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Abstract— Online real estate platforms are gaining increasing
popularity, where a central issue is to match brokers with clients
for potential housing transactions. Mainstream platforms match
brokers via top-k recommendation. Yet we observe through
extensive data analysis that such top-k recommendation tends to
overload the top brokers, which notably degrades their service
quality. In this paper, we propose to avoid such overloading in
broker matching via the paradigm shift from recommendation
to assignment. To this end, we design learned assignment with
contextual bandits (LACB), a data-driven capacity-aware assign-
ment scheme for broker matching which estimates broker-specific
workload capacity in an online fashion and assigns brokers
to clients from a global perspective to maximize the overall
service quality. Extensive evaluations on synthetic and real-world
datasets from an industrial online real estate platform validate
the efficiency and effectiveness of our solution.

Index Terms—Capacity-Aware, Broker Matching, Real Estate
Platform

I. INTRODUCTION

Online real estate platforms, such as Compass1, Zillow2 and
Ke Holdings Inc. (a.k.a Beike)3 are increasingly exploiting
data-driven approaches to improve their business and service
quality. A central function of these platforms is to match
clients who are interested in house purchases to appropriate
brokers4 for followup services [1]. The status quo of such
broker matching is top-k recommendation [2], [3]. Take Beike,
the largest Chinese online real estate platform, as an example.
When clients click for detailed information about a house on
the platform app, three brokers associated with that house will
be recommended by the App (see Fig. 1).

We observe, through extensive data analysis on online
real-estate platforms, that (i) brokers have limited workload
capacity and (ii) the top-k recommendation mechanism leads
to the overloaded of top brokers, also known as the overloaded
phenomenon, which impairs both the service quality and the
long-term development of the platform. Specifically, our study
shows that due to the top-k mechanism, the brokers’ sign-up
rate can drop from 14.3%∼27.5% to 2.5%∼17.8%, if they
respond to over 40 client requests per day (see Sec. II-B). Here

1https://www.compass.com/
2https://www.zillow.com
3https://www.ke.com
4We do not differ an agent from a broker, and collectively refer them as

brokers.

Fig. 1: An illustration of top-k broker recommendation on Beike,
a major online real estate platform. When house buyers click for
more information about their favorite houses, the platform App
recommends three brokers by default.

the sign-up rate of a broker is a common indicator of service
quality, which is the ratio between the number of clients who
sign up with him/her and the total clients he/she served. We
also observe the Matthew effect [4] when adopting the top-
k recommendation mechanism. That is, many requests are
occupied by top brokers, leaving others few opportunities to
improve their skills. It may discourage those neglected brokers
and harm the platform in the long run.

We argue that the overloaded phenomenon is caused by
ignorance of brokers’ workload capacity, which motivates us
to take an assignment [5]–[7] perspective for capacity-aware
broker matching. That is, rather than blindly recommend the
few top brokers to all clients, we propose to first estimate
the workload capacity of individual brokers, and then assign
them to clients in a global view without overwhelming the bro-
kers. However, it faces two practical challenges to implement
capacity-aware assignment for broker matching.

• Challenge 1: how to estimate broker-specific workload
capacity in an online fashion? We observe that the
workload capacity differs across brokers (see Sec. II),
making personalized estimation necessary. However, it is
impractical to collect data on a broker’s service quality
under all possible workloads in advance, which makes
online estimation of workload capacity preferable. Prior
workload capacity estimation schemes [8], [9] fail to



support such online learning of personalized estimation.
• Challenge 2: how to assign brokers under capacity limit

to maximize the overall utility over time? It is common
that the amount of real estate transactions at present
affects that in the near future. Consequently, broker
assignments among batches tend to be correlated, making
it difficult to assign brokers holistically. Most assignment
schemes [10], [11] consider clients and brokers in each
batch independently, making them sub-optimal in terms
of the collective utility of multiple batches.

To address these challenges, we propose Learned
Assignment with Contextual Bandits (LACB), a data-
driven capacity-aware assignment scheme for real estate
broker matching. It tackles Challenge 1 via contextual bandits
for data-efficient and online personalized capacity estimation.
LACB overcomes Challenge 2 with a capacity-aware value
function, which accounts for both the short-term and the long-
term utility of brokers for matching. Our main contributions
and results are summarized as follows.

• To the best of our knowledge, we are the first to identify
the overload of top brokers problem for online real estate
platforms. Extensive data analysis shows that brokers
have limited workload capacity and their service quality
tends to drop when overloaded, which motivates the shift
from recommendation to assignment for broker matching.

• We design LACB, a data-driven capacity-aware assign-
ment scheme for broker matching. It estimates broker-
specific capacity in an online manner and assigns brokers
to clients from a global view. We further propose LACB-
Opt, which accelerates assignments via broker selection.

• We conduct extensive experiments on synthetic and real-
world datasets from Beike, the largest Chinese online
real estate platform. Experimental results validate the
efficiency and effectiveness of our solutions.

In the rest of this paper, we first identify the overloaded
phenomenon in Sec. II and formulate the problem in Sec. III.
Then we present an overview of our solution in Sec. IV, and
introduce each module in Sec. V and Sec. VI, respectively.
We present the evaluations in Sec. VII, review related work
in Sec. VIII and finally conclude in Sec. IX.

II. MOTIVATIONS

We motivate our study through measurements from Beike,
an online real estate platform in China. We observe a phe-
nomenon called the overload of top brokers, where a few
brokers are tasked to serve amounts of requests that exceed
their capacities, which eventually leads to drop in the brokers’
service quality and the overall utility of the platform.

A. Limited Broker Capacity

Our first motivation is that brokers have limited capacity. As
with other service industries, we assume a real estate broker
has limited capacity, i.e., the number of services he/she can
provide in unit time with high quality. Since the low quality
of service in housing transactions easily leads to the churn
of clients, we hypothesize that the service quality of brokers

Fig. 2: The average sign-up rate of brokers in two cities.

tends to drop with the increase of served requests. We test this
hypothesis via the measurements below.
Measurements. We analyzed data from an online real estate
platform from June 1st to August 31st, 2021 in two major
cities in China to explore the relationship between service
quality and capacity of brokers. We use the broker’s sign-up
rate, i.e., the ratio between the number of clients who sign up
with the broker and that served in total, as the proxy for the
service quality. We measure the sign-up rates as the increase
of workload, i.e., the number of requests served daily, at both
the city and individual levels.
Observations. We observe that the sign-up rates tend to drop
with the increase of workload, and the decreasing patterns
seem complex and broker-specific.

• Fig. 2 shows the average sign-up rate of brokers in the
two cities with the increase of requests served per day.
Take City A (in blue) as the example. When the number
of requests served is below 40 per day, the average sign-
up rate is 14.3∼27.5%. Once brokers have to tackle more
than 40 requests a day, their average sign-up rate drops to
2.5∼17.8%. By employing Welch’s t-test, we find that the
sign-up rate is statistically significantly correlated to the
number of requests served daily (p-value < 0.0001). Thus
excessive workload of brokers lowers the service quality,
and even leads to client churn. Similar decreasing trends
are observed for City B (in red) as well.

• We further study the top 50 brokers who serve most
requests in City A, where 21 of them serve more than
40 requests occasionally. Fig. 3 plots the sign-up rates of
these 21 brokers with higher workloads in City A. Among
all the 21 brokers, their sign-up rates exhibit a decreasing
trend as the number of requests served daily increases.

• Despite the decreasing trend, the relationship between the
sign-up rate and the number of requests served tends to
be complex, non-linear and broker-specific patterns, as
observed from both Fig. 2 and Fig. 3.

B. Overloaded Top Brokers

Our second motivation is that the top brokers tend to
be overloaded due to the top-k recommendation mechanism
in current online real estate platforms. This is because the
platform lists the top-k brokers without accounting for their
capacities, while clients incline to select from the top brokers
listed by the platform. We test this claim as follows.
Measurements. We analyze data of the same online real estate
platform in June, 2021 in City A and plot the workload dis-



Fig. 3: The average sign-up rate of top brokers in City A. We apply the Gaussian kernel density estimation to fit the empirical distribution
of broker’s performance with workload. The center of the performance distribution is in the lighter color, which represents their accustomed
workload area. Most top brokers perform better in light area compared with large workload area.

Fig. 4: The workload distribution of the top brokers in City A and
City B. People tend to follow the recommended brokers and most
requests are served by these top brokers.
tribution breakdown of brokers recommended by the platform
and those not listed by the platform. By default, the platform
recommends the top-3 brokers (see Fig. 1).
Observations. We observe that the workload distribution is
highly unbalanced towards the top-3 brokers recommended
by the platform. In City A, the top-1 broker serves 38.26
requests daily on average, while a broker serves 3.18 requests
per day on average, i.e., the top-1 broker’s workload is 12.03×
larger than the average workload. Fig. 4 plots the workload
distribution of top-200 brokers in both City A and City B.
As is shown, their workloads are all notably higher than the
city average workload. Note that from Fig. 3, a workload of
10 to 20 results in higher sign-up rates. Hence, roughly a
hundred brokers in the black box risk exceeding their limited
capacity. Furthermore, the Matthew effect may occur if top
brokers are continually tasked requests. That is, most requests
are occupied by top brokers, while others are overlooked. As a
result, the neglected brokers have few opportunities to improve
their home-finding skills, which has a negative impact on the
development of the platform. Overloaded top brokers are also
common in City B.

C. Key Observations and Insights

In summary, we observe that the top-k recommendation
mechanism used by prior online real estate platforms tends
to overload the top brokers, which we call the overload of top

brokers problem. Overloaded brokers exhibit drop in service
quality, eventually leading to a decrease in sign-up rates. The
overloaded problem occurs because the top-k recommendation
ignores the broker’s capacity.

The overloaded phenomenon motivates us to rethink broker
matching from an assignment perspective. Rather than blindly
recommend a small group of top brokers to all clients, we
propose to assign brokers to clients from a global view,
while accounting for the capacity of top brokers. As next, we
formulate our perspectives into a capacity-aware assignment
problem and propose practical solutions for efficient broker
matching in case of unknown workload capacity.

III. PROBLEM STATEMENT

In this section, we formally define the capacity-aware as-
signment (CAA) problem to avoid overloading top brokers
during broker matching.

Definition 1 (Broker). A broker b ∈ B is a triple (xb, wb, sb),
where xb, wb, and sb represent broker b’s attributes, the
number of requests served daily, and the daily sign-up rate.

The vector xb includes attributes such as working years, job
title, average dialogue rounds, etc. (details in Table II), which
reflects the current working status of broker b. Aligned with
our measurements in Sec. II, we use the number of requests
served daily wb to quantify a broker’s workload, and the daily
sign-up rate sb as the proxy of his/her service quality. For
ease of presentation, we use Tb to represent the trial triples of
broker b, i.e., Tb = {(x1, w1, s1), ..., (xd, wd, sd)}.

In broker matching, brokers are tasked to serve clients’
requests. Following the conventions in the real estate industry,
we perform broker matching on a batch basis and adopt the
sign-up rate as the utility of assignment. We take the fixed-
time window batched assignment, i.e., the platform presets the
time interval and assigns brokers to all the requests appeared.
Denote the requests appearing in time interval i ∈ I as R(i).



From the assignment perspective, broker matching can be
formulated as the following problem.

Definition 2 (Capacity-Aware Assignment (CAA) Problem).
Given a set of brokers B, requests in each interval R(i), and
the matching utility between them ur,b (utility of assigning
broker b to request r), we aim to find assignments M(i) for
each time interval i that maximizes the total utility under the
unknown capacity constraint.

• Maximizing Total Utility.

max
∑
i∈I

∑
r,b

ur,bM(i)
r,b (1)

• Capacity Constraint.

∀b,
∑
i∈I

∑
r

M(i)
r,b ≤ cb (2)

where M(i)
r,b = 1 if broker b is assigned to request r and

M(i)
r,b = 0 otherwise. ur,b is the utility obtained if broker b is

assigned to request r, which is the input and can be learned
from historical assignments using models such as XGboost
[12]. cb is the unknown capacity of broker b to be estimated.
Table I summarizes the major notions throughout this paper.
Discussions. We make two notes on the CAA problem.

• Although the batched assignment modeling has been
widely adopted in crowdsourcing applications e.g., ride-
hailing [10], [13], it is the first time it is catered for broker
matching for online real estate platforms.

• A unique challenge of the CAA problem against the
general batched assignment lies in the broker capacity cb,
which is not given in advance. Thus, prior to assignment,
effective capacity estimation is necessary. Consequently,
we aim to devise both capacity estimation and assignment
algorithms tailored for online real estate applications.

• Other well-known applications include online healthcare
(e.g., ZhongAn Insurance5) and legal consultation (e.g.,
Lvshiguan6), where a similar capacity-aware matching
problem exists due to the limited workload capacity of
workers to serve their assigned requests.

TABLE I: Summary of major symbols.

Notation Description
xb, wb, sb, cb attributes, workload, sign-up rate and capacity of broker b
Tb trial triples of broker b
I, i time intervals horizons and time interval i
B,B+ set of all brokers and set of brokers with residue capacity
R,R(i) set of all requests and set of requests in interval i
ur,b utility of assigning broker b to request r
M(i),M(i)

r,b assignment in interval i and assignment indicator of (r, b)
UCBx,c upper confidence bound of capacity c under context x
Bθ,D contextual bandit with learned parameters θ,D
Sθ, gθ reward mapping function and its gradient
L(θ) loss function of neural networks in contextual bandit
Bb exclusive contextual bandit of broker b
V(cr) capacity-aware value function under residue capacity cr
β, γ, δ learning rate, discount factor and update threshold

5https://www.zhongan.com/
6http://www.lvshiguan.com

Fig. 5: Workflow of LACB.

IV. OVERVIEW OF OUR SOLUTION

To solve the CAA problem, we propose Learned
Assignment with Contextual Bandits (LACB), which learns
the unknown broker capacity via contextual bandit and assigns
brokers from the global perspective to maximize the total
utility without overloading the top brokers. We first present
an overview of LACB and explain each functional module.

LACB consists of two functional modules, capacity estima-
tion and capacity-based assignment.

• The capacity estimation module decides the daily work-
load capacity according to the broker’s current status by
neural network enhanced contextual bandits.

• The capacity-based assignment module selects a set of
brokers satisfying the capacity constraint and assigns
them to requests via the capacity-aware value function.

Fig. 5 shows the workflow of LACB. It operates in two
phases: estimation and assignment. First, we observe the
broker’s working status and set a daily workload capacity
for him/her by the neural network enhanced bandit. In the
assignment phase, we take the broker’s estimated capacity
and adopt a capacity value function to guide the assignment,
capturing the long-term utility of brokers with different work-
loads. Finally, we store the results of batched assignment as
feedback to improve future decisions.

V. CAPACITY ESTIMATION

This section introduces our capacity estimation method. We
formulate the workload capacity estimator as a contextual
bandit and propose a neural network enhanced policy to decide
the daily workload capacities for each broker.

A. Basic Idea

Our method is motivated by the following three challenges
when estimating the broker capacities.

• Online training. It is impractical to collect data of a
broker’s sign-up rate under all possible workloads prior
to model deployment. The workload capacity estimator
is expected to routinely adapt itself to the observations
of workloads and sign-up rates after deployment. Our
solution is to apply the contextual bandit algorithm [14],
a learning method to explore the unknown environment
and make decisions under various contextual information.



TABLE II: The broker’s attributes.

Attribute Type Attribute Description
Age Broker’s age.

Basic Info. Working Year The working years as a broker.
Education Education background (e.g.,undergraduate, master).
Title Job title (e.g.,assistant, clerk, manager).
Response Rate The rate of the broker’s response to a request in one minute.
Dialogue rounds The average dialogue rounds via the App in recent 7/14/30/90 days.
Number of Housing Presentation The number of broker’s presenting houses offline in recent 7/14/30/90 days.
Number of Presentation via VR The number of broker’s presenting houses via VR in recent 7/14/30/90 days.
Time of Presentation via VR The time of broker’s presenting houses via VR in recent 7/14/30/90 days.
Number of Consultation via Phone The number of broker answering clients via phone in recent 7/14/30/90 days.

Work Profile Time of Consultation via Phone The time of broker answering clients via phone in recent 7/14/30/90 days.
Number of Consultation via App The number of broker answering clients via App in recent 7/14/30/90 days.
Time of Consultation via App The time of broker answering clients via App in recent 7/14/30/90 days.
Number of Maintained Houses The number of houses currently maintained by the broker.
Number of Served Clients The number of clients who are served by the broker in recent 7/14/40/90 days.
Number of Housing Transactions The number of housing transactions through the broker in recent 7/14/40/90 days.

Preference Districts Information Broker’s preferable communities and area around POIs.
Housing Information Broker’s preferable price, area and type of houses.

• Complex relations between a broker’s performance and
workload. The broker’s performance is closely related to
the current working status. For instance, a broker may
be more exhausted in the sales seasons, and thus less
resilient to heavy workloads. As observed in Sec. II-A,
the relationship between a broker’s performance and
his/her workload is non-linear, and we model such non-
linear complexity via neural networks.

• Personalized workload capacity. As shown in Fig. 3,
the relationship between sign-up rate and workload is
not only complex but also broker-specific. However, it
is challenging to directly learn a personalized capacity
estimator due to the sparsity of broker-specific data. We
first learn a generic capacity estimation model and fine-
tune it for individual brokers.

As next, we elaborate on the designs in sequel.

B. Workload Capacity Estimator as Contextual Bandit

As mentioned above, we utilize contextual bandits to learn a
generic broker capacity estimator in an online fashion by inter-
acting with the real estate platform. The reinforcement learning
[15] (e.g., Q-learning) mainly models the effect of the decision
on the state. However, in our scenario, the broker’s intrinsic
working status is not affected by our decisions, so approaches
like Q-learning are infeasible to capacity estimation.

Review on Contextual Bandit. We start with a quick review
of the contextual bandit. A bandit with k-arms is widely used
for online decision-making in an unknown environment over n
batches, where each arm represents a decision. In each batch,
the bandit chooses one arm (decision) and receives a reward
from the environment. It then updates its decision-making
strategy based on the reward and tries to maximize the total
rewards over the n batches. A contextual bandit further allows
the bandit to make decisions with additional information (i.e.,
the context) at the beginning of each batch.

Our Formulation. We now explain how to formulate the
workload capacity estimator as a contextual bandit. We con-
sider the broker’s candidate workload capacities as arms of
the bandit (represented as C). The broker’s working status xb

is viewed as the context, based on which the bandit chooses
a capacity cb ∈ C. The daily sign-up rate sb under workload
wb is used as the reward. The workload capacity estimator
interacts with the real estate platform, which is viewed as the
unknown environment. In each batch, the real estate platform
executes assignment algorithms and reveals the reward sb. We
use (xb, wb, sb) as a trial triple to update the reward function
of the bandit (workload capacity estimator) since a broker’s
workload wb is usually lower than her/his capacity cb.

C. Choosing Capacity with Neural Network Enhanced UCB

With the workload capacity estimator formulated as a con-
textual bandit, the next question is to determine the policy to
choose the workload capacity that maximizes the daily sign-up
rates for the given broker working status.
Standard UCB. A common decision-making policy for a con-
textual bandit is the upper confidence bound (UCB) algorithm
[14]. It acts as if the environment is as nice as plausibly
possible and uses a context vector to calculate the upper
confidence bound of the expected reward. Then it chooses
the arm with the maximum upper confidence bound as the
decision. For our workload capacity estimation, we can use
the broker’s working status x as the context, and calculate the
upper confidence bound UCBx,c of each workload capacity c
using the equation below [14].

UCBx,c = fθ(x, c) + α
√

f ′
θ(x, c)TD−1f ′

θ(x, c) (3)

where fθ(x, c) is a linear model which maps the context x
to the expected reward of a workload capacity and f ′

θ(x, c)
is its derivative. α is a preset coefficient parameter. θ is the
parameters of the linear model and D is the covariance matrix.
θ and D are parameters to be trained.
NN-enhanced UCB. A limitation of the standard UCB algo-
rithm is the assumption on the linear relation between the
expected reward and the context, i.e., fθ(x, c) in Eq. (3).
Hence, the standard UCB fails to depict the non-linear relation
between the broker’s sign-up rate (expect reward) and the
working status (context) in our scenario (see Sec. II-A). As
a remedy, we replace the linear model by a neural network.



Fig. 6: Workflow of the NN-enhanced UCB.

We name the corresponding capacity choosing policy as NN-
enhanced UCB.

Fig. 6 shows the workflow of our NN-enhanced UCB. We
replace the linear model fθ(x, c) in standard UCB by a learned
reward mapping function Sθ(x, c). For simplicity, we adopt a
fully connected MLP network with L layers:

Sθ(x, c) = WL · σL−1(· · ·σ1(W1[x; c])) (4)

where Wi (1 ≤ i ≤ L) are the learned parameters of each
layer and W1 ∈ Rm×d, Wi ∈ Rm×m (2 ≤ i ≤ L − 1),
WL ∈ Rm×1. σi is the ReLU activation.

Let θ ∈ Rd be all the learnable parameters of the neural
network and its gradient is denoted by gθ(x, c) = ∇θSθ ∈ Rd.
Then we can easily extend the upper confidence bound of the
expected reward in Eq. (3) as follows.

UCBx,c = Sθ(x, c) + α

√
gθ(x, c)T D−1gθ(x, c) (5)

That is, we replace the linear model fθ(x, c) and its derivative
f ′
θ(x, c) by a neural network Sθ(x, c) and its gradients gθ(x, c),

with θ and D to be trained, as in the standard UCB.
Bandit Training. Alg. 1 illustrates how to train a contextual
bandit Bθ,D over time, i.e., learn the parameters θ and D de-
fined in Eq. (5) of our NN-enhanced UCB. We first observe the
working status xb and then preferentially explore the capacity
with maximum upper confidence bound of the expected reward
based on Eq. (5) (lines 6 to 10). Next, we update the covariance
matrix D using the same extension as Eq. (5), i.e., replacing
the derivative f ′

θ(x, c) of the linear model by gradients gθ(x, c)
of neural networks (line 12). Afterwards we observe the actual
workload wb as well as the reward sb (line 13). We make such
explorations and observations for a batch size of batchSize
(preset as 16), where we store the triples (x, w, s) in buffer
ob. After collecting observations for batchSize batches, we
update the parameters θ by minimizing the following loss.

L(θ) =
∑
o∈ob

∥Sθ(xo, wo)− so∥2 + λ∥θ∥22 (6)

where (xo, wo, so) is an observation and λ is the regularization
parameter to avoid over-fitting.
Estimating Capacity with Bandit. After training the bandit
Bθ,D as Alg. 1, it can be used to estimate the workload capacity
for subsequent batches. That is, given a working status x,
we choose the workload capacity c with the maximum upper
confidence bound calculated by Eq. (5). For ease of presenta-
tion, we use B.estimate(x) to represent the workload capacity

Algorithm 1: NN-enhanced UCB

Input: Regularization parameter λ, upper confidence
bound coefficient α, and batch size batchSize

Output: Contextual bandit Bθ,D
1 Initialize deviation matrix D← λI;
2 Initialize observation buffer ob← [];
3 Initialize parameters θ with Gauss Distribution;
4 for each trial t ∈ T do
5 // Explore the workload capacity;
6 Observe the broker’s working status x;
7 for each candidate capacity c ∈ C do

8 Ux,c ← Sθ(x, c) + α
√

gθ(x, c)T D−1gθ(x, c);
9 Choose b’s capacity c∗ ← argmax

c
Ux,c;

10 end
11 // Update upper confidence and reward function;
12 D← D + gθ(x, c) · gθ(x, c)T ;
13 Observe broker’s workload w and the reward s;
14 Store observed triple (x, w, s) in buffer ob;
15 if ob.size = batchSize then
16 Define loss function L(θ) as∑

o∈ob ∥Sθ(xo, co)− so∥2 + λ∥θ∥22;
17 θ ← θ −∇θL(θ);
18 Clear observation buffer ob← [];
19 end
20 end
21 return contextual bandit Bθ,D;

estimation, which chooses a suitable workload capacity given
working status x.

D. Personalized Workload Capacity Estimator

As previously mentioned, the contextual bandit only learns
a generic capacity estimator for all brokers, yet the workload
capacity estimation may be broker-specific. We enable person-
alized workload capacity estimation by fine-tuning the neural
network Sθ(x, c) in Eq. (5) on broker-specific data.

Concretely, we first train a base reward mapping function
θbase, i.e., the neural network defined in Eq. (4), on the
observations ∪b∈BTb of all brokers. Then we copy the first
L − 1 layers of θbase to the broker-specific reward mapping
function θb of broker b. Afterwards, we freeze the first L− 1
layers of θb, and fine-tune the last full-connected layer based
on the broker’s observations Tb following Alg. 1. This way,
we obtain the personalized reward mapping function.

E. Effectiveness of NN-Enhanced UCB

We now theoretically analyze the effectiveness of our NN-
enhanced UCB policy for contextual bandit based workload
capacity estimation. We assess the effectiveness via the regret,
a standard performance metric for bandits [14].

The regret is defined as the difference in total rewards
between the optimal policy and a learned decision-making
policy. For our workload capacity estimation, the regret can
be defined as the difference between the sum of sign-up rates



with ideal capacities and the sum of sign-up rates with the
estimated capacities, which is formalized as follows,

Regret =

|T |∑
t=1

max
c∈C

s(xb, c)−
|T |∑
t=1

st (7)

where T is the trial triples, maxc∈C s(xb, c) is the ideal
rewards under working status xb, and st is rewards produced
by our NN-enhanced UCB algorithm.

We have the following claim on the regret of our NN-
enhanced UCB algorithm.

Theorem 1. For a contextual bandit adopting NN-enhanced
UCB algorithm with an L-layer MLP network, if there are |C|
candidate capacities, the regret of n batches is no more than
n|C|ξL
πL−1 , where π ≈ 3.14 is the circular constant and ξ is the

maximum single value of parameters in the MLP model.

Proof. Let c∗t = argmax
c

Sθ∗(xt, c) denote the optimal ca-

pacity under the context xt and ĉt = argmax
c

Uxt,c in batch

t. Firstly, we analyze the instantaneous regret rt in batch t,
which is defined as:

rt = Sθ∗ (xt, c∗)− Sθ∗ (xt, ĉ) (8)

Using the Lipschitz continuous [16] to bound instantaneous
the regret of the bandit, we have,

∥Sθ∗ (xt, c∗)− Sθ∗ (xt, ĉ)∥2 ≤ Lip(Sθ∗ )∥c∗ − ĉ∥2 (9)

where ∥ · ∥2 denotes the L2-norm and Lip(Sθ∗) is called the
Lipschitz constant of Sθ∗ .

Then, we analyze the upper bound of Lipschitz constant
Lip(Sθ∗) of the reward function Sθ∗ . According to Lemma 2
in [16], we can construct its upper bound,

Lip(Sθ∗ ) ≤
∥WLdiag(σL−1)WL−1 · · · diag(σ1)W1∥2

πL−1
(10)

where π ≈ 3.14 is the circular constant. If we take the ReLU
as the activation function σ, we have ∥σ∥2 ≤ ∥I∥2, where
I is the identity matrix. Thus, the upper bound of Lipschitz
constant Lip(Sθ∗) can be rewritten as,

Lip(Sθ∗ ) ≤
ΠL

i=1∥Wi∥op ·ΠL−1
i=1 ∥I∥2

πL−1
≤

ξL

πL−1
(11)

where ∥Wi∥op is the operator norm of Wi, i.e.,, the largest
single value of Wi (∥Wi∥op ≤ ξ). Since both c∗ and ĉ belong
to C, we have ∥c∗− ĉ∥2 ≤ |C|. Thus, for instantaneous regret
rt, we can give its upper bound,

rt = Sθ∗ (xt, c∗)− Sθ∗ (xt, ĉ) ≤ Lip(Sθ∗ )∥c∗ − ĉ∥2 ≤
|C|ξL

πL−1
(12)

Finally, we prove that the regret bound for our NN-enhanced
UCB policy over n batches is,

Regret =

n∑
t=1

rt ≤
n|C|ξL

πL−1
(13)

Discussions. We draw two practical notes from Theorem 1.
• Setting a suitable number of candidate capacities is

beneficial to select an optimal decision. We empirically

determine the range of candidate sets based on historical
observations in Sec. II and do not explore the workload
capacity with a prominent low sign-up rate.

• Although a deeper network may model more complex
relationships between a broker’s performance and work-
ing status, it may also prevent the bandit from choosing
the optimal workload capacity. We empirically adopt a 3-
layer MLP network in our NN-enhanced UCB algorithm
to balance the complexity of the neural network and the
effectiveness of workload estimation.

VI. CAPACITY-BASED ASSIGNMENT

Now we present the assignment module of LACB, which
takes the estimated capacity as input and makes assignments
by accounting for both the capacity constraint and the depen-
dency of assignments across batches.

A. Batched Assignment as Markov Decision Process

Unlike previous studies [10], [17] that independently make
assignments for each batch, we propose to match brokers in
a more holistic view by modeling the assignments over time
as a Markov Decision Process (MDP) [14]. Such modeling
accounts for the dependencies of assignments across batches
(i.e., residual capacities of brokers over time) and potentially
results in a higher total utility.

A standard MDP model consists of four elements: the state,
action, state transition, and reward. We explain these elements
in the context of broker assignment below.

• State. As our assignment decision is capacity-aware, we
define the state of each broker as crb ∈ [0, cb], where
crb and cb denotes the broker’s residue capacity and the
workload capacity, respectively.

• Action. In batch i, the action is an assignment policy
M(i)

r,b for each request r and each broker b. If M(i)
r,b = 1,

broker b is assigned to request r, and M(i)
r,b = 0

otherwise. In this work, we adopt a value function guided
assignment policy (see Sec. VI-B).

• State Transition. The state of a broker changes as the
result of actionM(i)

r,b. If
∑
M(i)

r,b = 0, the state of broker
b remains the same. Otherwise, state crb will transit to
crb−

∑
M(i)

r,b. That is, the residue capacity of the broker
is reduced by the number of requests assigned to him/her.

• Reward. The rewards of an action is defines as the
utility of all brokers in batch i (a.k.a batch utility), i.e.,
r(M(i)) =

∑
r,b ur,bM

(i)
r,b . Note that the reward of the

MDP model differs from the reward of a bandit (in
Sec. V), and the latter is the accumulative utility of a
single broker, i.e., sb =

∑
i

∑
r ur,bM(i)

r,b.
Note that we formulate the batched assignment as an MDP
model (and adopt reinforcement learning based solution) rather
than a bandit algorithm because the latter is unfit for long-term
planning with state transitions [14].

B. Capacity-Aware Assignment

Given the MDP model above, we utilize a capacity-aware
value function to guide the assignments.



Capacity-Aware Value Function. It is common to make
decisions in an MDP by learning the value function of a state
[10], [13]. In this work, we define a capacity-aware value
function V(i, cr), which represents the expected utility of the
broker after batch i, where cr is the broker’s residue capacity.
Such a capacity-aware value function captures the long-term
utility of brokers with different residue capacities. We then use
Q-learning [10], a classical method with relatively low time
overhead, to train the capacity-aware value function, which is
based on the Temporal-Difference (TD) equation below.

V(cr)← V(cr) + β[u+ γV(cr′)− V(cr)] (14)

where cr/cr′ are current/transited state after taking an action,
u is the reward of an action, β and γ are the learning rate and
discount factor of the TD, respectively.

Algorithm 2: Value Function Guided Assignment
Input: Brokers B = {b1, b2, ..., b|B|}, requests

R = {R(1), R(2), ..., R(|I|)} over I intervals,
brokers’ exclusive bandits {B1, B2,..., B|B|}

Output: Matching results M
1 for each broker b in B do
2 cb ← Bb.estimate(xb);

3 for each interval i ∈ I do
4 Get available brokers B+ = {b|wb < cb ∧ b ∈ B} ;
5 for each candidate pair (r, b) ∈ R(i) ×B+ do
6

u′
r,b ←

{
ur,b + 0, if fb ≤ δ

ur,b + γV(cr′)− V(cr), iffb > δ

7 Execute the Kuhn-Munkres algorithm based on the
refined utility M(i) = KM(u′, R(i), B+);

8 for each broker b in B+ do
9 wb ← wb +

∑
rM

(i)
r,b;

10 Update capacity-aware value function based on
the Temporal-Difference equation Eq. (14);

11 for each broker b in B do
12 sb ←

∑
i

∑
r ur,bM(i)

r,b;
13 Bb.update(xb, wb, sb);

14 return M = ∪i∈IM(i)

Value Function Guided Assignment (VFGA). We can now
leverage the above capacity-aware value function to assign
brokers from a global view to maximize the total utility. Alg. 2
shows the overall assignment algorithm. First, we determine
the personalized capacity of brokers from the contextual bandit
Bb (see Sec. V). In lines 4-14, we make assignment in each
batch. Specifically, in line 5, we first select a set of available
brokers B+, whose workload wb is lower than his/her capacity
cb. Then we update the utility of each candidate matching pair
as follows.

u′
r,b =

{
ur,b + 0, if fb ≤ δ

ur,b + γV(cr′)− V(cr), if fb > δ
(15)

where ur,b/u
′
r,b is the original/refined utility respectively, cr =

cb−wb and cr′ = cr−1. Note that only top brokers may reach
their workload capacity, and we only use the value function
for top brokers whose frequency fb of reaching capacity is
more than δ, where δ is a positive number close to 1. In line
9, we run the classical Kuhn–Munkre (KM) [18] algorithm
on a bipartite graph with the refined utility u′

r,b and return
the assignment policy M(i). In lines 10-12, the workloads of
the assigned brokers and the capacity-aware value function
are updated according to Eq. (14). In lines 15-17, once we
have assigned requests in all batches, we collect the brokers’
workloads and performance as feedback to update the bandit
of each broker. As aforementioned, we update the parameters
of bandits whenever the observation buffer is full. Otherwise,
we only add new observations to the buffer. Finally, VFGA
returns the assignment results M.
Discussions. We make two notes on the assignment module.

• Since the number of requests |R| is usually smaller than
that of brokers |B|, a common practice is to add some
dummy vertices to the smaller part to construct a balanced
bipartite graph [19]–[21]. By adding |B| − |R| dummy
vertices, we obtain a balanced one with |B| vertices on
both sides and can execute the classical KM algorithm.

• Once a client is unsatisfied with the assigned broker,
she/he can appeal to the platform for another broker.
The platform sets the utility between the client and the
assigned broker to 0, restores the broker’s workload, and
chooses another broker in the next time interval.

Fig. 7: Example of the VFGA algorithm.

Fig. 7 shows an example of the core steps in the VFGA
algorithm. There are two brokers b1, b2 and two requests
r1, r2. The utility of (b1, r1), (b1, r2), (b2, r1) and (b2, r2) are
0.4, 0.3, 0.4 and 0.5 respectively. Based on Eq. (15), b1 reaches
the threshold δ = 0.8 and we refine b1’s utility as u11 = 0.25
and u12 = 0.45, while b2’s utility remains the same. Then
we run the KM algorithm to get the maximum assignment
over refined weights, i.e., {(b1, r2), (b2, r1)}. Finally, residue
capacities of b1 and b2 are updated to 3 and 1, respectively.
Complexity Analysis. For each batch, the time complexity of
the VFGA algorithm is determined by the KM algorithm [18].
Since the KM algorithm is run on a balanced bipartite graph
with |B| vertices on both sides, the time complexity of the
VFGA algorithm is O(|B|3).

C. Accelerating Assignment via Broker Selection

The real estate platform needs to assign brokers to clients
as efficiently as possible, which is an essential factor in



Algorithm 3: Candidate Broker Selection (CBS)
Input: The candidate size k, request r and brokers B
Output: The candidate brokers Toprk

1 if |B| ≤ k then
2 return B;
3 end
4 Choose an random value p from ur,b (b ∈ B);
5 LC ← {b ∈ B|ur,b ≥ p};
6 RC ← {b ∈ B|ur,b < p};
7 if |LC| ≥ k then
8 Topr

k ← CBS(k, r, LC)
9 end

10 else
11 Topr

k ← LC ∪ CBS(k − |LC|, r, RC);
12 end
13 return Topr

k

user experience. It usually requires responding in 2 seconds
for reasonable user experience [22]. There is an opportunity
to accelerate the VFGA algorithm because the numbers of
brokers and requests are highly imbalanced in online real
estate platforms. In each batch, the platform typically assigns
thousands of brokers to only tens of requests. If we prune the
brokers that are unlikely to be matched, we can notably reduce
the number of dummy vertices added to the request side, and
thus lower the time complexity.
Theoretical Evidence. We claim that only a small set of
brokers are necessary for effective assignments, as shown by
Theorem 2 and Corollary 1.

Theorem 2. Given a bipartite graph G =< U, V,E >
(|U | ≤ |V |), and let optM(u) be the matched vertex of u in the
optimal assignment M. There exists an optimal assignment
M, such that for any vertex u ∈ U , we have optM(u) ∈
Topu|U |, where Topu|U | is a set of vertices with |U | largest edge
weight among all vertices connected u.

Proof. The proof is by contradiction. We start by assuming the
opposite. Let u be any vertex of U and the vertex matched
to u be v∗. Assume there is no optimal assignment M, such
that v∗ = optM(u) ∈ Topu|U |. Consider a corner case, where
any other vertex of U is matched to a vertex of Topu

|U |
in the optimal assignment M. There is still at least one
unmatched vertex v′ ∈ Topu

|U |. By the definition of Topu|U |,
we have w(u, v′) ≥ w(u, v∗). If we replace (u, v′) with
(u, v∗) and keep the other matching of M the same, we can
construct another optimal assignment M′, which contradicts
the assumption that “there is no optimal assignment.”

Corollary 1. Given an imbalanced bipartite graph G =<
U, V,E >, we need at most |U | candidate vertices for each
vertex u ∈ U to find an optimal assignment, i.e., taking the
Topu|U | as the candidate set for any u ∈ U .

Candidate Broker Selection Algorithm. To efficiently select
the candidate set Topr|R| for each request r, we devise the Can-

didate Broker Selection (CBS) algorithm (see Alg. 3), which
is inspired by solutions to the classical selection problem [18].
We mainly introduce how to integrate this optimization into
our VFGA. In each batch, we execute the CBS algorithm to
select the necessary brokers ∪r∈R(i)Topr|R(i)| after getting the
available brokers B+ (line 5 in Alg. 2). Then we can perform
assignment on a much smaller bipartite graph.
Complexity Analysis. The expected time complexity of can-
didate broker selection is O(|R||B|). Based on the above
optimization, we can assign brokers on the bipartite graph
with |R| vertices and |R|2 edges, so the time complexity
of executing the KM algorithm is reduced from O(|B|3) to
O(|R|3), where |R| are usually much smaller than |B|. As
a result, the overall time complexity of the VFGA algorithm
with CBS is O(|R|3 + |R||B|).

TABLE III: Synthetic datasets.

Factor Setting
The number of brokers |B| 500, 1000, 2000, 5000, 10000
The number of requests |R| 10K, 20K, 50K, 100K, 200K

The number of covering days Day 7, 10, 14, 17, 21
The degree of imbalance σ 0.005, 0.01, 0.015, 0.02, 0.05

TABLE IV: Real-world datasets.

City Dates Brokers Requests
City A Aug. 1 ∼ Aug. 21, 2021 5515 103106
City B Jul. 1 ∼ Jul. 21, 2021 8155 387339
City C Jun. 8 ∼ Jun. 28, 2021 3689 74831

VII. EXPERIMENTAL STUDY

This section presents the evaluations of LACB.

A. Experiment Setup

Datasets. We test our capacity-aware assignment algorithm
over both synthetic and real datasets.

• Synthetic Datasets. We generate 2000 brokers and 50000
requests in total. Then we vary the number of brokers,
requests, covering days, and the degree of imbalance. The
degree of imbalance σ = |R|/|B| is the ratio between
requests and brokers in each batch. To vary σ, we keep
the number of brokers the same and change the number
of requests. Table III summarizes the configuration of
synthetic datasets. We mark the default settings in bold.

• Real-world Datasets. We collect data in three cities
covering 21 days from Beike, the largest Chinese online
real estate platform. Table IV summarizes the statistics
of real datasets.

Implementation. Our experiments are conducted on a simu-
lator of Beike, which takes the same utility function deployed
and outputs the utility between requests and brokers, so that
we can take such utility as the input and assess algorithms
over real world matching instances. In the NN-enhanced
UCB, we adopted a 3-layer MLP network and set the size of
input layer, hidden layer and output layers as 128, 64 and 16,
respectively. We take the ReLU as the activation function. In
Alg. 1, we set α to 0.001, the batch size batchSize to 16 and
the regularization parameter λ to 0.001. In Alg. 2, we set



(a) Utility of varying |B| (b) Utility of varying |R| (c) Utility of varying Day (d) Utility of varying σ

(e) Time of varying |B| (f) Time of varying |R| (g) Time of varying Day (h) Time of varying σ

Fig. 8: Results on synthetic datasets.

the learning rate β to 0.25, discount factor γ to 0.9 and the
threshold δ to 0.8. All the experiments were conducted on
Intel(R) Xeon(R) Gold 6230R CPU @ 2.10GHz with 32GB
main memory. The algorithms are implemented in Python 3.

Compared Algorithms. We compare our LACB i.e.,
Sec. VI-B and LACB with CBS i.e., Sec. VI-C (denoted
as LACB-Opt) with two categories of baselines. The first
category (Top-K, RR and KM) does not set explicit capacity
for brokers, while the second category (CTop-K and AN) first
chooses brokers’ capacities and then assigns them to requests.

• Top-K Recommendation (Top-K) [2]: It ranks and returns
K brokers with the highest utility. We evaluate both Top-1
and Top-3 recommendation.

• Randomized Recommendation (RR): It takes the broker’s
service quality as the sampling weight and recommends
a random broker. RR extends prior fair matching al-
gorithms [23] and views service quality as the fairness
index. It can avoid the overloaded phenomenon by ap-
portioning online requests to all brokers.

• Kuhn–Munkre (KM) algorithm [18]: It runs the KM
algorithm to assign brokers to requests in each batch.

• Constrained Top-K (CTop-K) [24]: It is an extension of
Top-K where CTop-K observes the relations of workload
and the sign-up rate at city levels (Fig. 2) and empirically
chooses a capacity for all brokers. The empirical work-
load capacity is set as 45, 55 and 40 for brokers in City
A, City B and City C, respectively. We test CTop-K with
both K=1 and K=3.

• Assignment with NeuralUCB (AN): It explores the work-
load capacity by NeuralUCB [9] and assigns brokers to
requests by the KM algorithm [18].

B. Performance on Synthetic Datasets

In this set of experiments, we test the impact of different
parameters on the performance of different algorithms.

Impact of # brokers. The first column of Fig. 8 shows the
results of varying |B|. For the total utility, our LACB and
LACB-Opt dominate other baselines, including Top-K, CTop-

K, KM, RR and AN. We also observe that the utility of Top-
K Recommendation decreases as |B| increases, indicating that
providing more brokers will not improve the total utility due to
the overloaded phenomenon. Finally, LACB-Opt achieves the
same utility as LACB, which is consistent with our theoretical
analysis in Corollary 1, i.e., the candidate broker selection does
not sacrifice the total utility. In terms of the running time, as
|B| increases, KM, AN, and LACB become inefficient due
to their cubic time complexity, yet the running time of Top-k,
RR and CTop-k only increases marginally. The running time of
LABT-Opt remains stable since its time complexity is mainly
decided by the number of requests and is faster than other
KM-based algorithms (KM, AN, LACB).
Impact of # requests. The second column of Fig. 8 shows
the results of varying |R|. The total utility generally increases
as |R| increases. Similar to the previous experiment, LACB
and LACB-Opt achieve the same utility and perform better
than other algorithms. As for the running time, the KM-
based algorithms are slower than others. LACB-Opt is up to
16.4× ∼ 1091.9× faster than KM, AL and LACB. LABT-Opt
is also competitively fast compared with Top-K and CTop-K,
especially with a small number of requests.

Impact of # covered days. The third column in Fig. 8 presents
the results of varying the covered days Day. Our methods still
outperform other baselines in terms of total utility. Particularly,
AN yields less utility in covering seven days, indicating that it
may face a cold start, while LACB consistently performs well
when varying covering days. Again, LACB and LACB-Opt
perform the same in terms of utility. As for the running time,
a similar trend is observed as varying |B|. Our LACB-Opt is
65.5× ∼ 329.4× faster than other KM-based algorithms.

Impact of the degree of imbalance. The fourth column in
Fig. 8 plots the different imbalance ratios σ. Since we fix |B|
and change |R| to test different imbalance ratios, all algorithms
have similar trends in utility as σ increases. The acceleration
of LACB-Opt over LACB is closely related to the imbalance
ratio σ. For example, LACB-Opt is 641.7× and 16.4× faster
than LACB when σ = 0.005 and σ = 0.05, respectively.
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Fig. 9: The utility distribution of all compared algorithms. We have a further look on top brokers’ utility.
Qingdao workload

(a) City A

Chengdu workload

(b) City B

Hangzhou workload

(c) City C
Fig. 10: The workload distribution of all compared algorithms, where we can take Top-K as overloaded results.

C. Performance on Real Datasets

(a) Utility of City A (b) Time of City A

(c) Utility of City B (d) Time of City B

(e) Utility of City C (f) Time of City C

Fig. 11: Results on real-world datasets.

Overall Performance. Fig. 11 presents the results on three
real-world datasets. Take City A as an example and we can first
make the following observations in total utility. As expected,
Top-K performs poorly on all three datasets. Top-3 slightly
outperforms Top-1 because Top-1 more easily overloads the
recommended brokers. CTop-K improves the total utility over
Top-K, indicating the necessity of capacity awareness. AN
outperforms most baselines due to contextual bandits while
our LACB and LACB-Opt outperform AN. The running time

increases linearly over days. Similar to the results on synthetic
datasets, KM, AN, and LACB are the slowest due to their
cubic time complexity. LACB-Opt is competitive in efficiency,
only 1.7 ∼ 24.2 seconds slower than Top-K and CTop-K and
233.4× ∼ 284.9× faster than other KM-based algorithms. We
have similar observations on data from all three cities.

In-depth Analysis of Brokers. To understand the gain of
our algorithms over baselines, we take a closer look at
the distributions of both utility and workload of baselines.
As aforementioned, LACB-Opt only differs from LACB in
efficiency, so there is no need to include LACB-Opt in the
following analysis. As we focus on the utility/workload of top
brokers, we only show brokers with higher utility or workload.
The utility/workload of other brokers exhibits a similar long-
tail distribution as Fig. 9 and Fig. 10, and is omitted here.

• Utility Distribution. Fig. 9 plots the utility distribution
of all algorithms. Take City A as an example. Capacity-
based assignment algorithms (CTop-K, AN, and LACB)
achieve higher utility than Top-K for most brokers, i.e.,
avoiding the overloaded phenomenon is also beneficial
at individual levels. Particularly, 80.8% brokers in LACB
have an improvement in utility compared with Top-K.
RR results in closer utilities for most brokers, as it
randomly apportions requests to all brokers. However,
RR decreases the utility of 25.7% brokers compared with
Top-K. Similar observations are found in City B and City
C. To summarize, LACB can improve the utility of both
top brokers and the remaining brokers.

• Workload Distribution. Fig. 10 plots the workload dis-
tribution of all algorithms. As expected, Top-K leads
to the highest workload of top brokers. RR randomly
apportions requests and results in the lowest workload of
top brokers. Yet it also prevents top brokers from serving
more even if they have spare capacity, thus limiting the
potential of top brokers. Except for RR, the workloads
of top brokers in LACB are the lowest, which means
that top brokers in LACB are at low risk of overload.



To summarize, LACB outperforms baselines thanks to
its suitable workload capacity for top brokers.

D. Summary of Experimental Results

We summarize our major experimental findings as follows.
• CTop-K outperforms Top-K on all datasets, indicating the

necessity of setting a workload capacity.
• Our solutions, LACB and LACB-Opt, generally outper-

form other baselines in total utility. They also improve
72.0%∼82.2% brokers’ utility compared with Top-K.

• Without loss of utility, LACB-Opt is up to 284.9× faster
than other KM-based algorithms on real-world datasets,
which is consistent with our theoretical analysis.

VIII. RELATED WORK

Our work is mainly related to three lines of research: online
task assignment, data science for real estate, and contextual
bandits. We review the representative work as follows.

Online Task Assignment. Task assignment is the core opera-
tion of crowdsourcing [25]–[29]. We focus on the online task
assignment and summarize previous work into two categories:
the vertex-based mode and the batch-based mode. (i) vertex-
based mode. In [30], Kazemi et al. study the bipartite matching
in spatial crowdsourcing and adopt greedy-based assignment
algorithms to optimize total utility. Tong et al. [31] conduct the
experimental study on online bipartite matching and show that
the greedy algorithm is competitive in many practical settings.
Later studies explore task assignment with different objectives
or constraints, such as fairness [23], [32], [33], privacy [34]–
[36] and incentive [37], [38]. Particularly, the fair-aware task
assignment algorithm in [23] can be extended as a baseline to
avoid the overloaded phenomenon in our scenario. (ii) batch-
based mode. This mode prevails in ride-hailing [10], [11], [13].
Wang et al. [10] adopt reinforcement learning to adaptively
adjust the time window of each batch in the assignment. Zhang
et al. [11] solve the batched task assignment by a heuristic
hill-climbing method. Authors in [13] and [39] take the value
function to optimize the sequential decision-making over a
long horizon, which inspires one of the core ideas of our
method. Existing solutions mainly focus on the assignment
strategies and assume a known capacity, however, our scenario
is more challenging as we need to estimate the personalized
capacity before assignments.

Data Science For Real Estate. The availability of big data
has stimulated the interest in adopting data-driven approaches
in the real estate industry [3]. Prior work mainly focus on
two topics, housing appraisal [40] and housing finding [41].
In [40], Fu et al. enhance real estate appraisal by modeling
dependencies of nearby estates and affiliated business areas.
Zhang et al. [42] propose the graph neural networks based
method for the asynchronously spatio-temporal dependencies.
Grbovic et al. [41] design embedding techniques for real-
time personalized housing searching. In [43], Weng et al.
improve the home-finding service by analyzing the reachability
between the home locations and concerned POIs. In this work,

we investigate broker matching, an essential issue for online
real estate platforms yet has rarely been optimized from a
data-driven perspective.

Contextual Bandits. The contextual bandit utilizes additional
information to make decisions, which has been adopted in
recommender system [8], query optimization [44] and dynamic
pricing [37]. Early efforts mainly focus on the theoretical
analysis of regret bound [45], [46]. Li et al. [8] propose
the LinUCB algorithm, which combines a linear predictor
with upper bound confidence algorithms in 2010 and follow-
up researchers extend the basic framework of LinUCB for
efficient learning [47] and latent relations representation [48].
Recently, some work utilize neural networks to optimize the
contextual bandit [9], [44], [49]. Zhou et al. [9] design a
neural contextual bandit algorithm without assumption about
the reward function, which can be extended as a baseline in our
scenario. Marcus et al. [44] propose contextual bandits with
tree convolutional neural networks to learn query execution
strategies in databases. Ban et al. [49] propose multi-facet
contextual bandits, where each facet is designed to characterize
one of users’ needs. However, these algorithms are not directly
applicable in case of personalized estimation, as is in our
capacity-aware broker matching scenario. Our LACB is built
upon this thread of research but improves prior studies by
adopting layer transfer for more data-efficient bandit learning.

IX. CONCLUSION

In this paper, we investigate the overloaded phenomenon in
broker matching for online real estate platforms. Specifically,
we find that the top-k recommendation mechanism adopted by
mainstream platforms for broker matching tends to overwhelm
top brokers, which decreases both sign-up rates and total
utility. The root cause lies in the ignorance of the broker’s
workload capacity. In response, we propose LACB, which
effectively estimates the personalized capacity by transferable
neural contextual bandits and assigns brokers to clients from
a global view. We further propose LACB-Opt, which largely
improves the efficiency of LACB on an imbalanced bipartite
graph. Extensive evaluations on three cities based on a real-
world online real estate platform demonstrate the effectiveness
and efficiency of our approach. We envision our work as an
insightful reference for a wide spectrum of service industries
where workers have limited workload capacity.
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