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Abstract—Continual adaptation to domain shifts at test time
(CTTA) is crucial for enhancing the intelligence of deep learning
enabled IoT applications. However, prevailing CTTA methods,
which typically update all batch normalization (BN) layers,
exhibit two memory inefficiencies. First, the reliance on BN layers
for adaptation necessitates large batch sizes, leading to high
memory usage. Second, updating all BN layers requires storing
the activations of all BN layers for backpropagation, exacerbating
the memory demand. Both factors lead to substantial memory
costs, making existing solutions impractical for IoT devices. In
this paper, we present FoCTTA, a low-memory CTTA strategy.
The key is to automatically identify and adapt a few drift-sensitive
representation layers, rather than blindly update all BN layers.
The shift from BN to representation layers eliminates the need
for large batch sizes. Also, by updating adaptation-critical layers
only, FoCTTA avoids storing excessive activations. This focused
adaptation approach ensures that FoCTTA is not only memory-
efficient but also maintains effective adaptation. Evaluations show
that FoCTTA improves the adaptation accuracy over the state-of-
the-arts by 4.5%, 4.9%, and 14.8% on CIFAR10-C, CIFAR100-
C, and ImageNet-C under the same memory constraints. Across
various batch sizes, FoCTTA reduces the memory usage by 3-fold
on average, while improving the accuracy by 8.1%, 3.6%, and
0.2%, respectively, on the three datasets.

Index Terms—continual test-time adaptation, adaptation-
critical layers, distributional shift

I. INTRODUCTION

After deploying deep neural networks (DNNs) to IoT de-
vices for real-world applications, the model accuracy often
severely degrades when there is a notable shift between the
source and the target domain [1]. In such cases, the pre-trained
model should adapt to the target data distribution at test time
without access to the target data labels, known as Test-Time
Adaptation (TTA) [2]. As the target domain may evolve over
time, continual test-time adaptation (CTTA) [3] is necessary,
and has attracted increasing research interest [4].

As a continual unsupervised domain adaptation paradigm
for IoT applications, CTTA must consider not only effective-
ness (e.g., accuracy), but also efficiency (e.g., computation,
memory, latency) when it comes to what, when, and how to
adapt [5]–[7]. Due to the unsupervised nature, CTTA solutions
[2] often minimize an entropy-based loss by updating certain
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model parameters via standard mini-batch gradient descent.
The adaption can be performed upon all test-time samples
or selectively to reliable samples. For example, EATA [8]
selects reliable samples through entropy filtering. Most CTTA
methods adopt a partial training strategy, which only updates
a small set of model parameters at test-time, for both effective
adaptation and computation efficiency.

Although mainstream CTTA proposals [8] opt for com-
putation efficiency, it does not easily translate into memory
efficiency, which is crucial for IoT applications. Specifically,
they update the affine parameters of all batch normalization
(BN) layers to adapt to the target domain. Even though a
small set of parameters are updated, this strategy demands
substantial memory to function properly. (i) A large batch
size is necessary to accurately estimate the current batch
statistics. (ii) Updating the BN layers still involves storing
activations for backpropagation, whose memory cost increases
with the number of BN layers updated. Both factors lead to
considerable memory overhead to maintain high adaptation
accuracy. Fig. 1(a) shows the memory usage of TENT [2]
with the increase of batch size. In Fig. 1(b), the BN-based
method is sensitive to the batch size. In the target domain, it
can only retain accuracy higher than the original pre-trained
model (36.5MB) by consuming 8× memory.

A few pioneer CTTA schemes have been proposed to
improve memory efficiency [9], [10]. Compared with standard
methods that update all affine parameters in all BN layers
[2], [8], these solutions either update shift-sensitive channels
in the BN layers [9], [11], or completely freeze the original
model and only update extra side-way prompt modules [10].
These schemes improve memory efficiency by reducing the
number of adapted layers (channels), which saves the storage
of activations during backpropagation. However, they still rely
on large batch sizes to boost adaptation accuracy, making them
still sub-optimal for low-memory adaptation.

In this paper, we aim at memory-efficient CTTA that
functions with small batch sizes and low activation storage
during backpropagation. Specifically, we choose to update the
representation layers rather than the BN layers to be more
resilient to batch sizes. In addition, observing the importance
of representation layers varies for adaptation, we only update
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Fig. 1. Evaluate memory cost and performance across various batch sizes.

the top-K critical representation layers to reduce the storage
of activations. By focusing on adaptation-critical representa-
tion layers, we not only ensure memory efficiency but also
achieve high adaptation accuracy. This is implemented via an
offline warm-up training stage after pre-training but before
testing, where simulated unseen distribution shifts are used
to identify shift-sensitive representation layers via a simple
gradient-based importance metric. At test time, only the top-
K critical representation layers are updated for adaptation.
Experimental results show that our approach achieves state-
of-the-art performance on standard benchmarks.

In summary, our contribution is threefold: (1) We leverage
the representation layers rather than the BN layers in the pre-
trained model for CTTA. This paradigm shift mitigates the
reliance on large batch size, an obstacle towards memory-
efficient CTTA. (2) We empirically show that the importance
of representation layers differs for CTTA, and propose a simple
metric to identify adaptation-critical representation layers.
The layer-wise selective updating scheme notably reduces the
storage of activations for CTTA. (3) We extensively validate
the effectiveness of our solution on various models and
datasets. Under the same memory constraints, we outperform
the state-of-the-art CTTA methods SAR, ECoTTA, and EATA,
showing accuracy improvements of 4.5%, 4.9%, and 14.8%
on CIFAR10-C, CIFAR100-C, and ImageNet-C, respectively.
Notably, we achieve a threefold reduction in average memory
usage across different batch sizes, while boosting average
accuracy by 8.1%, 3.6%, and 0.2% on the three datasets.

II. RELATED WORK

A. Test-Time Adaptation

Test-time adaptation (TTA) addresses shifts between source
and target domains during testing without accessing source
data [2]. For example, TENT [12] proposes an entropy min-
imization based unsupervised test-time objective, and adapts
to the target domain by updating the affine transformations in
the BN layers. Alternatively, SHOT [1] considers adaptation as
source hypothesis transfer, and updates the feature representa-
tion layers to the target domain while keeping the classification
layers unchanged. As an orthogonal solution, EATA [8] only
selects reliable samples for adaptation. Continual TTA (CTTA)
[3] extends the scope of TTA from a single target domain
to a sequence of continuously changing domains. SWA [13]

explores safety supervision for CTTA. SAR [14] proposes a
sharpness-aware and reliable entropy minimization to stabilize
CTTA. LAW [4] leverages Fisher Information Matrix (FIM)
to identify layers to keep or adapt.

Among the questions of what, when, and how to adapt in
CTTA, we focus on what to update at low memory cost, and
adopt standard approaches for entropy-based sample selection
[8] and entropy minimization-based loss [12].

B. Efficient On-device Model Adaptation
There is an increasing interest to enable model adaptation

on memory-limited platforms, where the bottleneck lies in
the storage of activations and the use of large batch size for
effective backpropagation. As a special model adaptation prob-
lem (unsupervised continual domain adaptation), CTTA faces
the same memory bottleneck, and a few pioneer studies have
explored memory-efficient CTTA. For example, TENT [2] re-
duces activation during adaptation by exclusively updating BN
layers. MECTA [9] further prunes activations of cached BN
layers during backpropagation. EcoTTA [10] keeps the entire
model parameters frozen and only updates a small set of extra
meta layers. Although these approaches significantly reduce
the memory consumption by saving storage of activations, they
still depend on large batch sizes. To operate with small batch
sizes, SAR [14] replaces the BN with layer normalization
(group normalization). TTN [11] adjusts the weight of the BN
layers updated by the test-time batch according to the domain
offset sensitivity of each BN layer.

Unlike the solutions above, we target at memory-efficient
CTTA with both reduced activation size and batch size. The
key idea is to update only a few representation layers sensitive
to distribution shifts.

III. PROBLEM STATEMENT

a) Continual TTA: We consider the standard continual
test-time adaptation (CTTA) setup [2]. A model fθ(y|x) with
parameters θ is pre-trained on source data Ds = (XS , Y S) =
{(x, y) ∼ ps(x, y)}, where x ∈ XS is e.g., an image and
y ∈ Y S is its associated label from the source class set Y S .
The target data are unlabeled and sampled from an arbitrary
target distribution Dt = {x ∼ pt(x)}, where pt(x) undergoes
continual changes over time t. Following the covariate shift
assumption, ps(y|x) = pt(y|x) and ps(x) ̸= pt(x). As the
target distribution gradually shifts from the source, fθ(y|x)
no longer approximates p(y|x), and needs adaptation to retain
accuracy. Unique in CTTA, θt should make predictions online
when source data is absent and adapt themselves into θt+1 for
the subsequent input, given access to only pt(x) at step t.

b) Memory Footprint of CTTA: In CTTA, the model fθ is
often a neural network fθ(·) = fθL

(fθL−1
(· · · (fθ1(·)) · · · )),

with parameters θl in layer l. Assume the parameter θl consists
of weights Wl and bias bl, and the input and output features
of this layer are al and al+1, respectively. Given the forward
pass al+1 = alWl+bl, the corresponding backward pass with
batch size 1 is:

∂L
∂al

=
∂L

∂al+1
W T

l ,
∂L
∂Wl

= aT
l

∂L
∂al+1

,
∂L
∂bl

=
∂L

∂al+1
(1)
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Fig. 2. We evaluated the performance of selecting the top-K layers of the adaptation model using various metrics on three commonly used CTTA benchmarks.
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Fig. 3. The pipeline of our FoCTTA framework.

Eq. 1 shows that to update a learnable layer with weight Wl,
one must store all al to compute the gradients. Hence, for a
model with L layers, the memory cost during backpropagation
given batch size B can be estimated as

m(cost) =

L∑
l=1

(m(θl) +m(al) ·B) (2)

where m(·) denotes the memory requirements. From Eq. 2,
the memory cost of adaptation (via gradient descent) increases
with # layers L updated and the batch size B. Note that
memory of the weights θ are constant during adaptation.

c) Parameters to Update in CTTA: Existing CTTA meth-
ods update the pre-trained model fθ(y|x) at test-time to
better approximate p(y|x). The parameters θ are often divided
into adaptable weights θa and frozen weights θf , where the
adaptable weights are updated by minimizing an unsupervised
loss L(x;θa ∪ θf ), x ∼ pt(x) w.r.t. θa. CTTA methods differ
in their choices of the parameter partition {θa,θf} and loss
function L, where the choice of adaptable weights θa affects
the memory cost. Most CTTA proposals opt for computation
efficiency, which does not translate into memory efficiency
due to the storage of substantial activations and the use of
large batch sizes. Therefore, we focus on identifying adaptable
weights θa that yield low memory cost without compromising
adaptation accuracy.

IV. METHOD

We propose FoCTTA, a memory-efficient CTTA scheme
that focuses on adaptation-critical representation layers.
FoCTTA updates representation layers rather than BN layers to
mitigate dependence on a large batch size B. It also selectively
updates the representation layers to reduce the number of
adaptable layers L. From Eq. 2, the reduction of B and
L decreases the memory usage during mini-batch gradient
descent, the key memory bottleneck in CTTA. Fig. 3 illustrates
the workflow of FoCTTA.

A. Updating Representation Layers for CTTA

As mentioned, a core issue in CTTA is to decide the
adaptable parameters θa. Inspired by the concept of source
hypothesis transfer [1], we focus on representation layers for
CTTA. According to [1], fθ(y|x) can be decomposed into
a feature extractor gs and a classifier hs, where fθ(y|x) =
hs(gs(y|x)). It suffices to update gs for CTTA. Since adapting
the feature extractor reduces the number of adaptable layers,
it holds potential for memory-efficient CTTA. Furthermore, as
shown in V-B, updating the representation layers works with
small batch sizes, an essential advantage over BN layers.

We push the idea one step forward by asking the fol-
lowing: can we achieve high CTTA accuracy by selectively
updating the representation layers? That is, we hypothesize
that the importance of representation layers varies for CTTA,
thereby only the critical ones needs updating. Although layer
importance and layer-wise fine-tuning have been extensively
explored in network pruning [15], their observations were
intended for supervised learning in the same domain. It is
unclear whether similar observations and hypothesis hold for
unsupervised adaptation to domains with shifts.

To this end, we conduct an empirical study to understand
the importance of individual representation layers to CTTA.
Specifically, we pick three layer importance metrics: gradient
norm [16], ℓ1 norm [17], and weight norm [18] commonly
used for supervised training without domain shift, and select
the top-K important layers (K = 5) for adaptation. We tested
various models and datasets in standard CTTA benchmarks.
Fig. 2 shows the results. More experimental details and results
are shown in the supplementary material Sec. A. We make the
following observations.



• Importance of representation layers differs for CTTA.
The importance indicated by different metrics varies
across layers. For instance, the gradient norm suggests
important representation layers are the shallow layers,
the ℓ1 norm shows deeper layers are more important,
while the weight norm indicates the critical representation
layers are distributed throughout the model.

• Gradient norm indicates layer importance for CTTA.
Across three datasets, we consistently observe that impor-
tant representation layers selected by the gradient norm
achieve the highest accuracy. The important layers iden-
tified by the other two metrics even yield performance
lower than the model without adaptation.

These observations validate the hypothesis that layer impor-
tance also varies in the context of CTTA and show the gradient
norm as an effective importance metric for CTTA.

B. Identifying Critical Representation Layers

To identify important representation layers sensitive to do-
main shifts, we leverage an additional warm-up training phase
after pre-training but before testing. It simulates domain shifts
by augmenting the original training data.

Specifically, we take each original data point x and create
an augmented counterpart x′ that shares the same semantic
information. As shown in Fig. 3, in the warm-up training
phase, we freeze the classifier hs of the pre-trained model,
optimize the feature extractor gs with cross-entropy loss using
the augmented data x′ as input, and collect the gradient norms
of each layer of gs in each batch.

The average gradient norm of each layer quantifies the
layer’s importance:

s = [log
1

BN

BN∑
b=1

∥∇θl∥]Ll=1 (3)

where BN , θl and ∇θl are the N -th batch size, parameters of
layer l, gradients of layer l, respectively. The vector s of length
L stores the importance of all layers in the pre-trained model.
We then sort s from high to low. The layers with the largest
average gradient norms are identified as important for CTTA.
In practice, the selection is conducted by α∥s∥, where α is a
tunable hyperparameter to balance memory cost and accuracy.
Note that the warm-up training is performed before test time,
which is common in other CTTA solutions [8], [10]. Also, it
does not require access to the source dataset (XS , Y S) during
test-time, and is agnostic to the architecture and pre-training
method of the original model.

C. CTTA Objective

During test-time adaptation, FoCTTA exclusively optimizes
adaptation-crucial layers for the target domains, maintaining
the other layers unchanged. In line with [8], we utilize the
entropy predicted by the adaptation model to identify reliable
samples for subsequent model optimization. Consequently, the
online adaptation loss function is formulated as

Lent = I{H(ŷ)<H0} ·H(ŷ), H(ŷ) = −
∑
c

p(ŷ) log p(ŷ) (4)

where ŷ is the prediction output of a test image, and p(·)
denotes the softmax function. The symbol I{·} represents an
indicator function, and H0 is a predefined hyperparameter.

In addition, to prevent catastrophic forgetting [3], [8] and
error accumulation [19] due to long-term continuous adapta-
tion, we add a regularization term to the loss function when
optimizing Eq. 4. The final loss function is

Ltotal = Lent + λ

M∑
m=1

∥x̃m − xm∥1 (5)

where λ is a positive scalar to control the ratio between two
terms in the loss function. M = α∥s∥ denotes the number
of layers to be updated. The terms x̃m and xm represent the
m-th output of the adapted model and the original model,
respectively. Our evaluations show that a small portion of
(1.0%) representation layers need to be updated.

V. EXPERIMENTS

A. Experimental Setup

We use CIFAR10, CIFAR100 [20], and ImageNet [21] as
the source domain datasets, while CIFAR10-C, CIFAR100-C,
and ImageNet-C as the corresponding target domain datasets.

All experiments use the PyTorch. We use identical pre-
trained models: WideResNet-28 and WideResNet-40 from
RobustBench, and ResNet-50 from TTT++. During warm-
up training, data augmentation (e.g., color jittering, padding,
random affine, cropping, inversion, and flipping) is applied to
the source data. The model is then fine-tuned for one epoch
using cross-entropy loss and the Adam optimizer (learning
rate: 0.00025) to identify crucial adaptation layers. At test
time, we use the Adam optimizer with a learning rate of 0.001
for CIFAR datasets and 0.00025 for ImageNet. The entropy
threshold H0 is set to 0.4 × lnC, where C is the number of
classes, and λ = 1 and α = 0.1 are empirically set.

We assess various methods through two configurations: 1)
Under memory constraints, we test the error rates; 2) Under
the same batch size, we compute the error rates and memory
consumption. We compare our method with Source, Continual
TENT [2], CoTTA [3], ECoTTA [10], EATA [8], SAR [14],
SWA [13], and LAW [4].

B. Performance Evaluation

Performance with memory constraints. We evaluate ac-
curacy under memory constraints by adjusting batch sizes
to ensure comparable memory consumption across methods.
Table II shows per-domain error rates in CTTA, along with
average memory consumption and error rate. Analysis of
Table II reveals that FoCTTA significantly improves accu-
racy across all datasets and models in memory-constrained
environments. Methods like TENT, EATA, and SAR, which
adapt all BN layer affine parameters, or CoTTA, SWA, and
LAW, which update all model parameters, require storing
large activations for backpropagation. This forces the use
of smaller batch sizes, leading to performance degradation
and collapse. For instance, with a 50MB memory constraint,



TABLE I
COMPARISON OF ERROR RATE (%) AND MEMORY CONSUMPTION (MB) ON THE HIGHEST CORRUPTION SEVERITY UNDER THE SAME BATCH SIZE

Datasets Method
Batch Size

128 64 32 16 8 4
Err. Mem. Err. Mem. Err. Mem. Err. Mem. Err. Mem. Err. Mem. Avg. err Avg. mem

CIFAR10-C

Source 43.5 204.3 43.5 120.4 43.5 78.4 43.5 57.5 43.5 47.0 43.5 41.7 43.5 91.6
EATA 18.7 1240.3 20.3 638.4 23.9 337.5 28.9 187.0 47.2 111.8 47.2 74.2 31.0 431.5
Continual TENT 25.6 1240.3 38.1 638.4 46.5 337.5 62.2 187.0 78.7 111.8 86.4 74.2 56.3 431.5
CoTTA 17.9 2939.1 18.7 1688.4 22.2 1063.1 34.5 750.4 59.3 594.1 79.0 515.9 38.6 1133.4
SWA 17.7 2939.1 18.6 1688.4 21.7 1063.1 31.8 750.4 56.9 594.1 76.3 515.9 37.2 1133.4
ECoTTA 19.6 747.2 21.8 397.0 22.3 221.8 39.8 134.3 46.7 90.5 54.2 68.6 34.1 276.6
SAR 20.4 1240.3 20.7 638.4 21.4 337.5 22.9 187.0 32.6 111.8 75.7 74.2 32.3 431.5
LAW 16.3 2647.3 17.5 1396.6 18.6 771.3 22.8 458.6 51.2 302.3 78.2 224.1 34.1 966.7
FoCTTA (Ours) 16.7 356.0 17.3 197.9 18.9 118.9 21.6 79.4 27.1 59.7 35.7 49.8 22.9 143.6

CIFAR100-C

Source 46.8 35.8 46.8 19.0 46.8 10.6 46.8 6.4 46.8 4.4 46.8 3.3 46.8 13.3
EATA 36.1 367.2 37.0 184.7 39.7 93.5 44.1 47.9 51.7 25.1 74.7 13.7 47.2 122.0
Continual TENT 41.3 367.2 49.0 184.7 79.2 93.5 87.0 47.9 95.4 25.1 98.3 13.7 75.0 122.0
CoTTA 38.1 783.6 39.6 405.3 43.4 216.2 51.6 121.6 71.4 74.3 91.3 50.7 55.9 275.3
SWA 37.8 783.6 39.1 405.3 42.8 216.2 50.3 121.6 69.6 74.3 90.1 50.7 55.0 275.3
ECoTTA 37.2 174.8 37.9 88.8 39.6 45.8 46.2 24.3 85.7 13.6 96.4 8.2 57.2 59.3
SAR 35.5 367.2 36.2 184.7 40.2 93.5 68.7 47.9 94.1 25.1 98.3 13.7 62.2 122.0
LAW 35.6 779.0 36.1 400.7 38.1 211.6 42.4 117.0 56.9 69.7 92.0 46.1 50.2 270.7
FoCTTA (Ours) 34.3 88.4 34.7 45.9 35.8 24.7 38.7 14.1 44.5 8.8 73.6 6.1 43.6 31.3

ImageNet-C

Source 82.4 1053.2 82.4 539.4 82.4 282.5 82.4 154.0 82.4 89.8 82.4 57.7 82.4 362.8
EATA 59.1 5780.3 60.8 2903.0 63.7 1464.4 68.9 745.0 79.9 385.4 86.4 205.5 69.8 1913.9
Continual TENT 67.0 5780.3 67.5 2903.0 71.7 1464.4 91.7 745.0 97.4 385.4 99.3 205.5 82.4 1913.9
CoTTA 65.9 11520.4 66.1 5913.5 67.3 3110.1 82.2 1708.3 96.5 1007.5 99.7 657.1 79.6 3986.2
SWA 65.3 11520.4 65.8 5913.5 66.7 3110.1 81.4 1708.3 93.6 1007.5 99.4 657.1 78.7 3986.2
ECoTTA 80.8 2540.2 89.7 1332.7 97.8 729.0 99.5 427.2 99.8 276.2 99.8 200.8 94.6 917.7
SAR 61.9 5780.3 62.4 2903.0 63.8 1464.4 76.7 745.0 80.4 385.4 85.2 205.5 71.7 1913.9
LAW 60.7 11316.0 61.4 5709.1 62.9 2905.9 74.4 1503.9 94.2 803.1 98.9 452.7 75.4 3531.1
FoCTTA (Ours) 61.4 1598.4 62.8 814.8 65.1 423.0 68.1 227.2 77.0 129.2 83.0 80.3 69.6 545.5

TABLE II
COMPARISON OF ERROR RATE (%) ON THE HIGHEST CORRUPTION

SEVERITY UNDER MEMORY CONSTRAINTS.

Method Metrics Datasets
CIFAR10-C CIFAR100-C ImageNet-C

EATA Avg. err 22.3 44.1 79.9
Mem. 394.0 47.9 385.4

Continual TENT Avg. err 34.0 87.0 97.4
Mem. 394.0 47.9 385.4

CoTTA Avg. err 99.9 91.3 99.7
Mem. 394.2 50.7 393.8

SWA Avg. err 99.9 90.1 99.6
Mem. 394.2 50.7 393.8

EcOTTA Avg. err 21.8 39.6 99.5
Mem. 397.0 45.8 427.2

SAR Avg. err 21.2 68.7 80.4
Mem. 394.0 47.9 385.4

LAW Avg. err 24.1 92.0 98.9
Mem. 378.8 46.1 452.7

FoCTTA (Ours) Avg. err 16.7 34.7 65.1
Mem. 356.0 45.9 423.0

TABLE III
ABLATION EXPERIMENTS ON CIFAR100-C WITH A BATCH SIZE OF 32.

Method FoCTTA w/o Reg. w/o LS. w/o Reg. and LS.
Avg. err(%) 35.8 36.1 98.7 98.7

TENT achieves 87% accuracy on CIFAR100-C, while the
original model performs at 46.8%. In contrast to ECoTTA,
which updates additional side-way meta networks, FoCTTA
only updates 1.0% of the representation layers, resulting
in an average accuracy improvement of 14.8% across three
datasets. FoCTTA outperforms state-of-the-art methods like
SAR, ECoTTA, and EATA, achieving accuracy improvements

TABLE IV
ABLATION STUDY ON DATA AUGMENTATION TYPE.

type jitter +flip +blur +invert
Avg err.(%) 36.4 36.2 35.9 35.8

of 4.5%, 4.9%, and 14.8% on CIFAR10-C, CIFAR100-C, and
ImageNet-C, respectively.

Our findings highlight FoCTTA’s superiority in resource-
constrained environments. Unlike methods that update all
BN layers, FoCTTA selectively adapts only the drift-sensitive
representation layers, avoiding the need for large batch sizes.
This targeted update reduces memory usage by eliminating
unnecessary activations, optimizing both batch size and activa-
tion memory efficiency for CTTA adaptation. Furthermore, we
reveal the challenges of full-parameter update methods under
memory constraints, particularly the performance collapse
observed with smaller batch sizes. This research deepens our
understanding of the adaptability and performance of various
methods in memory-limited settings.

Performance with the same batch size. Table I presents
the average error rate and memory consumption on the cor-
rupted dataset under CTTA, considering different batch sizes,
models, and datasets. FoCTTA reduces memory consumption
by threefold while improving accuracy by 8.1%, 3.6%, and
0.2% on CIFAR-10C, CIFAR-100C, and ImageNet-C, respec-
tively. This demonstrates FoCTTA’s robustness across batch
sizes and memory efficiency. Its superior performance stems
from updating only adaptation-critical representation layers,
reducing reliance on batch size. Unlike methods that optimize
all BN layers (TENT, EATA, SAR) or update all parameters



TABLE V
AVG ERR.(%) WITH DIFFERENT VALUES OF λ.

λ 0.1 0.5 0.9 1.0 1.2 1.5
Avg err.(%) 36.0 35.9 35.9 35.8 36.0 36.1

TABLE VI
AVG ERR.(%) WITH DIFFERENT VALUES OF α.

α 0.03 0.05 0.08 0.1 0.15 0.20
Avg err.(%) 37.9 36.8 36.0 35.8 35.8 36.1

(CoTTA, SWA, LAW), which require larger batch sizes or
store excessive activations, FoCTTA optimizes both batch size
and activation, providing significant memory savings without
sacrificing accuracy.

C. Ablation Study

In the following experiments, if not specified, we use
CIFAR100-C and robustly pre-trained WideResNet-40.

Necessity of Each Design. Table III demonstrates the in-
fluence of removing individual designs in FoCTTA on its per-
formance. The results show a significant performance decline
when any FoCTTA design is removed, highlighting the crucial
role of each design in achieving exceptional performance.
Particularly, the choice of the adaptation-critical layer is vital
for FoCTTA, and its absence leads to performance collapse.

Influence of λ and α: Table V and Table VI show the
effect of λ and α on the error rate of FoCTTA, respectively.
Here, λ represents the weight of the regularization term. α
represents the number of adaptation-critical layers selected
for optimization. We choose the setting that achieves the best
performance, with λ = 1.0 and α = 0.1 as default values.

Influence of the data augmentation type: We use data
augmentation in the warm-up training phase to simulate
domain shifts. Table IV demonstrates the influence of data
augmentation types on FoCTTA, revealing its robustness. By
using default settings, we choose color jittering and inverting,
achieving the best performance.

VI. CONCLUSION

This paper addresses memory efficiency challenges during
CTTA adaptation by proposing FoCTTA, a low-memory strat-
egy. Instead of updating all BN layers, FoCTTA selectively
adapts drift-sensitive representation layers, eliminating the
need for large batch sizes. By updating only critical layers, it
avoids storing excessive activations, enhancing memory effi-
ciency while maintaining effective adaptation. This approach is
validated through evaluations on various models and datasets.
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