reconstructs block-
wise prototypes during training (Sec. 4.2.2).

4.2.1 Block-Wise Prototypes to Align Features

Prototype Design. We define prototype C j
i,k as the

averaged feature of block j for class k at client i:

C j
i,k =

∑
(x,y)∈Di

1y=k · ϕ
j
i (x)∑

(x,y)∈Di
1y=k

(3)

where (x, y) ∈ Di represents a data sample and its
label in client i’s dataset, and ϕ j

i (·) is the output of
block j in the backbone ϕi.

By telescoping the class-wise averaged features
C j

i,k of all classes, we obtain the local block-wise
prototype C j

i for block j at client i.
The server then aggregates local block-wise pro-

totypes {C j
i }

n
i=1 from all clients into a global block-

wise prototype C j
g:

C j
g,k =

n∑
i=1

piC
j
i,k (4)

where is pi is the aggregation weight for client i as
defined in Eq. (1).
Intermediate Supervision via Prototypes. The
global prototype C j

g provides feature alignment at
clients, serving as intermediate supervision. Given
a data sample (x, y) ∈ Di, we compute its inter-
mediate feature ϕ

j
i (x) and regularize the distance

between ϕ j
i (x) and the corresponding prototype as:

R j
i (θi; Di) =

∑
(x,y)∈Di

∥∥∥C j
g,y − ϕ

j
i (x)

∥∥∥2
(5)

Finally, the main task is defined as a classifica-
tion loss of the whole model and the prototype-
based feature regularization:

Fi(θi; Di) = Lm
CE(θi; Di) + µRm

i (θi; Di) (6)
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The auxiliary task at block j(1 ≤ j ≤ m − 1) is the
that of the intermediate block:

A
j
i (θi; Di) = L

j
CE(θi; Di) + µR j

i (θi; Di) (7)

where L j
CE(·) is the cross-entropy loss, and µ bal-

ances between classification and regularization.

4.2.2 Single-Block Prototypes to Reduce Com-
munication Cost

While block-wise prototypes (Sec. 4.2.1) effectively
align intermediate features, transmitting prototypes
for all blocks introduces notable communication
overhead. Hence, we only maintain the prototype
of the last block and employ an adapter to recover
per-block signals for intermediate supervision. The
per-block adapter learns a projection function via
nonlinear transformations, enabling the deep pro-
totypes to be mapped into the shallow semantic fea-
ture space, thus facilitating better alignment [40].

Specifically, the server transmits only the global
prototype of the last block Cm

g , and each client i
uses an adapter σ j

i to project Cm
g to match the di-

mensionality of features at block j. Consequently,
given a data sample (x, y) ∈ Di, the regularization
of Eq. (5) is modified to align the mapped proto-
type σ j

i (C
m
g,y) with the shallow feature ϕ j

i (x):

R j
i (θi; Di) =

∑
(x,y)∈Di

∥∥∥σ j
i (C

m
g,y) − ϕ

j
i (x)

∥∥∥2
(8)

In FedAIMS, the adapter σ j
i is a personalized

two-layer multilayer perceptron (MLP) maintained
locally at each client. The model θi and adapter σ j

i

are jointly updated during local training using the
objective in Eq. (7). Unlike prior methods [9, 10],
our approach minimizes training overhead while
ensuring effective intermediate supervision.

approximated 𝔼[𝒜𝑗]

accurate 𝔼[𝐹]

main task 𝐹 auxiliary task 𝒜𝑗

Fig. 2 Reformulating intermediate supervision.

4.3 Adaptive Supervision Sampling

Deriving supervision from all intermediate blocks
across all clients in Eq. (2) incurs high computa-
tional overhead, making it impractical for resource-
constrained edge devices [48, 49]. To address this,
we propose an adaptive supervision sampling strat-
egy that provides lightweight yet effective interme-
diate supervision. Specifically, we sample only one
intermediate block from each client per round to
minimize the overall computation cost, while en-
suring effective intermediate supervision (see Fig. 2).

4.3.1 Reformulating Intermediate Supervision

We first explain the feasibility to sample the auxil-
iary tasks (i.e., Eq. (2)) for effective supervision by
reformulating them from client- to block-oriented.
Given the assumption E[A j] =

∑n
i=1 piA

j
i (θi; Di)

[50], we rewrite the summation as:

n∑
i=1

pi

m−1∑
j=1

α jA
j
i (θi; Di)

 = m−1∑
j=1

α j

n∑
i=1

piA
j
i (θi; Di)

=

m−1∑
j=1

α jE[A j]

(9)
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This reformulation shows that auxiliary tasks can
be viewed as a block-wise expectation over clients,
allowing accurate estimation of E[A j] without re-
quiring participation from all clients.

We make two observations.

• Redundant clients can be omitted. Clients
with similar data distributions tend to gen-
erate similar auxiliary tasks, sinceA j

i (θi; Di)
depends on Di.

• Shallower blocks require fewer clients. Fea-
tures at shallower blocks are more universal
and similar across clients [51], reducing the
number of clients needed to estimate E[A j]
at a shallower block j.

4.3.2 Supervision Sampling Strategy

Principles. Based on the observations in Sec. 4.3.1,
we develop an adaptive sampling strategy to ap-
proximate E[A j], guided by two principles. (i) As-
sign more clients to deeper blocks to improve esti-
mation accuracy where feature representations are
more specialized and personalized. (ii) Ensure un-
biased block-wise expectation E[A j], avoiding over-
representation of any particular data distribution.
Clustering-Based Sampling. To satisfy these prin-
ciples, we assign clients and blocks for estimating
E[A j] through a clustering-based strategy.

We cluster sampled clients into m − 1 groups
{G1, . . . ,Gm−1}, where each group serves as super-
vision for a specific intermediate block.

The clustering objective is formulated as:

min
m−1∑
k=1

∑
i, j∈Gk

cos(ϕi, ϕ j)

s.t. |Gi| − |G j| ≤ 1 ∀1 ≤ i, j ≤ m − 1

(10)

where cos(ϕi, ϕ j) measures similarity between client
models. This ensures:

• cosine similarity as the clustering metric, com-
monly used in PFL [30, 31].
• uniform group sizes, with a tendency to allo-

cate more clients to deeper blocks.
• minimal intra-group similarity, preventing bias

in estimating E[A j].
Note that the similarity calculation and collab-

oration is widely applied in similarity-based PFL
[30, 31]. FedAIMS does not introduce any addi-
tional computational overhead for similarity calcu-
lation compared to these existing methods.
Sampling Algorithm. To iteratively form groups,
we define the additional similarity contribution δi,k

from adding client i to group Gk as:

δi,k =

∑
j∈Gk

cos(ϕi, ϕ j)
|Gk|

(11)

Clients are added to the group that minimizes δi,k,
ensuring diverse assignments. To balance group
sizes, we always assign clients to the smallest group
first. Groups are then sorted by size, with larger
groups assigned to deeper blocks, ensuring more
supervision where needed. The full process is de-
tailed in Algorithm 2.
Approximated Auxiliary Tasks. Once clients are
assigned to supervise specific blocks, the training
objective for client i in Eq. (2) simplifies to:

min Φi = λFi(θi; Di) + (1 − λ)A j
i (θi; Di) (12)

where A j
i follows Eq. (7). We set λ = 1/m to en-

sure uniform weighting of supervision across all
blocks after aggregation.

4.4 Analysis and Discussion

4.4.1 Convergence

Under assumptions in Appendix A, our proposed
FedAIMS algorithm converges (see Theorem 1).
We extend the analysis in [52] from a traditional
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Algorithm 2: Supervision Sampling
Input: Selected clients C, Similarities s
Output: Allocation index {bi|i ∈ C}

1 // clustering

2 initialize G1, . . . ,Gm−1 with ∅
3 for client i ∈ C do
4 group index k ← arg min δi,k and satisfy

constraint in Eq. (10)
5 Gk ← Gk ∪ {i}

6 // sampling

7 sort groups with scale in ascending order
8 for block k ← m − 1 to 1 do
9 for client i ∈ Gk do

10 block index bi ← k

PFL strategy to PFL with intermediate supervision.
All proofs are in Appendix A.

Theorem 1. (Convergence of FedAIMS). FedAIMS
converges to an arbitrary constant ϵ with a conver-
gence rate of O(1/T ) when the learning rate satis-
fies η < min

(
2(ϵ−κ2)

L(ϵ+Eσ2) ,
2
L

)
:

1
T

T−1∑
t=0

E−1∑
e=0

(
λ
∥∥∥∇F tE+e

i

∥∥∥2
+ (1 − λ)

∥∥∥∇AtE+e
i

∥∥∥2
)

≤

∆
T +

LEη2σ2

2 + ηκ2

η − Lη2

2

< ϵ

(13)
where ∆ = Φ(T−1)E+0

i − Φ0E+0
i , T is the communi-

cation round, E is the local epoch, η is the learning
rate, and L, σ, κ are explained in assumptions.

4.4.2 Communication Cost

We compare the communication cost of FedAIMS
with standard GFL [2,21–26] and representative ar-
chitecture partitioning based PFL [7–12].
• Standard GFL transmits the entire model, in-

cluding the global backbone and model head.

• Architecture partitioning based PFL reduces
communication cost by transmitting only a
partial model e.g. backbone only.
• FedAIMS transmits a partial model along with

prototypes, but we show that it does not in-
duce additional overhead than standard GFL.

Let D be the hidden dimension of the final block,
and C the number of classes. Since a prototype
for each class has dimension D, the total size of
the prototype matrix is D ∗ C. Standard GFL must
transmit the model head, whose size is also D ∗ C.
Thus, FedAIMS and standard GFL have an equiv-
alent communication cost, as FedAIMS replaces
model head transmission with prototype transmis-
sion. We further provide an empirical study to sup-
port this conclusion (see Sec. 5.3.6).

4.4.3 Privacy

FedAIMS uploads both the local prototype and the
model backbone to the server (see line 13 in Al-
gorithm 1). As pointed out in [46], prototypes,
which are computed as the mean embeddings of
samples from the same class, are inherently irre-
versible, thus providing natural data privacy pro-
tection. Moreover, the model backbone represents
only a sub-model of the full local model. In conclu-
sion, sharing the backbone in FedAIMS provides at
least comparable privacy protection to most exist-
ing FL baselines. The privacy protection is not the
main focus of FedAIMS, and extra security tech-
niques can also be applied to the prototypes for fur-
ther privacy enhancement.

5 Experiment
5.1 Experimental Setup

Environment. The experiments are conducted on
a machine equipped with an Intel Xeon Gold 6230R
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Table 2 Accuracy over four datasets under η = 0.1.

Method
EMNIST CIFAR-10 CIFAR-100 TinyImageNet

Dir(0.3) Dir(0.1) Dir(0.3) Dir(0.1) Dir(0.3) Dir(0.1) Dir(0.3) Dir(0.1)

Local 77.98±7.76 87.72±8.08 66.69±13.15 80.49±16.30 23.48±5.25 41.04±10.39 19.10±13.40 32.47±15.75

FedAvg [2] 79.40±6.48 79.51±9.96 26.26±16.48 14.00±28.08 31.54±5.28 20.19±6.76 19.64±4.90 11.01±4.43

FedProx [21] 81.64±5.58 79.31±9.66 62.47±13.43 56.85±14.73 30.26±5.10 22.62±6.74 19.79±4.94 12.74±4.92

MOON [22] 80.44±6.43 80.20±10.43 52.24±12.60 10.27±22.64 32.79±5.58 17.64±6.63 21.67±5.59 13.33±6.23

FedPer [7] 85.14±4.50 91.80±3.89 75.40±14.50 86.22±10.80 32.70±5.29 55.22±9.23 26.66±12.07 44.93±13.66

FedRep [9] 83.94±5.23 91.21±4.28 74.23±11.37 86.36±10.86 30.09±5.85 48.57±9.45 23.34±12.62 41.32±14.08

LG-FedAvg [8] 76.46±8.19 87.21±5.49 66.70±12.82 8.91±23.33 23.87±5.88 40.73±10.38 20.14±13.18 33.62±15.43

Ditto [17] 78.23±5.22 90.88±7.63 67.47±13.08 80.71±15.80 23.75±5.37 41.81±10.24 19.81±13.32 33.66±15.53

FedBABU [11] 80.78±4.83 90.79±4.31 73.27±11.65 87.12±10.53 29.38±8.12 49.93±14.42 27.54±14.08 20.00±23.89

FedRoD [10] 76.34±5.53 88.63±4.72 76.87±10.27 87.81±10.05 35.95±6.48 53.73±8.44 28.65±12.55 42.82±13.64

FedALA [18] 81.95±4.69 83.63±10.62 60.16±14.89 66.19±17.45 32.79±5.49 21.50±6.19 19.37±4.20 14.78±11.92

FedAIMS 88.85±3.54 93.33±3.46 81.79±8.04 89.45±8.72 48.52±6.01 58.26±8.86 33.17±11.71 46.43±13.65

CPU and NVIDIA A100 GPUs (40GB memory).
Baselines. We compare FedAIMS with the follow-
ing representative FL baselines:
• Local: Each client trains its model indepen-

dently with its local dataset.

• FedAvg [2]: Average model parameters to
train a global model.

• FedProx [21]: Extend FedAvg with an addi-
tional regularization term to enforce similar-
ity between local and global models.

• MOON [22]: Incorporate a model-contrastive
loss into FedAvg.

• FedPer [7]: Aggregate only the backbone
while jointly updating the personalized head
and global backbone.

• FedRep [9]: Aggregate only the backbone
but update the personalized head and global
backbone iteratively.

• LG-FedAvg [8]: Aggregate only the head
for personalized model training.

• Ditto [17]: Train a global and multiple per-
sonalized models, using the global model for
regularization.

• FedBABU [11]: Freeze the backbone during
training and fine-tune the personalized head
at test time.

• FedRoD [10]: Introduce an additional per-
sonalized head, combining outputs from the
global and personalized heads.

• FedALA [18]: Adaptively aggregate the global
model at clients as personalized models.

Datasets and Models. We evaluate FedAIMS on
four datasets: EMNIST [53], CIFAR-10 [54], CIFAR-
100 [54], and TinyImageNet [55]. For EMNIST,
we use the Balanced subset containing 47 classes.
To simulate data heterogeneity, we follow [34] and
apply a Dirichlet distribution [56] with two het-
erogeneity levels: Dir(0.3) and Dir(0.1). Follow-
ing [11], we use a 3-layer ConvNet for EMNIST
and a 4-layer ConvNet for CIFAR-10. For CIFAR-
100 and TinyImageNet, we use ResNet-18 [57].
Configurations. We simulate 100 clients and a
client sampling rate of 0.1. The number of commu-
nication rounds T is 300, with E = 5 local epochs
per round. The batch size is 64, and the learning
rate η is 0.1. We use SGD as the optimizer with a
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Table 3 Accuracy over four datasets under η = 0.05.

Method
EMNIST CIFAR-10 CIFAR-100 TinyImageNet

Dir(0.3) Dir(0.1) Dir(0.3) Dir(0.1) Dir(0.3) Dir(0.1) Dir(0.3) Dir(0.1)

Local 78.77±4.87 88.93±4.67 67.73±12.61 82.36±13.10 25.15±5.65 43.68±9.69 20.59±13.12 34.43±15.43

FedAvg [2] 82.02±5.07 81.06±7.86 66.10±7.40 34.74±20.39 29.80±4.87 18.58±5.64 15.71±4.82 10.07±5.41

FedProx [21] 81.12±5.38 81.12±8.00 66.21±6.96 58.64±16.19 29.19±5.15 20.22±7.08 12.68±4.18 10.32±4.74

MOON [22] 80.96±5.60 79.15±10.47 62.95±10.07 45.81±20.79 31.36±4.76 23.07±6.61 16.73±5.39 11.58±4.47

FedPer [7] 85.79±4.46 92.52±3.37 76.91±10.09 87.88±9.18 37.97±6.45 55.52±8.81 29.04±11.61 45.10±12.86

FedRep [9] 83.18±4.66 91.00±4.03 73.12±10.97 86.39±10.42 33.89±5.48 52.78±9.23 25.13±12.19 44.73±13.31

LG-FedAvg [8] 78.49±5.01 88.53±5.13 68.09±13.02 82.76±13.28 25.34±5.55 43.06±9.37 21.73±12.75 35.16±15.45

Ditto [17] 78.90±5.41 89.73±5.21 67.52±13.46 82.77±12.82 25.55±5.57 43.76±10.04 20.88±13.11 34.84±15.35

FedBABU [11] 79.47±5.27 90.37±4.37 74.42±11.01 87.10±10.54 26.21±9.68 45.70±16.26 22.81±13.60 37.32±18.24

FedRoD [10] 72.26±7.33 87.55±5.10 76.89±9.93 88.21±8.83 35.24±7.45 52.28±8.53 26.64±12.93 40.00±14.33

FedALA [18] 81.73±4.59 83.86±5.78 66.18±6.57 67.48±12.16 30.24±5.68 19.68±6.38 16.53±4.46 13.32±10.88

FedAIMS 88.64±3.56 93.12±3.49 82.37±8.28 89.01±8.95 45.32±6.92 55.70±9.43 31.29±12.37 45.21±12.72

FedPer FedRep LG-FedAvg Ditto FedBABU FedRoD FedALA FedAIMS
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Fig. 3 Accuracy curve of PFL baselines in Dir(0.3).

momentum of 0.9, weight decay of 1 × 10−4, and a
learning rate decay of 0.99.

Hyperparameters for the methods are as follows:

• FedProx: µ = 0.5.

• MOON: τ = 0.5, µ = 1.

• FedRep: Personalized head training epochs
Ep = 5.

• Ditto: Ep = 5, λ = 0.1.

• FedBABU: Fine-tuning epochs E f t = 5.

• FedRoD: Ep = 5.

• FedALA: Random sampling ratio = 0.1, lo-
cal aggregation learning rate ηl = 0.1.

• FedAIMS: µ = 1.

5.2 Main Results

Table. 2 reports the accuracy of FedAIMS and base-
lines. Under the non-IID scenario, PFL baselines
consistently outperform GFL baselines. Compared
to the PFL baselines, FedAIMS achieves higher
accuracy across two levels of data heterogeneity.
Specifically, the improvements are as follows: up
to 12.51%, 9.70% on EMNIST, 21.63%, 23.26%
on CIFAR-10, 24.77%, 36.76% on CIFAR-100, and
14.76%, 31.89% on TinyImageNet.
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Fig. 3 shows the accuracy-round curves, where
only PFL baselines are included for comparison.
FedAIMS not only converges faster but also achieves
higher accuracy than all PFL baselines. Notably,
its advantage is more pronounced in challenging
datasets such as CIFAR-100 and TinyImageNet. As
shown in Fig. 3, although the maximum communi-
cation rounds is T = 300, FedAIMS could achieve
even higher accuracy with additional rounds. In
contrast, other baselines plateau at a relatively steady
accuracy by this point.

5.3 Ablation Study

5.3.1 Impact of Hyperparameter

We tune the hyperparameter µ, which balances clas-
sification and prototype regularization, over the range
0.01, 0.05, 0.1, 0.5, 1, 5. Fig. 4 shows the results.

For EMNIST and CIFAR-10, FedAIMS remains
robust across different values of µ and consistently
outperforms the best PFL baselines. For more chal-
lenging datasets, CIFAR-100 and TinyImageNet,
FedAIMS is more sensitive to µ due to increased
task complexity and model size. However, it still
surpasses all PFL baselines when µ ∈ [0.01, 1].
Empirically, we find that FedAIMS performs well
when µ = 0.5 or µ = 1 and fix µ = 1 for all datasets.
We will explore task-adaptive configuration of µ to
further improve FedAIMS in future work.

5.3.2 Impact of Learning Rate

We evaluate FedAIMS and baseline methods under
a reduced learning rate of η = 0.05. The results are
in Table. 3. FedAIMS consistently outperforms all
PFL baselines in this setting. The improvements
are as follows: up tp 16.38%, 9.36% in EMNIST,
16.19%, 22.53% in CIFAR-10, 19.98%, 36.02% in
CIFAR-100, 14.76%, 41.89% in TinyImageNet.
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Fig. 4 Hyperparameter analysis on four datasets. Best
refers to the best performance reported in PFL baselines.

5.3.3 Impact of Other Data Heterogeneity

We evaluate FedAIMS under the pathological dis-
tribution [2], where each client holds only C classes.
Following [18], we set C = 10 for EMNIST, C = 2
for CIFAR-10, and C = 10 for CIFAR-100. Ta-
ble. 4 shows the results. FedAIMS outperforms all
PFL baselines, improving accuracy by 0.46-12.14%
on EMNIST, 1.97-40.02% on CIFAR-10, and 4.95-
39.49% on CIFAR-100.

5.3.4 Impact of Similarity Matrix Update Frequency

Fig. 5 shows the impact of similarity matrix update
frequency on the convergence speed of FedAIMS.
In FedAIMS, the similarity matrix is updated every
round by default. We tune the update round gap in
[1, 3, 5]. As is shown, the convergence speed is in-
sensitive to the similarity matrix update frequency.

5.3.5 Comparison with Full Supervision

Table. 5 compares FedAIMS with its fully super-
vised variant, where supervision is applied to all
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Table 4 Accuracy over pathological distribution.

Method
EMNIST CIFAR-10 CIFAR-100

#C=10 #C=2 #C=10

Local 88.80±8.60 61.38±23.94 36.07±6.49

FedAvg [2] 78.61±12.79 10.07±20.19 53.85±9.42

FedProx [21] 79.08±13.69 9.93±19.92 65.96±8.35

MOON [22] 76.22±13.04 9.98±20.00 47.75±10.17

FedPer [7] 93.26±2.90 83.69±10.13 64.09±5.67

FedRep [9] 93.08±2.97 87.64±6.30 60.35±5.76

LG-FedAvg [8] 89.54±3.58 61.43±22.85 29.51±8.38

Ditto [17] 92.55±3.82 60.37±21.25 37.50±7.16

FedBABU [11] 93.15±3.16 86.67±6.92 60.01±13.04

FedRoD [10] 93.71±2.66 87.85±5.20 62.45±5.78

FedALA [18] 82.03±9.42 49.59±3.72 51.89±9.57

FedAIMS 94.17±3.09 89.61±5.64 69.02±5.67
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Fig. 5 Impact of similarity matrix update frequency.

intermediate blocks. We evaluate both methods un-
der two non-IID settings. FedAIMS achieves per-
formance comparable to the fully supervised vari-
ant, with accuracy differences within 1% in most
cases. This highlights the effectiveness of adaptive
supervision sampling, allowing FedAIMS to main-
tain similar accuracy while significantly reducing
computational overhead.

5.3.6 Communication Cost

Table. 6 presents the theoretical and empirical com-
munication cost of FedAIMS and the baselines. Since
all methods have the same training rounds of T =

Table 5 Accuracy of FedAIMS and its variant with full
supervision (denoted as FedAIMS-Full).

Dataset FedAIMS FedAIMS-Full

EMNIST
Dir(0.3) 88.85 88.38(−0.47)

Dir(0.1) 93.33 93.26(−0.07)

CIFAR-10
Dir(0.3) 81.79 82.65(+0.86)

Dir(0.1) 89.45 89.34(−0.11)

CIFAR-100
Dir(0.3) 48.52 48.96(+0.44)

Dir(0.1) 58.26 55.93(−2.33)

TinyImageNet
Dir(0.3) 33.17 32.11(−1.06)

Dir(0.1) 46.43 45.77(−0.66)

300 (see Sec. 5.1), we report the averaged commu-
nication cost per round in both the theoretical and
empirical analyses. Let Σ be the model size, β the
proportion of the shared backbone, and π the size
of the prototype.

From a theoretical perspective, most FL base-
lines transmit the entire model, incurring a commu-
nication cost of 2 ∗Σ per round. Architecture parti-
tioning based PFL methods, which transmit only a
portion of the model, reduce this cost to 2∗β∗Σ. For
FedAIMS, the communication cost is 2 ∗ β ∗ Σ + π.

We further validate this with practical results on
four datasets, showing that FedAIMS’s actual com-
munication cost 2 ∗ β ∗ Σ + π is comparable to the
2 ∗ Σ cost of most FL baselines. This confirms
the theoretical analysis in Sec. 4.4.2, demonstrat-
ing that FedAIMS does not introduce notable extra
communication overhead.

5.3.7 Training Time

Table. 7 shows the average training time per round
for FedAIMS (our proposed method with sampling),
and FedAIMS-Full (variant that applies supervi-
sion to all intermediate blocks without sampling).
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Table 6 Empirical and theoretical communication cost.

Method
Practical

Theoretical
EMNIST CIFAR-10 CIFAR-100 TinyImageNet

Model Size 0.30 MB 1.71 MB 42.80 MB 43.00 MB Σ

Local 0 MB 0 MB 0 MB 0 MB 0
FedAvg [2] 0.59 MB 3.42 MB 85.60 MB 85.99 MB 2 ∗ Σ
FedProx [21] 0.59 MB 3.42 MB 85.60 MB 85.99 MB 2 ∗ Σ
MOON [22] 0.59 MB 3.42 MB 85.60 MB 85.99 MB 2 ∗ Σ
FedPer [7] 0.57 MB 3.41 MB 85.21 MB 85.21 MB 2 ∗ β ∗ Σ
FedRep [9] 0.57 MB 3.41 MB 85.21 MB 85.21 MB 2 ∗ β ∗ Σ
LG-FedAvg [8] 0.02 MB 0.01 MB 0.39 MB 0.78 MB 2 ∗ (1 − β) ∗ Σ
Ditto [17] 0.59 MB 3.42 MB 85.60 MB 85.99 MB 2 ∗ Σ
FedBABU [11] 0.57 MB 3.41 MB 85.21 MB 85.21 MB 2 ∗ β ∗ Σ
FedRoD [10] 0.59 MB 3.42 MB 85.60 MB 85.99 MB 2 ∗ Σ
FedALA [18] 0.59 MB 3.42 MB 85.60 MB 85.99 MB 2 ∗ Σ

FedAIMS 0.59 MB 3.42 MB 85.60 MB 85.99 MB 2 ∗ (β ∗ Σ + π)

Compared to FedAIMS-Full, which supervises all
intermediate layers, FedAIMS reduces training time
by 14.64%, 12.59%, 12.61% and 9.71% across dif-
ferent settings without or with mild loss in accu-
racy (see Table. 5). The reduced training time val-
idates the effectiveness of the adaptive supervision
sampling.

Table 7 Averaged training time per round of FedAIMS
and its variant without adaptive sampling (denoted as
FedAIMS-Full).

Dataset FedAIMS FedAIMS-Full

EMNIST 4.08s 4.78s
CIFAR-10 4.86s 5.56s
CIFAR-100 6.03s 6.90s
TinyImageNet 10.31s 11.42s

5.3.8 Communication-Storage Tradeoff

The adapter in FedAIMS maps the prototype of the
final block to shallow prototypes, which reduces
the communication cost associated with prototype
transmission at the expense of additional storage.

Table. 8 compares the additional storage overhead
introduced by the adapter and the corresponding
reduction in communication cost during federated
training. Overall, the adapter substantially lowers
the total communication cost while incurring min-
imal extra storage overhead.

Table 8 Tradeoff between storage cost and communication
cost due to adapters.

Dataset Storage Communication

EMNIST +0.06MB -13.77MB
CIFAR-10 +0.19MB -8.79MB
CIFAR-100 +0.49MB -219.73MB
TinyImageNet +0.49MB -439.45MB

6 Conclusion
This paper presents FedAIMS, a novel PFL frame-
work with adaptive intermediate supervision. With
prototype-based feature alignment and selective su-
pervision sampling, FedAIMS enhances model per-
sonalization while maintaining low computational
and communication costs. Our work highlights the
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potential of intermediate supervision in improving
PFL and provides a lightweight solution for practi-
cal PFL applications.

Acknowledgements This work was partially supported by
National Science Foundation of China (NSFC) (Grant Nos.
62425202, U21A20516, 62336003), the CityU APRC grant
(No. 9610633), the Beijing Natural Science Foundation (Z230001),
the Fundamental Research Funds for the Central Universities
No. JK2024-03, the Didi Collaborative Research Program
and the State Key Laboratory of Complex & Critical Soft-
ware Environment (SKLCCSE). Zimu Zhou and Jin Dong
are the corresponding authors.

Appendixes

Appendix A Proof of Theorem 1

In this section, we present the proof of Theorem 1
to support the convergence analysis of FedAIMS.
Specifically, we extend the analysis framework in
[52] by incorporating intermediate supervision.
Preliminary. We first define the basic notations for
convergence analysis. There are a total of T com-
munication rounds, and each round consists of E
epochs of local training. tE + 0 denotes the start
of the t-th communication round, where clients re-
ceive the global model. tE+e denotes the e-th local
epoch within the t-th communication round. After
completing local training, clients upload the shared
backbone ϕ for aggregation at the end of the t-th
round, which corresponds to tE + E.

For ease of presentation, we denote the main task
Fi as Fm

i , and the auxiliary taskA j
i as F j

i . We then
make the following assumptions:

Assumption 1. (Smoothness). The objective F j
i at

block j of client i is L-smooth, satisfying:∥∥∥∇F j
i (x) − ∇F j

i (y)
∥∥∥ ≤ L ∥x − y∥ (14)

which can be further reformulated as:

F j
i (y) ≤ F j

i (x)+ ⟨∇F j
i (x), y− x⟩+

L
2
∥y − x∥2 (15)

Assumption 2. (Unbiased gradient estimator). The
expectation of stochastic gradient ∇F j

i (θi; ξi) is an
unbiased estimator of the local gradient, satisfying:

Eξi∼Di∇F j
i (θi; ξi) = ∇F j

i (θi) (16)

Assumption 3. (Bounded gradient variance). The
variance of stochastic gradient∇F j

i (θi; ξi) is bounded
by σ2, satisfying:

Eξi∼Di

∥∥∥∇F j
i (θi; ξi) − ∇F j

i (θi)
∥∥∥2
≤ σ2 (17)

Assumption 4. (Bounded backbone variation). The
parameter variations of the shared backbone ϕt

i and
ϕt+1 before and after aggregation at server are bounded,
satisfying: ∥∥∥ϕt+1 − ϕt

i

∥∥∥2
≤ κ2 (18)

Lemma 1. (Bounding local training). Given As-
sumption 1, Assumption 2 and Assumption 3, the
loss of an arbitrary client i at an arbitrary commu-
nication round t is bounded by:

E
[
F tE+E

i

]
≤F tE+0

i +
LEη2σ2

2

+

(
Lη2

2
− η

) E−1∑
e=0

∥∥∥∇F tE+e
i

∥∥∥2
(19)

Proof. We first analyze the change of loss of a sin-
gle block j in a single epoch. Take round tE + 0 as
an example, based on Assumption 1, we have:

F j,tE+1
i ≤F j,tE+0

i −
〈
∇F j,tE+0

i , θtE+1
i − θtE+0

i

〉
+

L
2

∥∥∥θtE+1
i − θtE+0

i

∥∥∥2

=F j,tE+0
i − η

〈
∇F j,tE+0

i , g j,tE+0
i

〉
+

Lη2

2

∥∥∥g j,tE+0
i

∥∥∥2

(20)
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We take expectation on both sides, and get:

E
[
F j,tE+1

i

]
≤F j,tE+0

i − ηE
[〈
∇F j,tE+0

i , g j,tE+0
i

〉]
+

Lη2

2
E

[∥∥∥g j,tE+0
i

∥∥∥2
]

≤F j,tE+0
i − η

∥∥∥∇F j,tE+0
i

∥∥∥2

+
Lη2

2

(∥∥∥∇F j,tE+0
i

∥∥∥2
+ Var(g j,tE+0

i )
)

≤F j,tE+0
i − η

∥∥∥∇F j,tE+0
i

∥∥∥2

+
Lη2

2

(∥∥∥∇F j,tE+0
i

∥∥∥2
+ σ2

)
=F j,tE+0

i +

(
Lη2

2
− η

) ∥∥∥∇F j,tE+0
i

∥∥∥2
+

Lη2σ2

2
(21)

The first inequality is based on Assumption 2,
E[⟨∇F j,tE+0

i , g j,tE+0
i ⟩] = ∥∇F j,tE+0

i ∥2. The second in-
equality is based on Var(x) = E[x2] − (E[x])2. The
third inequality is based on Assumption 3.

Taking Eq. (21) into Eq. (12), we further have:

E
[
ΦtE+1

i

]
≤ΦtE+0

i +
Lη2σ2

2
+

(
Lη2

2
− η

)
λ
∥∥∥∇F tE+0

i

∥∥∥2

+

(
Lη2

2
− η

)
(1 − λ)

∥∥∥∇AtE+0
i

∥∥∥2

(22)

Taking expectation on both sides for E local epochs,
we have:

E
[
ΦtE+E

i

]
≤ΦtE+0

i +
LEη2σ2

2

+

(
Lη2

2
− η

)
λ

E−1∑
e=0

∥∥∥∇F tE+e
i

∥∥∥2

+

(
Lη2

2
− η

)
(1 − λ)

E−1∑
e=0

∥∥∥∇AtE+e
i

∥∥∥2

(23)
□

Proof of Theorem 1. Based on Assumption 1,
Assumption 2, Assumption 3, Assumption 4 and
Lemma 1, we prove Theorem 1 as follows:

Proof. By telescoping Eq. (23) with Lemma 2 in
[52], we have:

E
[
Φ

(t+1)E+0
i

]
≤ΦtE+0

i +
LEη2σ2

2
+ ηκ2

+

(
Lη2

2
− η

)
λ

E−1∑
e=0

∥∥∥∇F tE+e
i

∥∥∥2

+

(
Lη2

2
− η

)
(1 − λ)

E−1∑
e=0

∥∥∥∇AtE+e
i

∥∥∥2

(24)
We reformulate Eq. (24) into:

λ

E−1∑
e=0

∥∥∥∇F tE+e
i

∥∥∥2
+ (1 − λ)

E−1∑
e=0

∥∥∥∇AtE+e
i

∥∥∥2

≤
ΦtE+0

i − E
[
Φ

(t+1)E+0
i

]
+

LEη2σ2

2 + ηκ2

η − Lη2

2

(25)

Let ∆ = Φ(T−1)E+0
i − Φ0E+0

i , we telescope Eq. (25)
over T communication rounds, and have:

1
T

T−1∑
t=0

E−1∑
e=0

(
λ
∥∥∥∇F tE+e

i

∥∥∥2
+ (1 − λ)

∥∥∥∇AtE+e
i

∥∥∥2
)

≤

∆
T +

LEη2σ2

2 + ηκ2

η − Lη2

2
(26)

We prove that for an arbitrary constant ϵ > 0, as
T > 0, ∆ > 0, Eq. (26) converges to ϵ when:

η < min
(

2(ϵ − κ2)
L(ϵ + Eσ2)

,
2
L

)
(27)

Consequently, when the learning rate η satisfies the
condition in Eq. (27), FedAIMS converges. The
convergence rate of FedAIMS is O(1/T ). □

References
1. Tan A Z, Yu H, Cui L, Yang Q. Towards personalized

federated learning. IEEE Transactions on Neural Net-
works and Learning Systems, 2022, 34(12): 9587–9603

2. McMahan B, Moore E, Ramage D, Hampson S, Ar-
cas y B A. Communication-efficient learning of deep
networks from decentralized data. In: Proceedings of
International Conference on Artificial Intelligence and
Statistics. 2017, 1273–1282



Shuyuan LI et al. FedAIMS: Adaptive Intermediate Supervision for Personalized Federated Learning 17

3. Leroy D, Coucke A, Lavril T, Gisselbrecht T, Dureau J.
Federated learning for keyword spotting. In: Proceed-
ings of International Conference on Acoustics, Speech,
and Signal Processing. 2019, 6341–6345

4. Ouyang X, Xie Z, Zhou J, Huang J, Xing G. Clusterfl:
a similarity-aware federated learning system for human
activity recognition. In: Proceedings of Annual Inter-
national Conference on Mobile Systems, Applications
and Services. 2021, 54–66

5. Ouyang X, Shuai X, Li Y, Pan L, Zhang X, Fu H, Cheng
S, Wang X, Cao S, Xin J, others . Admarker: A multi-
modal federated learning system for monitoring digital
biomarkers of alzheimer’s disease. In: Proceedings of
Annual International Conference on Mobile Computing
and Networking. 2024, 404–419

6. Sun N, Wang W, Tong Y, Liu K. Blockchain based
federated learning for intrusion detection for internet of
things. Frontiers of Computer Science, 2024, 18(5):
185328

7. Arivazhagan M G, Aggarwal V, Singh A K, Choudhary
S. Federated learning with personalization layers. arXiv
preprint arXiv:1912.00818, 2019

8. Liang P P, Liu T, Ziyin L, Allen N B, Auerbach R P,
Brent D, Salakhutdinov R, Morency L P. Think locally,
act globally: Federated learning with local and global
representations. arXiv preprint arXiv:2001.01523, 2020

9. Collins L, Hassani H, Mokhtari A, Shakkottai S. Ex-
ploiting shared representations for personalized feder-
ated learning. In: Proceedings of International Confer-
ence on Machine Learning. 2021, 2089–2099

10. Chen H Y, Chao W L. On bridging generic and person-
alized federated learning for image classification. In:
Proceedings of International Conference on Learning
Representations. 2022

11. Oh J, Kim S, Yun S Y. Fedbabu: Toward enhanced rep-
resentation for federated image classification. In: Pro-
ceedings of International Conference on Learning Rep-
resentations. 2022

12. Mclaughlin C, Su L. Personalized federated learning
via feature distribution adaptation. In: Proceedings of
Conference on Neural Information Processing Systems.
2024

13. Luo M, Chen F, Hu D, Zhang Y, Liang J, Feng J. No
fear of heterogeneity: Classifier calibration for feder-
ated learning with non-iid data. Proceedings of Confer-
ence on Neural Information Processing Systems, 2021,
34: 5972–5984

14. Li Z, Shang X, He R, Lin T, Wu C. No fear of classi-
fier biases: Neural collapse inspired federated learning
with synthetic and fixed classifier. In: Proceedings of
International Conference on Computer Vision. 2023,

5319–5329
15. Lee C Y, Xie S, Gallagher P, Zhang Z, Tu Z. Deeply-

supervised nets. In: Proceedings of International Con-
ference on Artificial Intelligence and Statistics. 2015,
562–570

16. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov
D, Erhan D, Vanhoucke V, Rabinovich A. Going deeper
with convolutions. In: Proceedings of IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition.
2015, 1–9

17. Li T, Hu S, Beirami A, Smith V. Ditto: Fair and ro-
bust federated learning through personalization. In:
Proceedings of International Conference on Machine
Learning. 2021, 6357–6368

18. Zhang J, Hua Y, Wang H, Song T, Xue Z, Ma R, Guan
H. Fedala: Adaptive local aggregation for personalized
federated learning. In: Proceedings of AAAI Confer-
ence on Artificial Interlligence. 2023, 11237–11244

19. Zhang C J, Tong Y, Chen L. Where to: Crowd-aided
path selection. Proceedings of the VLDB Endowment,
2014, 7(14): 2005–2016

20. Cao C C, Tong Y, Chen L, Jagadish H. Wisemarket:
a new paradigm for managing wisdom of online social
users. In: Proceedings of ACM SIGKDD international
conference on Knowledge discovery and data mining.
2013, 455–463

21. Li T, Sahu A K, Zaheer M, Sanjabi M, Talwalkar A,
Smith V. Federated optimization in heterogeneous net-
works. In: Proceedings of Conference on Machine
Learning and Systems. 2020, 429–450

22. Li Q, He B, Song D. Model-contrastive federated
learning. In: Proceedings of IEEE/CVF Conference
on Computer Vision and Pattern Recognition. 2021,
10713–10722

23. Wang Y, Tong Y, Shi D, Xu K. An efficient approach for
cross-silo federated learning to rank. In: Proceedings of
International Conference on Data Engineering. 2021,
1128–1139

24. Wang Y, Tong Y, Zhou Z, Ren Z, Xu Y, Wu G, Lv W.
Fed-ltd: Towards cross-platform ride hailing via fed-
erated learning to dispatch. In: Proceedings of ACM
SIGKDD Conference on Knowledge Discovery and
Data Mining. 2022, 4079–4089

25. Tong Y, Zeng Y, Zhou Z, Liu B, Shi Y, Li S, Xu K,
Lv W. Federated computing: Query, learning, and be-
yond. IEEE Data Eng. Bull., 2023, 46(1): 9–26

26. Wei S, Tong Y, Zhou Z, Xu Y, Gao J, Wei T, He T,
Lv W. Federated reasoning llms: a survey. Frontiers of
Computer Science, 2025, 19(12): 1912613

27. T Dinh C, Tran N, Nguyen J. Personalized feder-
ated learning with moreau envelopes. Proceedings of



18 Front. Comput. Sci., 2025, 0(0): 1–19

Conference on Neural Information Processing Systems,
2020, 33: 21394–21405

28. Guo W, Zhuang F, Zhang X, Tong Y, Dong J. A com-
prehensive survey of federated transfer learning: chal-
lenges, methods and applications. Frontiers of Com-
puter Science, 2024, 18(6): 186356

29. Zhang J, Guo S, Ma X, Wang H, Xu W, Wu F. Param-
eterized knowledge transfer for personalized federated
learning. Proceedings of Conference on Neural Infor-
mation Processing Systems, 2021, 34: 10092–10104

30. Sattler F, Müller K R, Samek W. Clustered feder-
ated learning: Model-agnostic distributed multitask op-
timization under privacy constraints. IEEE Transac-
tions on Neural Networks and Learning Systems, 2020,
32(8): 3710–3722

31. Liu B, Ma Y, Zhou Z, Shi Y, Li S, Tong Y. Casa: Clus-
tered federated learning with asynchronous clients. In:
Proceedings of ACM SIGKDD Conference on Knowl-
edge Discovery and Data Mining. 2024, 1851–1862

32. Huang Y, Chu L, Zhou Z, Wang L, Liu J, Pei J, Zhang
Y. Personalized cross-silo federated learning on non-iid
data. In: Proceedings of AAAI Conference on Artificial
Interlligence. 2021, 7865–7873

33. Ye R, Ni Z, Wu F, Chen S, Wang Y. Personalized fed-
erated learning with inferred collaboration graphs. In:
Proceedings of International Conference on Machine
Learning. 2023, 39801–39817

34. Zhang W, Zhou Z, Wang Y, Tong Y. Dm-pfl: Hitchhik-
ing generic federated learning for efficient shift-robust
personalization. In: Proceedings of ACM SIGKDD
Conference on Knowledge Discovery and Data Mining.
2023, 3396–3408

35. Chen D, Yao L, Gao D, Ding B, Li Y. Efficient person-
alized federated learning via sparse model-adaptation.
In: Proceedings of International Conference on Ma-
chine Learning. 2023, 5234–5256

36. Sun Y, Wang X, Tang X. Deeply learned face represen-
tations are sparse, selective, and robust. In: Proceedings
of IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition. 2015, 2892–2900

37. Wu X, Finnegan D, O’Neill E, Yang Y L. Handmap:
Robust hand pose estimation via intermediate dense
guidance map supervision. In: Proceedings of The Eu-
ropean Conference on Computer Vision. 2018, 237–
253

38. Wang C, Wu Y, Chen S, Liu S, Li J, Qian Y, Yang Z. Im-
proving self-supervised learning for speech recognition
with intermediate layer supervision. In: Proceedings
of International Conference on Acoustics, Speech, and
Signal Processing. 2022, 7092–7096

39. Gou J, Yu B, Maybank S J, Tao D. Knowledge dis-

tillation: A survey. International Journal of Computer
Vision, 2021, 129(6): 1789–1819

40. Romero A, Ballas N, Kahou S E, Chassang A, Gatta C,
Bengio Y. Fitnets: Hints for thin deep nets. In: Pro-
ceedings of International Conference on Learning Rep-
resentations. 2015

41. Zagoruyko S, Komodakis N. Paying more attention to
attention: Improving the performance of convolutional
neural networks via attention transfer. In: Proceedings
of International Conference on Learning Representa-
tions. 2017

42. Passalis N, Tefas A. Learning deep representations with
probabilistic knowledge transfer. In: Proceedings of
The European Conference on Computer Vision. 2018,
268–284

43. Kim J, Park S, Kwak N. Paraphrasing complex net-
work: Network compression via factor transfer. Pro-
ceedings of Conference on Neural Information Process-
ing Systems, 2018, 31

44. Tun Y L, Thwal C M, Park Y M, Park S B, Hong
C S. Federated learning with intermediate represen-
tation regularization. In: Proceedings of International
Conference on Big Data and Smart Computing. 2023,
56–63

45. Li R, Wang X, Huang G, Yang W, Zhang K, Gu X, Tran
S N, Garg S, Alty J, Bai Q. A comprehensive review
on deep supervision: Theories and applications. arXiv
preprint arXiv:2207.02376, 2022

46. Tan Y, Long G, Liu L, Zhou T, Lu Q, Jiang J, Zhang C.
Fedproto: Federated prototype learning across hetero-
geneous clients. In: Proceedings of AAAI Conference
on Artificial Interlligence. 2022, 8432–8440

47. Xu J, Tong X, Huang S L. Personalized federated learn-
ing with feature alignment and classifier collaboration.
In: Proceedings of International Conference on Learn-
ing Representations. 2023

48. Yang J, Duan Y, Qiao T, Zhou H, Wang J, Zhao W. Pro-
totyping federated learning on edge computing systems.
Frontiers of Computer Science, 2020, 14(6): 146318

49. Qu L, Li S, Zhou Z, Liu B, Xu Y, Tong Y. Dark-
distill: Difficulty-aligned federated early-exit network
training on heterogeneous devices. In: Proceedings of
ACM SIGKDD Conference on Knowledge Discovery
and Data Mining. 2025

50. Li X, Huang K, Yang W, Wang S, Zhang Z. On the con-
vergence of fedavg on non-iid data. In: Proceedings of
International Conference on Learning Representations.
2020

51. Zeiler M D, Fergus R. Visualizing and understanding
convolutional networks. In: ECCV. 2014, 818–833

52. Yi L, Yu H, Ren C, Wang G, Li X, others . Federated



Shuyuan LI et al. FedAIMS: Adaptive Intermediate Supervision for Personalized Federated Learning 19

model heterogeneous matryoshka representation learn-
ing. In: Proceedings of Conference on Neural Informa-
tion Processing Systems. 2024

53. Cohen G, Afshar S, Tapson J, Van Schaik A. Emnist:
Extending mnist to handwritten letters. In: Proceedings
of International Joint Conference on Neural Networks.
2017, 2921–2926

54. Krizhevsky A, Hinton G, others . Learning multiple
layers of features from tiny images, 2009

55. Chrabaszcz P, Loshchilov I, Hutter F. A downsam-
pled variant of imagenet as an alternative to the cifar
datasets. arXiv preprint arXiv:1707.08819, 2017

56. Hsu T M H, Qi H, Brown M. Measuring the effects of
non-identical data distribution for federated visual clas-
sification. arXiv preprint arXiv:1909.06335, 2019

57. He K, Zhang X, Ren S, Sun J. Deep residual learning
for image recognition. In: Proceedings of IEEE/CVF
Conference on Computer Vision and Pattern Recogni-
tion. 2016, 770–778

Shuyuan Li recieved her Ph.D. de-

gree from the School of Computer

Science and Engineering, Bei-

hang University, Beijing, China in

2024. She is currently a postdoc at

the Department of Data Science,

City University of Hong Kong.

Her research interests include federated computing, pri-

vacy preserving data analytics.

Boyi Liu received his B.E. de-

gree from the School of Computer

Science and Engineering, Bei-

hang University, Beijing, China in

2023. He is currently a Ph.D. stu-

dent at the School of Computer

Science and Engineering, Beihang

University, China. He is also a joint Ph.D. student at the

Department of Data Science, City University of Hong

Kong, China. His research interests include federated

learning.

Zimu Zhou received the B.E. de-

gree from the Department of Elec-

tronic Engineering, Tsinghua Uni-

versity, Beijing, China, in 2011,

and the Ph.D. degree from the

Department of Computer Science

and Engineering, Hong Kong Uni-

versity of Science and Technology, Hong Kong, in

2015. He is currently an assistant professor at the

Department of Data Science, City University of Hong

Kong. His research focuses on ubiquitous computing.

Jin Dong received the Ph.D. de-

gree in from the Department of

Automation, Tsinghua University,

Beijing, China, in 2011. He is

the General Director of Beijing

Academy of Blockchain and Edge

Computing. He is also the Gen-

eral Director of Beijing Advanced Innovation Center for

Future Blockchain and Privacy Computing. The team

he led developed “ChainMaker”, the first hardware-

software integrated blockchain system around the globe.

He has been dedicated in the research areas such as

blockchain, AI and low-power chip design.


	Introduction
	Related Work
	Personalized Federated Learning
	Intermediate Supervision in Deep Learning

	Problem Statement
	Method
	FedAIMS Overview
	Federated Prototype Alignment
	Block-Wise Prototypes to Align Features
	Single-Block Prototypes to Reduce Communication Cost

	Adaptive Supervision Sampling
	Reformulating Intermediate Supervision
	Supervision Sampling Strategy

	Analysis and Discussion
	Convergence
	Communication Cost
	Privacy


	Experiment
	Experimental Setup
	Main Results
	Ablation Study
	Impact of Hyperparameter
	Impact of Learning Rate
	Impact of Other Data Heterogeneity
	Impact of Similarity Matrix Update Frequency
	Comparison with Full Supervision
	Communication Cost
	Training Time
	Communication-Storage Tradeoff


	Conclusion

