
Federated Retrieval over Embedding-Heterogeneous
Vector Databases

Yuxiang Wang1, Yongxin Tong1, Zimu Zhou2,3, Ziyuan He1, Ruixi Hu1, Ke Xu1
1 State Key Laboratory of Complex and Critical Software Environment,

Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing, China
2 Department of Data Science, City University of Hong Kong, Hong Kong, China
3 Shenzhen Research Institute, City University of Hong Kong, Shenzhen, China

{yuxiangwang, yxtong, hzy he, ruixihu, kexu}@buaa.edu.cn, zimuzhou@cityu.edu.hk

Abstract—Vector databases are increasingly used to manage
unstructured data by mapping them into high-dimensional em-
beddings and enabling efficient similarity retrieval. Many real-
world applications, such as legal document retrieval and medical
question answering, require embedding-based retrieval in feder-
ated environments where data are distributed across autonomous
silos. We formulate this setting as Federated Approximate Nearest
Neighbor Search (FANNS), where a server issues a query along
with a query embedding model, aiming to retrieve the top-k
nearest objects from datasets across all silos. A key challenge in
FANNS is embedding heterogeneity, where silos and the server
employ different embedding models, a problem overlooked in
prior research. To address this challenge, we exploit the non-
IID nature of federated data and propose two novel adaptive
algorithms for FANNS queries. The first is a competition-based
method that dynamically adjusts retrieval sizes across silos,
though it can be sensitive to misleading candidates. The second is
a contribution-based method that samples promising silos based
on their accumulated contributions, and we provide theoretical
guarantees on its latency reduction. Evaluations on four datasets
show that our method achieves over 90% retrieval accuracy and
2.3× to 6.2× speedups over existing solutions.

I. INTRODUCTION

Vector databases have become indispensable for managing
unstructured data such as images, text, and audio. They
store and index high-dimensional embeddings of raw objects,
enabling effective and efficient semantic search through Ap-
proximate Nearest Neighbor Search (ANNS) [1], [2]. Given a
query object, the system first maps it into a vector using an
embedding model and then retrieves its nearest neighbors in the
database. This embedding-based retrieval paradigm underpins
a wide range of applications including image search [3] and
retrieval-augmented generation (RAG) [4].

While traditional deployments assume a centralized
database, real-world applications are often federated [5], [6].
Relevant data are distributed across autonomous silos, e.g.,
hospitals or law firms, each operating its own task-tailored vec-
tor database [7], [8]. To retrieve information scattered across
silos, the common workflow sends a user’s query to a central
server, which dispatches it to participating silos and aggregates
the returned results [9]–[12]. However, such federated retrieval
introduces new challenges in realistic deployments.

Example 1 (Federated Legal Document Retrieval): A law
firm preparing a case must consult legal precedents stored

across multiple specialized databases (i.e., data silos). Each
database may manage its own vector data for semantic
retrieval, using an independently chosen embedding model
tailored to its content characteristics or resources constraints
[8]. Meanwhile, the law firm embeds queries using a custom
model trained for its internal case-preparation workflows [13],
[14]. The objective is to retrieve documents nearest to the
query under the query’s embedding space across all silos.

This example highlights a key problem: embedding het-
erogeneity. Retrieval systems increasingly utilize specialized
embedding models, such as ResNet [15], ViT [16], BERT [17],
Longformer [18], and their fine-tuned variants. As a result,
both query users and data silos may independently select dis-
tinct models to generate their embeddings. Directly comparing
these vectors across different embedding spaces is meaning-
less. Effective retrieval requires re-embedding database objects
under the query model, incurring long latency at query time.

In this paper, we formalize this emerging setting as Feder-
ated Approximate Nearest Neighbor Search (FANNS). Given
a query object q and its associated query embedding model
Mq , a central server aims to retrieve the top-k nearest objects
to q from n silos, where each silo Si stores vectors generated
by its own embedding model Mi. The goal is to achieve high
retrieval accuracy and low query latency in the presence of
embedding heterogeneity. Prior research on ANNS [1], [19]–
[21] assumes that query and database vectors reside in same
embedding space. Recent studies on federated ANNS [22]–
[24] maintain the same assumption, leaving federated retrieval
under embedding heterogeneity unaddressed.

Through empirical observations, we identify two challenges
posed by embedding heterogeneity. (i) Re-embedding over-
head. Since database vectors are not directly comparable to the
query vector, and the query embedding model is often known
only at query time, each candidate must be re-embedded using
Mq before distance computation, making re-embedding an ef-
ficiency bottleneck. (ii) Candidate explosion. Because nearest
neighbors vary across the query and silo-specific embedding
spaces, uniform silo probing returns numerous irrelevant can-
didates, increasing re-embedding cost and latency.

Addressing these challenges requires adaptive exploration
of silos. We observe that, due to the non-IID nature of
federated data [25], [26], relevant objects for a query often

1

concentrate within a few silos. Leveraging this insight, we
design two adaptive query processing algorithms for FANNS.

• Competition-based FANNS, which iteratively retrieves
candidates from the current best-performing silo. How-
ever, it may be misled by bad candidates, i.e., objects
that appear close to the query under local embeddings
but are distant under the query embedding.

• Contribution-based FANNS, which maintains the cumula-
tive contributions of silos for adaptive silo sampling. We
further mitigate low-quality candidates via explicit server
feedback and adaptive silo exploration.

Finally, we provide a theoretical analysis on the expected
number of re-embedding operations for each strategy and
quantify the advantages of contribution-based FANNS.

Our contributions are summarized as follows.
• We introduce FANNS, federated approximate nearest

neighbor search under embedding heterogeneity, a new
problem motivated by real-world applications such as
cross-silo person re-identification and RAG.

• We design two adaptive strategies, competition-based
and contribution-based FANNS, and provide theoretical
guarantees on their re-embedding costs.

• Extensive experiments show that our solution yields a
recall rate of over 90% across four datasets, and improves
the query efficiency by 2.3× to 6.2× over the baselines.

II. PROBLEM STATEMENT

We start with preliminaries on vector databases and nearest
neighbor search, followed by a formal definition of fed-
erated approximate nearest neighbor search (FANNS). We
then present a naive baseline solution, empirically analyze
its performance, and discuss the challenges and opportunities
introduced by embedding heterogeneity.

A. Preliminaries

Vector Database. A vector database manages high-
dimensional vector embeddings that capture the semantic fea-
tures of unstructured data such as images, text, or audio. These
embeddings are generated by embedding models, typically
deep neural networks like ResNet [15] or BERT [17].

Definition 1 (Vector Database): Given a set of unstructured
data objects D = {o1, o2, . . . , o|D|}, an embedding model
M maps each object o ∈ D to a high-dimensional vector
M(o). The original object set D and the resulting embedded
vector set M(D) = {M(o1),M(o2), . . . ,M(o|D|)} is stored
and managed by the vector database.
Nearest Neighbor Search. Nearest neighbor search is a core
operation in vector databases, enabling the retrieval of objects
that are most similar to a given query in the embedding
space. We first define exact k-nearest neighbor (kNN) search,
followed by approximate nearest neighbor search (ANNS),
which is widely adopted in modern vector databases [27], [28].

Definition 2 ((Exact) k Nearest Neighbor (kNN)): Given
a query object q and a vector database {M,M(D)}, the
(exact) k nearest neighbor retrieves a subset r∗ ⊆ M(D)

of vectors closest to the embedded query vector M(q). For-
mally, r∗ satisfies |r∗| = k and ∀u ∈ r∗,∀v ∈ D \ r∗,
dis(M(q),M(u)) ≤ dis(M(q),M(v)), where dis(·, ·) de-
notes the distance function between two vectors, with Cosine
distance and Euclidean distance being the common choices.

In large-scale vector databases, ANNS is often used instead
of exact kNN to improve efficiency [1]. The accuracy of
ANNS is evaluated using the recall rate, defined as |r∩r∗|

k ,
where r is the retrieved result, while r∗ is the ground truth
for the query. A higher recall indicates higher accuracy.
Vector Indexes. Efficient ANNS relies on indexing methods
optimized for high-dimensional data [1]. Commonly used
indexes include IVFPQ [19] and HNSW [20]. In practical,
these indexes typically achieve high recall rates by searching
only a subset of the vectors in the database [27], [28].

The above discussion assumes a centralized database. We
consider a federated setting where unstructured data and
their embeddings are distributed across multiple data silos, as
defined below.

B. Problem Definition

Federated Approximate Nearest Neighbor Search. We
consider a federation F comprising n data silos, denoted as
S1, S2, . . . , Sn. Each silo autonomously maintains a vector
database over the same modality (e.g., images, text, or video),
which are generated using silo-specific embedding models.

Definition 3 (Data Silo): Each data silo Si holds a lo-
cal dataset Di = {o1i , o2i , . . . , o

|Di|
i } and operates a vector

database {Mi,Mi(Di)}, where Mi is a silo-specific em-
bedding model that maps each object o ∈ Di to a high-
dimensional vector Mi(o). The embedded vectors are denoted
as Mi(Di) = {Mi(o

1
i),Mi(o

1
i), . . . ,Mi(o

|Di|
i)}. Each silo

also builds a local vector index Idxi over Mi(Di) to support
efficient ANNS within Mi(Di).

At query time, a centralized server issues a query object
q along with a query embedding model Mq . Model Mq is
selected by the owner of the application and is optimized for
the retrieval or serving tasks to accommodate the personalized
requirements of the end user [13], [14], and may differ from
all silo-specific models Mi.

Definition 4 (Federated Approximate Nearest Neighbor
Search (FANNS)): Given a query object q and a query embed-
ding model Mq , FANNS(q,Mq, k) retrieves k objects from
D = D1 ∪ D2 ∪ · · · ∪ Dn that are nearest to q in the
embedding space of Mq . Formally, the ground truth of a
FANNS query r∗ satisfies: |r∗| = k, and ∀u ∈ r∗, v ∈ D \ r∗,
dis(Mq(q),Mq(u)) ≤ dis(Mq(q),Mq(v)), where Mq(o) is
the embedding of object o using model Mq .

For simplicity, we define disx(o, o
′) = dis(Mx(o),Mx(o

′))
as the distance between object o and o′ in the embedding
space of model Mx. Then the condition of FANNS simplifies
to ∀u ∈ r∗, v ∈ D \ r∗, disq(q, u) ≤ disq(q, v).
Embedding Heterogeneity. As shown in Fig. 1, a key char-
acteristic of FANNS is embedding heterogeneity, where each
silo uses a unique embedding model Mi, while the query is

2

Fig. 1: Federated approximate nearest neighbor search.

evaluated using a different model Mq . Because embedding
models are optimized for different downstream tasks, the same
object can have different representations across embedding
models. Consequently, similarity rankings based on Mi can
deviate from those under Mq , degrading the query accuracy if
a limited number of objects is retrieved from each silo.

While one might consider sending Mq to each silo for
query-time embedding, this is often impractical. Since Mq

is unknown in advance, distributing the query model (often
hundreds of megabytes or even gigabytes in size) to all silos
at runtime would incur substantial communication overhead.
Moreover, silos would be required to re-embed their local
datasets on the fly, leading to significant computational cost.

TABLE I: Example of FANNS over 3 data silos.

S1 o11 o21 o31 o41 o51 o61 o71 o81 o91

dis1(q, ·) 1.4 1.8 2.1 2.2 3.4 3.8 3.9 4.2 4.3

disq(q, ·) 5.2 2.3 4.7 6.0 5.1 3.4 4.9 6.8 4.1

S2 o12 o22 o32 o42 o52 o62 o72 o82 o92

dis2(q, ·) 1.8 2.4 2.5 2.7 3.3 3.8 3.9 4.1 4.5

disq(q, ·) 2.7 5.8 4.3 4.5 3.3 4.7 4.4 5.9 4.2

S3 o13 o23 o33 o43 o53 o63 o73 o83 o93

dis3(q, ·) 2.8 2.9 3.2 3.7 3.8 4.4 5.7 6.2 7.7

disq(q, ·) 5.0 5.1 3.7 4.4 6.2 4.6 6.7 7.2 6.9

Example 2: Consider a FANNS query over three data silos
(S1, S2, and S3) to retrieve the top k = 3 objects closest
to a query q using model Mq . Table I shows distances from
q to objects under both the local embedding models Mi and
the query model Mq . Each silo ranks objects using disi(q, ·),
which only involves embedding q by Mi and performing local
ANNS on the pre-stored embeddings under Mi. However,
computing disq(q, ·) requires re-embedding all objects with
Mq at each silo, which is infeasible during query processing.

Due to embedding heterogeneity, object rankings differ
across embedding spaces. For example, S1 returns o11, o

2
1, o

3
1

as top results to q under M1, but under Mq , the closest in

S1 are actually o21, o
6
1, o

9
1. Ultimately, the result for query

FANNS(q,Mq, 3) are {o21, o12, o52}.
Objectives. We aim to optimize the performance of FANNS
queries using the following metrics:

• Accuracy: Maximize the recall rate, defined as |r∗∩r|
k ,

where r is the retrieved results and r∗ is the true top-k
nearest neighbors under Mq .

• Latency: Minimize query processing time, measured as
the average number of queries processed per second.

• Communication Cost: Minimize the number of data
objects transferred from silos to the server, reducing
bandwidth usage and privacy risk.

C. Challenges and Opportunities

Embedding heterogeneity poses new challenges to accurate
and efficient FANNS. We first present a baseline, empirically
illustrate its limitations, and then highlight opportunities for
improvement.
Uniform Selection Strategy for FANNS. A naive approach is
to uniformly retrieve candidate objects from all silos. Specifi-
cally, given a query q, the server retrieves γk objects (γ ≥ 1)
evenly from n silos, i.e., each silo returns the top-γkn objects
closest to q based on disi(q, ·). These candidates are sent to
the server, re-embedded under Mq , and re-ranked to select the
final top-k results. The expansion factor γ controls the search
scope: a larger γ implies a larger search scope and typically
results in higher accuracy.

Algorithm 1 shows the detailed procedure. Assume each
data silo Si embeds its local dataset Di using its own embed-
ding model Mi and builds a vector index (e.g., HNSW [20])
over the resulting embeddings, as described in Definition 3. At
query time, the server disseminates the query object q to all
silos (line 1). Each silo independently retrieves its local top-γkn
candidates based on disi(q, ·) using pre-computed embeddings
(lines 2-4). The γk objects returned by silos are re-embedded
at the server using the query model Mq (lines 5-6). Finally, the
server identifies the top-k nearest neighbors based on disq(q, ·)
(lines 7-8).

Algorithm 1: Uniform Selection FANNS
Input: data federation F = {S1, S2, ..., Sn},

query object q, query model Mq , result size k,
search scope γ

Output: top-k nearest objects to q under Mq

1 Server send object q to all the data silos;
2 foreach i← 1 to n do
3 Silo Si embed q with model Mi; // Silo Embed
4 Silo Si search the local index Idxi to select γk

n
objects nearest to Mi(q); // Silo Search

5 Silo Si sends these object to the server;

6 Server embed all the received objects (γk objects in
total) with model Mq; // Server Embed

7 r ← k objects with smallest disq(q, ·); // Server Search
8 return r

3

Empirical Study. We evaluate the naive solution on the i-
Naturalist dataset [29] (see Sec. VI-A for details) with 8 data
silos. We report the recall rate under different γ and measure
the running time spent across five execution stages: silo embed,
silo search, server embed, server search, and data transfer.
Fig. 2 shows the results.

• Server embedding dominates latency. Re-embedding
candidate objects at the server using the query model Mq

accounts for up to 91.2% of the total query time.
• High recall demands a large expansion. Achieving a

modest recall rate of 70% necessitates a large expansion
factor (γ = 128), meaning the server must re-embed over
1, 000 candidate objects per query.

(a) k = 10 (b) k = 20

Fig. 2: Recall rate and breakdown of running time for uniform
selection FANNS algorithm. (The experiments are performed
on the i-Naturalist dataset [29], with ResNet-152 [15] as the
query model and HNSW [20] as the local index)

Implications. The empirical study reveals two issues.
• Costly re-embedding overhead. Re-embedding candi-

dates under Mq notably increases latency. This overhead
is unavoidable because Mq is unknown before query.

• Similarity ranking misalignment. Local ANNS based
on Mi does not align with the global similarity ranking
under Mq . Consequently, a larger set of candidates from
each silo must be returned to ensure acceptable recall
rate, resulting in substantial re-embedding and increased
query latency.

Therefore, it is crucial to reduce the number of re-embedded
candidates while maintaining high query accuracy.
Opportunities. Federated data often exhibits non-IID distri-
butions across silos [25]. For instance, in the legal document
retrieval application in Example 1, data from different silos
often specialize in distinctive legal areas or case types. Such
non-IID distributions imply that objects relevant to a query
are likely concentrated in a few data silos rather than evenly
dispersed. Consequently, uniformly retrieving equal numbers
of objects per silo is suboptimal.

To exploit this characteristic, we propose two adaptive
strategies for FANNS: a competition-based algorithm (Sec. III)
and a contribution-based algorithm (Sec. IV). The idea is to
dynamically adjust per-silo retrieval sizes to reduce server-
side re-embedding costs while preserving high recall rate.

III. COMPETITION-BASED ADAPTIVE FANNS

As discussed in Sec. II-C, a promising strategy for accurate
and efficient FANNS is to dynamically adjust candidate selec-
tion across silos, rather than using a fixed retrieval size for all
silos. We propose a competition-based adaptive method, where
silos iteratively compete by submitting their most promising
candidates. The novelty lies in a multi-round competition
mechanism that prioritizes silos providing the most relevant
objects per round, thus reducing redundant re-embedding
operations at the server.

Key Idea. The method is motivated by the intuition that silos
providing relevant objects early are more likely to contain
additional relevant objects, due to the non-uniform distribution
of semantic content across silos. Accordingly, we adopt an
adaptive competition process. Each silo proposes its top candi-
date based on its local embedding model Mi. These candidates
compete by being re-embedded at the server under the query
embedding model Mq , and the silo whose candidate is closest
(the “winner”) is asked to provide its next-best candidate.
This iterative selection gradually concentrates on silos that
consistently provide highly relevant objects, thereby improving
efficiency and recall.

Algorithm Details. Algorithm 2 outlines our competition-
based adaptive FANNS algorithm. The server begins by send-
ing the query object q to all silos. Each silo embeds q using
its local model Mi and returns the nearest object according
to its local index Idxi (lines 4-7). These initial candidates are
re-embedded using Mq and stored in a list cands. In each
round, the server selects the candidate in cands closest to
q under Mq , adds it to the result set res, and requests the
corresponding silo s to provide its next-best candidate, which
replaces the previously used candidate in cands (lines 10-14).
The process continues until γk candidates have been collected,
where γ is an expansion factor that controls search scope.

Example 3: Fig. 3 illustrates the operation of the
competition-based FANNS with three data silos, result size
k = 3, and expansion factor γ = 4. Objects with hatch
patterns are not among the k nearest neighbors of q under Mq ,
while solid-filled objects represent the true top-k results. For
simplicity, only the top k objects in the result set res (denoted
as resk) are shown. In round 1, each silo proposes its closest
local candidate to query q (o11, o

1
2, o

1
3). After re-embedding

under Mq , the server identifies o12 as the closest to q, adds
it to res, and requests silo S2 to return its next candidate
(o22). In round 2, the process repeats with o22 replacing o12 in
cands. Next, o13 is selected, and S3 provides o23. Eventually,
this iterative competition results in the final set {o21, o12, o52}.

IV. CONTRIBUTION-BASED ADAPTIVE FANNS

Although the competition-based adaptive FANNS (Sec. III)
improves efficiency by dynamically selecting candidates, it
relies solely on each silo’s current top candidate, potentially
leading to suboptimal retrieval. In particular, this method can
be misled by bad candidates, i.e., objects that appear close to
the query in local embeddings (Mi) but are distant under the

4

Algorithm 2: Competition-based Adaptive FANNS
Input: data federation F = {S1, S2, ..., Sn},

query object q, query model Mq , result size k,
expansion factor γ

Output: top-k nearest objects to q under Mq

1 res← min-heap ordered by disq(q, ·);
2 cands← n-length candidate list from n silos;
3 Server sends object q to all silos;
4 foreach i← 1 to n do
5 Silo Si embeds q with model Mi;
6 Silo Si searches Idxi for the nearest object to

Mi(q);
7 Silo Si sends this object to server;

8 Server keeps received objects in cands;
9 Server embeds objects in cands using model Mq;

10 while |res| ≤ γk do
11 Select object o from cands with smallest disq(q, ·)

and record its silo s;
12 Add object o to res;
13 Silo s searches Idxi for the next nearest object o′

to Ms(q);
14 Silo s sends object o′ to server;
15 Server embeds o′ with Mq and replaces o with o′

in cands;

16 return top-k objects in res;

Fig. 3: Example of competition-based adaptive algorithm for
FANNS. The number in the upper-left corner represents the
round number. Boxes with red borders indicate data objects
selected in each round. The digits under boxes indicate the
distances from the object to the query q under model Mq’s
embedding space.

query embedding (Mq), resulting in unnecessary re-embedding
(see Lemma 1 in Sec. V).

To overcome this limitation, we propose a novel
contribution-based FANNS algorithm that adaptively selects
silos based on their cumulative contributions over previous
rounds, rather than solely on their currently proposed objects.
We first present the basic version of this method (Sec. IV-A)
and then propose multiple optimizations to enhance its effi-
ciency and effectiveness (Sec. IV-B).

A. Basic Contribution-based Algorithm

Key Idea. The contribution-based algorithm is motivated by
the hypothesis that silos providing high-quality objects in
earlier rounds are likely to have higher data density around the
query object. Therefore, we favor silos whose previous objects
have frequently appeared among the top-ranked candidates.
Concretely, we dynamically maintain and update each silo’s
sampling probability based on the cumulative contributions
to the current result set. Silos with higher contributions are
sampled more often, while others are occasionally explored.

Algorithm Details. As in Algorithm 2, the server initially
requests each silo to return its nearest object to the query q
under the silo’s local embedding model Mi (lines 1-8). These
candidates are re-embedded using the query model Mq as the
initial result set res.

In each subsequent round, the server samples a silo based on
its contribution to the current top-k results, denoted as resk.
Specifically, if silo Si has contributed ti objects to resk, its
sampling probability is set proportional to ti+θ, where θ > 0
is a smoothing factor that ensures all silos maintain a non-
zero selection probability (lines 10-14). The selected silo s
retrieves its next nearest candidate based on disi(q, ·), which
is re-embedded under Mq and added to res (lines 15-16).
This process repeats until γk objects have been retrieved, after
which the final top-k objects closest to the query under Mq

are returned.
Example 4: Fig. 4 illustrates the basic contribution-based

algorithm across three silos with k = 3, γ = 3, and smoothing
factor θ = 1. Initially, each silo contributes one object,
resulting in equal contributions to resk, and equal sampling
probabilities (33% each).

Suppose the server selects silo S3 and receives its next
candidate o23, which is added to res. After this update,
silo S3 contributes two objects to resk, silo S2 contributes
one, and silo S1 contributes none. Accordingly, the sampling
probabilities change to 17% (for S1), 33% (for S2), and 50%
(for S3). This adaptive selection continues until the algorithm
terminates at round 9, and the result is {o21, o12, o52}.

B. Optimized Contribution-based Algorithm

To further enhance the efficiency and effectiveness of the
basic contribution-based FANNS algorithm (Sec. IV-A), we
propose three optimization strategies.

5

Algorithm 3: Contribution-based Adaptive FANNS
Input: data federation F = {S1, S2, ..., Sn},

query object q, query model Mq , result size k,
expansion factor γ

Output: top-k nearest objects to q under Mq

1 res← min-heap ordered by disq(q, ·);
2 Server sends query q to all silos;
3 foreach i← 1 to n do
4 Silo Si embeds q with model Mi;
5 Silo Si searches Idxi for the nearest object to

Mi(q);
6 Silo Si sends this object to server;

7 Server stores all received objects in res;
8 Server embeds all objects in res using model Mq;
9 while |res| ≤ γk do

10 foreach i← 1 to n do
11 resk ← top-k objects in res;
12 ti ← number of objects in resk from Si;
13 pi ← ti + θ;

14 Server samples silo s among the n silos with
probability proportional to pi;

15 Silo s searches its local index for the next nearest
object o to Ms(q);

16 Silo s sends object o to server;
17 Server embeds o using Mq and adds o to res;

18 return top-k objects in res;

Fig. 4: Example of contribution-based adaptive algorithm for
FANNS. The percentages under boxes indicate the probabili-
ties that data objects are sampled.

1) Reducing Communication Round via Batch Sampling:
In the basic contribution-based method (Algorithm 3), one
object is sampled per silo in each round, leading to frequent
server-silo communication. To reduce this overhead, we adopt
a batch sampling strategy (Algorithm 4) that retrieves multiple
candidate objects from the silos in each round.

Specifically, in each round, the server determines the num-
ber of objects to sample from each silo (lines 1-4). Each silo
Si is sampled multiple times according to a probability propor-
tional to its cumulative contribution pi, and its frequency of
selection in the current round is denoted as xi. The server

Algorithm 4: Batch Sampling
Input: data federation F = {S1, S2, ..., Sn},

query object q, query model Mq , result size k,
expansion factor γ, batch size b

Output: top-k nearest objects to q under Mq

// Replace lines 14-17 in Algorithm 3 with lines below
1 Initialize x1, x2, . . . , xn ← 0;
2 foreach i← 1 to b do
3 Server samples silo s among the n silos with

probability proportional to pi;
4 xs ← xs + 1;

5 foreach i← 1 to n do
6 if xi ̸= 0 then
7 Silo Si selects searches Idxi for the next xi

nearest objects to Mi(q);
8 Silo Si sends these objects to server;

9 Server embeds all received objects using model Mq

and adds them to res;

sends a request for xi candidates to each silo. Each silo
then selects and returns xi objects (lines 5-6). All returned
candidates are re-embedded at the server in parallel using
the query model Mq , thereby reducing the total number of
communication rounds and improving overall query efficiency.

2) Adaptive Exploration via Dynamic θ: In the basic algo-
rithm, each silo’s sampling probability is proportional to ti+θ,
where ti is the silo’s current contribution, and θ is a fixed
smoothing factor ensuring non-zero exploration probabilities
for all silos. However, using a fixed θ ignores the evolving
reliability of contribution estimates over time.

To adaptively balance exploration and exploitation, we
propose dynamically adjusting the smoothing factor θ. In the
early stages, only a few objects have been retrieved, and the
observed contributions ti may not accurately reflect the true
relevance of each silo. Thus, a larger θ encourages exploration
by giving all silos a more uniform chance of being sampled. As
more objects are retrieved, the contribution estimates become
more reliable, and a smaller θ helps concentrate the sampling
on the most promising silos.

We implement this optimization using a cooling schedule
in simulated annealing [30]. Specifically, the smoothing factor
at round r is defined as θ(r) = θ0τ

r, where θ0 is the initial
smoothing factor, and τ ≤ 1 is a decay coefficient controlling
the exploration-to-exploitation transition rate.

3) Improving Candidate Quality with Server Feedback:
In the basic algorithm, candidate selection relies solely on
distances in each silo’s local embedding space Mi, which may
differ from the global ranking under Mq . This misalignment
leads to the selection of lower-quality candidates.

To mitigate this, we introduce a feedback-guided candidate
selection mechanism. The server provides feedback to each
silo regarding whether its previously submitted candidate was
included in the current top-k result set (resk). Silos leverage

6

Algorithm 5: Feedback-Guided Candidate Selection
Input: silo Si, query object q, required number xi

Output: xi candidate objects
1 c← object from silo Si nearest to q under Mq;
2 if c ∈ resk then
3 cands← silo Si searches the local index Idxi for

2xi objects closest to Mi(q);
4 Sort cands in ascending order according to

f(·) = disi(q, ·) + λdisi(c, ·);
5 return top xi objects in cands;

6 else
7 cands← silo Si searches the local index Idxi for

xi objects closest to Mi(q);
8 return cands;

Fig. 5: Example of feedback-guided candidate selection in S1.

this feedback to refine their candidate selections, biasing future
selections toward objects similar to successful past candidates.

Algorithm 5 outlines this process. Let c be the feedback
object from silo Si, i.e., the previously submitted object from
Si with the smallest disq(q, ·). If c is included in resk, then
Si evaluates its next 2xi local candidates using a composite
scoring function f(·) = disi(q, ·) + λ · disi(c, ·), where λ is
a tunable parameter that balances the impact of the original
query and the feedback object. The top-xi objects with the
lowest scores are then returned to the server. Since all em-
beddings are pre-computed locally under Mi, this procedure
incurs negligible additional overhead. The feedback-guided
selection strategy is integrated in the candidate selection for
the contribution-based adaptive FANNS algorithm (line 15 in
Algorithm 3 and line 7 in Algorithm 4).

Example 5: Fig. 5 illustrates the feedback-guided candidate
selection in silo S1. Objects o11 through o91 are ordered by
increasing dis1(q, ·) (smaller indices indicate closer distances
under M1). Initially, S1 selects o11, o21, and o31 purely based on
their local distances to q. The server then provides feedback,
indicating that o21 is included in the current top-k results, while
o11 and o31 are not. In the next round, guided by this feedback,
S1 evaluates objects using the score dis1(q, o)+λ ·dis1(o21, o)
and selects those most similar to the successful object o21. As
a result, o61, o81, and o91 are chosen.

V. THEORETICAL ANALYSIS

In this section, we present a statistical analysis of the
competition-based adaptive algorithm and the contribution-

based adaptive algorithm. As shown in Sec. II-C, the server-
side re-embedding of received objects dominates the overall
runtime of FANNS queries. Accordingly, our analysis focuses
on quantifying the number of re-embedding operations re-
quired by each method.

A. Assumptions and Notations

Perspectives from Multidimensional Scaling. Representation
learning can be viewed as multidimensional scaling that trans-
forms raw objects into vector representations while preserving
their relative closeness [31], [32]. High-quality embedding
models, such as ResNet and BERT, are likely to maintain
consistent neighborhood structures across embedding spaces.
Thus, for high-quality embedding models, objects close to a
query in one embedding space are likely to remain close in
another. This observation motivates our solutions. Although
each data silo uses its own embedding model Mi, and the
query embedding model Mq may differ, retrieving a small
number of candidate objects, i.e., γk candidates, is often
sufficient to achieve high recall for the top-k neighbors under
Mq . Empirical results (Sec. VI-B) support that a full scan is
rarely needed in various settings.

Measure for Embedding Heterogeneity. While our solutions
do not rely on assumptions about the relationship between
{Mi} and Mq , analyzing their re-embedding cost benefits from
a conceptual measure of how similar a local model Mi is to
Mq . To this end, we define the notion of deviation.

For a given query q, if k nearest neighbors of q under Mq

are contained within the top k′ nearest neighbors under Mi, we
define the deviation of Mi from Mq as δi = k′

k . By definition,
δi ≥ 1 for all i. We empirically observe that δi typically
falls between 10 and 100 across datasets and models. With
deviation δi, the top δik objects under Mi always include the
true top-k neighbors under Mq . To facilitate analysis, we
assume that the exact δik nearest neighbors are returned by the
local vector search. This assumption is reasonable, as modern
ANNS algorithms in real-world deployments can achieve
recall rates near 100% with proper parameter settings [1].
Furthermore, we assume that the k nearest neighbors under
Mq are uniformly distributed among the top δik candidates
under Mi. This uniformity assumption enables probabilistic
bounds on the number of re-embedding operations.

In the following, we derive the theoretical guarantees on
re-embedding efficiency for our proposed algorithms.

B. Analysis and Results

Efficiency of Competition-based Algorithm. Lemma 1 esti-
mates the number of re-embedding operations required by the
competition-based adaptive FANNS algorithm.

Lemma 1: Suppose silo Si contributes ki objects (ki > 0)
to the final FANNS result, and the deviation of its local
model is δi. To retrieve these ki objects from silo Si, the
competition-based FANNS algorithm requires Ω(δikin) re-
embedding operations in expectation for objects from n silos.

7

Proof: By the definition of deviation, retrieving ki true
nearest neighbors from silo Si requires examining δiki candi-
dates under Mi. Among them, ki are good candidates (i.e., true
top-k neighbors under Mq), while the remaining δiki− ki are
bad candidates. Let Pgood (resp. Pbad) denote the probability
that a good (resp. bad) candidate from Si wins the competition
(i.e., is selected in line 11 of Algorithm 2). We analyze these
probabilities as follows:

• If the current candidate is good, then Pgood ≤ 1, since no
probability can exceed 1.

• If the current candidate is bad, then each silo has winning
probability of at most 1

n , i.e., Pbad ≤ 1
n . Specifically,

when all silos contribute bad candidates, the winning
probability for each silo is 1

n , and when good candidates
are present, this probability becomes smaller.

These upper estimates of selection probabilities lead to a lower
bound on re-embedding operations.

The number of retrieved objects (and also the number of re-
embedding operations) required for a candidate to be selected
follows a geometric distribution with success probability p,
which has an expected value of 1/p [33]. Hence, the expected
number of re-embedding operations needed to retrieve ki good
candidates from Si is:

Nembed = ki ·
1

Pgood
+ (δiki − ki) ·

1

Pbad
(1)

≥ ki + (δiki − ki) · n (2)
= Ω(δikin) (3)

which completes the proof.
Efficiency of Contribution-based Algorithm. We now ana-
lyze the number of re-embedding operations required by the
basic contribution-based FANNS algorithm under the same
assumptions as Lemma 1. The following theorem considers
a specified case of Algorithm 3, where the smoothing factor
is selected as θ = k

n according to given silo number n and
result size k.

Theorem 1: Suppose silo Si contributes ki objects (ki > 0)
to the FANNS result, and the deviation of its local model is
δi. To retrieve these ki objects from Si, the basic contribution-
based FANNS algorithm requires O

(
δik ln

(
nki

k + 1
))

re-
embedding operations in expectation for objects from n silos,
if θ = k

n in Algorithm 3.
Proof: We first compute the probability of sampling silo

Si in a given round (line 14 of Algorithm 3). Since θ = k
n is

for all silos, the total sampling weight is:
n∑

i=1

(
ti +

k

n

)
=

(
n∑

i=1

ti

)
+ n · k

n
= k + k = 2k. (4)

Thus, if silo Si currently contributes ti objects to resk, the
probability of selecting Si is:

Pti =
ti + θ

2k
=

nti + k

2kn
. (5)

Since the number of rounds required to sample a given
silo follows a geometric distribution, the expected number of

rounds retrieve one object from Si is 1
Pti

. Given the deviation
δi, each good object from Si appears among δi candidates, so
the total expected number of embeddings to retrieve one such
object is δi · 1

Pti
.

Summing over all ki good objects from Si, we obtain
the total expected number of retrieved objects (and also the
number of re-embeddings):

Nembed = δi

ki∑
ti=0

1

Pti

= δi

ki∑
ti=0

2kn

nti + k
= 2δik

ki∑
ti=0

n

nti + k
. (6)

We now analyze this summation asymptotically:

2δik

ki∑
ti=0

n

nti + k
= O

(
δik

ki∑
ti=0

1

ti +
k
n

)
(7)

= O

δik

ki+⌊ k
n
⌋∑

ti=⌊ k
n
⌋

1

ti

 (8)

= O

δik

ki+⌊ k
n
⌋∑

ti=1

1

ti
−

⌊ k
n
⌋∑

ti=1

1

ti

 (9)

= O

(
δik

[
ln

(
ki +

k

n

)
− ln

(
k

n

)])
(10)

= O

(
δik ln

(
nki
k

+ 1

))
, (11)

which completes the proof.

Comparisons. We now compare the re-embedding costs of the
competition-based and contribution-based FANNS algorithms
based on the theoretical results in Lemma 1 and Theorem 1.

For convenience, we define αi = k
ki

as the inverse pro-
portion of result objects contributed by silo Si, where ki is
the number of final result objects from Si. Substituting αi

into the re-embedding number from Theorem 1, we have:
O
(
αiδiki ln

(
n
αi

+ 1
))

, which can be directly compared with
the re-embedding number from Lemma 1, given by Ω(δikin).

To compare the two, consider the inequality x ≥ ln(x+ 1)

for all x ≥ 0. Substituting x = n
αi

yields n ≥ αi ln
(

n
αi

+ 1
)

.
Multiplying both sides by δiki, we get:

δikin ≥ αiδiki ln

(
n

αi
+ 1

)
, (12)

which shows that the contribution-based algorithm always
requires fewer re-embedding operations than the competition-
based algorithm to retrieve ki objects from Si, regardless of
the value of αi.

Theorem 1 also suggests that the efficiency of the
contribution-based algorithm improves when the result dis-
tribution is skewed, which is common in federated environ-
ments [25]. When the result objects mainly come from one
silo, αi approaches 1. In the extreme case where all k result
objects originate from a single silo (i.e., αi = 1), the re-
embedding cost becomes O(δiki lnn) for the contribution-
based algorithm, which is a remarkable reduction over the
Ω(δikin) cost by the competition-based algorithm.

8

Efficiency of Optimized Contribution-based Algorithm. We
analyze the roles of the three optimizations in the contribution-
based algorithm.

• The batch sampling strategy mainly aims to improve
performance by reducing communication rounds while
keeping the re-embedding number small.

• The adaptive exploration strategy decreases the number
of re-embeddings for given δi and ki by accounting for
the changing reliability of contributions during execution.

• The server feedback optimization aligns distances com-
puted under the local model with those under the query
model, thereby reducing δi and improving efficiency.

VI. EVALUATION

A. Experiment Setup

Datasets. We use the following four datasets for evaluation.
• i-Naturalist [29]: A image dataset covering a diverse

range of plant and animal species, compiled from bio-
diversity observations contributed through mobile apps.

• MS MARCO [34]: A dataset for question answering,
containing real-world questions and answers sourced
from Bing search queries.

• Sentiment [35]: A real-world federated dataset of user-
generated text collected via the public Twitter API.

• Reddit [35]: A real-world federated dataset including
user comments posted on the social network.

The object cardinalities, raw data sizes and distance func-
tions used in our experiments are summarized in Table II.
Among these datasets, Sentiment and Reddit is already par-
titioned based on the text senders [35]. For the other two
datasets, we adopt the partitioning approach from [25], where
datasets are partitioned according to Dirichlet distribution with
parameter β, with smaller β values indicating higher skewness.

TABLE II: Statistics of datasets.

Dataset Type Cardinality Size Distance

i-Naturalist Image 100,000 25.46GB Euclidean
MS MARCO Text 837,727 6.59GB Euclidean

Sentiment Text 1,599,490 12.48GB Euclidean
Reddit Text 3,848,330 65.10GB Cosine

TABLE III: Parameter settings.

Parameter Setting

Data Silo Number n 4, 8, 12, 16
Result Number k 5, 10, 20, 40

Skewness β 0.1, 0.3, 0.5, 0.7, 0.9
Vector Index IVFFlat, IVFPQ, HNSW

Parameter Setting. Table III presents the parameter settings
used in the experiments, with default values of parameters
highlighted in bold. IVFFlat, IVFPQ, and HNSW are three
commonly used indexes in vector databases [28]. For IVFFlat
and IVFPQ [19], the parameters are set as nlist = 4

√
|Di|

and nprobe = 256. For HNSW [20], the parameters are set as
M = 32 and efsearch = 64.

Embedding Models. We use common embedding mod-
els for image and text data in our experiments. For im-
age data, we use ResNet-101, ResNet-152, SwinV2-B, ViT-
B, and ViT-H as embedding models [15], [16], [36]. For
text data, we use SBert-DistilBERT, SBert-MiniLM, SBert-
MPNet, Longformer-Base, Longformer-Large, DeBERTa-Base
and DeBERTa-Large as the embedding models [18], [37], [38].

Metrics. We use the following metrics to evaluate the perfor-
mance of methods for FANNS:

• Recall rate: It is defined as |r∗∩r|
k , where r is the returned

result of FANNS and r∗ is the ground truth.
• Running time: It measures the time from query submis-

sion to obtaining the final results.
• Communication cost: It measures the total amount of

data transmitted between data silos and the server during
query processing.

Baselines. We extend the existing work to FANNS problem.

• HuFu-ext [11]: HuFu addresses federated kNN queries
over spatial data silos. To adapt HuFu for FANNS queries,
we extend it by first sampling 1,000 points from each
dataset and applying the least squares method to derive
a linear function that maps distances in local embedding
space to the query model’s embedding space.

• FedKNN-ext [22]: FedKNN is the state-of-the-art
method for kNN search in data federation. Similar to
HuFu-ext, FedKNN-ext employs the least squares method
on the sampled dataset to learn a linear function. How-
ever, instead of directly estimating the distance under the
query model, it estimates a lower bound for disq(·, ·).

• ε-Greedy [39]: It is designed to balance exploration and
exploitation in multi-arm bandit problem. In our setting,
each silo is treated as an arm, and the reward is defined
as whether an object from the silo appears in the top-
k results. For each experimental configuration, we tested
different values of ε and report the best-performing result.

• UCB (Upper Confidence Bound) [39]: It is also de-
signed for multi-arm bandit problem, and we adapt it to
our problem in the same way as ε-greedy.

For all the baselines above, we use HNSW index as the local
vector index, following the same setting as in our methods.
Similar to our method, these baselines also retrieve γk objects
in total for verification, where γ is the expansion factor.

Implementation. All algorithms were implemented in Python
3.12. We used FAISS [40] for vector indexing and searching,
PyTorch [41] for embedding data objects, and gRPC for
communication. Our codebase includes pluggable interfaces
to support flexible deployment of different embedding models,
dataset formats, and vector indexes. For the contribution-based
adaptive algorithm, we set the batch size to b = 8 and the
feedback weighting factor to λ = 0.05. The smoothing factor
was initialized as θ0 = 2k

n and decayed with τ = 0.85.

9

(a) Sentiment (k = 5) (b) Sentiment (k = 10) (c) Sentiment (k = 20) (d) Sentiment (k = 40)

(e) Reddit (k = 5) (f) Reddit (k = 10) (g) Reddit (k = 20) (h) Reddit (k = 40)

Fig. 6: The searching performance of FANNS under different datasets and result sizes.

(a) Sentiment (n = 4) (b) Sentiment (n = 8) (c) Sentiment (n = 12) (d) Sentiment (n = 16)

Fig. 7: The searching performance of FANNS under different data silo numbers n.

(a) i-Naturalist (β = 0.1) (b) i-Naturalist (β = 0.3) (c) i-Naturalist (β = 0.5) (d) i-Naturalist (β = 0.7) (e) i-Naturalist (β = 0.9)

Fig. 8: The searching performance of FANNS in i-Naturalist dataset under different degrees of partition skewness.

Environment. Experiments are conducted on three servers
connected by network with bandwidth of 2 Gbps. One server
acts as the central coordinator and is equipped with an
NVIDIA Tesla V100 32GB GPU, Intel Xeon Gold 6230R
2.10GHz CPUs, and 256GB of RAM. The other two servers
act as data silos, each configured with Intel Xeon Gold 6240
2.60GHz CPUs and 768GB of RAM. To simulate multiple
data silos, we adopt container-based virtualization, following
the common practice in prior work [42], [43], with each silo
running in an isolated container.

B. Experiment Results

1) End-to-end Performance: We perform experiments to
evaluate the performance of three proposed methods–Uniform
Selection FANNS, Competition-based Adaptive FANNS,
Contribution-based Adaptive FANNS–and four baselines. Fol-
lowing established benchmarks for ANNS [1], [44], we use
running time vs. recall rate plots to show the tradeoff between
search speed and accuracy. Different data points in these plots
are generated by varying the expansion rate γ.

Varying the Result Size k. Fig. 6 presents the recall rate
and running time of all methods in Sentiment and Reddit
datasets for different result size k. The results show that the
contribution-based algorithm can achieve a recall rate of over
90% across all datasets and outperforms other methods in
terms of query efficiency at the same recall level. For example,
on the i-Naturalist dataset, our adaptive methods improve
query efficiency by 2.3× to 6.2× compared to other methods
at the same recall rate of 80%. This efficiency gain stems from
its adaptive retrieval strategy, which prioritizes promising silos
and leverages server feedback to guide local search, enabling
it to achieve the same accuracy with a smaller expansion rate.
As k increases, the running time of all methods also grows,
since more re-embedding operations are required.

Varying the Data Silo Number n. We evaluate the per-
formance of FANNS under varying numbers of data silos
using the Sentiment dataset, with results shown in Fig. 7.
The contribution-based adaptive method consistently outper-
forms the baselines, achieving over 80% recall within 2

10

seconds across all silo numbers. Besides, the running time of
competition-based and contribution-based algorithm remains
stable as the number of silos increases, while the other three
methods exhibit slight growth in latency.
Varying the Partition Skewness. As shown in Fig. 8, we
evaluated all methods under varying partition skewness, where
smaller β indicating higher skewness. The results show that
both the competition-based and contribution-based methods
maintain robust recall rates under different skewnesses. For
instance, our adaptive methods consistently achieve recall rates
above 90%, while the maximum recall rate of HuFu-ext drops
from 86.5% to 62.5% as skewness increases. Moreover, the ad-
vantage of the contribution-based method is more pronounced
as skewness grows, aligning our analysis in Sec. V.

(a) IVFPQ (b) IVFFlat

Fig. 9: The searching performance of FANNS in i-Naturalist
dataset under different local vector indexes.

(a) i-Naturalist (b) MS MARCO

(c) Sentiment (d) Reddit

Fig. 10: The communication cost of FANNS under four
datasets at a recall rate of 70%.

Varying the Local Vector Indexes. We evaluated the algo-
rithms on the i-Naturalist dataset with different local vector
indexes, as shown in Fig. 9. In addition to HNSW, we used
IVFPQ and IVFFlat as local indexes. Our adaptive algorithm
consistently outperforms the baselines across all index settings.
Moreover, the running time of each method remains relatively
stable across different index types, indicating that server-side
re-embedding operations dominate the overall runtime.
Communication Costs. We measured the communication cost
of the methods at the same recall rate of 70% in i-Naturalist

and Sentiment dataset. As shown in Fig. 10, the proposed
adaptive methods achieve lower communication costs at same
recall rate compared to other methods. The competition-based
algorithm can reduce the communication cost by 31.4% to
96.3% across all the datasets relative to the baselines. In gen-
eral, the communication cost grows linearly with the result size
k. The experiments also indicate that our adaptive methods can
achieve high recall by re-embedding only a small fraction of
objects from all data silos. For instance, in Sentiment dataset,
the contribution-based method reaches a recall rate of 90%
with an expansion rate of 5, requiring transfer of only 0.13‰
of the raw dataset.

(a) MS MARCO (k = 10) (b) MS MARCO (k = 20)

Fig. 11: The search performance of contribution-based FANNS
under different batch size b.

(a) MS MARCO (k = 10) (b) MS MARCO (k = 20)

Fig. 12: The search performance of contribution-based FANNS
under different selection of smoothing factor.

(a) MS MARCO (k = 10) (b) MS MARCO (k = 20)

Fig. 13: The search performance of contribution-based FANNS
under different feedback weighting factor λ.

2) Ablation Study: We conducted ablation studies on MS
MARCO dataset to assess how the three optimization strate-
gies affect the performance of the contribution-based method.
Impact of Batch Sampling. We compare the search perfor-
mance of contribution-based method under four different batch
sizes b on the Sentiment dataset, as shown in Fig. 11. The
results show that all batch size settings lead to performance

11

improvements over the basic contribution-based algorithm
(i.e., the method with b = 1). As the batch size increases, the
number of communication rounds decreases, thereby enhanc-
ing search efficiency. However, larger batch sizes also reduce
the timeliness of contribution updates, resulting in more re-
embeddings and slightly impacting overall performance. The
experiments indicate that contribution-based FANNS achieves
optimal performance at a batch size of 8, yielding an up to
2.8× improvement of query efficiency at the same recall rate.

Impact of Adaptive Smoothing Factor. We compare different
values of decay coefficient τ to study the effectiveness of
adaptive smoothing factor. As shown in Fig. 12, adjustment
of smoothing factor θ can effectively improve the perfor-
mance of the contribution-based algorithm, particularly in the
later stages of query processing. Specifically, with result size
k = 20, setting τ = 0.85 improves query efficiency by 1.3×
at 80% recall and by 1.5× at 90% recall. This gain arises
because the adaptive θ enables the algorithm to increasingly
focus on promising silos as more feedback accumulates.

Impact of Feedback-Guided Candidate Selection. We eval-
uated the impact of feedback-guided candidate selection and
different values of the feedback weighting factor λ on the
MS MARCO dataset, as shown in Fig. 13. The results show
that incorporating server feedback with λ = 0.05 effectively
improves candidate quality, thereby enhancing the accuracy of
the contribution-based algorithm. For example, using the score
function with λ = 0.05 improved the recall rate by up to 4.5%
when k = 10, and by up to 8% when k = 20.

VII. RELATED WORK

Approximate Nearest Neighbor Search. ANNS is a
core operation in vector databases [2], [27], [28], with
methods broadly categorized into partition-based [45]–[49],
quantization-based [19], [50]–[52], and graph-based tech-
niques [20], [53]–[57]. They assume that both the query and
data vectors reside in the same embedding space and are drawn
from the same data distribution.

Recent work starts to explore relaxed settings. OOD-
DiskANN [58], RoarGraph [21], and LeanVec [59] address
out-of-distribution (OOD) queries, where the query vector
follows a different distribution than indexed vectors, which is
common in cross-modal retrieval (e.g., text-to-image). How-
ever, they still operate within a single embedding space. In
contrast, FANNS involves multiple embedding spaces. Each
silo uses a different model, and the query’s model may differ
from all of them. Other studies support customized distance
metrics in ANNS, such as OASIS [60] and ONIAK [61],
which allow query-specific Mahalanobis metrics by applying
linear transformations. While flexible, these methods are in-
sufficient for FANNS, where the distance mapping between
embedding models can be non-linear.

Federated Data Management. Federated database systems
were originally proposed to support querying over autonomous
and heterogeneous data sources [9], [62]. This concept has

been extended to various data types, including relational [12],
[63]–[65], spatial [10], [11], [66], and graph data [67].

Recent efforts have explored federated vector retrieval [22]–
[24], [68], which propose methods for federated approximate
nearest neighbor search across vector databases. However,
they assume that all data silos use a shared embedding
model, enabling direct comparison of vectors across silos.
This assumption does not hold in our work, where each
silo independently selects its embedding model, resulting in
heterogeneous embedding spaces.

Model Heterogeneity in Federated Learning. FL enables
collaborative model training across decentralized data silos
without sharing raw data [25], [69], [70]. While early FL
research assumes homogeneous model architectures across
clients, recent studies have explored model heterogeneity,
where each silo may adopt a different neural network architec-
ture [71]. However, this line of research differs fundamentally
from our work in its objective. Federated learning focuses on
model training whereas we aim to retrieve similar objects.

VIII. CONCLUSION

This paper defines the problem of Federated Approxi-
mate Nearest Neighbor Search (FANNS) over embedding-
heterogeneous vector databases and proposes both accurate
and time-efficient solutions for FANNS queries. Leveraging
the non-IID nature of federated data, we design two adaptive
algorithms—competition-based and contribution-based—for
FANNS query processing. We provide theoretical analysis of
the expected number of re-embedding operations for both
methods. Extensive evaluations show that our solution yields
over 90% recall rate across four datasets, while achieving up
to 6.2× query efficiency compared to existing solutions.

AI-GENERATED CONTENT ACKNOWLEDGEMENT

The authors used deepseek to improve the language clarity
and readability of this paper. All generated content was care-
fully reviewed and edited by the authors to ensure accuracy
and alignment with the paper’s intended meaning.

ACKNOWLEDGEMENT

This work was partially supported by National Sci-
ence Foundation of China (NSFC) (Grant Nos. 62425202,
62336003), National Key Research and Development Program
of China under Grant No. 2023YFF0725103, the Beijing Natu-
ral Science Foundation (Z230001), the Fundamental Research
Funds for the Central Universities No. JK2024-03, the Didi
Collaborative Research Program and the State Key Laboratory
of Complex & Critical Software Environment (SKLCCSE).
Zimu Zhou’s research is supported by National Science Foun-
dation of China (NSFC) (No. 62572412), the RGC of Hong
Kong SAR, China (Project No. CityU 11206425). Yongxin
Tong is the corresponding author.

12

REFERENCES

[1] W. Li, Y. Zhang, Y. Sun, W. Wang, M. Li, W. Zhang, and
X. Lin, “Approximate nearest neighbor search on high dimensional
data—experiments, analyses, and improvement,” IEEE Transactions on
Knowledge and Data Engineering, pp. 1475–1488, 2019.

[2] K. Echihabi, K. Zoumpatianos, and T. Palpanas, “New trends in high-
d vector similarity search: al-driven, progressive, and distributed,” in
Proceedings of the VLDB Endowment, 2021, pp. 3198–3201.

[3] O. Moll, M. Favela, S. Madden, V. Gadepally, and M. Cafarella,
“Seesaw: interactive ad-hoc search over image databases,” Proceedings
of the ACM on Management of Data, pp. 1–26, 2023.

[4] W. Fan, Y. Ding, L. Ning, S. Wang, H. Li, D. Yin, T.-S. Chua, and
Q. Li, “A survey on rag meeting llms: Towards retrieval-augmented large
language models,” in Proceedings of the ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2024, pp. 6491–6501.

[5] Z. Zhang, X. Hu, J. Zhang, Y. Zhang, H. Wang, L. Qu, and Z. Xu,
“Fedlegal: The first real-world federated learning benchmark for legal
nlp,” in Proceedings of the Annual Meeting of the Association for
Computational Linguistics, 2023, pp. 3492–3507.

[6] B. Pfitzner, N. Steckhan, and B. Arnrich, “Federated learning in a
medical context: a systematic literature review,” ACM Transactions on
Internet Technology (TOIT), pp. 1–31, 2021.

[7] P. Xia, K. Zhu, H. Li, H. Zhu, Y. Li, G. Li, L. Zhang, and H. Yao,
“Rule: Reliable multimodal rag for factuality in medical vision language
models,” in Proceedings of the Conference on Empirical Methods in
Natural Language Processing, 2024, pp. 1081–1093.

[8] N. Wiratunga, R. Abeyratne, L. Jayawardena, K. Martin, S. Massie,
I. Nkisi-Orji, R. Weerasinghe, A. Liret, and B. Fleisch, “Cbr-rag:
case-based reasoning for retrieval augmented generation in llms for
legal question answering,” in International Conference on Case-Based
Reasoning, 2024, pp. 445–460.

[9] A. P. Sheth and J. A. Larson, “Federated database systems for managing
distributed, heterogeneous, and autonomous databases,” ACM Comput-
ing Surveys, pp. 183–236, 1990.

[10] Y. Shi, Y. Tong, Y. Zeng, Z. Zhou, B. Ding, and L. Chen, “Efficient
approximate range aggregation over large-scale spatial data federation,”
IEEE Transactions on Knowledge and Data Engineering, pp. 418–430,
2021.

[11] Y. Tong, X. Pan, Y. Zeng, Y. Shi, C. Xue, Z. Zhou, X. Zhang, L. Chen,
Y. Xu, K. Xu et al., “Hu-fu: Efficient and secure spatial queries over
data federation,” in Proceedings of the VLDB Endowment, 2022, pp.
1159–1172.

[12] J. Bater, S. Goel, G. Elliott, A. Kho, C. Eggen, and J. Rogers, “Smcql:
Secure querying for federated databases,” in Proceedings of the VLDB
Endowment, 2016, pp. 673–684.

[13] Databricks, “Improving retrieval and rag with embedding model
finetuning,” 2025. [Online]. Available: https://www.databricks.com/
blog/improving-retrieval-and-rag-embedding-model-finetuning

[14] LlamaIndex, “Fine-tuning embeddings for rag with synthetic
data,” 2023. [Online]. Available: https://www.llamaindex.ai/blog/
fine-tuning-embeddings-for-rag-with-synthetic-data-e534409a3971

[15] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2016, pp. 770–778.

[16] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition at
scale,” in International Conference on Learning Representations, 2020,
pp. 1–21.

[17] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” in
Proceedings of the North American Chapter of the Association for
Computational Linguistics, 2019, pp. 4171–4186.

[18] Huggingface, “Longformer,” 2025. [Online]. Available: https:
//huggingface.co/docs/transformers/model doc/longformer

[19] H. Jegou, M. Douze, and C. Schmid, “Product quantization for nearest
neighbor search,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, pp. 117–128, 2010.

[20] Y. A. Malkov and D. A. Yashunin, “Efficient and robust approxi-
mate nearest neighbor search using hierarchical navigable small world
graphs,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, pp. 824–836, 2018.

[21] M. Chen, K. Zhang, Z. He, Y. Jing, and X. S. Wang, “Roargraph: A
projected bipartite graph for efficient cross-modal approximate nearest
neighbor search,” in Proceedings of the VLDB Endowment, 2024, pp.
2735–2749.

[22] X. Zhang, Q. Wang, C. Xu, Y. Peng, and J. Xu, “Fedknn: Secure
federated k-nearest neighbor search,” in Proceedings of the ACM on
Management of Data, 2024, pp. 1–26.

[23] Z. Zhu, Z. Fan, Y. Zeng, Y. Shi, Y. Xu, M. Zhou, and J. Dong, “Fedsq:
A secure system for federated vector similarity queries,” in Proceedings
of the VLDB Endowment, 2024, pp. 4441–4444.

[24] D. Zhao, “Frag: Toward federated vector database management for
collaborative and secure retrieval-augmented generation,” arXiv preprint
arXiv:2410.13272, 2024.

[25] Q. Li, Y. Diao, Q. Chen, and B. He, “Federated learning on non-iid
data silos: An experimental study,” in IEEE International Conference
on Data Engineering, 2022, pp. 965–978.

[26] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N.
Bhagoji, K. Bonawitz, Z. Charles, G. Cormode, R. Cummings et al.,
“Advances and open problems in federated learning,” Foundations and
trends® in machine learning, pp. 1–210, 2021.

[27] J. J. Pan, J. Wang, and G. Li, “Survey of vector database management
systems,” The VLDB Journal, pp. 1591–1615, 2024.

[28] J. Wang, X. Yi, R. Guo, H. Jin, P. Xu, S. Li, X. Wang, X. Guo, C. Li,
X. Xu et al., “Milvus: A purpose-built vector data management system,”
in Proceedings of the ACM on Management of Data, 2021, pp. 2614–
2627.

[29] G. Van Horn, O. Mac Aodha, Y. Song, Y. Cui, C. Sun, A. Shepard,
H. Adam, P. Perona, and S. Belongie, “The inaturalist species classifi-
cation and detection dataset,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 8769–8778.

[30] S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi, “Optimization by
simulated annealing,” Science, pp. 671–680, 1983.

[31] J. B. Kruskal, “Multidimensional scaling by optimizing goodness of fit
to a nonmetric hypothesis,” Psychometrika, pp. 1–27, 1964.

[32] J. Xie, R. Gao, E. Nijkamp, S.-C. Zhu, and Y. N. Wu, “Representation
learning: A statistical perspective,” Annual Review of Statistics and Its
Application, pp. 303–335, 2020.

[33] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to algorithms. MIT press, 2022.

[34] T. Nguyen, M. Rosenberg, X. Song, J. Gao, S. Tiwary, R. Majumder, and
L. Deng, “Ms marco: A human-generated machine reading comprehen-
sion dataset,” in Proceedings of the Workshop on Cognitive Computation,
2016, pp. 1–10.

[35] S. Caldas, S. M. K. Duddu, P. Wu, T. Li, J. Konečnỳ, H. B. McMahan,
V. Smith, and A. Talwalkar, “Leaf: A benchmark for federated settings,”
arXiv preprint arXiv:1812.01097, 2018.

[36] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using shifted
windows,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2021, pp. 10 012–10 022.

[37] P. He, J. Gao, and W. Chen, “Debertav3: Improving deberta using
electra-style pre-training with gradient-disentangled embedding shar-
ing,” in International Conference on Learning Representations, 2020,
pp. 1–16.

[38] N. Reimers and I. Gurevych, “Sentence-bert: Sentence embeddings using
siamese bert-networks,” in Proceedings of the Conference on Empirical
Methods in Natural Language Processing, 2019, pp. 3982–3992.

[39] T. Lattimore and C. Szepesvári, Bandit algorithms. Cambridge Uni-
versity Press, 2020.

[40] M. Douze, A. Guzhva, C. Deng, J. Johnson, G. Szilvasy, P.-E. Mazaré,
M. Lomeli, L. Hosseini, and H. Jégou, “The faiss library,” arXiv preprint
arXiv:2401.08281, 2024.

[41] PyTorch, “Tensors and dynamic neural networks in python with strong
gpu acceleration,” 2025. [Online]. Available: https://pytorch.org

[42] F. Lai, X. Zhu, H. V. Madhyastha, and M. Chowdhury, “Oort: Efficient
federated learning via guided participant selection,” in 15th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
21), 2021, pp. 19–35.

[43] F. Lai, Y. Dai, S. Singapuram, J. Liu, X. Zhu, H. Madhyastha, and
M. Chowdhury, “Fedscale: Benchmarking model and system perfor-
mance of federated learning at scale,” in International conference on
machine learning. PMLR, 2022, pp. 11 814–11 827.

13

https://www.databricks.com/blog/improving-retrieval-and-rag-embedding-model-finetuning
https://www.databricks.com/blog/improving-retrieval-and-rag-embedding-model-finetuning
https://www.llamaindex.ai/blog/fine-tuning-embeddings-for-rag-with-synthetic-data-e534409a3971
https://www.llamaindex.ai/blog/fine-tuning-embeddings-for-rag-with-synthetic-data-e534409a3971
https://huggingface.co/docs/transformers/model_doc/longformer
https://huggingface.co/docs/transformers/model_doc/longformer
https://pytorch.org

[44] M. Aumüller, E. Bernhardsson, and A. Faithfull, “Ann-benchmarks:
A benchmarking tool for approximate nearest neighbor algorithms,”
Information Systems, pp. 1–13, 2020.

[45] A. Gionis, P. Indyk, R. Motwani et al., “Similarity search in high
dimensions via hashing,” in Proceedings of the VLDB Endowment, 1999,
pp. 518–529.

[46] M. Muja and D. G. Lowe, “Scalable nearest neighbor algorithms for high
dimensional data,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, pp. 2227–2240, 2014.

[47] Q. Lv, W. Josephson, Z. Wang, M. Charikar, and K. Li, “Multi-
probe lsh: efficient indexing for high-dimensional similarity search,” in
Proceedings of the VLDB Endowment, 2007, pp. 950–961.

[48] J. Pound, F. Chabert, A. Bhushan, A. Goswami, A. Pacaci, and S. R.
Chowdhury, “Micronn: An on-device disk-resident updatable vector
database,” arXiv preprint arXiv:2504.05573, 2025.

[49] J. Wei, B. Peng, X. Lee, and T. Palpanas, “Det-lsh: A locality-sensitive
hashing scheme with dynamic encoding tree for approximate nearest
neighbor search,” in Proceedings of the VLDB Endowment, 2024, pp.
2241–2254.

[50] Y. Matsui, Y. Uchida, H. Jegou, and S. Satoh, “A survey of product
quantization,” ITE Transactions on Media Technology and Applications,
pp. 2–10, 2018.

[51] J. Gao and C. Long, “Rabitq: Quantizing high-dimensional vectors with
a theoretical error bound for approximate nearest neighbor search,” in
Proceedings of the ACM on Management of Data, 2024, pp. 1–27.

[52] J. Gao, Y. Gou, Y. Xu, Y. Yang, C. Long, and R. C.-W. Wong,
“Practical and asymptotically optimal quantization of high-dimensional
vectors in euclidean space for approximate nearest neighbor search,” in
Proceedings of the ACM on Management of Data, 2025, pp. 1–27.

[53] M. Wang, X. Xu, Q. Yue, and Y. Wang, “A comprehensive survey and
experimental comparison of graph-based approximate nearest neighbor
search,” in Proceedings of the VLDB Endowment, 2021, pp. 1964–1978.

[54] I. Azizi, K. Echihabi, and T. Palpanas, “Graph-based vector search: An
experimental evaluation of the state-of-the-art,” in Proceedings of the
ACM on Management of Data, 2025, pp. 1–31.

[55] C. Fu, C. Xiang, C. Wang, and D. Cai, “Fast approximate nearest neigh-
bor search with the navigating spreading-out graph,” in Proceedings of
the VLDB Endowment, 2019, pp. 461–474.

[56] Y. Peng, B. Choi, T. N. Chan, J. Yang, and J. Xu, “Efficient approximate
nearest neighbor search in multi-dimensional databases,” in Proceedings
of the ACM on Management of Data, 2023, pp. 1–27.

[57] I. Azizi, K. Echihabi, and T. Palpanas, “Elpis: Graph-based similarity
search for scalable data science,” in Proceedings of the VLDB Endow-
ment, 2023, pp. 1548–1559.

[58] S. Jaiswal, R. Krishnaswamy, A. Garg, H. V. Simhadri, and S. Agrawal,
“Ood-diskann: Efficient and scalable graph anns for out-of-distribution
queries,” arXiv preprint arXiv:2211.12850, 2022.

[59] M. Tepper, I. S. Bhati, C. Aguerrebere, M. Hildebrand, and T. L. Willke,
“Leanvec: Searching vectors faster by making them fit,” Transactions on
Machine Learning Research, pp. 1–16, 2024.

[60] H. Zhang, L. Cao, Y. Yan, S. Madden, and E. A. Rundensteiner,
“Continuously adaptive similarity search,” in Proceedings of the ACM
on Management of Data, 2020, pp. 2601–2616.

[61] J. Meng, H. Wang, J. Xu, and M. Ogihara, “One index for all ker-
nels (oniak): A zero re-indexing lsh solution to anns-alt (after linear
transformation),” in Proceedings of the VLDB Endowment, 2022, pp.
3937–3949.

[62] M. T. Özsu and P. Valduriez, Principles of Distributed Database Systems.
Springer Nature, 2019.

[63] F. Kiehn, M. Schmidt, D. Glake, F. Panse, W. Wingerath, B. Wollmer,
M. Poppinga, and N. Ritter, “Polyglot data management: state of the art
& open challenges,” in Proceedings of the VLDB Endowment, 2022, pp.
3750–3753.

[64] D. Agrawal, L. Ba, L. Berti-Equille, S. Chawla, A. Elmagarmid,
H. Hammady, Y. Idris, Z. Kaoudi, Z. Khayyat, S. Kruse et al., “Rheem:
Enabling multi-platform task execution,” in Proceedings of the ACM on
Management of Data, 2016, pp. 2069–2072.

[65] J. Duggan, A. J. Elmore, M. Stonebraker, M. Balazinska, B. Howe,
J. Kepner, S. Madden, D. Maier, T. Mattson, and S. Zdonik, “The
bigdawg polystore system,” ACM SIGMOD Record, pp. 11–16, 2015.

[66] Y. Chen, X. Pang, X. Li, H. Wang, B. Niu, and S. Hu, “U-dpap:
Utility-aware efficient range counting on privacy-preserving spatial data
federation,” in Proceedings of the ACM on Management of Data, 2025,
pp. 1–25.

[67] Y. Yuan, D. Ma, Z. Wen, Z. Zhang, and G. Wang, “Subgraph matching
over graph federation,” in Proceedings of the VLDB Endowment, 2021,
pp. 437–450.

[68] P. Zhang, B. Yao, C. Gao, B. Wu, X. He, F. Li, Y. Lu, C. Zhan, and
F. Tang, “Learning-based query optimization for multi-probe approxi-
mate nearest neighbor search,” The VLDB Journal, pp. 623–645, 2023.

[69] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-efficient learning of deep networks from decentralized
data,” in Artificial intelligence and statistics, 2017, pp. 1273–1282.

[70] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learning:
Concept and applications,” ACM Transactions on Intelligent Systems and
Technology, pp. 1–19, 2019.

[71] M. Ye, X. Fang, B. Du, P. C. Yuen, and D. Tao, “Heterogeneous feder-
ated learning: State-of-the-art and research challenges,” ACM Computing
Surveys, pp. 1–44, 2023.

14

	Introduction
	Problem Statement
	Preliminaries
	Problem Definition
	Challenges and Opportunities

	Competition-based Adaptive FANNS
	Contribution-based Adaptive FANNS
	Basic Contribution-based Algorithm
	Optimized Contribution-based Algorithm
	Reducing Communication Round via Batch Sampling
	Adaptive Exploration via Dynamic
	Improving Candidate Quality with Server Feedback

	Theoretical Analysis
	Assumptions and Notations
	Analysis and Results

	Evaluation
	Experiment Setup
	Experiment Results
	End-to-end Performance
	Ablation Study

	Related Work
	Conclusion
	References

