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Abstract—The continual proliferation of mobile devices has
stimulated the development of opportunistic encounter-based
networking and has spurred a myriad of proximity-based mobile
applications. A primary cornerstone of such applications is
to discover neighboring devices effectively and efficiently. De-
spite extensive protocol optimization, current neighbor discovery
modalities mainly rely on radio interfaces, whose energy and
wake up delay required to initiate, configure and operate these
protocols hamper practical applicability. Unlike conventional
schemes that actively emit radio tones, we exploit ubiquitous
audio events to discover neighbors passively. The rationale is
that spatially adjacent neighbors tend to share similar ambient
acoustic environments. We propose AIR, an effective and efficient
neighbor discovery protocol via low power acoustic sensing to
reduce discovery latency. Especially, AIR substantially increases
the discovery probability of the first time they turn the radio on.
Compared with the state-of-the-art neighbor discovery protocol,
AIR significantly decreases the average discovery latency by
around 70%, which is promising for supporting vast proximity-
based mobile applications.

I. INTRODUCTION

Rapid development in fabrication and ubiquitous comput-
ing technologies has given birth to numerous applications that
leverage personal mobile devices, such as smartphones and
tablets, to meet people’s entertainment and work demands. In
particular, Nintendo StreetPass [1] and PlayStation Vita [2] are
widely used for mobile gaming, and Nextdoor [3] provides a
private mobile social network for users’ neighborhood com-
munity. Some reports [4] [5] also indicate a bright future for
the mobile computing industry.

Meanwhile, more and more mobile applications are pro-
viding proximity-based services for geographically co-located
people. When people attend special events or are at common
locations, they become spatially close and may seek to exploit
opportunistic contacts with each other. Zhang et al. indicate
that there exists a strong need for direct connection among co-
located people in their work [6]. Thus, discovering neighbors
effectively and efficiently is crucial for the success of the appli-
cation and the user experience. Considering privacy issues, the
availability of internet-access and the property of proximity-
based services, neighbor discovery is better completed by hav-
ing devices in the vicinity to interact with each other directly

instead of matching online. The most effective way of neighbor
discovery is certainly to continuously search for neighbors.
This however is not affordable as mobile devices run on battery
and encounters are opportunistic and unpredictable. A more
feasible solution is to operate in low duty cycle mode, which
means periodically waking the wireless interface (e.g., WiFi
and Bluetooth) up to perform discovery and then keeping it
asleep most of the time.

Under such a low duty cycle mode, the success of discovery
depends on the existence of an overlap between the wakeup
time of neighboring devices. Synchronizing the clock via GPS
[7] or NTP servers [8] could easily complete such a task,
but they are not power-efficient nor ubiquitously available. As
a result, without the time synchronization, it is challenging
to ensure the overlap between radio-on time of neighbors
by distributed scheduling in low duty cycle mode. Lots of
existing asynchronous discovery protocols [9]–[12] address
this challenge and improve the discovery latency. However,
they still require a dozen periods for discovery while we prefer
to discover neighbors in one or two periods.

We are enlightened by the fact that neighbors are spatially
close, so they share similar ambient information, such as illu-
mination intensity, temperature, humidity, acoustic sound, and
radio signals. We could exploit this information to complete
neighbor discovery in only one or two periods. With consid-
erations of availability, accuracy, and energy consumption of
sensors, we choose microphone, one of the most important,
ubiquitous and energy efficient components on mobile devices,
to acquire ambient acoustic information. Many measurement
reports show that microphones are energy efficient as it con-
sumes less than one fifth of the energy of WiFi interface
[13], and less than half of the latest Bluetooth [14]. Besides,
acoustic information is ubiquitous and rich in information
as many well-known applications successfully utilize acoustic
signals for localization [15] [16], device pairing [14] [17],
distance measurements [18] and counting [19]. Furthermore,
the correlation of acoustic features between neighbors is high
as we show in Section IV. Therefore, we propose AIR (from
AmbIent Rendezvous), an effective and efficient neighbor
discovery protocol leveraging ambient acoustic information.

AIR is a fully passive design that only records ambient
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Fig. 1. System Architecture.

acoustic information at a low rate. Every sample record is short
in length without emitting any tones since a passive design
never interferes with users and the environment. Therefore,
it is widely applicable and preferable. To precisely detect
ubiquitous and various audio events, such as voice, music
and noise, AIR extracts spectral entropy and flux after low
power audio sensing. Then, among a series of event points,
we design a novel coding and matching algorithm to ensure
neighbors select the same audio event without negotiation.
At last, AIR decides its radio-on schedule according to the
selected event position. The performance of AIR is evaluated
through extensive experiments. AIR achieves around 90%
discovery rate the first three times the radio is turned on, and
compared with the state-of-the-art neighbor discovery protocol
Searchlight [12], AIR significantly decreases the discovery
latency by around 70% on average.

Major contributions are as follows:

• The first neighbor discovery protocol utilizing am-
bient acoustic information. AIR is neither probabilis-
tic nor deterministic, while it adopts a novel coding
and matching algorithm based on acoustic information
to discover neighboring devices.

• Fully passive design without emitting audio tones
or extra hardware. It is unnecessary for AIR to
emit any tones such that it is more compatible with
abundant future applications.

• Extensive experiments under various environments
AIR is feasible under various environments, such as
different background sounds, different rooms, indoors
and outdoors, and so on.

• Good performance with over 90% discovery rate
in the first three periods. The evaluation results show
that AIR performs well in practical usage. A high
success rate also verifies its feasibility.

We discuss the related work in Section II. Then, we in-
troduce the system overview and design challenges in Section
III, and detail our design in Section IV. Section V presents
the performance evaluation. Finally, we conclude the paper
and indicate our future work in Section VI.

II. RELATED WORK

The design of AIR is closely related to the following two
categories of research.

Neighbor Discovery Protocols: Most neighbor discovery
protocols are time-slotted where time is partitioned into equal-
length timeslots and each timeslot is assigned as an active or
idle state as demanded. In general, existing protocols are from
two main classes - probabilistic protocols and deterministic
protocols.

Probabilistic schemes assign the nodes active/idle with a
given probability, for example, “birthday protocol” [9]. When
the density of devices is low, such a scheme demands a long
discovery latency. On the contrary, deterministic protocols
are suitable for low density situations even for only two
devices. Quorum-based protocol [20] [21] bounds the worst-
case latency by scheduling devices periodically with a global
parameter. It promises the mutual discovery between neighbors
as there exists at least two intersections. Disco [10] selects a
pair of different prime numbers and successfully guarantees
the worst-case bound as the product. Later, Kandhalu et al.
further improve the metric of energy-latency product through
another prime-based protocol called U-Connect [11]. Recently,
Searchlight [12] proposes a new method that defines two types
of active intervals: anchor (a fixed timeslot in each period)
and probe (scanning timeslots of the period). This ensures that
active intervals overlap between neighbors during the moving
of probe intervals. Up to now, Searchlight achieves the shortest
discovery latency. On the other hand, Acc [22] proposes an on-
demand generic discovery accelerating middleware supporting
both direct and indirect neighbor discoveries.

AIR is neither probabilistic nor deterministic, while it
is a novel method leveraging environmental information for
neighbor discovery problems.

Sound Applications: Since acoustic information is u-
biquitous and the energy efficient acoustic sensors, such as
the microphone, are widely equipped on devices, acoustic
information is exploited in numerous applications, for example,
sound classification [23], room-level localization [15] [16],
paring [14] [17], distance measurement [18] and counting [19].
Part of these works proactively emit a high tone for detection or
distance measurement. Mostly, they utilize the Doppler effect
[24], TDoA [16] or EToA [17] to achieve their goals. In order

2015 IEEE Conference on Computer Communications (INFOCOM)

2705



to accurately detect the audio tone, they adopt some signal
processing techniques [25] [26] for analysis. The other part of
these works passively record acoustic information, and then
analyze acoustic information in the time domain like sound
level, or in the frequency domain like entropy, bandwidth, and
so on to achieve individual goals . Different from them, AIR
targets on a different issue that discovering neighboring devices
and utilizes algorithms to achieve a shared purpose without
emitting a tone.

III. OVERVIEW

The study of neighbor discovery problems focuses on
supporting proximity-based applications, especially when users
want to operate in a purely local fashion [12]. The key insight
that inspires AIR is that, acoustic information are similar
among neighboring devices in close vicinity, almost every
kind of mobile devices, for instance, smartphones, tablets,
iPods and PSPs, has microphones for recording sound and
the microphone is an energy-efficient component of mobile
devices compared with wireless modules. Some measurements
indicate that microphones consume less than 300 mW power
[27], which is one fifth that of WiFi interface [13]. Even the
latest Bluetooth works at over 600 mW [14] twice microphone
power. Consequently, some pioneering work [14] has explored
the idea of utilizing microphones in novel energy-efficient
mobile applications in substitution of wireless interfaces, and
achieved 5.5X lower than the latest Bluetooth 4.0 protocols,
respectively.

Also, by independently detecting and carefully selecting the
same audio events, neighbors consent upon a pre-determined
waiting time, and turn on the radio simultaneously for neighbor
discovery. To codify the above idea into a practical system,
AIR has to tackle the following major technical challenges.

• Extracting Meaningful Acoustic Features and De-
tecting Unknown Audio Events. Since microphones
have no prior knowledge of the nature of the recorded
audio, that is, whether it is a piece of melody or a
segment of speech, we need generic acoustic features
that characterize a wide range of ambient sounds. In
addition, as we aim to detect representative audio
events rather than uncertain background noise for
radio-on scheduling, we need acoustic features that
are noise-resistant and quantify how informative and
meaningful the audio records are.

• Distributed Consensus and Localization of Audio
Events. To ensure turn on their radios simultaneously,
it is crucial for the devices to select the same audio
event without negotiation. However, device diversity
and location differences potentially degrade the quality
of audio recording and induce unknown distortion of
the extracted features, thus leading to different radio-
on schedules.

Figure 1 shows the overall AIR architecture. At a high
level, AIR addresses the above challenges by conducting the
following steps:

1) Low Power Audio Sensing. After initiation, AIR
enters a low power audio sensing state to save energy.
It periodically opens its microphone, records a short
duration of acoustic information and stores it for
further analysis. The sampling frequency is tuned
to capture a wide range of daily sound events, for
example, walking, speaking, music, and so on.

2) Framed Acoustic Spectrum Processing. To extrac-
t appropriate features to detect audio events, AIR
transforms each short duration of audio samples into
the frequency domain, and calculates a sequence of
informative and representative spectral features for
audio event detection.

3) Event Coding and Matching. To mitigate potential
event misalignments, the sequences of spectral fea-
tures are coded into a single binary sequence, where
candidate events are transformed into consecutive 1’s.
A maximum length matching scheme is then em-
ployed to ensure that independent neighbors select the
same representative audio event with high probability.

4) Radio-on Scheduling. To fix the duty cycle of
neighbor discovery, a radio-on schedule is assigned
only after a certain amount of audio recording. Each
device then locates the detected event position on the
timeline and assigns radio-on states to the timeslots
with a pre-defined delay to the selected event. Thus
their radio-on timeslots are aligned as long as the
selected events are identical.

These steps can be extended to other environmental sensing
methods as a framework. When mobile devices are widely
equipped with a more energy efficient module, we are able
to adopt such a framework to those devices easily. Next, we
elaborate our design in detail in the following section.

IV. SYSTEM DESIGN

A. Low-power Audio Sensing

The rationale for employing lower-power audio sensing is
twofold:

• Ubiquitous Support: Microphones are pervasively
embedded in commodity mobile phones, tablets, lap-
tops, and so on. Therefore no extra infrastructure is
needed to operate the AIR protocol.

• Energy Efficiency: Audio interfaces usually consume
low energy [13]. In addition, instead of continuously
collecting acoustic information, we adopt a low-power
listening strategy to further reduce unnecessary energy
consumption.

Unlike sensor radios, mobile wireless module (e.g., WiFi
and Bluetooth) require much longer time (a few seconds)
to bring the wireless interface up [12]. Therefore, we are
unable to set the length of the timeslot as small as on sensor
nodes, which employ ZigBee [28] for communication. Here
we assume the length of a timeslot is 2 seconds and this is
also the default setting in our experiments. In the future, if
the latency for starting a wireless interface is shortened, we
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Fig. 2. Feature Values between Two Neighbor Devices.

could alter the parameters of our design accordingly to keep
it feasible. To capture common audio events with minimal
energy consumption, we set the audio sensing frequency at
2Hz and the frame size as 2048 sample points to shorten the
sound recording duration without degrading the audio content
stability [29] [30]. Hence AIR can capture most sound events
such as speaking, cars beeping and screaming. Given an audio
sampling rate of 44.1KHz, this is equal to around 40ms of
recording, and consequently, the audio interface is working
on quite a low duty cycle. From our experiments on lower
sampling rates, AIR allows the rate to be lowered down 8K
for greatly energy saving.

Although such low sensing frequency and short sampling
duration may capture transient or even noisy audio events, the
spectral features we extracted (Section IV-B) and the maximal
length based event matching scheme (Section IV-C) ensure that
only notable and lasting audio events are selected and aligned
for radio-on scheduling.

B. Framed Acoustic Spectrum Processing

To detect audio events that are representative and noise-
resistant, we conduct framed acrostic spectrum analysis on
a sequence of audio frames, and extract appropriate spectral
features from each frame. Audio events are then detected
from a sequence of spectral feature points. In this section, we
explore candidate spectral features and select robust features
for audio event generation.

1) Candidate Features: Denote fi(u) as the normalized
magnitude of the uth frequency bin of the spectrum over
the ith audio frame via an M -point FFT. Several prevalent
spectral features from the acrostic signal processing literature
are enumerated below.

Spectral Entropy

Hi = −
M∑

u=1

fi(u) log fi(u) (1)

TABLE I. SPATIAL CORRELATIONS OF FEATURES

Entropy Flux Rolloff Centroid Bandwidth NWPD

0.843 0.803 0.801 0.824 0.796 0.029

Spectral entropy characterizes the flatness of the acoustic
spectrum shape [29]. A high entropy indicates a flat spectrum
while a low entropy usually represents certain notable spectrum
patterns. Thus, when an audio event occurs, entropy tends to
drop sharply, since the audio event possibly dominates the
acoustic environment and exhibits a specific spectrum pattern
with respect to a relative flat spectrum.

Spectral Flux

SFi =
M∑

u=1

(fi(u)− fi−1(u))
2 (2)

Spectral flux [31] quantifies the shape change of two succes-
sive acoustic spectra, which is defined as a L2-norm of the
amplitude difference vector of two adjacent frames. When flux
increases substantially, it indicates a significant change of the
ambient sound, which is potentially induced in an audio event.

Spectral Rolloff Frequency

SRFi = max(h|
h∑

u=1

fi(u) < TH ·
M∑

u=1

fi(u)) (3)

Spectral rolloff frequency [32] is designed to measure the
skewness of the spectral distribution. A large value indicates
a right-skewed distribution, for example, music signals which
contain a large series of high frequency components. In prac-
tice, however, it is hard to set an appropriate threshold TH .

Spectral Centroid

ci =

∑M
u=1 u · |fi(u)|2∑M
u=1 |fi(u)|2

(4)

Spectral centroid [32] calculates the balancing point of the
spectral power distribution. Normally, different centroid values
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mark different categories of audio events. For instance, music
with high frequency sounds, screaming and scratching usually
push the spectral centroid high, while the centroid of a human
voice may be relatively low given the same frequency range. In
a quiet ambient environment, however, the balancing point may
fluctuate due to random noise over a relatively flat spectrum,
thus posing ambiguity in detecting different kinds of audio
events.

Bandwidth

b2i =

∑M
u=1(u− ci)

2 · |fi(u)|2∑M
u=1 |fi(u)|2

(5)

Bandwidth [32] depicts the concentration of a spectrum around
its centroid. A flat spectrum normally has a high bandwidth.
Meanwhile, for music spanning a broad frequency range, it
also has a large bandwidth. Hence, bandwidth suffers similar
limitations to spectral centroid.

Normalized Weighted Phase Deviation

nwpdi =

M∑

u=1

fi(u) · φ′′
i (6)

where φ′′ is the second derivative of the phase of uth frequency
bin. This feature expresses the phase deviations weighted by
their magnitude and both ambient sound and music usually
have a small value of this feature [33].

The above features characterize different aspects of acous-
tic information. In terms of neighbor discovery, an effective
feature should have a high correlation among neighboring
devices even if the audio samples are recorded independently.
Fig. 2 plots an example of the above features obtained from
the audio samples recorded by two devices placed 10m apart,
and TABLE I calculates the average spatial correlation coeffi-
cients of different spectral features under 3 different ambient
acoustic environments, for example, playing music, speaking
and walking.

As shown, in most cases, spectral entropy has the high-
est correlation coefficient compared with other features and
it indicates the amount of acoustic information. Except for
entropy, we select flux as another candidate feature because
it represents the change in spectrum shape. When an audio
event happens, the shape of the spectrum is definitely different
from the earlier one, which introduces a large flux value. So
that the flux value is more appropriate for detecting the same
audio event. Taking the physical significance and limitations
of different features into consideration as well, we finally pick
spectral entropy and flux as the candidate features and propose
combining them via a novel coding scheme for audio event
detection and localization.

2) Feature Extraction: As illustrated in Fig. 1, each audio
frame of 2048 samples has been obtained via a period of low
power audio sensing, and is converted into a corresponding
spectrum by FFT. The spectrum is then filtered by a bandpass
filter for the following reasons.

• High frequency tones tend to experience strong en-
ergy attenuation [14], which potentially creates audio
quality deviation.
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Locates the Event Position

• Common audio events seldom contain signals of too
low frequencies.

We empirically select a pass band of 500Hz to 11kHz in our
design. After employed to calculate spectral entropy and flux
as in Eqn. 1 and Eqn. 2, we obtain two series of entropy and
flux values from a sequence of audio frames. For complexity
and energy-efficient considerations, in this process, we adopt
FFT on such small length of frames with some other simple
calculations, and each frame has no overlap with another.
Therefore, it will not cause any stall and only consumes little
energy for the computation.

C. Event localization

The event localization module is tasked to locate the
audio events from the two sequences of spectral entropy and
flux values to ensure that the devices that detect the audio
events can independently select the same audio event. Under
ideal conditions, this can be achieved by simply choosing the
maximal or minimal point in a certain sequence of acoustic
spectrum features, since different devices close to each other
tend to record quite similar audio samples. In reality, however,
hardware constraints, device diversity and spatial differences
usually induce unknown deviation to the audio records, and
hence the above event positioning scheme simply fails. To
overcome the above challenges, we propose a novel audio
event positioning scheme which consists of a coding procedure
and a matching algorithm as illustrated in Fig. 3.
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1) Event Coding: At a high level, our scheme codes the
patterns of entropy and flux into a variable-length binary
sequence. Each feature point of entropy and flux is transformed
to a number of 1s or 0s. More specifically, the entropy decides
the length while the flux determines whether the bit is coded
into 1 or 0.

Code Length: As previously discussed, entropy quantifies
the amount of information contained in the acoustic spectrum.
A large entropy indicates a flat spectrum, which is probably
ambient noise, while a small one suggests a potential audio
event. Therefore, we set a long code length to a small entropy
to magnify such a difference, and instead of a linear assign-
ment, we employ the following scheme to highlight the audio
event.

As shown in Fig. 3(b), we regulate the sequence of entropy
values to 10 bins of equal length as Emax−Emin

10 , and translate
the entropy values to the integers corresponding to the index
of bins which it falls into. In order to amplify the influence
of low entropy values and limit the computation complexity,
we adopt an inverse proportional function to the sequence of
index integers as L = � α

Ii
�. From our experiment experience,

choosing α = 16 performs well.

Hence, the maximum length is equal to the integer α and
when Ii > k = 4, it is no longer than 0.25α, which is much
shorter than α. Therefore, the meaningful part of the samples is
substantially emphasized and amplified into the coding result.

Code Value: After determining the length of coding for
each feature point, the next question is to decide the coding
value. Since our goal is to highlight the happening of audio
events, we should keep the number of code bit 1 as a small
amount. Referring to Fig. 3(c), for each feature point, we check
whether it is in the top-3 of flux values within a fixed window
of size 15. The choosing of these parameters comes from a
series of tests. If it belongs to the top-3, we assign it as 1,
otherwise 0. Theoretically, within a period length of L, L

5
feature points would be assigned as 1 in expectation.

2) Event Matching: Now, we obtain a binary sequence with
a varied length, and then we search for the longest consecutive
1s to set their starting point as the selected position. Based on
the above coding scheme, each sequence of successive 1s may
be the result of either a single feature point or multiple feature
points. Such a matching scheme is applicable to both cases.

• Single Feature Point Case: The output of the match-
ing scheme is actually the starting point of a strong
audio event, since it is the longest sequence containing
only one feature point.

• Multiple Feature Points Case: When multiple feature
points are integrated into a single long sequence of
1s, it indicates that the audio event is lasting and
continuously changing. The starting point of this series
of changing events is thus output from the matching
scheme.

In summary, the matching outputs the start position of a
significant audio event. Note that the above matching scheme
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can be naturally extended to output multiple start positions of
several significant audio events as the 2nd and 3rd candidates.
This is useful when the duty cycle is high, and hence we need
to assign more radio-on timeslots.

D. Radio-on Scheduling

In order to guarantee the low-duty cycle operation, AIR
locates specified number of audio events in each period
according to the duty-cycle. Such step operates period by
period. Thus, after successfully locating the same audio event,
neighboring devices finally turn on their radios for discovery
after a pre-defined delay, which equals to the length of the
period. We first discuss two important parameters, for example,
the length of one timeslot and the predefined delay , before
elaborating on the scheduling scheme in detail.

1) Length of Timeslot: In sensor node based protocols, the
length of timeslots is usually set at the scale of milliseconds
[10] or even microseconds [11]. Nevertheless, a timeslot
usually lasts much longer for mobile device based protocols,
due to the intrinsic constraints of their relatively long wireless
interface switch time. In AIR, we adopt a timeslot length of
2 seconds, which is consistent with that in mainstream mobile
device based protocols [12]. As we discussed in Section IV,
if the latency for starting a wireless interface is shortened,
AIR is still workable by easily changing some parameters
correspondingly. Based on such a setting, AIR achieves a
significantly smaller average discovery latency than existing
deterministic protocols.

2) Pre-defined Delay: AIR sets the pre-defined delay equal
to the length of the period, and we configure the period length
as 20 timeslots based on the following considerations.

• Latency: For rapid neighbor discovery, the earliest
radio-on timeslot the devices can select is in the next
period. A large period will lead to long waiting time,
which is not preferable.

• Duty Cycle: A period length of more timeslots pro-
vides more flexibility for users to select the desired
working duty cycles, as well as a lower minimal duty
cycle.

With a period length of 20 timeslots, AIR could retain the
same low duty cycle of 5% and provide reasonably amounts
of duty cycle choices in practical usage.
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After deciding the pre-defined delay, we elaborate on the
detailed radio-on scheduling as follows.

3) Scheduling Scheme: When an audio event located at
position x is selected, AIR re-calibrates the radio-on timeslot
starting from the position with a pre-defined delay (which is
one period length in our scheme) to x in the next period,
and lasting for the same length of one timeslot. Recall that
the sample frequency is 2Hz while each timeslot occupies 2
seconds. Therefore after re-calibration, the scheduled radio-
on timeslots promise overlaps for more than 0.5s, which is
sufficient for discovering neighboring devices, as long as the
selected event positions of different devices deviate within 1.5s
(See Fig. 4 for an example). When the length of a timeslot
is shortened, we could slightly increase the sample frequen-
cy correspondingly. In effect, the re-calibration successfully
remedies some potential failure cases due to the misaligned
timeslot and the offsets of the selected event positions of
different devices (e.g., the red dotted boxes in Fig. 4). To
support different working duty cycles in AIR, devices still
adopt the same lengthed period but select different quantities
of radio-on timeslots according to their desired duty cycles.

4) Combination with Deterministic Protocol: Note that our
assignment of radio-on timeslots can be regarded as a special
kind of probe timeslots. It is thus convenient to incorporate
AIR with prevalent deterministic protocols such as Searchlight
[12], which provides a worst-case bound for discovery latency.
Fig. 5 illustrates an example of such an incorporation. As is
shown, by combining AIR with Searchlight, the worst-case
latency bound is also shortened. This is because when the
probe slot’s position has been occupied by a selected radio-on
timeslot of AIR in a certain period before, the next probe slot
could skip this position according to the purpose of probe slots
(See the third period in Fig. 5).

V. EVALUATION

In this section, we evaluate the performance of AIR in
various scenarios.

A. Methodology

We employ several LG Nexus 4 mobile phones to sense
ambient acoustic information. All devices sense acoustic in-
formation at the sampling rate of 44.1KHz and use WiFi

interfaces for discovering with the duty cycle of 5%. Other
parameters are chosen the same as we state in Section IV.
Since AIR can not guarantee a worst-case discovery latency,
it has a long tail to achieve 100% discovery ratio. For all
following comparisons, the failure of neighbor discovery is
regarded as not happening within the first three periods of
scheduling.

For the purpose of verifying the feasibility and robustness
of AIR, we conduct experiments in different scenarios and
repeat them hundreds of times for each scenario. Due to the
trade-off between discovery latency and duty cycle, and AIR
is the first one utilizes environment information, we compare
the discovery latency between AIR and the state-of-the-art
deterministic protocol Searchlight [12] at the same duty cycle.
Similar to other related works, we adopt the CDF (Cumulative
Distribution Function) of discovery latency to exhibit their
performances. It is worth mentioning that in order to precisely
display the performance of AIR, we do not make any schedule
for the first period as AIR requires a period of acoustic
information recording (see Fig. 6(a)). In practice use, the first
period can be scheduled by random selection or kept always-
on. Both options will not affect the duty cycle in long term as
they only occur once.

In early stage of the experiments, we have discovered
that when an audio event suddenly breaks the silence, AIR
can detect the event accurately and achieve a discovery rate
of almost 100% in first radio-on period. On the other hand,
discovering neighbors is usually required in places full of
social activities, where are not very quiet and mixed with
different kinds of sound. Thus, all following experiments are
conducted in the environment of various sound types and
random noise levels, which simulates the practical usage.

B. Discovery Performance in Different Scenarios

1) Different Ambient Sounds: We evaluate different dom-
inating ambient sound scenarios for indoor environment such
as offices and coffee shops. Inside rooms, the most common
sounds are human voice and music, for example, people talk
and chat with other and coffee shops play light music as
background music. Thus, we classified the ambient sounds into
these two types, and display the performance of AIR as two
sets: voice and music(see Fig. 6(a)).

In human voice dominated sound settings, AIR achieves
nearly 99% success rate, with most of the discovery taken place
in the first radio-on period. In comparison, in music dominated
sound environment, AIR also succeeds with a discovery rate of
around 90%. The discovery rate is lower in music environment
since the frequency spectra of music tend to be more complex
than that of voice. As microphones on mobile devices are
designed to better capture human voice, they generally have
better voice detection than music detection.

2) Different Room Sizes: We then evaluate the performance
of AIR in different sized rooms, that is, meeting room (3m ×
5m) and lounge (10m × 15m). Both human voice and music
scenarios are tested in these rooms. Neighboring devices are
placed at each end of the room.
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(a) Different Ambient Sound (b) Different Room Sizes (c) Multiple Selection of AIR

Fig. 6. Discovery CDF in Different Scenarios.

Undeniably, the success rate of experiments in the bigger
room is lower (see Fig. 6(b)). Nevertheless, within the first
three periods of scheduling, ratio of discovery is still over
85%. We need to clarify that since there is a TV set available
in the lounge, we use it to play music instead of using the
loudspeaker of a laptop. Hence, the sound quality of music
in the lounge room is much better that in the meeting room,
which help improve the discovery rate in the lounge case. In
summary, AIR’s performance in a large room is comparable
with that in a small one, which verifies its ubiquity in different
sized rooms as well as over different distances.

3) Multiple Active Slots Selection: We further test for
multiple radio-on timeslot selection indoor. Specifically, we
compare the results among three conditions: 1) both devices
select a single radio-on timeslot during each period, 2) one of
the devices selects a single radio-on timeslot while the other
selects two, and 3) both devices select two radio-on timeslots.
Selecting one and two radio-on timeslots indicate 5% and 10%
of the duty cycle respectively.

Naturally, increasing the number of selected radio-on
timeslots speeds up the discovery rate to some extent, which is
also confirmed by our experiment results show (see Fig. 6(c)).
This is consistent with our analysis in Section IV. To be
specific, when both devices select two audio events for a
radio-on schedule, around 90% of discoveries occur in the
first period of scheduling; and when two devices select two
and one respectively, the discovery rate is also over 80% (see
Fig. 6(c)).

The discovery ratios of the aforementioned five scenarios
are summarized in Fig. 7. Overall, AIR archives a 90% success
rate of discovery, which is concentrated on the first radio-on
scheduling. In terms of energy consumption, AIR consumes
slightly more energy than Searchlight. Under the same low
duty cycle, AIR and Searchlight takes 15% and 13% of total
battery power respectively after multiple-hour experiments.
The additional energy is mainly used for low-power audio
sensing. Considering the large latency improvement by nearly
70%, AIR is more energy efficient in practical usage.

C. Different Sample Rate

To further shrink energy consumption, we consider low-
ering the microphone’s sampling rate. Thus, we compare the

Fig. 7. Discovery Ratio in Different Period

Fig. 8. Discovery Ratio under Different Sample Rate

performance of AIR under different sampling rates, that is,
8K, 16K, 32K, and the normal 44.1K. In order to keep AIR
recording the same length of ambient acoustic information, we
decrease the number of sample points individually for fairness
of comparison.

Certainly, a low sample rate loses some discovery accuracy.
Surprisingly, we find that the reduction is not severe for
AIR as the success rates of different sampling rates are all
basically over 85%. The robustness of AIR under different
sampling rates is owing to the well-designed audio event
detection. Referring to Fig. 8, the sampling rate of 8K quickly
discovers some neighbors in the first period of scheduling.
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It performs especially well in the background of a human
voice. We consider that under the sampling rate of 8K, the
major frequency spectrum of human voice remains and its
limited bandwidth enhances its sensitivity to voice events.
Interestingly, we observe that the curve of the sample rate of
32K has a cross with that of 16K, and is surpassed in terms
of the total success rate. We think that it is due to the effect
of the filter where only the low frequency part is filtered. As a
result, sampling rate of 32K retains some high frequency part
from 11K to 16K, which causes its false detection somehow.
From another point of view, it demonstrates the necessity of a
bandpass filter and verifies that we set a appropriate bandpass
range for the filter.

VI. CONCLUSION AND FUTURE WORK

In this study, we explore ambient acoustic information to
decide the radio-on schedule for neighbor discovery on mobile
devices. AIR leverages an ubiquitous microphone to detect
audio events occurring nearby. Through extensive evaluation
in different scenarios, the effectivity and feasibility of AIR are
verified. On average, AIR significantly reduces the discovery
latency by nearly 70% compared with the state-of-art neighbor
discovery protocol, which basically satisfies users’ demand in
practical usage.

In the future, we plan to conduct additional experiments
in more complex scenarios, further enhance the robustness of
AIR, and integrate AIR into real applications. In addition, we
are planning to utilize more professional energy consumption
tools to measure and compare the energy savings of AIR at a
finer granularity.
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