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Abstract—Sensing tongue movements enables various appli-
cations in hands-free interaction and alternative communication.
We propose BARTON, a BARometer based low-power and robust
TONgue movement sensing system. Using a low sampling rate
of below 50 Hz, and only extracting simple temporal features
from in-ear pressure signals, we demonstrate that it is plausible
to distinguish important tongue gestures (left, right, forward) at
low power consumption. We prototype BARTON with commodity
earpieces integrated with COTS barometers for in-ear pressure
sensing and an ARM micro-controller for signal processing. Eval-
uations show that BARTON yields 94% classification accuracy
and 8.4 mW power consumption, which achieves comparable
accuracy, but consumes 44 times lower energy than the state-
of-the-art microphone-based solutions. BARTON is also robust
to head movements and operates with music played directly from
earphones.

Keywords-Human computer interaction; Ubiquitous comput-
ing; Pressure sensors;

I. INTRODUCTION

Sensing tongue movements has attracted increasing research

interests due to its applications in human-computer interac-

tion and alternative communication. Fine-grained tongue pose

tracking [1] [2] provides Silent Speech Interfaces (SSIs) for

speech-impaired patients or high-noise environments e.g., fire-

fighting to communicate. Recognition of pre-defined tongue

gestures [3] [4] enables hands-free interaction for device

control and input in scenarios where we prefer not to interact

with physical devices in hand, such as in crowded metros or

riding bikes.

Previous research on tongue movement sensing varies in

sensing modalities and sensor placement. Tongue-mounted

magnetic senors [2] are effective in tongue pose track-

ing yet intrusive to users. Jaw-attached electromyography

(EMG) electrodes [5], cheek-attached resistive textile sensor

arrays [5], and radar integrated in helmets [6] are non-invasive,

but are cumbersome and uncomfortable to wear. Computer

vision based approaches [7] require no sensors worn by users,

but only function when the tongue is outside the mouth.

Since it is socially acceptable to wear earphones in daily life

and people tend to wear them for extended periods of time,

a promising alternative is to monitor tongue movements via

in-ear sensing. Pioneer work has demonstrated the viability

to monitor heart rate [8], localize pairs of teeth clicks [9],

and recognize respiratory-related events such as snoring and

coughing [10], and tongue gestures [4] using microphones. In-

ear microphone based tongue and jaw activity sensing operates

by capturing and processing sounds induced by mouth-related

motions. However, these solutions have two drawbacks. (i)
In-ear microphone sensing is vulnerable to various audible

interference e.g., music played from earphones. (ii) Audio

processing involves sophisticated signal processing e.g., Fast

Fourier Transforms (FFTs). Techniques to filter speech, music

and other everyday audio interference further complicates

the processing pipeline. These frequent computation-intensive

operations can easily drain the battery of wearable devices.

In this work, we propose BARTON, a robust and low-power
in-ear tongue movement sensing system using commercial off-

the-shelf (COTS) barometers. BARTON directly measures the

subtle air pressure fluctuations in the ear canal induced by

facial muscle movements attached to the tongue. Due to the

low power consumption (< 5μA at 1 Hz sampling rate) and

low sampling frequencies (≤ 50 Hz) of the barometers BAR-

TON is able to accurately detect tongue movements with lower

computational and power efforts compared to microphone

based systems. Since a typical barometer is more sensitive

to low frequencies, it is naturally resilient to various audio

interference such as music and speech. In addition, due to their

small form factors, barometers can be discreetly integrated into

headphones and earpieces for complete invisibility.

To enable practical tongue movement sensing with in-ear

barometers, multiple challenges need to be addressed. (i) How

to capture and distinguish the subtle pressure patterns of

different tongue movements under tight power constraints?

(ii) How to avoid low-frequency interference such as head

movements? (iii) How to implement a low-power tongue

movement recognition pipeline?

Contributions. BARTON addresses the above challenges by

leveraging the flat frequency response of COTS barometers

in ultra-low frequencies (Sec. III) and extracting features of

pressure signals from the time domain only. It harnesses

the difference in correlation between a pair of barome-

ters to distinguish head movements and tongue movements

(Sec. IV-B). The carefully selected feature set, the simple yet

effective linear classifiers and the low-power micro-controller

implementation make BARTON effective and power-efficient

in tongue movement recognition. We implement BARTON
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with COTS barometers and integrate it into COTS earphones

(Sec. V). Evaluations show that BARTON is able to recognize

three primary tongue movements (left/right/forward) with 94%

classification accuracy while consuming 8.4 mW power. It is

also resilient to interfering activities like head movements.

Furthermore, case studies demonstrate that BARTON still

achieves high recognition accuracy even with music played

directly from the earphones, which is almost impossible in

existing microphone-based solutions.

The rest of the paper clarifies each of the above contri-

butions, beginning with a frequency response measurement of

COTS barometers, followed by the detailed design, implemen-

tation, and evaluation of BARTON.

II. RELATED WORK

BARTON is related to the following research.

Tongue Movement Sensing Systems. Primarily designed

for patients and paralyzed people, precise tongue motion

tracking systems usually place dedicated sensors directly on

the tongue [2]. Less intrusive approaches utilize EMG elec-

trodes [5] or textile pressure matrices [3] attached to the facial

skin to capture tongue-related muscle movements. Contact-

less techniques include wireless sensing [6] and computer

vision [7]. But they either require a radar mounted on the

shoulder [6] or the tongue to be outside the mouth [7], which

is uncomfortable to wear or socially awkward. BARTON does

not aim to replace dedicated assisting tools for patients, but

rather to provide a low-cost, energy-efficient and user-friendly

tongue movement sensing modality for everyday use.

In-ear Sensing of Mouth Activities. Outer ear interfaces

(OEIs) has attracted increasing attention for their non-intrusive

sensor placement and the effectiveness to detect mouth-related

activities. Bedri et al. [13] exploit infrared proximity sensors

to detect jaw movements. Bitey [9] recognizes sounds of five

different pairs of teeth clicks with a bone-conduction micro-

phone. Ren et al. [10] monitor respiratory-related events such

as snore and cough using smartphone earpieces. BARTON is

inspired by in-ear mouth activity sensing with microphones.

Our work is most relevant to [4] [14], which distinguish

four tongue gestures by deriving tongue movement ear pres-

sure (TMEP) signals from a microphone. However, most

microphones are optimized for human speech, which requires

extra voice rejection algorithms for mouth activity sensing.

Instead, BARTON utilizes COST barometers to detect ear

canal pressure changes, which operates at a frequency range

lower than human voice. Hence BARTON naturally avoids the

interference of human speech, and is more privacy-preserving.

In addition, BARTON is optimized in energy consumption to

enable long-term usage.

III. DETECTING TONGUE MOTIONS WITH BAROMETERS

This section presents the feasibility of in-ear sensing of

tongue movements using COTS barometers.
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Fig. 1. Frequency response measurement setup.

A. Principles of In-Ear Tongue Movement Sensing

Since the oral cavity is connected to the ear canal, muscle

movements of the tongue can induce deformation of, and thus

pressure changes in the ear canal. Most mouth activities occur

within the frequency range of 3.6Hz to 5.9Hz [16]. Ear canal

pressure variations induced by normal tongue movements also

tend to be within the same range. These changes in pressure

and airflow generate subtle vibrations and sound waves prop-

agating through bones and tissues, which can be acquired by

microphones [4], [10]. However, commodity microphones are

not optimized for the spectra of non-speech body sounds [15],

and customized microphones are often required to obtain

high-fidelity sound signals. Instead of detecting sounds of

tongue motions using microphones [4], [15], we propose to

sense tongue movements by directly measuring in-ear pressure
changes via COTS barometers.

B. Frequency Response of COTS Barometers

One primary motivation to exploit barometers instead of

microphones is low-power, which is important for continuous

sensing applications. A COTS barometer consumes around

5μW for taking a single sample [11]. Digital microphones

consume around 1.2 mW but typically only support sampling

rates that are too high for our purposes (over 40 kHz). Typical

low-cost analog microphones [12] consume around 0.2 mW.

However, an analog microphone needs additional signal pro-

cessing steps such as amplification and analog-to-digital con-

version, digital barometers already provide a digital pressure

signal. The post-processing steps are usually by a large factor

more power hungry than the microphone itself [15].

A natural question arises whether it is feasible to down-

sample a microphone for low-power tongue movement sens-

ing. We argue it is infeasible because commodity microphones

are not optimized for such an ultra-low frequency range.

We validate our claim through the following frequency

response measurement of a COTS barometer and a COTS

microphone. A desired frequency response in our application

demands a high and flat spectrum in the ultra-low frequency

band to facilitate detection of pressure changes even at a
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Fig. 2. Results of frequency response tests.

sampling rate below 50Hz. A sampling rate of 50Hz suf-

fices to capture pressure changes induced by normal tongue

movements, which occur below 6Hz [16]. As will be shown

in Sec. VI-B3, even a lower sampling rate of 20Hz proves to

be sufficient for accurate tongue movement sensing.

We used an Agilent 33500A arbitrary waveform generator to

create single-tone signals at {1, 2, 3, . . . , 20Hz}, respectively,

to cover the frequency range of normal tongue movements.

Note that we also cover a slightly higher frequency range (up

to 20Hz) to show the trend in the frequency response of the

microphone. The wave generator is connected to a speaker of

a headphone, which is placed inside a 2 cm tube (to resemble

the ear canal) together with the sensor for testing. The sensor

is connected to a Raspberry Pi to collect measurements from

the sensor at a fixed rate of 50Hz. Since both the barometer

and the microphone are omnidirectional, the orientation of the

sensor is irrelevant for the frequency response measurement.

Fig. 1 illustrates the setup of the frequency response test. We

measure the frequency response for one mainstream MEMS

barometer (Bosch BMP280 [11]) and one mainstream MEMS

microphone (SPA2410LR5H-B [12]).

Fig. 2 plots the frequency responses of the MEMS barom-

eter and the microphone from 1Hz to 20Hz. The frequency

response of the microphone drops almost linearly in such a

low frequency range and cuts off at 10Hz. In contrast, the

barometer exhibits consistently flat response and it maintains

a moderate magnitude even at frequencies below 10Hz. The

results indicate that microphones are usually designed for the

audible frequencies (20Hz to 20 kHz), and are not optimized

for such a ultra-low frequency range. Note that ear canal

pressure variations induced by normal tongue movements tend

to be audible frequencies [16]. Therefore, barometers are better

suitable than microphones for capturing in-ear pressure caused

by tongue movements.

C. Acquiring Tongue Movement induced Pressure Signals

Previous microphone-based efforts usually need molded

earplug housing design [4] or customized foam shells [17]

to obtain high-fidelity acoustic measurements. Despite the

subtle in-ear pressure signals, we only adopt standard in-ear

TipBarometer

I2C Cable

(a) (b)

Fig. 3. (a) Sensor sealing for barometric in-ear pressure sensing: custom
made with a foam tip (right) and integration into a commercial rubber-tip
earpiece (left). (b) Prototype plugged in the ear of a volunteer.

headphone tips made of foam or rubber (Fig. 3) to place

the barometer. Evaluations show that barometer sealing with

standard headphone tips is sufficient to shield environmental

noise and achieve accurate tongue movement recognition.

However, the tips should be of suitable sizes to create an

enclosed environment in the ear canal (see Sec. VI-D1). It

is also feasible to integrate the barometer into the earpiece

to recognize tongue movements (as control commands) while

listening to music (evaluated in Sec. VI-D).

Fig. 4 plots example pressure signals of both ears for

three tongue gestures (left, right and forward) and potential

interfering activities such as taking the sensors off and head

movements. Even though the barometers sample the in-ear

pressure signals at only 40Hz, i.e., 50 to 200 times lower

than previous works [4] [17], the pressure signals still exhibit

distinct characteristics for different tongue gestures and the

interfering activities.

IV. DESIGN

This section elaborates on the detailed designs of BARTON

including the adoption of barometer pairs, as well as feature

selection and classifiers suitable for low-power sensing.

A. Scope

We mainly focus on primary tongue movements including

left, right and forward [4] [14]. Such a gesture set is suffi-

cient to enable novel hands-free interactions e.g., switching

songs through tongue gestures when listening to music using

earphones. Complex gestures can be defined by combin-

ing the primary tongue movements e.g., left-right. The aim

of this study is not to cover an exhaustive set of tongue

movements, but rather to (i) explore low-power design with

COTS barometers, and (ii) investigate robust barometer-based

tongue movement sensing that works with interfering activities

such as head movements and strong ambient noise such as

background music from earphones. We envision BARTON as

one step further towards always-on tongue interaction interface

in free-living environments.
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(a) Tongue Left (b) Tongue Right (c) Tongue Forward

(d) Head Left (e) Head Right (f) Head Vertically

Fig. 4. In-ear pressure signals (a) 5 times of moving tongue to the left between 5 to 10 second; (b) 5 times of moving tongue to the right between 5 to
10 second; (c) 5 times of moving tongue forwards between 5 to 10 second; (d) moving head to the left between 2 to 5 second; (e) moving head to the right
between 3 to 7 second and (f) moving head vertically between 3 to 7 second.

B. Leveraging Barometer Pair

While Fig. 4 shows notable variations in the pressure signals

for different tongue movements, it is challenging to robustly

differentiate them under the low-power constraint. (i) To save

energy, it is prohibitive to apply frequency domain features for

classification since they involve intensive power-hungry oper-

ations such as Fast Fourier Transforms (FFTs), yet frequency

domain features prove to be important in recognizing mouth

activities and tongue movements using microphones [4], [15],

[18], [19]. (ii) The more energy-efficient temporal features

alone are insufficient to distinguish tongue gestures (e.g., left

and forward, see Fig. 4a and Fig. 4c), and can be easily

interfered by head movements (e.g., tongue moving to the left

and head moving to the left, see Fig. 4a and Fig. 4d).

To enable robust and low-power tongue movement recogni-

tion, we leverage a pair of barometers placed in both ears. Due

to the low sampling rate and the low energy consumption of

the barometer, the additional energy consumption of an extra

barometer is negligible. However, adopting a barometer pair

dramatically improves the capability to differentiate tongue

gestures, even by using temporal features only. For instance,

the pressure signals in both ears are negatively correlated when

moving the tongue leftwards (Fig. 4a) yet positively correlated

when moving the tongue forwards (Fig. 4c). Head movements

usually generate less correlated pressure signals between left

and right ear than mouth movements (e.g., Fig. 4f).

C. Features and Classifiers

The raw pressure signals are segmented into windows of

samples pwin with a window size of 40 samples (1 second)

and 50% overlap. All samples pi are detrended, i.e., pi = pi−
mean(pwin), where mean(pwin) is the mean value within the

window. To remain low-power, we exclude frequency-domain

features and avoid high-order (e.g., skewness) time-domain

features. Table I summarizes a list of candidate time-domain

features for tongue movement recognition. The features cover

averages, extremes, variances of samples from each individual

barometer as well as correlations of pressure signals between

the barometers in the left and right ear canals.

To select effective features, we both pick reasonable features

and conduct automatic feature selection schemes.

As the adoption of barometer pairs facilitates to differ

tongue movements, we select the following features for tongue

movement recognition. Specifically, tongue movements gener-

ally produce significantly stronger peaks in the pressure signals

than head movements (see Fig. 4a and Fig. 4d). Thus it is

rational to include features that characterizes extremes such

as min, max, minDiff, maxDiff and varDiff. To distinguish the

direction of tongue movement, we select cov and min/max,

because (i) The pressure signals in the left and right ear canals

exhibit strong negative correlations when moving the tongue

left and right (see Fig. 4a and Fig. 4b), but notably positive

correlations when moving the tongue forward (see Fig. 4c).

This observation can be captured by cov. (ii) The pressure

signal shows more notable changes in the right ear when

moving the tongue to the left (Fig. 4a), because the muscles on

the right are stretched more, and vice-versa. This observation

can be captured by min/max.

Afterwards we adopt an automatic feature selection scheme

based on the Sequential Feature Selection algorithm [20] to
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TABLE I
SUMMARY OF CANDIDATE FEATURES.

Feature Acronym

Mean of samples within a window mean
Mean of differences of consecutive samples within a window meanDiff
Minimum of samples within a window min
Minimum of differences of consecutive samples within a window minDiff
Maximum of samples within a window max
Maximum of differences of consecutive samples within a window maxDiff
Variance of samples within a window var
Variance of differences of consecutive samples within a window varDiff
Root mean squares of samples within a window rms
Covariance of samples between two ears within the corresponding windows cov
Covariance of differences of consecutive samples between two ears within the corresponding windows covDiff

further optimize the feature set. Finally, we select min, max,

minDiff, maxDiff, rms, varDiff, cov and covDiff for tongue

movement recognition.

We use Error Correcting Codes based on binary Support

Vector Machines (SVM), K-Nearest Neighbour (KNN) and

Decision Tree (DT) as candidate classifiers because they are

suitable to be implemented on memory, power and computa-

tion limited micro-controllers. We compare the performances

of different classifiers in detail in Sec. VI-B1.

V. IMPLEMENTATION

We implement BARTON with COTS barometers as the

sensing unit and a micro-controller for low-power tongue

movement recognition.

Sensing Unit. We use two Bosch BMP280 barometers [11]

to capture pressure signals. The barometers are set to sample

at 40Hz operating in the high resolution mode (i.e., with an

internal over-sampling of 8 samples) and internal temperature

compensation turned on. This leads to a resolution of 1 Pa with

a RMS noise of approximately 1.6 Pa of a pressure sample.

The barometers are attached to a rubber or foam cover to

be fit into the ear. We also integrate two barometers into a

pair of earphones to evaluate the performance of BARTON

when playing music from the earphones. The barometers

communicate with the embedded processing unit via an I2C

bus.

Embedded Processing Unit. We use the launchpad msp-
exp432p401r featuring the MSP432P401R micro-controller

from Texas Instruments, which is based on a Cortex M4 core.

It consumes relatively low energy both in active (240 μA) and

sleep mode (< 1 μA). The chip is optimized for floating point

arithmetic operations, making it favorable for implementing

simple classification algorithms. The micro-controller runs at

3MHz, and the CPU communicates with the barometers over

I2C at a speed of 400kHz.

Training is performed offline on a laptop by transferring

pressure samples via UART from the barometers. Tongue

movement recognition is performed online by using a realtime

operating system from Texas Instruments (TI-RTOS) to sched-

ule sampling and classification tasks in the micro-controller.

VI. EVALUATION

In this section, we evaluate the performance of BARTON

and conduct case studies to show the effectiveness and robust-

ness of BARTON.

A. Data Collection

We perform measurements of the the three tongue move-

ments and the two interfering activities with one user. The

user is consecutively performing each activity multiple times.

As mentioned in Sec. IV-C the features from the pressure

signals are extracted over a fixed-sized sliding window of

1 sec and 50% overlap. We will discuss the impact of different

window sizes and sampling frequencies in Sec. VI-B2 and

Sec. VI-B3 respectively. In Sec. VI-D we also collect data

from five additional users and investigate the robustness of

BARTON across different users.

B. Accuracy

1) Overall Accuracy: Fig. 5 shows the confusion matrices

of classifying the three tongue movements (L: Left, R: Right,

F: Forward) as well as the interfering activities (H: Head

movement, I: Idle) using a sliding window size of 1 second.

Each column of the matrix represents the inferred movement,

while each row represents the actual movement. The results

are based on a 10-fold cross-validation over 444 samples

for each activity. The average classification accuracies for all

movements (three tongue movements and two categories of in-

terfering activities) are 94%±5%, 91%±7.1% and 89%±9.3%
for SVM, KNN and decision tree, respectively, while random

guesses yield an accuracy of 20% for five gestures. Among the

three tongue movements, moving forward is the most likely

to be misclassified into head movements. This is expected

because moving the tongue forward is characterized by the

highly positive correlation between the pair of barometers.

Imbalanced stretch of facial muscles and unintentional head

movements can incur inconsistent pressure measurements in

barometer pair, which leads to misclassification.

2) Impact of Window Size: The choice of window size to

extract features affects the classification accuracy and delay.

A large window may average out local temporal dynamics

while a small window can be prone to noise. Fig. 6 plots

the average classification accuracies with different window
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Fig. 5. Confusion matrices (accuracy in %) for tongue gesture recognition and different classifiers.
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sizes with a constant sampling rate of 40 Hz. A window size

of at least 1 sec achieves good accuracies for all the three

classifiers. This results is not surprising because the tongue

activities have an average duration of 1 sec while the shortest

and longest samples last for 0.75 sec and 1.25 sec respectively.

Although the classification slightly improves with a window

size above 1 sec it is likely that classifier does detect two

individual tongue movements that are performed consecutively

within a short time period as a single activity. Consequently

the choice of the window size will also greatly depend on the

the users preference.

3) Impact of Sampling Rate: The sampling rate for pressure

measurements is a trade-off between classification accuracy

and energy consumption. A low sampling rate improves

power efficiency but the coarse sampled pressure signals

may decrease the classification accuracy. Fig. 7 shows the

average classification accuracies at different sampling rates.

The accuracies remain almost the same if the sampling rate is

higher than 20 Hz for all classifiers. An additional interesting

observation is the significantly better performance of the

Decision Tree compared to the SVM classifier for frequencies

below 20 Hz. A possible reason is that the feature loose their

distinctiveness with decreasing sampling rate and, thus, the

binary classification of the SVM performs worse. In fact, at a

sampling rate of 4 Hz the SVM misclassified the majority of

the samples as Idle. In conclusion using a Decision Tree at

low sampling rates helps to save energy while still achieving

accuracies above 80%. At high sampling rates the SVM

classifier performs best with an accuracy around 94%.

4) Impact of Amount of Training: For practical usage, it is

important to minimize the amount of training samples before

BARTON is ready to use. We use different amounts of training

samples and 100 samples for testing. For each setting we

randomly selected the training samples 100 times and calculate

the average classification accuracy on the testing samples.

Both the training and testing samples are evenly distributed

over the five activities. Fig. 8 graphs the tradeoff between

the amount of training samples and the average classification

accuracy. BARTON requires a minimal of 40 samples for each

tongue movement to yield a reasonable classification accuracy

of 85% for both the SVM and KNN classifiers. The decision

tree needs over 300 samples to reach an accuracy over 80%.

It is a well-known challenge to design an optimal decision

tree on a small number of training samples [21]. All three

classifiers improve their accuracy with increasing number of

samples. Particularly the SVM already increases its accuracy

to over 90% after 160 samples.

We conclude that it is feasible to train a classifier for BAR-

TON without the need of extensive training data collection.

C. System Performance

Energy efficiency is the primary motivation of our

barometer-based tongue movement sensing design. This sec-

tion evaluates the power consumption and delay of BARTON.

Due to the reasonably stable and high accuracy and its

simplicity, we adopt the decision tree classifier in the following

evaluations. As done before we set the sampling rate to 40Hz
and the classifier uses a sample window of 1 sec.

Fig. 9 shows a complete power trace of BARTON during

idle states and performing two classifications. The average
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Fig. 9. Power trace.

TABLE II
CLASSIFICATION ACCURACY FOR DIFFERENT USERS WITH INDIVIDUAL

TRAINING.

Activity 1 (f) 2 (f) 3 (m) 4 (m) 5 (m)
Left 0.97 0.54 0.91 0.61 0.45
Right 0.9 0.67 0.72 0.5 0.82
Forward 1 0.78 0.63 0.2 1
Head movement 0.93 0.64 0.93 1 0.56
Idle 1 0.97 0.96 1 1
Avg. Accuracy 0.96 0.72 0.87 0.66 0.70

power consumption for a complete cycle (one classification

task and idle) is 8.4mW (about 25ms in Fig. 9). Specifically,

BARTON takes 17.7mW for sampling (SA), feature extrac-

tion (FE) and classification (CL), and consumes 7.6mW when

the CPU of the micro-controller is off. Overall, BARTON

is over 44× more energy efficient than the state-of-the-art

microphone based implementation [15]. Furthermore, BAR-

TON utilizes 9.1% CPU on cycle, which is 2.4× lower than

microphone based solutions.

A closer look at the operations of BARTON reveals that

on average, BARTON spends 1.53ms for sampling (SA),

0.14ms for feature extraction (FE) and 0.1ms for classifi-

cation (CL). Depending on the window size, there is a delay

of around 0.5 s from the tongue movement till the output of

the classification result.

D. Case Studies

In this section, we evaluate the performance of BARTON on

different users and its resilience to interference such as music

directly played from the earphones.

1) Performance with Different Users: We run the experi-

ments with 5 (User 1 and 2 female, 3 – 5 male) volunteers.

Each participant is instructed to put on the BARTON sensing

unit himself/herself. All participants are then asked to perform

each tongue gesture (left/right/forward) multiple times as well

as arbitrary head movement and to remain in idle position. We

collect between 12 and 38 samples of each activity and each

user. Table II summarizes the average classification accuracy

using a 2-fold cross-validation when performing individual

training. We observe notable differences in accuracy between
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Fig. 10. Spectogram of Idle state.

Fig. 11. Pressure signals while playing music.

different users and average accuracies between 0.66 and 0.96.

The reasons for the widely varied performances across differ-

ent users are two-fold.

Feature Differences. The features of the tongue movements

are different for each user. For instance BARTON has rel-

atively uniform accuracies for all movements on user 1,

while the accuracies for forward is extremely low for user

4. The results indicate that user-specific feature sets might be

necessary to further improve the classification accuracy. The

low accuracy of 0.66 is also related to the second reason.

Headphone Tips. The headphones need to fully enclose the

ear canal in order to fully capture the air pressure changes.

This was particularly a problem for user 4 and 5. From their

feedback, they felt the headphones were not well fit into their

ears. As expected, their features are not as distinct as the ones

in the training dataset. Although BARTON does not require

special earplug housing designs as in [4], it needs headphone

tips of suitable sizes to achieve satisfactory classification

accuracy.

2) Robustness to Music: In order to facilitate the integra-

tion of pressure sensors into commercial in-ear headphones

BARTON’s performance should not be affected when music
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is played. This allows a user to listen to music and controlling

a device, e.g., a smartphone, using tongue movements at the

same time. We integrate two pressures sensors into commercial

rubber-tip headphones, shown in Fig. 3, and conduct mea-

surements while playing music. A Huwaei P8 smartphone

is connected to the headphones and plays different styles of

music with the volume set to 75%.

Spectogram. In a first experiment a user is wearing the

headphones without performing any tongue activities, i.e.,
remaining in the idle position. The spectogram in Fig. 10

shows the spectra every 1 sec over a total duration of 20 sec.

Between 0 and 10 sec no music is played and between 10

and 20 sec the music is turned on. We observe no notable

difference in the spectra between the two phases. This result

indicates that the barometers are not sensitive to music played

through the headphones.

Tongue Movement Sensing. In a second experiment the user

is performing tongue activities while continuously playing

music. Starting after 5 sec the user peforms an activity roughly

every 10 sec in the order left, right, forward and head move-
ment. Fig. 11 shows the pressure signals as well the phases of

detected activities. All three classifiers trained in Sec. VI-B1

correctly classified the activities as well as the idle phases

between the activities.

These results reveal an important advantage of BARTON

over in-ear activity sensing systems based on low-cost mi-

crophones. While most of the related works do not consider

the interference of music when integrating microphones into

headphones, we show that BARTON is not affected by music

and works reliably. Due to the high sensitivity of low-cost

microphones to frequencies over 100 Hz and the high sampling

rates over 1 kHz we suspect that music will affect microphone

based systems.

VII. CONCLUSION

In this work, we propose BARTON, a low-power and

robust tongue movement sensing system leveraging COTS

barometers. BARTON measures in-ear pressure signals in

ultra-low frequencies and extracts time-domain features to

differentiate important tongue movements (left/right/forward).

We prototype BARTON with COTS barometers, earpieces and

a micro-controller. Evaluations show that BARTON achieves

comparable accuracy yet consumes 44 times lower energy than

the microphone based solutions. BARTON is also robust to

head movement and operates even with music played directly

from earphones. We envision this work as a promising low-

power human-computer interaction mechanism on wearables.

In the future, we plan to further improve the robustness of

BARTON to diverse activities (e.g., walking and jogging) and

investigate user-independent classification.
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