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Abstract—Newly popular indoor location-based services (ILB-
S), when integrated with commerce and public safety, offer
a promising land for wireless indoor localization technologies.
WLAN is suggested to be one of the most potential candidates
owing to its prevalent infrastructure (i.e., access points (APs))
and low cost. However, the overall performance can be greatly
degraded by the spatial localizability variance problem, i.e.,
the localization accuracy across various locations may have
significant differences given any fixed AP deployment. As a result,
it brings in user experience inconsistency which is unfavorable for
ILBS. In this paper, we propose NomLoc - an indoor localization
system using nomadic APs to address the performance variance
problem. The key insight of NomLoc is to leverage the mobility of
nomadic APs to dynamically adjust the WLAN network topology.
A space partition (SP)-based localization algorithm is tailored
for NomLoc to perform calibration-free positioning. Moreover,
fine-grained channel state information (CSI) is employed to
mitigate the performance degradation of the SP-based method
due to multipath and none-line-of-sight (NLOS) effects. We have
implemented the NomLoc system with off-the-shelf devices and
evaluated the performance in two typical indoor environments.
The results show that NomLoc can greatly mitigate spatial
localizability variance and improve localization accuracy with the
assistance of nomadic APs as compared with the corresponding
static AP deployment. Moreover, it is robust to the position error
of nomadic APs.

I. INTRODUCTION

Modern indoor location-based services (ILBS) have rapidly

expanded into people’s daily life for convenience, utility,

and entertainment. Predicted by MarketandMarkets [1], indoor

location market will worth 2.6Billion US dollars by 2018. To

meet the breath of the golden opportunity, several major coop-

erations have initiated their researches on indoor localization,

such as Apple, Google, Microsoft, Nokia, etc. Meanwhile,

the research community has gained increasing interests in

developing positioning systems to deliver ILBS. With the

proliferation of wireless communication and mobile comput-

ing, WLAN advances indoor localization with its prevalent

infrastructure and low cost, as compared with multiple short

range communication technologies like infrared, ultrasonic,

RFID, and Zigbee sensors. In WLAN, positioning systems

consist of several fixed access points (APs) and an object with

a WiFi-enabled device (e.g., laptop or smartphone). Relying

on the fixed AP deployment, the location of an object can be

estimated via either range-based [17] or fingerprint-based [24]
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Fig. 1: Spatial Localizability Variance.

mechanisms.

Even though existing WLAN-based indoor positioning sys-

tems have made considerable progress, they still suffer from

a serious problem named “spatial localizability variance” in

complex indoor environments. That is, the localization accu-

racy will be in high resolution at the locations in certain open

areas while low resolution at the cluttered places. Fig. 1 gives

an example of three locations with different resolutions. Each

red dot represents the true position of the object and the blue

circle stands for the estimation error range. Given the AP de-

ployment, the object can be accurately located when there are

strong links (i.e., line-of-sight (LOS) paths) between the object

and APs. Conversely, the ambient obstacles can block such

LOS paths and bring in rich multipath effects. Both none-line-

of-sight (NLOS) and multipath can lead to erroneous location

estimation due to weak and fluctuating radio signals. In this

way, it creates unfavorable “user experience inconsistency”

(UEI). One typical example of UEI can be found in indoor

location-based advertising. In a large marketplace, merchants

seek for the best locations to advertise their products in the

most cost-effective way. The usual practice is to acquire the

frequent locations for each customer as to target the point of

sale. But the statistic data can be misleading or even crash

profits due to spatial localizability variance. Security patrol

serves as another common scenario. Secure inspectors need
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to monitor every place of the region with the assistance of

localization systems. Unfortunately, the spatial localizability

variance will result in miss detection at a blind area where the

suspect can slip in. This spatial localizability variance problem

has its roots in the AP deployment. The AP deployment

cannot be optimized for all indoor positions due to physical

constraints like power supply, cable length, and wall material,

etc. In addition, even if the AP deployment is optimized, once

being fixed, it still cannot be further adaptive to the dynami-

cally changing indoor environment. And worse still, in most

cases the APs are deployed for the purpose of wireless network

coverage rather than dedicated for localization functionality.

Fortunately, we have the observation that most of the mobile

devices are capable of serving as WLAN APs, and moving

people who carry these devices can act as nomadic APs,

such as the shop greeters with smartphone circling around the

customers, or the public securities with intercom patrolling

around the crowds. The network topology can be dynamically

changed with these nomadic APs such that it provides the

potential to reduce the spatial localizability variance.

In this paper we present NomLoc, a novel calibration-

free indoor localization system with nomadic APs to address

the aforementioned challenge - spatial localizability variance.

The key intuition behind NomLoc is that nomadic APs with

instinctive mobility are more agile to dynamic deployment

whereas static APs are unlikely to accomplish. We are thus

motivated to explore the potential of aggregating nomadic APs

with static ones to dynamically change the network topology

for performance improvement. To provide a calibration-free

approach, we leverage space partition (SP)-based method

which is previously adopted in wireless sensor networks [2]

and RFIDs [3], rather than the commonly used range-based or

fingerprint-based method so that neither calibration nor train-

ing is required. Moreover, we use fine-grained channel state

information (CSI) rather than coarse received signal strength

(RSS) measurement [18]. This is because CSI has the potential

to overcome the disadvantages of multipath and NLOS in

indoor environment [23], which is crucial for the SP-based

method. Therefore, the NomLoc design involves two main

modules: power of direct path (PDP)-based proximity determi-

nation and space partitioning (SP)-based location estimation.

The primary task of PDP-based proximity determination is to

eliminate the environmental disturbances, i.e., multipath and

NLOS in complex indoor scenarios. One approach could be

to extract the dominant PDP among the reflection paths as an

indicator of distance between the object and APs. In particular,

we unleash the power of PHY layer CSI for PDP-based

proximity determination due to its favorable temporal stability

and frequency diversity properties. It is then followed by the

second SP-based location estimation that harnesses nomadic

APs for accurately locating the object. The space partition

problem is transferred to a multi-variable linear programming

problem, which also takes into consideration the possibility of

erroneous PDP estimation, as well as the position estimation

of the nomadic APs.

To summarize, we make the following contributions:

• We are the first to identify the spatial localizability

problem for existing WLAN-based positioning systems

and NomLoc is the first attempt to resolve this problem

by leveraging nomadic APs.

• We propose a novel SP-based algorithm which is suitable

for nomadic AP scenario without calibration efforts.

The location estimation problem is formulated as linear

programming which can be solved within polynomial

time.

• We utilize PDP mechanism to address the multipath

and NLOS effects based on CSI from the PHY layer.

To enable the calibration-free SP-based approach, we

harness CSI for mitigating the underlying environmental

interference.

• We implement NomLoc and present thorough field ex-

periments to objectively assess its performance. In our

evaluation, we observe that NomLoc can achieve great

spatial localizability variance reduction, and significant

accuracy gain over the corresponding static AP deploy-

ment.

The remainder of the paper is structured as follows. The

next Section II outlines the related work. We introduce our

our novel design of NomLoc along with challenging issues in

Section III. Section IV presents our methodology in detail.

We present our implementation and evaluation results in

Section V. Finally, Section VI renders the concluding remarks.

II. RELATED WORK

Our work is closely related to the following two research

areas: (i) infrastructure deployment and (ii) CSI-based indoor

localization.

Infrastructure Deployment. A range of localization

schemes require the availability of anchors or landmarks,

whose positions are known in advance. Consequently, the

geometric layout of anchors significantly affects localization

performance [4]. Chen et al. [5] analyze the geometry of

landmark deployment and propose a maxL-minE algorithm

to achieve landmark layout that minimizes the maximum

localization error. Dulman et al. [6] investigate the stability

of anchor topologies, and propose an iterative algorithm to

place three anchors given a set of stationary target nodes.

Dong et al. [12] formulate an optimal AP deployment prob-

lem aiming to accomplish double-utilization including full

coverage and area localization by a least number of APs.

Ying et al. [7] quantify the geometric impact of anchor

placement on localization accuracy for a given traversal area.

Besides stationary infrastructure deployment for positioning,

mobile anchors are also exploited to assist sensor network

localization [8], [9]. And numerous efforts have designed path

plans for wireless sensor network localization [10], [11]. Note

that all these approaches rely on the coarse measured RSS

which is unreliable for localization. In this paper, we also

harness mobility to boost WLAN localization performance,

yet this is the first attempt to implement a practical indoor

localization system with nomadic APs and fine-grained CSI.
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CSI-based Indoor Localization. Multipath effects funda-

mentally limit the accuracy of RSS-based indoor positioning

systems [13], [14]. As a promising substitute, CSI can resolve

multipath via frequency diversity [15], and has been employed

in numerous novel localization systems [16]. FILA [17] lever-

ages CSI to extract LOS path only for accurate ranging, and

boosts localization performance even by simple trilateration.

Authors in [20], [23] also exploit CSI to separate LOS path,

yet assist angle-of-arrival (AOA) estimation by body blocking

effect [20] or antenna arrays [23]. Other pioneer efforts harness

the rich multipath information in CSI to build finer-grained

and more temporally stable location fingerprints [19], and

report sub-meter level accuracy. In the context of device-free

systems, where targets need not carry on any wireless devices,

CSI is introduced for fine-grained motion detection [21],

[22] and single entity localization [24]. This is because CSI

can better capture the impact of humans while resists oth-

er environmental interference. Although these systems have

dramatically improved localization accuracy, they are static in

nature and it is unknown whether the deployment would stay

optimal over time. In contrast, we explore how AP mobility

would dynamically assist localization and guarantee optimal

performance in time.

III. AN OVERVIEW OF NOMLOC

At present, most WLAN-based indoor positioning systems

depend on static AP deployment. Such static AP deployment

can inevitably bring in the spatial localizability variance. In

this way, the ILBS experience of users at different locations

can exhibit large diversity, known as user experience inconsis-

tence. To complement such inconsistence deficiency, adding

one or more APs at the “blind” locations (i.e., sites with

low localizability) comes into a common solution [25]. But

exploring the low resolution sites can be very labor-intensive

and time-consuming. Because it brings in undesirable manual

efforts for collecting the calibration data at the sample sites.

In addition, it is restricted to deploy new APs at some of those

sites. Moreover, the positions of these blind sites may change

as the environment changes, i.e., the move of furniture or

equipment. Alternatively, we come up with an idea to leverage

the mobility of nomadic APs for the potential of improving

the AP deployment. Before presenting the design details, we

will start off by clarifying the challenges and then introduce

the framework of the proposed NomLoc system.

A. Challenges

With the presence of bursty ILBS demands, the objectives

of the proposed indoor positioning system NomLoc are two-

fold: (1) to minimize the spatial localizability variance for

performance improvement, and (2) to minimize the calibration

efforts without additional war-driving assistance. To balance

such performance-time consumption tradeoff, we need to settle

two challenging problems:

1) How to leverage the mobility of nomadic APs for
localization resolution enhancement? The main mo-

tivation of using nomadic APs is that these APs with

inherent mobility can establish a dynamic topology

instead of a static one. A key question in this proposal

is how to harness such mobility. Being aware that

the past advances in WLAN-based localization broadly

involve two classes: fingperprinting and ranging, we tend

to explore the possibility of direct utilization of these

methods. However, the former location fingperprinting

is a poor fit for our goals. That is, the establishment

of location fingerprint database relies on WiFi signal

collection from static APs. Intrinsically, it is impossible

to construct this database with nomadic APs on account

of the nature of mobility. It is obvious that the widely

applied fingerprint-based techniques become no longer

suitable for these dynamic scenarios. For the latter

class, we cannot expect these range-based techniques

to achieve high localization resolution at every location.

This is because the location uncertainty of nomadic APs

will greatly degrade the system performance. Moreover,

calibration is still needed to obtain the environment

parameters [17], [23]. For those range-based systems,

the performance heavily relies on the radio propagation

model, whereas its parameters are closely correlated to

the indoor environment. Such that calibration - estimat-

ing the environment parameters - serves as a prerequi-

site for such modelling approaches due to the varying

physical characteristics and layout structure of different

indoor venues. Therefore, inapplicability of the above

conventional methods underscores the difficulty of seek-

ing a well-suited solution to overcome this challenge.

2) How to resolve the extensive existence of multipath
and NLOS effects in indoor venues? In complex

indoor scenarios, the radio propagation between a pair

of transmitter (TX) and receiver (RX) can easily be

disturbed by the severe multipath effects. The source of

multipath effects includes everything in the surrounding

area, i.e., both natural and artificial objects along the

multiple reflection paths. It serves as the major concern

for deploying a radio-based localization system and

leads to erroneous ranging outcome or non-unique fin-

gerprints. Furthermore, most of these radio-based indoor

positioning techniques suffer from NLOS propagation.

In general, radio-based approaches depend on the LOS

propagation path between the TXs and RXs. However,

the ambient obstacles like ceilings, furniture as well as

human beings indoors are prone to obstruct LOS signals,

known as NLOS effects. Without LOS signal, the time-

based or angle-based localization methods may perform

very poorly owing to the misleading of NLOS signals.

Thus it is challenging to achieve precise localization by

compensating multipath and NLOS, even if there are

nomadic APs in those regions of interest.

B. NomLoc Framework

In response to the above challenges, we propose our Nom-

Loc approach by leveraging the mobility nature of nomadic

APs. The underlying idea is to apply space partition method to
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Fig. 2: An architectural overview of NomLoc.

subdivide the area of interest into certain segmentations. In this

way, it does not involve the non-trivial radio map construction

process nor the distance calculation relying on the specified

propagation model. As such NomLoc circumvents the lim-

itations of either fingerprint-based or range-based methods.

Furthermore, fine granularity segmentation results can stem

from the nomadic APs’ assistance, resulting in performance

enhancement. As a basis for SP-based algorithm, an initial step

is to calculate the relative proximity between each nomadic AP

and the object. To enable proximity determination, we process

CSI into time domain and choose the power of the direct path

for approaching distance. More specifically, the disturbances

caused by NLOS paths can be captured and filtered out. Fur-

thermore, the channel responses relevant to multipath effects

can be resolved owing to the 20MHz bandwidth of 802.11n
system. Consequently, it contributes to elimination of both the

multipath and NLOS effects.

The NomLoc framework is illustrated in Fig. 2. From a

bottom-up perspective, NomLoc consists of three functional

components: (1) the object, (2) multiple APs, and (3) the

localization server. We describe these components in the order

of the outgoing data path.

The object transmits the probe request packages or data

packages to the APs. In reality, any target object, for example

a person with a WiFi-enabled device, suffices to perform this

simple job.

The APs are comprised of both stationary ones that are fixed

in the area of interest and nomadic ones that move around. The

static APs only maintain the task of collecting CSI samples in

the channel estimation block and export the measurements to

the server. Likewise, this procedure extends to nomadic APs

when they are moving for assisting localization. Concurrently,

each nomadic AP will report its coordinates of the current

sites with CSI measurements to the server. Here we suppose

the coordinates information of static APs have been stored

in the server. While for the noomadic APs, we can either

employ powerful APs with built-in sensors, or collaborate

with complementary technologies like Bluetooth, RFID, which

contribute to coordinates acquisition.

The localization server finalizes the task of positioning as to

guarantee user experience consistency for a variety of ILBS.

To enable the SP method, the server first needs to decide

which AP the object is more close to in the positioning region.

Upon receiving all the samples, it strives to perform CSI

processing to eliminate the severe multipath and NLOS effects

that account for the proximity judgement. The correspondingly

primary module is PDP-based proximity determination. After

the relative proximities are determined, a second localization

module is introduced by leveraging the mobility of nomadic

APs using SP-based algorithm, which is termed as SP-based

location estimation.

IV. METHODOLOGY

This section presents the complete description of our design

including two key modules, (1) PDP-based proximity determi-

nation and (2) SP-based location estimation. As a cornerstone

for NomLoc, the first module works by processing CSI to

obtain the power of direct path. Based on the results of PDP-

based proximity determination, the second module can thereby

contribute in locating the object by SP-based algorithm.

A. PDP-based Proximity Determination

To begin with, we consider the PDP-based proximity deter-

mination module. The target of this module is to determine the

object’s relative proximity to two arbitrary APs, which serves

as the preliminary of the space partition in the next step. The

determination could be based on the comparison of time-of-

arrival (TOA) or power of the received signal. Since the radio

signal traverses at the same speed of light, the two APs should

be tightly time synchronized together to be able to differentiate

the TOA of the same signal from the object. Such a tight

synchronization module is of substantial cost, and not available

at the majority of the commercial APs. Moreover, the results

of TOA could be highly misleading when the LOS signal is

blocked by obstacles in indoor environments. Therefore, we

tend to explore signal power-based approaches.

As mentioned earlier, NomLoc server collects the PHY layer

CSI in the frequency domain [17]. Note that CSI describes the

channel status from subcarrier level between the transmitter

and receiver. It can manifest the LOS transmission as well

as multipath and NLOS reflections which are common in

indoor environments. With the objective to enable SP-based

approach for accurate localization, a premise is to determine

at which area an object is located by CSI measurements. The

fundamental idea lying behind is to estimate the power of

direct path (PDP). We first transform the frequency domain

CSI into the time domain channel impulse response (CIR).

With Inverse Fast Fourier Transformation (IFFT), we can

obtain CIR whose amplitude is proportional to the power
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Fig. 3: Channel response delay profile for LOS and NLOS

transmissions.

delay profile of the radio link. Regarding the CIR indoors,

we observe a following dichotomy:

• If the LOS path exists and the time resolution is high

enough, the power of first path is the PDP.

• In some circumstances, the LOS path is blocked by obsta-

cles between the transmitter and receiver. Consequently,

the power of the first path will be much lower than the

normal one as shown in Fig. 3.

Nevertheless, it is reasonable to assume that the PDP is the

highest among all the transmission paths. Hence, we can use

the maximum power of the power delay profile to approximate

PDP of each link. In this way, no additional efforts need to

enforce its viability in the presence of multipath effect as well

as NLOS propagation. This is because it naturally alleviates

CIR of the NLOS paths since only the maximal amplitude is

chosen for PDP. Meanwhile, all the other multipath reflections

are filtered out. As such, we suggest to choose the PDP as an

indicator for proximity determination.

We next turn our attention to utilize the PDP to determine

the distance between the AP and the object. Obviously, larger

true value of PDP indicates a shorter distance between the

AP and the object whereas a smaller one relates to a longer

travel distance. In this manner, we can render the PDP-based

proximity determination on which AP the object is closer to,

i.e., AP j or AP i. In particular, let Pi and Pj be the PDP

of AP i and AP j, respectively. To quantify the probability of

proximity, we define the confidence factor w of the judgement

as

wij = f(
Pi

Pj
); (1)

where the f function should satisfy the following two condi-

tions simultaneously

f(x) + f(
1

x
) = 1 (2)

f(1) =
1

2
, f(x) ≥ 0 (3)

This is because when the PDP estimations for the two APs are

equal, the object is close to each AP with the same probability.

In general, there exists a wide variety of f function that

maintains the above properties. In this paper, we select the f
function as following:

f(x) =

{
2−x 0 < x ≤ 1

1− 2− 1
x x > 1

(4)

Clearly, based on the f function above, the larger w
represents the more confidence of PDP-based proximity de-

termination result from the object to the APs. In other words,

an optimal value of w will render more reliable prerequisites

for the objective of precisely figuring out the object’s location.

B. SP-based Location Estimation

With the PDP-based proximity determination derived above,

we are now ready to present the SP-based location estimation

module of NomLoc, which is imperative for figuring out

the position where an object is located. Recently, SP-based

algorithm has been applied in RFID-based robot system [3]

for navigation and mobile manipulation. In this work, we use

space partition method to better leverage the AP mobility.

1) Relative Proximity: Assume the object presents at site q,
and P := p1, p2, . . . , pn be a set of n distinct sites where the

APs are located in an indoor venue. The distance between

the object and AP i can be obtained by Euclidean metric

dist(q, pi) as,

dist(q, pi) :=
√
(x− xi)2 + (y − yi)2 (5)

Clearly, if the object is closer to AP j compared to AP i, it

must satisfy the following inequality as,

(x− xi)2 + (y − yi)2 ≤ (x− xj)2 + (y − yj)2 (6)

Rewriting it in a matrix manner, we get

[
2(xj − xi) 2(yj − yi)

] [x
y

]
≤ x2j + y2j − x2i − y2i ; (7)

Given n APs in the area, we have N = n(n−1)
2 inequations

which form the matrix inequality as follows,

Az ≤ b (8)

where A is a N ×2 matrix, z is a vector of 2×1 which is the

site coordinates of the object to be estimated, b is a N × 2
vector.

To solve the above optimization problem, it may come out

with a feasible region instead of a single solution. We hence

choose the center point of the region as the approximation

result for localization.
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Fig. 4: Illustration of area boundary treatment.

Fig. 5: Illustration of feasibility.

2) Area Boundary Restriction: Moreover, the intrinsic

boundary of indoor environments imposes restriction on the

range of activity for the object, referred as area boundary.

In other words, the object must be present within the interior

area of interest other than the outside space. For instance,

the object is unlikely to appear exterior the third floor of one

building normally. It suggests that this boundary constraint

is conductive to our SP-based algorithm. Hence, we invoke

the use of virtual APs (VAPs) for satisfying area boundary.

Suppose the original area has a polygon shape with m edges,

where each edge serves as a boundary line. We then depict the

VAPs whose positions are the symmetry mirror points of the

position of a specific AP, e.g., AP 1 against the boundary lines

as shown in Fig. 4. Obviously, the object is much closer to AP

1 than those virtual APs (i.e., VAP 1 - VAP 4). Therefore, we

can guarantee the area boundary with the following inequality,

A′z ≤ b′ (9)

where

A′ =

⎡
⎣ 2(xn+1 − x1) 2(yn+1 − y1)

· · · · · ·
2(xn+m − x1) 2(yn+m − y1)

⎤
⎦ (10)

b′ =

⎡
⎣ x

2
n+1 + y

2
n+1 − x21 − y21
· · ·

x2n+m + y
2
n+m − x21 − y21

⎤
⎦ ; (11)

Note that the site of AP 1 could be any other sites within

the area for the above calculation. If the objective polygonal

area is non-convex, we can divide it into several convex ones.

For each convex area, we solve the optimization problem and

merge the areas with feasible solutions.

With the above boundary constraint transformation, the

location estimation problem can be transformed into the fol-

lowing convex linear optimization formulation:

minimize 0

s.t.

[
A
A′

]
z ≤
[
b
b′

]
(12)

By solving this linear programming (LP) problem, we

can complete the indoor localization with AP coordinates,

boundary information, and relative proximity output from the

PDP-based proximity determination block.

3) Nomadic AP Downscoping: So far the above linear

optimization retains its feasibility on space partition under the

static AP deployment. However, the partition results turn out

to be of coarse granularity due to the limited number of static

APs. To overcome this limitation, we endeavor in narrowing

down the partitioned spaces into more small segmentation by

exploiting the mobility of nomadic APs.

Without loss of generality, we assume that AP l is a nomadic

AP that moves among multiple sites in the positioning area.

Let L = {L1, ..., LS} denote the site set of AP 1 for

performing CSI measurements. For each site Li = (xi, yi),
suppose the object locates closer to nomadic AP l than any

other static APs, the object’s coordinates also have to hold the

following n− 1 constraints:

A′′z ≤ b′′ (13)

where

A′′ =

⎡
⎣2(x2 − xl) 2(y2 − yl)

· · · · · ·
2(xn − xl) 2(yn − yl)

⎤
⎦ (14)
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b′′ =

⎡
⎣x

2
2 + y

2
2 − x2l − y2l
· · ·

x2n + y
2
n − x2l − y2l

⎤
⎦ ; (15)

The total number of new constraints is S × (n − 1). Ap-

parently, the further the nomadic AP moves, the more CSI

measurements will be collected corresponding to the site set

L, resulting in finer granularity segmentation. In return, higher

accuracy can be expected for SP-based location estimation.

Thus mobility of nomadic APs is beneficial for downscoping

the feasible region.

The optimization problem for location estimation consider-

ing nomadic AP is formulated as follows,

minimize 0
s.t. Āz ≤ b̄ (16)

where

Ā =

⎡
⎣AA′

A′′

⎤
⎦ (17)

b̄ =

⎡
⎣ bb′
b′′

⎤
⎦ ; (18)

Note that Eq. 16 still yields a LP problem.

4) Constraint Relaxation: However, it is possible that the

above optimization problem comes out with no feasible solu-

tions, i.e., the feasible region is empty since the problem is

over-constrained. The rationale is that the relative proximity

determination of the nomadic APs could be erroneous. Fig. 5

gives an illustration of feasible and infeasible solutions.

Therefore, we relax the constraints of optimization in Eq. 16

as follows:
minimize wT t
s.t. Āz− t ≤ b̄

t ≥ 0
(19)

where t is a matrix of the relaxation variables, that represents

the cost for breaking down each constraint, and w is the weight

of constraints whose transpose matrix is wT . It can be proved

that Eq. 19 and Eq. 16 are equivalent when feasible solution

is available for Eq. 16. In this case, we aim to look for a

solution with minimal relaxation cost wT t. The basic idea

is to retain the constraint with a larger weight (i.e., ti = 0)
while sacrificing the one with smaller weight (i.e., ti > 0),
as the larger weight, the higher cost we will pay for the

relaxation. Generally, given the constraints in Eq. 8 and Eq. 13,

w corresponds to a matrix of confidence factor w as defined in

Eq. 1. While regarding the area boundary constraint in Eq. 9,

w is preset to a large weight to guarantee the corresponding

constraint satisfied with high priority. In our implementation,

we use an open-source solver CVX [26] based on the interior-

point method which can return the center of the feasible

region by using logarithmic barrier functions. Nevertheless,

it is proved that the LP problem can be solved using interior-

point method within weakly polynomial time [27]. Therefore,

the scalability of the proposed NomLoc system is very high.

V. PERFORMANCE EVALUATION

In this section, we conduct a thorough evaluation of the

NomLoc system. Our evaluation has three primary goals: (1) to

study the performance of PDP-based proximity determination,

(2) to investigate the performance gain of NomLoc over a static

AP deployment, and (3) to analyze the impact of nomadic

APs’ position estimation error on SP-based localization.

A. Evaluation Methodology

Before going deep into the experiment details, we clarify

the evaluation metrics of interest including: (1) spatial local-

izability variance, and (2) accuracy. In addition, we present

the mobility model of Nomadic APs.

Evaluation metrics.
• Spatial localizability variance. To validate the effective-

ness of leveraging nomadic APs’s mobility, we introduce

spatial localizability variance (SLV ) which is defined as

the variance of mean error across all sites in the space.

We denote e(x, y) as the mean error of location (x, y),
and the SLV over area D is defined as

SLV =

∫∫
D

(e(x, y)− ē)2dxdy
/∫∫

D

dxdy (20)

where ē is the error mean of area D,

ē =

∫∫
D

e(x, y)dxdy

/∫∫
D

dxdy (21)

In the evaluation, p sample points will be selected for

error statistics. The according SLV is calculated as

SLV =
1

p

p∑
i=1

(ei − ē)2 (22)

where ē is,

ē =
1

p

p∑
i=1

ei (23)

• Accuracy. The first assessment of NomLoc is to verify its

capability of indoor localization. To this end, we measure

the NomLoc accuracy, in terms of cumulative distribution

function (CDF) of the mean error across distinct sites in

the space.

Nomadic AP mobility model. The mobile traces of no-

madic APs are characterized by random walk built on a

Markov chain [28]. The nomadic AP is assumed to be moving

among several discrete sites with a preset transition probabil-

ity. The CSI measurements are collected at these sites. With

this mobility model, we can map the ground truth coordinates

of the nomadic AP with the CSI measurements, and evaluate

the influence of nomadic AP coordinates error by introducing

artificial random errors.
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Fig. 6: Layout of the experiments.
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B. Experimental Setup

We set up a computer running on Linux platform as the

object. The object is equipped with an off-the-shelf WiFi 5300

NIC that enables its driver to export the CSI samples. In our

current prototype, the object remains stationary at certain pre-

set sites during the measurement. The TL-WR941ND routers

are used as APs that support 802.11n. The object connects to

the APs and then sends PING message in millisecond. Such

that the object collects thousands of packages at each site. The

NomLoc server is implemented on a PC to process the CSI

measurements as to estimate the location of the object.

The first scenario for evaluation is a Lab of academic

building in HKUST, with layout specified in Fig. 6(a). The

Lab is a typical complex indoor environment with substantial

equipments (i.e., PCs and servers) and office facilities. To

verify the merits of our design, we deploy multiple APs in

the experimental area. Four APs are fixed at specific sites

for static deployment benchmark, and AP 1 is chosen as

nomadic AP that randomly moves among current location and

{P1, P2, P3}.

Similarly, we further deploy NomLoc in a larger, more open

Lobby for evaluation as shown in Fig. 6(b). In this set of

experiments, the NomLoc prototype contains one client, also

four APs, and one of them (AP 1) is nomadic. The nomadic

AP starts from its current location, and random walks among

the sites {P1, P2, P3}.

C. Performance of PDP-based Proximity Determination

We begin with evaluating the performance of PDP-based

proximity determination which serves as the primitive for the

SP-based method. In the Lab scenario, we measure the relative

proximity of 10 sites corresponding to 4 APs, including

the static and nomadic ones. Clearly, the total amount of

determination for each site is C2
4 = 6. We then compare

our PDP-based proximity to the ground truth. Fig. 7 depicts

the statistics of comparison results for 10 sites in Lab. We

find that our PDP-based approach is accurate and most of

them are more than 85%. Some sites like cite 6 have low

accuracy because the distance of this position to several APs

are very close which results in similar PDP. Therefore, we can

draw the conclusion that most of the PDP-based proximity

determination errors happen when the site is at the middle

of two APs. Note that according to Eq. 1, the constraint is

assigned a low confidence factor when the two PDPs are close.

Hence, we can expect that this error will not affect much on the

localization performance. In the Lobby scenario, we statistic

the accuracy for the 12 sites and show the results in Fig. 7. The

PDP-based proximity can also achieve high accuracy, and even

outperforms the Lab scenario, because the AP deployment in

lobby are more sparse than that in the Lab.
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Fig. 9: Error CDF in two scenarios.
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D. Performance Gain over Static AP Deployment

The ultimate goal of NomLoc design is to produce precise

localization through alleviating spatial localizability variance.

To this end, we assess the spatial localizablity variance of

NomLoc system and compare it against static AP deployment

in both Lab and Lobby scenarios. We calculate SLV followed

by Eq. 22 for NomLoc and static AP deployment respectively,

and plot the results in Fig. 8. The observations of SLV
comparison are two-fold: first, NomLoc outperforms static

AP deployment with much smaller SLV in both scenarios;

second, the superiority is more evident in Lobby where

the static AP deployment has larger SLV . The former one

confirms the benefits of exploiting mobility of NomLoc for

spatial localizability variance reduction, while the latter one

infers that NomLoc performs even better with larger sites of

measurements.

We further evaluate the localization accuracy for both de-

ployments in Lab. Fig. 9(a) illustrates the results, where the

blue solid line represents the CDF of mean error obtained by

the proposed NomLoc system, and the red dot line stands for

the CDF of mean error under the static AP deployment. We

can observe that both deployment can achieve mean accuracy

of less than 2 m, while the advantage of NomLoc is obvious

due to fine-grained space partition with the nomadic AP.

Likewise, we repeat the evaluation in the Lobby scenario.

From Fig. 9(b), NomLoc yields 2.5 m mean accuracy and

3.6 m with 90 percent. In contrast, the counterpart reveals

significantly performance degradation without the nomadic

APs’ assistance. In this way, we are further confirmed that

NomLoc is able to provide higher accuracy than that of the

static AP deployment. The current accuracy is meter scale

relying on the fact that the system is calibration-free, and

we only take one nomadic AP for evaluation. Hopefully, the

performance can be greatly improved by employing multiple

nomadic APs which is left for our future work.

In summary, NomLoc exhibits a preferable capability in per-

formance enhancement stemming from the beneficial mobility

of nomadic APs.

E. Analysis on Position Error of Nomadic APs

We have illustrated the performance improvement of Nom-

Loc over the static AP deployment. In these evaluations,

the position of the nomadic AP is assumed to be precisely

known by the sever. In this subsection, we evaluate the

performance of NomLoc in terms of nomadic APs’s position

error. Under nomadic APs’ mobility, we aim to quantify the

impact resulting from erroneous estimation of their locations.

We intentionally add random errors to the position information

of the nomadic AP with error range (ER) from 0 to 3m. Then
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we plot the results of CDF of mean error with respect to the

ER of this nomadic AP in two scenarios, which are shown

in Fig. 10(a). From Fig. 10(a), we find that generally the

larger position error of the nomadic AP, the worse performance

on location estimation of the object in Lab. However, the

performance degradation is ignorable when the error range

is small. This is because our SP-based method does not

highly depend on the accurate location of these APs as those

range-based localization methods do. Moreover, since only

the position information of the nomadic AP contains error,

the over-constrained optimization problem Eq. 19 still can

find a most promising solution for position estimation of the

object. Similar results can be obtained in Lobby as plotted in

Fig. 10(b). Therefore, the proposed NomLoc system is robust

to the position error of nomadic APs which makes it more

practical.

VI. CONCLUDING REMARKS

WLAN-based localization techniques are ubiquitous for

providing today’s prevailing ILBS. However, the WLAN-

based positioning performance at different locations exhibits

distinguishable diversity. Such spatial localizability variance

leads to severe user experience inconsistence. In this pa-

per, we investigate into its primary cause - the static AP

deployment. We take a radical tact to advocate the use of

nomadic APs for dynamically adjusting the network topology

without calibration efforts. The NomLoc system is proposed

based on space partition method that harnesses the mobility

of APs for locating the object. As a prerequisite for the SP-

based algorithm, we propose a novel PDP-based proximity

determination mechanism to judge the approximation of the

AP and object. By mitigating the influence of multipath

and NLOS, the relative proximities are further produced to

perform SP-based location estimation. Extensive experiments

are conducted to evaluate the performance of NomLoc. The

results show that NomLoc can effectively reduce the spatial lo-

calizability variance while achieve high accuracy as compared

with the corresponding static AP deployment.

In current study, we consider to aggregate one nomadic AP

for solving the spatial localizability variance. This is the tip

of the iceberg in terms of leveraging nomadic APs for precise

indoor localization. An potential direction for future work

is effectively aggregating multiple nomadic APs. Another

extension to our NomLoc system would be to understand the

impact of moving patterns of nomadic APs on the overall

performance.
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