
Differentially Private Online Task Assignment in
Spatial Crowdsourcing: A Tree-based Approach

Qian Tao †, Yongxin Tong †, Zimu Zhou ‡, Yexuan Shi †, Lei Chen #, Ke Xu †
†BDBC, SKLSDE Lab and IRI, Beihang University, China ‡ETH Zurich, Zurich, Switzerland

#The Hong Kong University of Science and Technology, Hong Kong SAR, China
†{qiantao, yxtong, skyxuan, kexu}@buaa.edu.cn, ‡zzhou@tik.ee.ethz.ch, #leichen@cse.ust.hk

Abstract—With spatial crowdsourcing applications such as
Uber and Waze deeply penetrated into everyday life, there is a
growing concern to protect user privacy in spatial crowdsourcing.
Particularly, locations of workers and tasks should be properly
processed via certain privacy mechanism before reporting to
the untrusted spatial crowdsourcing server for task assignment.
Privacy mechanisms typically permute the location information,
which tends to make task assignment ineffective. Prior studies
only provide guarantees on privacy protection without assuring
the effectiveness of task assignment. In this paper, we investigate
privacy protection for online task assignment with the objective
of minimizing the total distance, an important task assignment
formulation in spatial crowdsourcing. We design a novel pri-
vacy mechanism based on Hierarchically Well-Separated Trees
(HSTs). We prove that the mechanism is ε-Geo-Indistinguishable
and show that there is a task assignment algorithm with a
competitive ratio of O(1

ε4
logN log2 k), where ε is the privacy

budget, N is the number of predefined points on the HST, and
k is the matching size. Extensive experiments on synthetic and
real datasets show that online task assignment under our privacy
mechanism is notably more effective in terms of total distance
than under prior differentially private mechanisms.

I. INTRODUCTION

With the rapid development of mobile Internet and sharing
economy, spatial crowdsourcing has deeply penetrated into
everyday life [1], [2], [3], [4]. Many core functions in these
applications, e.g. task assignment, require users (i.e., workers
and tasks) to report their physical locations to the spatial
crowdsourcing server. For example, Uber drivers and passen-
gers have to report their real-time locations to the Uber server
for enabling effective dispatching to the passengers. Since the
spatial crowdsourcing server may not be trustworthy, it raises
severe privacy concerns if the location information of workers
and tasks is leaked or misused by the server. Furthermore, it
may even be illegal to directly communicate the true location
data to the server under new regulations, e.g. the General Data
Protection Regulation (GDPR).

Privacy-preserving task assignment arises as a generic so-
lution framework to protect location privacy of crowdsourcing
users while still enabling the server to perform task assignment
[5], [6], [7]. A privacy mechanism is typically designed to
permute the locations of tasks and workers before they are
reported to the untrusted server for task assignment. Two
characteristics are crucial in a privacy mechanism for task
assignment: (i) It is desirable that the privacy mechanism
satisfies Geo-Indistinguishability [8], a widely acknowledged
differential privacy metric to support single location query (as

is the case of task assignment). (ii) The privacy mechanism
should still allow effective task assignment on the permuted
location data. In other words, there should exist a task as-
signment algorithm with a guaranteed approximation ratio.
This is especially important in large-scale real-time spatial
crowdsourcing applications [1], [9], [10], [11], [12], [13].

Previous privacy mechanisms only provide guarantees on
privacy protection without assuring the effectiveness of task
assignment. For example, in [5], a differentially private mecha-
nism is proposed to protect the location privacy of workers and
a heuristic algorithm is designed for offline task assignment
on the protected data. In [7], the authors propose an ε-Geo-
Indistinguishable privacy mechanism to protect the location
privacy of both workers and tasks, and they further apply a
heuristic greedy algorithm for online task assignment on the
permuted data. However, neither of them has guarantees on
the competitive ratio of task assignment.

In this paper, we make the first attempt at privacy protection
for task assignment in spatial crowdsourcing that (i) is Geo-
Indistinguishable and (ii) provides theoretical guarantees on
task assignment. Particularly, we focus on Online Minimum
Bipartite Matching (OMBM), a task assignment formula-
tion with both growing research interests [10],[14],[15] and
practical adoption (e.g. ride-sharing, food delivery and last-
mile delivery). To this end, we devise a novel tree-based
privacy mechanism leveraging Hierarchically Well-Separated
Trees (HSTs). We prove that our mechanism satisfies Geo-
Indistinguishability, and further propose a fast implementation
of the mechanism to be fit for large-scale spatial crowdsourc-
ing applications. More importantly, we prove that, under our
tree-based privacy mechanism, there exists an online task
assignment algorithm that achieves a competitive ratio of
O(1

ε4 logN log2 k), where N is the number of predefined
points on the HST, and k is the matching size. Experiments
show that online minimum bipartite matching on data per-
muted by our privacy mechanism is notable more effective
than by the state-of-the-art differential private mechanisms.

Our main contributions are summarized as follows.
• We study the problem of location privacy protection for

online task assignment with the objective of minimizing
the total distance, an increasingly important problem in
practical spatial crowdsourcing.

• We propose a novel privacy mechanism based on HSTs,
which is ε-Geo-Indistinguishable, and allows online task

assignment that achieves a competitive ratio (approxima-
tion ratio for online algorithms) of O(1

ε4 logN log2 k),
where ε is the privacy budget, N is the number of
predefined points for constructing the HST, and k is the
matching size. To the best of our knowledge, this is the
first privacy mechanism that provides guarantees for both
privacy protection and task assignment.

• Extensive experiments on synthetic and real datasets
show that online task assignment under our privacy
mechanism is notably more effective than under the state-
of-the-art differentially private mechanisms.

In the rest of this paper, we define our problem in Sec. II.
We design a tree-based solution and prove its effectiveness in
Sec. III. We then present the evaluations in Sec. IV, review
related work in Sec. V and finally conclude in Sec. VI.

II. PROBLEM DEFINITION

This section formally defines the privacy protection desired
for online task assignment in spatial crowdsourcing.

A. Interaction Model

We first introduce the three main parties in typical spatial
crowdsourcing and their interactions.

Definition 1 (Crowd Worker). A crowd worker (worker for
short) w is a tuple (xw, yw), which denotes the coordinates
of w in the Euclidean space.

Definition 2 (Spatial Task). A spatial task (task for short) t
is a tuple (xt, yt), which denotes the coordinates of t in the
Euclidean space.

Definition 3 (Server). A crowdsourcing server (server for
short) S is an untrusted platform to perform major function-
alities of spatial crowdsourcing, e.g. task assignment.

As in many spatial crowdsourcing applications [16], [10],
[7], [17], [18], workers, tasks and the server interact as follows.
Workers register to the server beforehand and their availability
to perform tasks is known to the server. Tasks are dynamically
posted to the server and need to be immediately assigned to
workers. Finally, the worker who is assigned to the task will
travel to the location of the task and complete it. We assume
the locations of workers and tasks are indirectly communicated
to the server in a metric space X , i.e., their coordinates are
transformed into the points in X . Our focus is to provide
dedicated privacy protection on these points while allowing
efficient task assignment on the protected data.

B. Problem Formulation

Definition 4 (Privacy Mechanism). A privacy mechanism
(mechanism for short) M is a function that maps a point
x in a metric space X into an obfuscated point z in another
metric space Z with a probability of M(x)(z).

We focus on the mechanisms where X and Z are the same
metric spaces. In our context, x is a point transformed from the
coordinate of a worker/task. z is the point that is reported by
the worker/task to the server for task assignment. Particularly,

we are interested in a popular category of task assignment
called online minimum bipartite matching [10], [19], [1].

Definition 5 (Online Minimum Bipartite Matching [10]).
Given a set of workers W = {w1, w2, ..., wn} and a set of
tasks T = {t1, t2, ..., tm} that appear dynamically, Online
Minimum Bipartite Matching (OMBM) aims to assign for each
task a worker immediately when the task appears such that
the total travel distance of the assigned worker-task pairs is
minimized.

Now we can define our Privacy-preserving Online Minimum
Bipartite Matching (POMBM) Problem as follows.

Definition 6 (Privacy-preserving Online Minimum Bipartite
Matching). Given a set of workers W = {w1, w2, ..., wn}, a
set of tasks T = {t1, t2, ..., tm}, and an untrusted server S,
the Privacy-preserving Online Minimum Bipartite Matching
(POMBM) problem aims to design a privacy mechanism M
for the transformed locations of workers and tasks such that
(i) the mechanism is differential private in the metric space
X ; and (ii) the server can perform effective online minimum
bipartite matching on the privacy-protected data.

Quantitatively,M should (i) be Geo-Indistinguishability [8],
the widely used differential privacy for location data; and
(ii) allow an online matching algorithm A with a guaranteed
competitive ratio, a metric to assess the effectiveness of online
task assignment. We introduce these two criteria below.
C. Evaluation Criteria

We first present the criterion for privacy protection.

Definition 7 (Geo-Indistinguishability [8]). A mechanism M
operating on a metric space X is ε-Geo-Indistinguishable (ε-
Geo-I for short) if for any x1, x2 ∈ X and z ∈ Z , the
following inequality holds:

M(x1)(z) ≤ eεdX (x1,x2)M(x2)(z) (1)

where dX (., .) is the distance between two points in space X .

Geo-Indistinguishability defines the indistinguishability of
two points x1 and x2 (transformed from two locations in the
Euclidean space) when they are obfuscated to the same point
z. Hence if a worker/task reports a point z to the server, the
server cannot decide whether the actual point is x1 or x2, not
to mention the corresponding location in the Euclidean space.

Now we introduce competitive ratio, a widely used criterion
to assess the effectiveness of online task assignment [9], [10],
[20]. Denote dX (M) as the total travel distance in X of all
pairs in the matching M , i.e., dX (M) =

∑
(t,w)∈M dX (t, w).

We focus on the effectiveness of online matching in random
order model, i.e., the theoretical guarantee in the average
performance of the privacy mechanism and online algorithm.

Definition 8 (Competitive Ratio in Random Order Model).
The competitive ratio of an online matching algorithm A in
random order model for our POMBM problem is defined as

CR = max
∀T,W

EM,O[d(MA)]

d(MOPT)
(2)

Fig. 1: Workflow of our solution.

where EM,O[·] represents the expectation of a variable over
the distribution of M and all random orders, and MOPT is
the optimal matching with the minimum total distance given
that both T and W are foreknown.

III. A TREE-BASED SOLUTION

This section presents our tree-based solution to the
POMBM problem. Specifically, we devise a novel privacy
mechanism that is ε-Geo-I on a dedicated tree structure called
the Hierarchically Well-Separated Tree (HST), and then show
that a greedy matching algorithm on the obfuscated tree nodes
has a guaranteed competitive ratio. As next, we first present the
overview solution (Sec. III-A). Then we introduce the basics of
HST (Sec. III-B), present our privacy mechanism (Sec. III-C),
and further devise a random walk method to accelerate the
mechanism (Sec. III-D). Finally, we show the existence of
efficient online minimum bipartite matching algorithms on the
data protected by our mechanism (Sec. III-E).

A. Overview

The workflow of our solution follows the interaction model
among workers, tasks and the server introduced in Sec. II-A,
but is operated on a dedicated metric space embedded by a Hi-
erarchically Well-Separated Tree (HST) [21]. Fig. 1 illustrates
the workflow of our solution. It consists of four steps.
• The server constructs an HST upon a predefined set of

points and publishes the tree as well as the set of points.
• Each worker w maps his/her location to a node on the

HST, which is then transformed to an obfuscated node
on the tree via a privacy mechanism M. The obfuscated
nodes on the HST from workers are reported to the server.

• When a new task t appears, its location is mapped to a
node on the HST and then transformed to an obfuscated
node on the tree via M. The task with the obfuscated
node on the HST is then submitted to the server.

• Upon receiving the task with the protected location in-
formation, the server runs an online matching algorithm
A to assign a worker to the task. We show that there is
an algorithm that achieves a guaranteed competitive ratio
on these obfuscated data.

We make the following discussions on the above workflow.
• Our intuition to use HST for our solution are two-fold.

(i) HSTs are widely used for optimizing distance-related
objectives in matching since the distance in the metric
space can be upper and lower bounded by the distance on
HSTs. HST-based solutions prove effective to the OMBM

Algorithm 1: Construction of a complete HST.
input : A metric space (V, d).
output: A tree space (VT , dT).

1 π ← a random permutation of V ,
D ← dlog2(2 ·maxa,b∈V d(a, b))e,β ← uniformly
generated from [12 , 1];

2 SD ← {V };
3 for i← D − 1 to 0 do
4 ri ← β · 2i;
5 Let Si be an empty set;
6 for S ∈ Si+1 do
7 T ← S;
8 for j ← 1 to k do
9 // The set of those points in T whose

distance to π(j) closer than ri
U ← {u ∈ V |d(u, π(j)) ≤ ri} ∩ T ;

10 if U is not empty then
11 Add U to Si;
12 Make U a child node of S with

distance 2i+1;
13 T ← T − U ;

14 c← maximum number of branches in the tree;
15 For each intermediate node w we add fake nodes until

it has c number of child nodes;
16 return the HST;

problem [15], [19], [10], which is part of our requirement
on the privacy mechanism. (ii) HSTs are tree structures
and the edges in the same level have the same length.
These properties are crucial to design a mechanism that
satisfies ε-Geo-I, as will be explained in Sec. III-B.

• As with existing studies [7], we assume that after task
assignment, workers can obtain the exact locations of
the assigned tasks via an extra privacy channel (e.g.
smartphones). Note that we mainly focus on privacy
mechanisms against the untrusted server. Security risks
from malicious workers are out of the scope of this work.

B. Construction of HST

A Hierarchically Well-separated Tree (HST) [21] can be
considered as a space embedding T = (VT , dT) of arbitrary
metric space (V, d) such that each leaf node located at level 0
corresponds to a point in V and the distance on the tree from
a node at level i to its parent is 2i+1. An important property
of the HST is that d(u, v) ≤ E[dT (u, v)] ≤ O(log |V |)d(u, v).

Before designing our privacy mechanism, we first need
to construct an HST. The construction of the HST has two
features. (i) We construct the HST on a fixed set of predefined
points. This is because according to our interaction model
(Sec. II-A), the server has no clue about the exact locations of
workers and tasks. It also saves communication cost because
otherwise the structure of the HST will change according to the
locations of tasks or workers as new workers or tasks appear

dynamically. (ii) We construct a complete HST by adding fake
nodes to simplify the information about the HST that needs to
be communicated to workers and tasks so as to further save
the communication overhead when publishing the HST.

Alg. 1 illustrates the procedure to construct a complete HST,
where an HST is first built and then made into a complete
one. Initially, we calculate the number of levels, and randomly
generate a permutation of V and the factor r of the radius of
the levels in line 1. The root node includes V at the beginning.
Lines 4-13 then construct the tree from top to bottom. For each
cluster in each level (i.e., S), we see if any point in S locates
in the ball centered at π(j) with radius ri in the order of π
(lines 9-10). If yes, these points are set to be a child node of
S (lines 11-12) and removed from S (line 13). Then for the
HST, we simply fill each intermediate nodes up such that the
HST becomes a complete c-ary HST, as shown in lines 14-15.

Example 1. Fig. 2 shows an example of building a complete
HST from the set of nodes V = {o1(1, 1), o2(2, 3), o3(5, 3),
o4(4, 4)}. We know that D = dlog2(2·d(o1, o3))e = 4. Assume
we randomly choose the permutation π =< o1, o2, o3, o4 >
and β = 1

2 . For the first iteration we have r3 = 4. We split V
in order of π into {o1, o2} (located in the circle centered at
o1 with radius r3) and {o3, o4} (located in the circle centered
at o2 with radius r3), as the red circles show in Fig. 2a. The
corresponding tree at this time expands to level 3 in Fig. 2b.
Then when i = 2, as shown in Fig. 2a, we draw the blue circle
centered at each point in order of π with radius r2 = 2, and
see if these circles have intersection with two obtained subsets
{o1, o2} and {o3, o4} when i = 3. The subset {o1, o2} is split
into {o1} and {o2}, and we split the node {o1, o2} at level 3
into {o1} and {o2}. A same procedure goes at level 2 and level
1. After constructing the HST, we find its maximum number
of branches is 2, and add fake nodes to make it complete.
Finally, the complete HST is shown in Fig. 3.

Complexity Analysis. Denote D as the level of the HST. The
construction of an HST takes O(N2 ·D) time. To further build
a complete HST, the algorithm needs to traverse the complete
HST, which takes cD time. Hence the total time to construct
a complete HST is O(N2 ·D + cD).

Once the HST is constructed and published (together with
the predefined set of points), each worker/task will choose the
node on the HST whose corresponding predefined point in the
Euclidean space is nearest to his/her actual location. These
nodes are then fed into our privacy mechanism to generate
obfuscated ones, which are finally reported to the server.

C. Privacy Mechanism on HST

This subsection presents our privacy mechanism on the
HST, and proves that it is ε-Geo-Indistinguishable. We assume
a complete c-ary HST.

Our Mechanism. Given a leaf node x transformed from the
location of a task/worker, we first partition the whole leaf
nodes (the set of which is denoted as L) based on the level
of the least common ancestor (LCA) between x and the leaf

(a) Circles in Example 1. (b) The HST in Example 1.

Fig. 2: The circles and the HST in Example 1.

Fig. 3: The complete HST in Example 1.

nodes. Specifically, define sibling node set at level i, denoted
by Li(x), as the set of nodes whose LCA with x is located
exactly at level i. Let L0(x) = {x}. Then ∪Di=0Li(x) = L and
|Li(x)| = (c− 1)ci−1 for i ≥ 1. And the distance on the tree
between x and a node a ∈ Li(x) is 2i+2 − 4.

Now we obfuscate x. For each leaf node in Li(x), we assign
it a weight wti, which represents the portion that the node
is chosen as the obfuscated node. Specifically, since there
is exactly one leaf node in L0(x) and ci−1(c − 1) nodes in
Li(x) for i ≥ 1, the total weight of all leaf nodes is WT =
wt0+

∑D
i=1 c

i−1(c−1)wti. And a leaf node in Li(x), denoted
by z, will be chosen as the obfuscated node with a probability

M(x)(z) =
wti
WT

. (3)

Next we determine the values of wti. To satisfy ε-Geo-I,
wt0 must be no greater than e(2

i+2−4)εwti for any i ≥ 1.
To obtain a smaller distance, we choose wt0 = 1 and wti =
e−(2

i+2−4)εwt0 = e(4−2
i+2)ε. Hence we have

WT = 1 +

D∑
i=1

ci−1(c− 1)e(4−2i+2)ε. (4)

Now we obtain a mechanism, and we will show that the
proposed mechanism satisfies ε-Geo-I in Theorem. 1.

Alg. 2 shows how our privacy mechanism M obfuscates a
node x on the HST. For each leaf node in T , we compute its
probability of being the obfuscated node according to Eq.(3),
as shown in line 1. The obfuscated node is then chosen based
on the probability and reported to the server.

Example 2. Back to our settings in Example 1. Suppose we
want to obfuscate node o1 in Fig. 3 with ε = 0.1. For a
leaf node whose LCA with x is at level i, the weight and the
probability of the node being the obfuscated one are listed in
Table I. Take i = 1 as an example. The weight of the leaf
node f1 is e−4ε = 0.670, and the probability of f1 being the
obfuscated node is wt1/(w0 +

∑D
i=1 2

i−1wti) = 0.264. Our

Algorithm 2: Privacy mechanism M on HST.
input : A complete c-ary HST T , a leaf node x on T ,

and a privacy budget ε.
output: The obfuscated leaf node on the tree.

1 Compute for each leaf node a in T the probability
M(x)(a) according to Eq.(3);

2 Sample x to the obfuscated leaf node x′;
3 return x′;

TABLE I: Probability of leaf nodes being the obfuscated nodes.

Level i Li(o1) wti Probability
0 o1 1 0.394
1 f1 0.670 0.264
2 f2, f3 0.301 0.119
3 o2, f4 − f6 0.061 0.024
4 o3 − o4, f7 − f12 0.002 0.001

mechanism then randomly chooses a leaf node among all these
leaf nodes with the probability in Table I.

Geo-Indistinguishability. M is ε-Geo-I, which is ensured by
the following theorem.

Theorem 1. The mechanism M (Alg. 2) is ε-Geo-I. That is,
given two leaf nodes x1 and x2 on the HST, M satisfies

M(x1)(z) ≤ eεdT (x1,x2)M(x2)(z) (5)

for leaf node z ∈ L, where M(x1)(z) is the probability that
node x1 is obfuscated to node z, and dT (x1, x2) is the distance
between x1 and x2 on the HST.

Proof. We use lca(u, v) and lvl(u, v) to represent LCA of u
and v and the level of LCA of u and v, respectively. We prove
the theorem in two cases.

Case 1: lvl(x1, z) > lvl(x1, x2). In this case z is located
outside the subtree rooted at lca(x1, x2) (which we denote as
Tlca(x1,x2)). A first observation is that lvl(x2, z) > lvl(x1, x2).
In this case the LCA of x1 and z, i.e., lca(x1, z), and that
of x2 and z, i.e., lca(x2, z), coincide, and they both have a
higher level than lca(x1, x2). This means that for either x1 or
x2, the weight assigned to z is the same, i.e., wtlvl(x1,z) =
wtlvl(x2,z). Hence it has the same probability for x1 and x2
being obfuscated to z. Since εdT (x1, x2) ≥ 0 always holds, 5
holds if lvl(x1, z) ≥ lvl(x1, x2).

Case 2: lvl(x1, z) ≤ lvl(x1, x2). In this case, we have
lvl(x2, z) ≤ lvl(x1, x2), since otherwise lca(x1, z) will also
be greater than lca(x1, x2), which contradict to our assump-
tion. This means x1, x2 and z are located in a same subtree
rooted at lca(x1, x2). Also note that lvl(x1, z) ≥ 0. Hence,

M(x1)(z)

M(x2)(z)
=
wtlvl(x1,z)
wtlvl(x2,z)

=exp{ε(2lvl(x2,z)+2 − 2lvl(x1,z)+2)}
≤exp{ε(2lvl(x1,x2)+2 − 4)}
=eεdT (x1,x2). (6)

Thus the theorem also holds if lvl(x1, z) ≤ lvl(x1, x2).

Complexity Analysis.M enumerates all the leaf nodes in the
complete HST and each node has c branches. Hence its time
complexity is O(cD) where D is the height of the tree.

D. Random Walk Based Acceleration

Since the naive implementation (Alg. 2) of our privacy
mechanism takes O(cD), we propose a random walk based
alternative, which still generates the same distribution as
Alg. 2, but reduces the time complexity to only O(D).
Random Walk Based Implementation of M. Recall that
Li(x) is the set of leaf nodes whose LCA with x is located
at level i, and wti is the weight for a node in Li(x) being
sampled. Our key observation is that given the exact node x
and any level i, each node in Li(x) has the same probability
being sampled.

Concretely, we define twk as the total weight of leaf nodes
whose level of LCA with x is equal to or greater than k:

twk =

{∑D
i≥k c

i−1(c− 1)wti, if k > 0

w0 +
∑D
i=1 c

i−1(c− 1)wti =WT, if k = 0.
(7)

The random walk method first walks upward along the tree
from the exact leaf node. In each passed intermediate node
located at level i, we continue to walk upward with probability
pui = twi+1

twi
and with probability 1 − pui = ci−1(c−1)wti

twi
change to walk downward. Once we decide to walk downward
at an intermediate node u located at level idw, among each
child node of u except for the node which is the ancestor
of the exact node x, we randomly choose a node to walk
downward, each of which with probability 1

c−1 . Note that
we ignore the ancestor of x located at level idw − 1, say
ancidw−1(x), because those leaf nodes located at the subtree
rooted at ancidw−1(x) do not belong to Li(x). After we turn
our direction to walk downward, at each passed intermediate
node u we uniformly choose a child node of u (i.e., each child
node with probability 1

c) to go downward, until we reach a leaf
node. The leaf node is then chosen to be the obfuscated node
of the exact leaf node x.

Alg. 3 shows the pseudocode of the random walk based
implementation. We use u to represent the current node we are
going through, and Iupward the direction (line 2). We first walk
upward and in each passed intermediate node choose whether
to change the direction or not (lines 4-7). For the first time
of walking downward (now i = idw), we uniformly choose
one of the child of u except for anci−1(u) (line 10). Finally
we uniformly choose a child node of the current intermediate
node until we reach a leaf node (lines 11-12).

Example 3. Back to our settings in Example 2. Fig. 4
shows the probability for random walking in each level and
one possible path starting from o1 on the tree. The path is
marked in red arrows. Note that we change the notations of
intermediate nodes in Fig. 4 for a clear description. We start at
oi and go on walking upward with probability pu0 = 0.606 at
node o1 and with probability pu1 = 0.564 at node o1,1. Now
we reach the node o2,1 at level 2. Suppose the sampling at level
2 changes our direction to downward. Since node o2,1 has only

Algorithm 3: Random walk based implementation of
M.

input : a complete HST T , a leaf node x on T , and a
privacy budget ε.

output: An obfuscated leaf node on the tree.
1 u← x; // the node we are going
2 Iupward ← 1;
3 while True do
4 i← level of u;
5 Iupward ← 1 with probability pui or 0 with

probability 1− pui;
6 if Iupward is 1 then
7 u← parent of u;

8 else
9 break;

10 u← uniformly choose one of the child nodes of u
except for anci−1(u) ;

11 while u is not a leaf node do
12 u← uniformly choose one of the child nodes of u;

13 return u;

Fig. 4: The path of random walk in Example 3 and the nodes
of tasks and workers in Example 4.

two child nodes and o1,1 is where the leaf node o1 comes from.
Hence with probability 1 we walk downward to node f1,1. At
node f1,1 we reach the fake node f3 with probability 0.5 and
choose f3 as the obfuscated node. The probability of o1 being
obfuscated to f3 is pu0× pu1× (1− pu2)× 1× 0.5 = 0.119.

Correctness of Random Walk Based Method. The random
walk method is still ε-Geo-I based on the following theorem.

Theorem 2. The random walk method in Alg. 3 generates the
same distribution as that in Alg. 2.

Proof. Suppose the exact node is x. For a leaf node a whose
LCA with x is located at level lvl(x, a), i.e., a ∈ Li(x), the
random walk method finishes at a if and only if
• we walk upward until reaching lca(x, a) and
• in each time of downward walking we choose the child

node which is the ancestor of a (or a itself).
If lvl(x, a) = 0, i.e., x and a coincide, x is chosen to be the
obfuscated node when we change the direction immediately
at x. The probability is

M(x)(a) = 1− pu0 =
wt0
WT

.

Algorithm 4: A greedy algorithm on HST.
input : A complete HST T , the set of obfuscated

points of unassigned workers W ′.
output: The matching M .

1 W ′u ←W ′, M ← ∅;
2 for Each appearing task with obfuscated node t′ do
3 w∗ ← the closest node in W ′u on T (ties are

broken arbitrarily);
4 M ←M ∪ {(t′, w∗)};
5 W ′u ←W ′u − w∗;
6 return M ;

Fig. 5: The locations of tasks and workers.

When lvl(x, a) > 0, the probability that a is chosen to be the
obfuscated node, i.e., M(x)(a), is

(

lvl(x,a)−1∏
i=0

pui) ·
1− pulvl(x,a)

clvl(x,a)−1(c− 1)
=
wtlvl(x,a)

WT
,

which is exactly the probability in Alg. 2.

Complexity Analysis. The random walk traverses each level
on the tree at most twice. Hence its time complexity is O(D).

E. Effectiveness of Task Assignment on Obfuscated Nodes

Recall that a privacy mechanism for our POMBM problem
should not only be ε-Geo-Indistinguishable but also allow on-
line task assignment with a bounded competitive ratio. As next,
we present an HST-based greedy algorithm which operates
on the obfuscated nodes and achieves a competitive ratio of
O(1

ε4 logN log2 k), where N is the size of the predefined point
set and k = min{n,m} is the size of the matching result.
HST-Based Greedy Algorithm. Alg. 4 illustrates the HST-
Greedy algorithm for the server to perform online task assign-
ment on the obfuscated nodes. W ′u and M represent the set
of unsigned workers and the temporary matching, respectively
(line 1). For each new task with the corresponding obfuscated
node t′, the algorithm assigns the task to the worker that is
the closest to t′ on the HST and removes the chosen worker
from W ′u, as shown in lines 3-5.

Example 4. Back to Example 1. Suppose there are three
workers w1-w3 and three tasks t1-t3, whose locations are
shown in Fig. 5. The appearing order of the tasks is t1, t2, t3.
The obfuscated nodes t′1-t′3 and w′1-w′3 are shown in Fig. 4. t′1
first appears, and w′1 and w′2 are the two closest obfuscated
nodes to t′1. Suppose we assign t′1 to w′2. After that t′2 appears

and is assigned to w′1 as w′1 is closer on the tree. Then
t′3 appears and we assign t′3 to w′3. Finally we obtain the
matching M = {(t′1, w′2), (t′2, w′1), (t′3, w′3)}.

Competitive Ratio Analysis. The competitive ratio analysis of
Alg. 4 leverages the observation that the expectation distance
between a node v and an obfuscated node u′ on the HST is
upper and lower bounded, as claimed in the lemmas below.

Lemma 1. Given a leaf node u, the obfuscated leaf node u′ of
u by our privacy mechanism, and a leaf node v, the expected
distance (on the HST) between u′ and v is no less than 1

3(2c−1)
times the distance between u and v, i.e., EM[dT (u

′, v)] ≥
1

3(2c−1)dT (u, v).

Proof. For simplicity, we use lu,v to represent the level of
the LCA of u and v. Then the distance between u and v is
dT (u, v) = 2lu,v+2−4. Denote Tlu,v−1(v) as the subtree which
contains v and locates at level lu,v − 1. In the following we
assume lu,v ≥ 1 as the lemma obviously holds when lu,v = 0.
u′ can be any leaf node and the corresponding probability
depends on its distance to u. The expectation of dT (u′, v) is

EM[dT (u
′, v)] =

∑
a∈L
M(u)(a) · dT (a, v). (8)

Depending on whether a leaf node z is located in Tlu,v−1(v),
we partition the whole leaf node set L into Lin (inside
Tlu,v−1(v)) and Lout (outside Tlu,v−1(v)), and calculate their
values in Eq.(8) correspondingly.

We first bound the value of Eq.(8) for those nodes in
Lout, i.e.,

∑
a∈LoutM(u)(a) · dT (a, v). The observation is

that dT (a, v) ≤ dT (u, v) for a ∈ Lout. Hence we have∑
a∈Lout

M(u)(a) · dT (a, v) ≥
∑

a∈Lout

M(u)(a)dT (u, v)

=dT (u, v)(1−
∑
a∈Lin

M(u)(a))

=dT (u, v)(1−
clu,v−1wtlu,v

WT
). (9)

When lu,v = 1, we have (1− wt1
Wu

) ≥ 1− e−4ε

1+e−4ε ≥ 1
3(2c−1) ,

and the lemma holds. Hereafter, we will assume lu,v ≥ 2.
For those nodes in Lin, their probability of being the

obfuscated node is the same, i.e., M(u)(a) = M(u)(b) for
a, b ∈ Lin. We bound the value of Eq.(8) as follows.∑

a∈Lin

M(u)(a) · dT (u′, v)

=

lu,v−1∑
i=1

ci−1(c− 1)(2i+2 − 4)
wtlu,v
WT

=
wtlu,v
WT

{8(c− 1)

lu,v−1∑
i=1

ci−12i−1 − 4(c− 1)

lu,v−1∑
i=1

ci−1}

≥
wtlu,v
WT

clu,v−1(
c− 1

2c− 1
2lu,v+2 − 4)

≥
wtlu,v
WT

clu,v−1 1

3(2c− 1)
dT (u, v), (10)

where the last deduction comes from

(
c− 1

2c− 1
2lu,v+2 − 4)/dT (u, v)

=
c− 1

2c− 1
− (

4c

2c− 1
)/(2lu,v+2 − 4)

≥ c− 1

2c− 1
− c

3(2c− 1)
=

2c− 3

3(2c− 1)
≥ 1

3(2c− 1)
(11)

when lu,v ≥ 2 and c ≥ 2. From Eq.(9) and Eq.(10) we have∑
a∈L

M(u)(a) · dT (u′, v)

=
∑

a∈Lout

M(u)(a) · dT (u′, v) +
∑
a∈Lin

M(u)(a) · dT (u′, v)

≥ 1

3(2c− 1)
dT (u, v). (12)

Lemma 2. Given a leaf node u, the obfuscated leaf node
u′ of u by our tree-based mechanism, and a leaf node v,
EM[dT (u

′, v)] ≤ O((ln 2c
ε)log2 2c)dT (u, v).

Proof. We calculate the upper bound of the expectation of
dT (u

′, v) in a similar way to Lemma. 1. Denote Tu,v as the
subtree rooted at LCA of u and v, and we use L′in and L′out to
represent the leaf nodes inside and outside Tu,v respectively.
For those leaf nodes in L′in, we have

∑
a∈L′in

M(u)(a) ·
dT (a, v) ≤ dT (u, v) as dT (a, v) ≤ dT (u, v).

For leaf nodes in L′out,∑
a∈L′out

M(u)(a) · dT (a, v)

≤
D∑

i=lu,v

ci−1(c− 1)2i+2e(4−2i+2)ε/WT =

D∑
i=lu,v

Si (13)

where we denote Si = ci−1(c−1)2i+2e(4−2
i+2)ε/WT as the

i-th term in Eq.(13). Notice that 2i+2 ≤ 2(2i+2 − 4) always
holds. Hence Slu,v = O(dT (u, v)).

Observe that Si+1/Si = 2c/e2
i+2ε ≤ 2c. Let i∗ =

dlog2
ln(2c)
ε e − 2, then 2c/e2

i∗+2ε ≤ 1. And for i > i∗ we
have Si+1

Si
= 2c/e2

i+2ε ≤ 2c/e2
i∗+3ε ≤ 1

2c .
Now we are ready to get the upper bound of Eq.(13). For

lu,v ≤ i ≤ i∗ (if any), Si ≤ (2c)i−lu,vSlu,v . Then we have

i∗∑
i=lu,v

Si ≤
i∗∑

i=lu,v

(2c)i−lu,vSlu,v =
(2c)i

∗−lu,v+1 − 1

2c− 1
Slu,v

≤ (2c)i
∗+1Slu,v = O((

ln 2c

ε
)log2 2c)dT (u, v). (14)

For i∗ < i ≤ D (if any),
D∑

i=i∗+1

Si ≤
D∑

i=i∗+1

(
1

2c
)i−i

∗
Si∗ ≤ Si∗

≤ (2c)i
∗
Slu,v = O((

ln 2c

ε
)log2 2c)dT (u, v). (15)

Summarizing two parts of leaf nodes in L′in and L′out:
EM[dT (u

′, v)] ≤ O((
ln 2c

ε
)log2 2c) · dT (u, v).

Based on Lemmas 1-2, we have the following theorem.

Theorem 3. Alg. 4 has a competitive ratio O(1
ε4 ·

logN log2 k), where N is the number of predefined points
on the HST, and k = min{n,m}.
Proof. An important property of HST is that the distance
on the tree can be bounded by d(u, v) ≤ E[dT (u, v)] ≤
O(log n)d(u, v). From Lemma. 1 we have EM[dT (t

′, w′)] ≥
1

3(2c−1)EM[dT (t, w
′)] ≥ 1

9(2c−1)2 dT (t, w). Similarly from
Lemma. 2 we have EM[dT (t

′, w′)] ≤ O((ln 2c
ε)2 log2 2c) ·

dT (t, w). Let lb = 1
9(2c−1)2 and ub = O((ln 2c

ε)2 log2 2c). Fur-
ther denote MOPT as the optimal matching in the Euclidean
space. Thus

EM,O[d(MA)] ≤ EM,O[
∑

(t,w)∈MA

dT (t, w)]

≤ 1

lb
· EM,O[

∑
(t,w)∈MA

dT (t
′, w′)]

≤ log k

lb
· EM,O[

∑
(t,w)∈MOPT

dT (t
′, w′)]

≤ ub · log k
lb

· EO[
∑

(t,w)∈MOPT

dT (t, w)]

≤ O(
ub · log2 k logN

lb
) · d(MOPT) (16)

where we use the fact that the HST-Greedy algorithm has
a competitive ratio of O(logN log2 k) when the HST is
constructed on the predefined points [15]. Substituting the
values of lb and ub, we have

EM,O[d(MA)] ≤ d(MOPT)O((
ln 2c

ε
)2 log2 2c · logN log2 k).

Since an arbitrary HST can be transformed to a binary HST
[20], we assume c = 2. Hence the competitive ratio of Alg. 4
in our tree-based mechanism is O(1

ε4 logN log2 k).

Complexity Analysis. Computing the distance between two
leaf nodes on the HST takes O(D) time. For each appearing
task, the algorithm enumerates all available workers and finds
the nearest one on the tree. Hence the time complexity of
Alg. 4 is O(Dnm).

IV. EXPERIMENTS

This section presents the evaluations of our methods.

A. Experimental Setup

Synthetic Datasets. Table II shows the parameter settings for
synthetic datasets. The default settings are marked in bold.
Specifically, task set (denoted by T) and worker set (denoted
by W) are generated in a 200 × 200 Euclidean space under
the Normal distribution with different mean µ and standard
deviation σ. Inspired by [10], the mean µ varies from 50 to
150 and the standard deviation σ varies from 10 to 30. We
also vary the number of tasks T , the number of workers W
and the value of ε. For scalability tests we vary the number of
tasks and workers at the same time from 2× 104 to 10× 104.
Real Datasets. Table III shows the parameter settings for the
real datasets, which are collected by Didi Chuxing [22] and

TABLE II: Experimental settings for synthetic data.

Parameters Settings
|T | 1000, 2000, 3000, 4000, 5000
|W | 3000, 4000, 5000, 6000, 7000

mean µ 50, 75, 100, 125, 150
standard deviation σ 10, 15, 20, 25, 30

privacy budget ε 0.2, 0.4, 0.6, 0.8, 1
scalability (|T | = |W |) 2× 104, 4× 104, 6× 104, 8× 104, 10× 104

TABLE III: Experimental settings for real data.

Parameters Settings
collected date 2016/11/01, · · · , 2016/11/30

|T | range from 4245 to 5034
|W | 6000, 7000, 8000, 9000, 10000
ε 0.2, 0.4, 0.6, 0.8, 1

published through the GAIA initiative [23]. The dataset in-
cludes 7,065,937 trip records of passengers in Chengdu, China
in November, 2016. We choose the records in a 10km×10km
region during the peak-hour period 14:00-14:30. The location
of each task is extracted by the origin of a passenger in the trip
records. Finally, the real datasets include 4,245 to 5,034 tasks
in the peak-hour periods of thirty days. We test on the tasks
in each day and report the average value of metrics. As the
information of workers and the privacy budget are not given
in the real datasets, we vary their values based on the same
settings as in synthetic datasets.

Compared Algorithms. Since no previous work has studies
the POMBM problem before, we combine the widely used
privacy mechanism (i.e., the planar Laplacian distribution [8])
and two popular algorithms for OMBM (i.e., greedy [10] and
HST-Greedy [15]) as the baselines.

• Lap-GR (Laplacian+Greedy): This is the first baseline,
where we use the planar Laplacian distribution [8] as the
privacy mechanism, and the greedy algorithm [10] in the
Euclidean space for task assignment.

• Lap-HG (Laplacian+HST-Greedy): This is the second
baseline which uses the planar Laplacian distribution [8]
as the privacy mechanism, and the HST-Greedy algo-
rithm [15] for task assignment.

• TBF (Our Tree-Based Framework): It uses Alg. 3 as the
privacy mechanism and Alg. 4 for task assignment.

Metrics. Note that all the compared algorithms are ε-Geo-
Indistinguishable. Yet they differ in the effectiveness and effi-
ciency of task assignment due to their differently obfuscated
location data of tasks and workers. Hence we mainly compare
their performances in terms of the total distance of their output
matching as well as the running time and memory usage of
their task assignment under the same privacy budget. Here
the running time refers to the total time an algorithm takes
from receiving a task to the completion of the assignment.
Implementation. All algorithms are implemented in C++. We
conducted experiments on a server with 40 Intel(R) Xeon(R)
E5 2.30GHz processors and 128GB memory. Each experiment
is repeated 10 times. The average results are reported.

10
00

20
00

30
00

40
00

50
00

|T|

0

1

2

3

4
to

ta
l d

is
ta

nc
e

104

Lap-GR
Lap-HG
TBF

(a) Total Distance of Varying |T |.

30
00

40
00

50
00

60
00

70
00

|W|

0

0.5

1

1.5

2

2.5

3

to
ta

l d
is

ta
nc

e

104

Lap-GR
Lap-HG
TBF

(b) Total Distance of Varying |W |.

50

75

10
0

12
5

15
0

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

to
ta

l d
is

ta
nc

e

104

Lap-GR
Lap-HG
TBF

(c) Total Distance of Varying µ.

50

75

10
0

12
5

15
0

0

0.5

1

1.5

2

to
ta

l d
is

ta
nc

e

104

Lap-GR
Lap-HG
TBF

(d) Total Distance of Varying σ.

10
00

20
00

30
00

40
00

50
00

|T|

0

2

4

6

8

ru
nn

in
g

tim
e

(s
ec

s)

Lap-GR
Lap-HG
TBF

(e) Running Time of Varying |T |.

30
00

40
00

50
00

60
00

70
00

|W|

0

2

4

6

8

10

ru
nn

in
g

tim
e

(s
ec

s)

Lap-GR
Lap-HG
TBF

(f) Running Time of Varying |W |.

50

75

10
0

12
5

15
0

0

1

2

3

4

5

6

7

ru
nn

in
g

tim
e

(s
ec

s)

Lap-GR
Lap-HG
TBF

(g) Running Time of Varying µ.

50

75

10
0

12
5

15
0

0

1

2

3

4

5

6

7

ru
nn

in
g

tim
e

(s
ec

s)

Lap-GR
Lap-HG
TBF

(h) Running Time of Varying σ.

10
00

20
00

30
00

40
00

50
00

|T|

16

16.5

17

17.5

m
em

or
y

us
ag

e
(M

B
)

Lap-GR
Lap-HG
TBF

(i) Memory of Varying |T |.

30
00

40
00

50
00

60
00

70
00

|W|

16

16.5

17

17.5

18

m
em

or
y

us
ag

e
(M

B
)

Lap-GR
Lap-HG
TBF

(j) Memory of Varying |W |.

50

75

10
0

12
5

15
0

16.5

17

17.5

m
em

or
y

us
ag

e
(M

B
)

Lap-GR
Lap-HG
TBF

(k) Memory of Varying µ.

50

75

10
0

12
5

15
0

16.4

16.6

16.8

17

17.2

17.4

17.6

m
em

or
y

us
ag

e
(M

B
)

Lap-GR
Lap-HG
TBF

(l) Memory of Varying σ.

Fig. 6: Results of varying |T |, |W |, µ and σ on synthetic datasets.

B. Experimental Results

Impact of Number of Tasks. The first column of Fig. 6 shows
the results of varying the number of tasks on synthetic datasets.
Fig. 6a depicts the total distance of all the algorithms. Our
TBF outperforms both Lap-GR and Lap-HG by up to 80.0%.
For running time (Fig. 6e), Lap-GR is the most efficient and
all algorithms consume more time as |T | increases. This is
because TBF and Lap-HG are based on the HST and have a
time complexity O(Dnm), while the time complexity of the
greedy algorithm Lap-GR is O(nm). The time complexity
of all algorithms is proportional to |T |. Both TBF and Lap-
HG are fast enough for real applications since each task can
be responded (i.e., assigned to a worker) in 0.0015 seconds.
In terms of memory usage, Lap-GR is still the most efficient
while TBF and Lap-HG consume more space of no more than
1.2 MB to construct the HST.

Impact of Number of Workers. The second column of
Fig. 6 shows the results of varying the number of workers
on synthetic datasets. As shown in Fig. 6b, the total distance
decreases with the increase of |W |. This is reasonable since
the tasks are more likely to be allocated to nearer workers
when the number of workers becomes larger. When there are
more workers, our TBF saves up to 72.8% total distances
than both Lap-GR and Lap-HG. For running time in Fig. 6f,
Lap-GR is the most efficient, followed by TBF and Lap-

HG, and all algorithms consume more time as |W | increases.
This is because the time complexity of the three algorithms is
proportional to the number of workers n. For memory cost in
Fig. 6j, all algorithms consume no more than 18MB space.
Impact of µ of Locations. The third column of Fig. 6 shows
the results of varying the mean of locations on synthetic
datasets. TBF achieves the shortest total distance, followed by
Lap-GR and Lap-HG (Fig. 6c). In particular, TBF achieves up
to 69.2% and 71.2% shorter total distance than Lap-GR and
Lap-HG, respectively. The time costs of all the algorithms are
relatively stable in Fig. 6g, because their time complexity is
irrelevant to µ. As for memory consumption, all the algorithms
need no more than 18MB space (Fig. 6k).
Impact of σ of Locations. The last column of Fig. 6 shows
the results under privacy preservation on varying the standard
deviation of locations on synthetic datasets. In terms of total
distance, TBF is still more effective than Lap-GR and Lap-
HG (Fig. 6d). Lap-GR is always the most efficient in terms
of running time and memory usage, followed by TBF and
Lap-HG (Fig. 6h and Fig. 6l).

Impact of Privacy Budget. The first column of Fig. 7
shows the results of varying the privacy budget ε on synthetic
datasets. As shown in Fig. 7a, the total distance of both Lap-
GR and Lap-HG is notably higher than TBF when ε is small
(e.g. 0.2), i.e., with a stricter privacy protection requirement. In

0.
2

0.
4

0.
6

0.
8 1

0

1

2

3

4

5
to

ta
l d

is
ta

nc
e

104

Lap-GR
Lap-HG
TBF

(a) Total Distance of Varying ε.

2 4 6 8 10

|T|,|W| (x 104, x 104)

0

1

2

3

4

5

6

to
ta

l d
is

ta
nc

e

105

Lap-GR
Lap-HG
TBF

(b) Total Distance of Scalability.

60
00

70
00

80
00

90
00

10
00

0

|W|

1

1.5

2

2.5

3

3.5

4

to
ta

l d
is

ta
nc

e

104

Lap-GR
Lap-HG
TBF

(c) Total Distance of Varying |W |.

0.
2

0.
4

0.
6

0.
8 1

1

2

3

4

5

6

7

to
ta

l d
is

ta
nc

e

104

Lap-GR
Lap-HG
TBF

(d) Total Distance of Varying ε.

0.
2

0.
4

0.
6

0.
8 1

0

1

2

3

4

5

6

7

ru
nn

in
g

tim
e

(s
ec

s)

Lap-GR
Lap-HG
TBF

(e) Running Time of Varying ε.

2 4 6 8 10

|T|,|W| (x 104, x 104)

0

500

1000

1500

2000

ru
nn

in
g

tim
e

(s
ec

s)

Lap-GR
Lap-HG
TBF

(f) Running Time of Scalability.

60
00

70
00

80
00

90
00

10
00

0

|W|

0

2

4

6

8

10

12

ru
nn

in
g

tim
e

(s
ec

s)

Lap-GR
Lap-HG
TBF

(g) Running Time of Varying |W |.

0.
2

0.
4

0.
6

0.
8 1

2

4

6

8

10

ru
nn

in
g

tim
e

(s
ec

s)

Lap-GR
Lap-HG
TBF

(h) Running Time of Varying ε.

0.
2

0.
4

0.
6

0.
8 1

16.4

16.6

16.8

17

17.2

17.4

17.6

m
em

or
y

us
ag

e
(M

B
)

Lap-GR
Lap-HG
TBF

(i) Memory of Varying ε.

2 4 6 8 10

|T|,|W| (x 104, x 104)

15

20

25

30

35

40

45

m
em

or
y

us
ag

e
(M

B
)

Lap-GR
Lap-HG
TBF

(j) Memory of Scalability.

60
00

70
00

80
00

90
00

10
00

0

|W|

16.5

17

17.5

18

18.5

19

m
em

or
y

us
ag

e
(M

B
)

Lap-GR
Lap-HG
TBF

(k) Memory of Varying |W |.

0.
2

0.
4

0.
6

0.
8 1

16.5

17

17.5

18

m
em

or
y

us
ag

e
(M

B
)

Lap-GR
Lap-HG
TBF

(l) Memory of Varying ε.

Fig. 7: Results of varying ε and scalability on synthetic datasets and results of varying |W | and ε on real datasets.

contrast, our TBF is relatively insensitive when ε varies from
0.2 to 1. It shows that our tree-based framework is fit for cases
with a high privacy budget. As a result, TBF achieves up to
88.0% shorter total distance than both Lap-GR and Lap-HG.
As shown in Fig. 7e and Fig. 7i, Lap-GR is still the most
efficient while TBF and Lap-HG are also efficient enough.

Scalability Tests. The second column of Fig. 7 shows the
results of scalability tests. TBF always outperforms the others
in terms of total distance (Fig. 7b). Both Lap-GR and Lap-
HG yield 70.0% times longer total distance than TBF. Lap-
GR is the most time-efficient, which conforms to the time
complexity analysis in Sec. III. TBF is also efficient, which
takes no more than 0.02 seconds to assign each newly arrived
task on average. In terms of memory usage, all algorithms are
efficient, which consume no more than 43.8 MB space.

Real Datasets. The last two columns of Fig. 7 show the results
of real datasets. TBF is always the most effective with up
to 56.2% shorter total distance than Lap-GR and Lap-HG
(Fig. 7c and Fig. 7d). Lap-GR is again the most time-efficient.
The time cost of all the algorithms increases linearly as |W |
increases, while stays stable when varying µ. This is because
the time complexity of the algorithms is proportional to |W |
(i.e., n), but is irrelevant to µ. All the algorithms are memory-
efficient, which consume no more than 20MB space.

Summary of Results. Our main experimental findings are:

• While all the algorithms are ε-Geo-Indistinguishable, our
TBF is the most effective on both synthetic datasets and
real datasets. It can save up to 79.4% and 80.0% total
distance than Lap-GR and Lap-HG.

• Particularly in case of stringent privacy requirements (i.e.,
with small ε), our TBF significantly outperforms the
baselines in terms of total distance.

• Our TBF is also efficient for real-time spatial crowdsourc-
ing applications and only consumes small storage.

C. A Case Study on Maximization of Matching Size

In addition to minimizing the total distance, another popular
objective in online task assignment in spatial crowdsourcing is
maximizing the total number of matching size under incom-
plete bipartite graph [9]. Hence we conduct a case study on
task assignment with this objective to validate our method.

Datasets. For synthetic datasets, we only vary the number of
workers |W | and the value of privacy budget ε with the same
parameter settings in Table II due to space limit. For real
datasets, we use the same procedure in Sec. IV-A to process
the raw data and vary the same parameters as in Table III.
Since there is no reachable distance for workers, we uniformly
generate the reachable distance of workers within [10, 20] for
synthetic datasets and [500, 1000] for real datasets.

30
00

40
00

50
00

60
00

70
00

|W|

1800

2000

2200

2400

2600

2800
m

at
ch

in
g

si
ze

Prob
TBF

(a) Matching Size of Varying |W |.

0.
2

0.
4

0.
6

0.
8 1

1400

1600

1800

2000

2200

2400

2600

2800

m
at

ch
in

g
si

ze

Prob
TBF

(b) Matching Size of Varying ε.

60
00

70
00

80
00

90
00

10
00

0

|W|

2500

3000

3500

4000

m
at

ch
in

g
si

ze Prob
TBF

(c) Matching Size of Varying |W |.

0.
2

0.
4

0.
6

0.
8 1

1000

1500

2000

2500

3000

3500

4000

m
at

ch
in

g
si

ze

Prob
TBF

(d) Matching Size of Varying ε.

30
00

40
00

50
00

60
00

70
00

|W|

0

1

2

3

4

5

6

7

ru
nn

in
g

tim
e

(s
ec

s)

Prob
TBF

(e) Running Time of Varying |W |.

0.
2

0.
4

0.
6

0.
8 1

0

1

2

3

4

5

ru
nn

in
g

tim
e

(s
ec

s)
Prob
TBF

(f) Running Time of Varying ε.

60
00

70
00

80
00

90
00

10
00

0

|W|

0

2

4

6

8

10

12

14

ru
nn

in
g

tim
e

(s
ec

s)

Prob
TBF

(g) Running Time of Varying |W |.

0.
2

0.
4

0.
6

0.
8 1

2

4

6

8

10

ru
nn

in
g

tim
e

(s
ec

s)

Prob
TBF

(h) Running Time of Varyint ε.

Fig. 8: Results of varying |W | and ε on synthetic datasets and the results on real datasets.

Compared Algorithms.
• Prob [7]: It uses the Laplacian distribution to protect the

privacy and a probability-based algorithm to assign tasks.
• TBF: We use our tree-based privacy mechanism, and for

each task find the nearest reachable worker on the HST.
Metrics and Implementation. The implementation is the
same as in Sec. IV-A. Due to page limit, we only compare
the algorithms in terms of matching size and running time.
Experimental Results.
(1) Impact of Number of Workers. The first column of

Fig. 8 shows the results of varying the number of workers
|W | on synthetic datasets. In terms of matching size, TBF
always outperforms the baseline Prob with up to 16.0%
more number of assigned tasks (Fig. 8a). In terms of
running time, Prob is more efficient while TBF can still
response each task within 0.002 seconds (Fig. 8e).

(2) Impact of Privacy Budget. The second column of Fig. 8
shows the results of varying the privacy budget ε on
synthetic datasets. For matching size (see Fig. 8b), TBF
achieves 5.6% to 47.7% more number of assigned tasks.
As shown in Fig. 8f, the running time of both algorithms
are relatively stable with the increase of ε.

(3) Real Datasets. The last two columns of Fig. 8 show
the results of varying the privacy budget ε on synthetic
datasets. In Fig. 8c and Fig. 8d, TBF consistently obtains
the larger matching size by up to 26.8% times larger than
Prob. As for running time, Prob is still more efficient
while TBF is still able to response each task in no more
than 0.003 seconds in Fig. 8g and Fig. 8h.

(4) Summary of Results. While both Prob and TBF satisfy
Geo-Indistinguishability, our algorithm TBF is notably
more effective than Prob by up to 47.7% larger matching
size. Though Prob is more efficient, TBF is still efficient
enough for real-world applications with no more than
0.003 seconds average response time.

V. RELATED WORK

Online Minimum Bipartite Matching. Online minimum
bipartite matching finds a maximal matching on a complete
bipartite graph with a minimum total distance. It has been a
popular topic in spatial crowdsourcing [10], [19], [15].

Meyerson et al. [15] propose to embed the points in the
Euclidean space to an HST and apply a greedy algorithm on
the HST to assign a worker to each task. They prove that
the algorithm has a competitive ratio of O(log3 k), where
k = min{n,m} is the minimum between n and m. Bansal et
al. [19] also design an algorithm based on HST. The algorithm
successively assigns the task to workers (including those
matched ones) until it finds an unmatched worker as the result.
Recently, Tong et al. [10] conducts an experimental study
on the state-of-the-art online minimum bipartite matching
algorithms and shows that the heuristic greedy algorithm
performs well on many practical settings.

Our work is inspired by these findings, i.e., conducting
online matching (e.g. using even a greedy algorithm on an
HST) may have guaranteed effectiveness for task assignment.
However, all the proposals are without privacy protection.

Privacy-Preserving Task Assignment in Spatial Crowd-
sourcing. There has been extensive research on privacy-
preserving task assignment in spatial crowdsourcing [6], [7],
[5], [24], [25], [26], [27], [28], [29].

A number of works [6], [30] protect the privacy of tasks
or workers by transforming the location into a cloaked region,
and task assignment is then executed based on the cloaked
regions. In [6] and [30], the authors propose a two-stage
approach, where the first stage globally assigns tasks based
on the cloaked locations and the second stage locally chooses
tasks based on the worker’s exact location. However, these
schemes are only for offline task assignment, which is unfit
for many real-world applications such as ride-sharing.

Differential Privacy [31] is proposed as a stronger alterna-
tive of cloaking and has been a new standard for privacy pro-
tection. It requires that a data record cannot be distinguished
by the aggregation queries (e.g. count) over two neighbor
datasets. For example, To et al. [5] propose the Private Spatial
Decomposition [32] to protect the differential privacy of the
count of workers in regions and the task is then assigned to
all the workers in a chosen region. However, existing studies
focus on the privacy of aggregated queries on tasks or workers.
They are unfit for queries on individual locations, which are
important for task assignment in spatial crowdsourcing.

More recently, Geo-Indistinguishability [8] is proposed as a
generalization of differential privacy to protect the privacy of
individual location queries. Wang et al. [25] explored how
to ensure ε-Geo-Indistinguishability for workers in spatial
crowdsourcing. However, they neglect privacy protection for
tasks and only consider offline task assignment.

Our work is most related to [7]. Both [7] and our work
are ε-Geo-I. Compared with [7], we focus on task assignment
with minimum distance, another important objective for task
assignment in spatial crowdsourcing. We also propose a novel
tree-based privacy mechanism, which, for the first time, allows
online task assignment with a guaranteed competitive ratio.

VI. CONCLUSION

In this paper we explore privacy protection of location
data for online task assignment in spatial crowdsourcing
which (i) is differentially private and (ii) allows effective task
assignment on the permuted data. We propose a novel pri-
vacy mechanism based on Hierarchically Well-Separated Trees
(HSTs) and prove the mechanism is ε-GEO-Indistinguishable.
We further design a faster implementation of the mechanism
via random walk. We show that when operating on the data
permuted by our mechanism, there exists a task assignment
algorithm with a competitive ratio of O(1

ε4 logN log2 k),
where ε is the privacy budget, N is the number of predefined
nodes on the HST, and k is the matching size. Extensive
experiments on synthetic and real datasets show that online
task assignment under our privacy mechanism is notably more
effective than under prior differentially private mechanisms.

ACKNOWLEDGMENT

We are grateful to anonymous reviewers for their construc-
tive comments. Qian Tao, Yongxin Tong and Ke Xu’s works
are partially supported by the National Science Foundation of
China (NSFC) under Grant No. 61822201 and U1811463. Lei
Chen’s work is partially supported by the Hong Kong RGC
GRF Project 16209519, the National Science Foundation of
China (NSFC) under Grant No. 61729201, Science and Tech-
nology Planning Project of Guangdong Province, China, No.
2015B010110006, Hong Kong ITC ITF Grants ITS/044/18FX
and ITS/470/18FX, Didi-HKUST Joint Research Lab Grant,
Microsoft Research Asia Collaborative Research Grant and
Wechat Research Grant.

REFERENCES

[1] Y. Tong, L. Chen, and C. Shahabi, “Spatial crowdsourcing: Challenges,
techniques, and applications,” PVLDB, 2017.

[2] Y. Tong, Z. Zhou, Y. Zeng, L. Chen, and C. Shahabi, “Spatial crowd-
sourcing: a survey,” The VLDB Journal, 2019.

[3] Q. Tao, Y. Zeng, Z. Zhou, Y. Tong, L. Chen, and K. Xu, “Multi-worker-
aware task planning in real-time spatial crowdsourcing,” in DASFAA
2018.

[4] Y. Tong, Y. Zeng, Z. Zhou, L. Chen, J. Ye, and K. Xu, “A unified
approach to route planning for shared mobility,” PVLDB, 2018.

[5] H. To, G. Ghinita, and C. Shahabi, “A framework for protecting worker
location privacy in spatial crowdsourcing,” PVLDB, 2014.

[6] L. Pournajaf, L. Xiong, V. S. Sunderam, and S. Goryczka, “Spatial task
assignment for crowd sensing with cloaked locations,” in MDM 2014.

[7] H. To, C. Shahabi, and L. Xiong, “Privacy-preserving online task
assignment in spatial crowdsourcing with untrusted server,” in ICDE
2018.

[8] M. E. Andrés, N. E. Bordenabe, K. Chatzikokolakis, and C. Palamidessi,
“Geo-indistinguishability: differential privacy for location-based sys-
tems,” in CCS 2013.

[9] Y. Tong, J. She, B. Ding, L. Wang, and L. Chen, “Online mobile micro-
task allocation in spatial crowdsourcing,” in ICDE 2016.

[10] Y. Tong, J. She, B. Ding, L. Chen, T. Wo, and K. Xu, “Online minimum
matching in real-time spatial data: Experiments and analysis,” PVLDB,
2016.

[11] Y. Tong, L. Wang, Z. Zhou, L. Chen, B. Du, and J. Ye, “Dynamic pricing
in spatial crowdsourcing: A matching-based approach,” in SIGMOD
2018.

[12] Y. Wang, Y. Tong, C. Long, P. Xu, K. Xu, and W. Lv, “Adaptive dynamic
bipartite graph matching: A reinforcement learning approach,” in ICDE
2019.

[13] Y. Zeng, Y. Tong, L. Chen, and Z. Zhou, “Latency-oriented task
completion via spatial crowdsourcing,” in ICDE 2018.

[14] A. Alfarrarjeh, T. Emrich, and C. Shahabi, “Scalable spatial crowdsourc-
ing: A study of distributed algorithms,” in MDM 2015.

[15] A. Meyerson, A. Nanavati, and L. J. Poplawski, “Randomized online
algorithms for minimum metric bipartite matching,” in SODA 2006.

[16] L. Kazemi and C. Shahabi, “Geocrowd: enabling query answering with
spatial crowdsourcing,” in GIS 2012.

[17] T. Song, Y. Tong, L. Wang, J. She, B. Yao, L. Chen, and K. Xu,
“Trichromatic online matching in real-time spatial crowdsourcing,” in
ICDE 2017.

[18] Y. Tong, L. Wang, Z. Zhou, B. Ding, L. Chen, J. Ye, and K. Xu, “Flexible
online task assignment in real-time spatial data,” PVLDB, 2017.

[19] N. Bansal, N. Buchbinder, A. Gupta, and J. Naor, “A randomized
o(log2k)-competitive algorithm for metric bipartite matching,” Algo-
rithmica, 2014.

[20] Y. Emek, S. Kutten, and R. Wattenhofer, “Online matching: haste makes
waste!” in STOC 2016.

[21] J. Fakcharoenphol, S. Rao, and K. Talwar, “A tight bound on approxi-
mating arbitrary metrics by tree metrics,” in STOC 2003.

[22] Didi Chuxing. [Online]. Available: http://www.didichuxing.com/
[23] GAIA initiative. [Online]. Available: http://gaia.didichuxing.com/
[24] H. To, G. Ghinita, L. Fan, and C. Shahabi, “Differentially private

location protection for worker datasets in spatial crowdsourcing,” IEEE
Transactions on Mobile Computing, 2017.

[25] L. Wang, D. Yang, X. Han, T. Wang, D. Zhang, and X. Ma, “Location
privacy-preserving task allocation for mobile crowdsensing with differ-
ential geo-obfuscation,” in WWW 2017.

[26] J. Li, A. Liu, W. Wang, Z. Li, G. Liu, L. Zhao, and K. Zheng,
“Towards privacy-preserving travel-time-first task assignment in spatial
crowdsourcing,” in APWeb-WAIM 2018.

[27] A. Liu, W. Wang, S. Shang, Q. Li, and X. Zhang, “Efficient task
assignment in spatial crowdsourcing with worker and task privacy
protection,” GeoInformatica, 2018.

[28] H. To and C. Shahabi, “Location privacy in spatial crowdsourcing,” in
Handbook of Mobile Data Privacy, 2018.

[29] L. Pournajaf, D. A. Garcia-Ulloa, L. Xiong, and V. S. Sunderam,
“Participant privacy in mobile crowd sensing task management: A survey
of methods and challenges,” SIGMOD Record, 2015.

[30] L. Pournajaf, L. Xiong, V. S. Sunderam, and X. Xu, “STAC: spatial
task assignment for crowd sensing with cloaked participant locations,”
in GIS 2015.

[31] C. Dwork, “Differential privacy,” in ICALP 2006.
[32] G. Cormode, C. M. Procopiuc, D. Srivastava, E. Shen, and T. Yu,

“Differentially private spatial decompositions,” in ICDE 2012.

http://www.didichuxing.com/
http://gaia.didichuxing.com/

	Introduction
	Problem Definition
	Interaction Model
	Problem Formulation
	Evaluation Criteria

	A Tree-Based Solution
	Overview
	Construction of HST
	Privacy Mechanism on HST
	Random Walk Based Acceleration
	Effectiveness of Task Assignment on Obfuscated Nodes

	Experiments
	Experimental Setup
	Experimental Results
	A Case Study on Maximization of Matching Size

	Related Work
	Conclusion
	References

