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Abstract—WiFi technology has fostered numerous mobile
computing applications, such as adaptive communication, fine-
grained localization, gesture recognition, etc., which often achieve
better performance or rely on the availability of Line-Of-Sight
(LOS) signal propagation. Thus the awareness of LOS and Non-
Line-Of-Sight (NLOS) plays as a key enabler for them. Real-
time LOS identification on commodity WiFi devices, however,
is challenging due to limited bandwidth of WiFi and resulting
coarse multipath resolution. In this work, we explore and exploit
the phase feature of PHY layer information, harnessing both
space diversity with antenna elements and frequency diversity
with OFDM subcarriers. On this basis, we propose PhaseU, a
real-time LOS identification scheme that works in both static
and mobile scenarios on commodity WiFi infrastructure. Ex-
perimental results in various indoor scenarios demonstrate that
PhaseU consistently outperforms previous approaches, achiev-
ing overall LOS and NLOS detection rates of 94.35% and
94.19% in static cases and both higher than 80% in mobile
contexts. Furthermore, PhaseU achieves real-time capability with
millisecond-level delay for a connected AP and 1-second delay
for unconnected APs, which is far beyond existing approaches.

I. INTRODUCTION

WiFi technology has fostered a broad range of mobile
and ubiquitous computing applications beyond wireless data
transmission. The past decade has witnessed the fast con-
ceptualization and continuous revolution of myriad emerging
applications, e.g., indoor localization, device-free localization,
gesture and activity recognition, etc. These applications rely
on careful analysis of radio signal features and Non-Line-Of-
Sight (NLOS) signal propagation lurks as a critical concern
that cannot be easily staved off.

The severe and fickle attenuation of NLOS propagation
deteriorates communication link quality and violates theoret-
ical signal propagation models. Normally, NLOS propagation
decreases the stability of received signal strengths (RSSs) and
exaggerates the RSS fluctuations [1]. It has been demonstrated
that the lack of LOS propagation is a major cause of poor
wireless experience since it often leads to subdued signal
strengths, high packet losses and low PHY rates [2]. Besides
wireless communication, many mobile applications rely even
more heavily on the presence of the LOS path. For instance,
NLOS propagation induces significant bias in time and power
based ranging [3], [4], or produces spurious angle estimation
[5]. Even for fingerprinting-based localization, severe RSS
fluctuations due to multipath effects substantially challenge
the accuracy of location estimation [6] and the maintenance

of a valid radio map [7]. Other applications such as energy
harvesting [8], health monitoring [9], device-free positioning
[10], time synchronization [11], etc., also depend on the
existence of the LOS path and will become less practicable
under NLOS propagation.

The awareness of LOS and NLOS propagation acts as a
pivotal primitive to combat the adverse impacts of NLOS
propagation. For example, with the knowledge of LOS/NLOS
conditions, transmitters can tune specific link settings like
transmitting power or data rates for high throughput and
reliable communication [12]. Location providers can adjust
the model parameters or adopt comfortable models to maintain
high-quality services [4]. Taking an illustrative example as in
Figure 1, we intuitively explain the potential benefits of being
aware of LOS and NLOS conditions in various perspectives.
Imagine that Bob is surfing the Internet while listening to
a talk in a classroom, he would like to connect to AP1
with LOS path rather than NLOS ones. To locate Bob, a
LOS-specific model should be applied to AP1 while NLOS-
tailored models are preferred for AP2 and AP3. During a
coffee break, he walks to the lobby and encounters Alice who
wants to share a conference video with him. During this time
period, the location provider should continuously adapt the
propagation model according to the LOS/NLOS conditions
to accurately track Bob’s presence. When Bob is outside the
classroom, his mobile phone should automatically switch to
AP3, which can provide LOS service. Furthermore, Alice
could slightly turn to obtain a LOS link for video streaming,
which generally achieves better performance. In a nutshell,
real-time detection of LOS/NLOS propagation paves the way
for the enhancements of wireless and mobile applications.

The vision of real-time LOS identification on commodity
WiFi devices, however, entails great challenges. Although
many theoretical models have been designed to investigate
the distributions of channel parameters like Rician K factor,
these statistical models require precise channel profiles from
dedicated channel sounders, or assume long period of measure-
ments. Other solutions employ extremely wide-band signals
like Ultra Wide-Band (UWB) [13] to explore delay spread
or range measurement that only needs one-time measurement,
yet often halt at simulation. Unfortunately, current WiFi net-
works operate with a narrow bandwidth of 20∼40MHz, thus
unable to resolve multipath propagation indoors. Pioneering
works [5], [14] that exploit MIMO techniques with a number
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of antennas still require hardware modification, hampering
the immediate viability. Consequently, none of existing ap-
proaches is directly feasible to WiFi because of the coarse-
grained channel measurements under limited bandwidth. Re-
cent innovation [15] has demonstrated the primary feasibility
of using amplitude features of PHY layer information for
LOS identification, yet at the cost of considerable long-time
measurements and contrived slight mobility.

In this work, we attempt to design a real-time identifica-
tion scheme for both static and mobile scenarios with only
commodity off-the-shelf (COTS) WiFi devices. Insights and
progresses in various perspectives underpin the feasibility of
the design goal. (1) The recently exposed PHY layer channel
state information (CSI) on commercial WiFi devices reveals
multipath channel features at the granularity of OFDM subcar-
riers [1], which is much finer-grained than the traditional MAC
layer RSS. Specifically, we observe the phase information,
after appropriate sanitization and integration, tend to be an
excellent indicator for LOS/NLOS conditions. (2) Commodity
WiFi devices are commonly equipped with multiple antennas
(typically two or three nowadays) to support the increasingly
popular MIMO techniques. These antennas induce diversity in
spatial domain of signal propagation. (3) Even for truly mobile
users, inertial sensors embedded in mobile devices contribute
to capturing some transitory moments in which devices are
static. Signal measurement at such “static” moments can be
used for distinguishing LOS from NLOS propagation.

Motivated by these insights, we propose PhaseU, a real-
time LOS identification system with WiFi. To distinguish LOS
and NLOS propagation, we explore and exploit the previously
insufficiently explored phase information, which can also be
extracted from the CSI reported by commercial WiFi network
interface card (NIC), the same as more often used amplitude
information. We observe that phase difference over two anten-
nas behaves differently in LOS and NLOS conditions, although
the raw phase information itself is not directly usable due to
the extreme randomness involved in the measurements. Thus
we quantify the distinctions of LOS and NLOS conditions
using variance of phase difference over a pair of antennas.
Besides space diversity, we also harness frequency diversity
over multiple OFDM subcarriers to enhance the identification
precision and robustness. To enable PhaseU in mobile sce-
narios, we notice that there always exist transient moments
when the devices are actually motionless when a user is natural
moving. Hence we employ inertial sensors that are commonly
built in commodity mobile devices to infer such moments and
use the corresponding measurements for identification.

We prototype PhaseU and conduct extensive experiments
in various indoor environments. Evaluation results show that
PhaseU achieves an overall LOS detection rate of 94.35%
with a false alarm rate of 5.91%. For mobile scenarios,
PhaseU yields a respective LOS and NLOS detection rate
of 80.08% and 82.91%. Furthermore, PhaseU achieves LOS
identification in millisecond-level delay for a connected AP
and 1-second delay for nearby unconnected APs, making it
applicable for real-time applications.

Connected LOS
Connected NLOS
Unconnected LOS
Unconnected NLOS

AP1

AP3

AP2

Bob

Alice

Lobby

Classroom

Figure 1. Real-time awareness of LOS and NLOS condition can benefit from
various applications of wireless communication and ubiquitous computing.

The main contributions of this work are as follows:
1) To the best of our knowledge, we are the first to use

phase features of PHY layer information of WiFi to
identify the availability of the LOS path in multipath-
dense indoor scenarios. And PhaseU is the first real-time
LOS identification scheme on commodity WiFi devices.

2) Different from applying the direct amplitude and phase
information of CSI to diverse environment sensing sce-
narios, by extracting a new feature of phase difference
over antennas from raw CSI, we harness both space
diversity and frequency diversity, which advances the
state-of-the-art technically. The new feature has demon-
strated its high sensitivity and will enable numerous
finer-grained sensing applications in addition to LOS
identification.

3) We prototype PhaseU on commodity WiFi devices and
validate its performance in various indoor environments.
Experiment results demonstrate that PhaseU consistently
outperform previous approaches in both static and mo-
bile scenarios, with respective LOS and NLOS detection
rates of around 95% and above 80%.

The rest of the paper is organized as follows. We first
provide preliminary background in Section II and then intro-
duce the feature extraction in Section III. Section IV details
the framework design and the following Section V presents
the performance evaluation. We review the related work in
Section VI and conclude our work in Section VII.

II. PRELIMINARIES

A. Real-time LOS Identification Problem

In cluttered indoor environments, wireless signals often
propagate through multiple paths, where the LOS path may
be harshly attenuated or completely obstructed. The LOS
identification problem is thus to differentiate the availability of
the LOS path from multiple propagation paths. It is typically
formulated as a classical binary hypothesis test, where an
effective feature plays a central role.

As summarized in our previous work [15], traditional LOS
identification techniques mostly use two categories of channel
features: Channel Impulse Response (CIR) based and channel
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statistics based. While CIR-based features enable identifica-
tion with only one channel snapshot, high-resolution CIR is
unavailable on COTS WiFi devices. Channel statistics features
are built upon certain distributions of the received signal
amplitudes and thus usually need a considerable volume of
measurements. To enable real-time LOS identification of WiFi,
however, triple challenges still reside:

1) Commodity WiFi devices fail to support precise CIR
measurements due to limited operating bandwidth.

2) Existing channel statistics based features require large
amount of samples, impeding real-time performance.

3) Most LOS identification schemes are designed for sta-
tionary scenarios. Even those incorporating slight mo-
bility [15] fail in truly mobile cases.

Before diving into feature extraction in detail, we review
channel information available on COTS WiFi infrastructure.

B. Channel State Information

While Received Signal Strength Indicator (RSSI) is the
most accessible proxy of channel conditions, it only provides
a coarse amplitude estimation for a wireless channel. With
slight driver modification, however, PHY layer Channel State
Information (CSI) can be revealed to upper layers on off-the-
shelf Network Interface Cards (NICs) [1]. CSI contains a set
of items and each item represents the channel resoponse infor-
mation (both amplitude and phase) of an OFDM subcarrier:

H(fk) = ‖H(fk)‖ej∠H(fk) (1)

where H(fk) is the CSI at the subcarrier with central fre-
quency of fk, and ‖H(fk)‖ and ∠H(fk) denote its amplitude
and phase, respectively.

Compared with MAC layer RSSI, CSI depicts a finer-
grained temporal and spectral structure of wireless links in
both amplitudes and phases [1], [4]. In addition, CSI is
supported by IEEE 802.11n and subsequent standards.

III. FEATURE EXTRACTION

Fundamentally constrained by the time resolution of COTS
WiFi devices, it is infeasible to rely on only one channel snap-
shot and employ CIR based features for LOS identification.
In this section, we extract distinctive statistical features from
the largely unexplored phase information, with enhancements
harnessing both space and frequency diversity.

A. Exploring Phase Feature

The physical underpinning for statistical features is that
the spatial randomness of LOS and NLOS paths differs.
NLOS paths typically involve richer reflections, diffractions
and refractions. Therefore signals transmitting through NLOS
paths often behave more randomly, which manifests in both
signal amplitudes and phases. In this paper, we investigate
the potential of phase information for two reasons: First,
as most amplitude based features implicitly assume certain
distributions (e.g. Rician distribution [16]), large numbers of
measurements are necessary for accurate distribution parame-
ter estimation. Second, LOS/NLOS propagation is not the only
factor that determines the extent of randomness in received
amplitudes. Both obstacle blockage, i.e., NLOS conditions,
and long propagation distances can substantially attenuate
signal amplitudes. In contrast, phase shifts change periodically
over propagation distances, and thus are more robust.

1) Analysis of Phase Variances: As discussed in Sec-
tion II-B, CSI measurements offer the phase information of
each subcarrier. The measured phase φ̂i for the ith subcarrier
can be expressed as:

φ̂i = φi − 2π
ki
N
δ + β + Z, (2)

where φi denotes the true phase, δ is the timing offset at the
receiver, which causes phase error expressed as the middle
term, β is an unknown phase offset, and Z is some measure-
ment noise. ki denotes the subcarrier index (ranging from -28
to 28 in IEEE 802.11n) of the ith subcarrier and N is the FFT
size (which equals to 64 in IEEE 802.11 a/g/n). Due to the
unknowns listed above, it is infeasible to obtain the true phase
shifts with solely commodity WiFi NICs. Figure 2a depicts the
raw phase measurements without further calibration. As can
be seen, the phases behave extremely randomly.

To mitigate the impact of random noises, we perform a
linear transformation on the raw phases, as recommended in
[17]. The key idea is to eliminate δ and β by considering phase
across the entire frequency band. If the subcarrier frequency is
symmetric, we can obtain a linear combination of true phases,
denoted as φ̃i, from which the random phase offsets have been
removed (omitting the small measurement noise Z). Figure 2b
illustrates an example of the phase after transformation, which
distributes relatively stably as expected.

Similar to the rationale for amplitude based features, the
extent of randomness can be revealed in statistics depicting
certain order of deviation. For real-time operation, we employ
variance of the calibrated phase as a candidate feature due to
its simplicity. Although we cannot obtain the true phase but a
calibrated measurement φ̃i, we demonstrate that variances of
sanitized phases and true phases differ by only a frequency-
related constant multiple (Please refer to Appendix A for
details). We thus inspect the relationship of variance of phase
to LOS/NLOS conditions using the calibrated phases via a
measurement-driven approach.

2) Measurements of Phase Variances: We collect 200
groups of measurements under different indoor LOS/NLOS
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conditions, each containing at least 10 seconds of data. Fig-
ure 3a plots the variances of the calibrated phases. Each group
contains at least 10 seconds of data measured with both TX
and RX fixed at a specific location (We will use this dataset
throughout this section for all preliminary tests).

Unfortunately, we find that variance of the calibrated phase
is insufficient to accurately discern LOS from NLOS propaga-
tion. Although the phase variances in NLOS scenarios tend to
be larger than those under LOS condition on average, no clear
gap can be found between the variances of the two cases.
Moreover, as shown in Figure 3b, the prediction accuracy
is quite sensitive to the threshold value to achieve stable
performance in practice when applying an intuitive threshold-
cutting method.

Albeit unable to serve as a distinctive feature for LOS iden-
tification, the variance of phases does exhibit different trends
under LOS/NLOS propagation. Inspired by the preliminary
measurements, we explore more conspicuous phase variance
related evidences in the following.

B. Leveraging Space Diversity
A key feature in IEEE 802.11n/ac is to exploit MIMO

technology for higher capacity, range and reliability via spatial
diversity. It is common to see COTS wireless devices equipped
with multiple antennas. In this section, we investigate to fuse
the phases of multiple antennas to speed up channel statistics
calculation and increase the variance differences between
NLOS and LOS conditions.

Similar to Equation 2, we calculate the measured phase
difference between two antennas as

∆φ̂i = ∆φi − 2π
ki
N

∆δ + ∆β, (3)

where ∆φi = φi,1 − φi,2 is the true phase difference, ∆δ =
δ1 − δ2 is the corresponding difference of timing offset, and
∆β = β1 − β2 is an unknown constant phase difference.

Denote λ as the wavelength, d as the antenna spacing, θ as
the direction of arrival, c as the speed of light and Ts as the
sample interval at the receiver. Then ∆δ can be expressed as

∆δ =
d sin θ

cTs
≤ 1

2fTs
, (4)

where f is the central frequency, which is around 2.4GHz
depending on the operating channel in WiFi networks, while
Ts is 50ns. Given −32 ≤ ki ≤ 31 [1], the phase difference
caused by different timing offsets approaches zero, or more
specifically, 2π kiN ∆δ ∈ [−0.0262, 0.0254], and thus is neg-
ligible in ∆φ̂i. As for ∆β, although it does vary over time

due to different uncertain initial phase for each packet, it is
possible to attain identical ∆β at different time by shifting the
phase difference to be zero mean. Then we can deduce that

σ2
∆φ̂i

= σ2
∆φi

. (5)

Assume independent signals received at different antennas,
which is reasonable for rich scattering environments and
antenna space larger than half wavelength [18]1. Thus φi,1
and φi,2 are independent, i.e., cov(φi,1, φi,2) = 0. Then we
have the following important inference:

σ2
∆φ̂i

= σ2
φi,1

+ σ2
φi,2

. (6)

That is, the variances of the phase difference of two antennas
is the sum of individual variance on each antenna. [19] derives
similar verdict based on a simulated two-antenna system,
which is, however, different from commodity WiFi devices
and infeasible in practice. Phase difference advances in its easy
accessibility from raw phase measurements, requiring no extra
transformation or other complex operations. In the following,
we primarily validate that variances of phase difference could
be a boon to real-time LOS identification by real experiments
on COTS WiFi infrastructure.

Figure 4a portrays the variances of phase difference under
various LOS/NLOS scenarios using the dataset mentioned
above. Compared with Figure 3a, the variances of NLOS
conditions are magnified by a larger scale than LOS cases,
while variances in both scenarios are amplified. Figure 4b
further demonstrates the prediction accuracy of using a naive
threshold based method. As can be seen, the result is much
better than the case when employing variances of phase on a
single antenna (Figure 3b). We argue that variance of phase
difference over two antennas proves to be a new applicable
feature for LOS identification on commodity WiFi devices.

C. Enhancement via Frequency Diversity

The previous section extracts phase features that character-
ize the spatial variation of LOS/NLOS propagation. As CSI
naturally delineates frequency-selective fading of multipath
channels, we investigate to incorporate spectral signatures to
attain a more effective and robust feature to characterize LOS
and NLOS propagation.

The rationales to exploit frequency diversity for LOS iden-
tification are two-fold: 1) Signals experience diverse fading

1Note that antenna space of greater than half wavelength is also an essential
requirement and a basic setting of MIMO which assumes independent
channels of different antennas [5].
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Figure 5. Variances increase with lower amplitudes across the subcarrier
frequency in both LOS and NLOS propagation.
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Figure 6. ρ varies over different antenna combinations on both conditions.

levels at different frequency. 2) Signals attenuate differently
across the frequency band when penetrating obstacles.

As a result, signals received at different subcarriers exert
various disturbances in both envelope and phase [17]. As
shown in Figure 5, variances of phase difference and am-
plitudes both vary over frequency for one CSI measurement.
Some key observations are further enlightened on the relation-
ship of variances of phase difference and signal envelopes.

1) Signal envelopes vary over the subcarrier frequency band
in both LOS and NLOS scenarios.

2) Subcarriers that experience severer attenuation suffer
from larger variances of phase difference.

3) Given the same received power, signals passing via LOS
paths experience smaller variances than NLOS paths.

Therefore, both weak LOS signals and NLOS conditions will
induce a large variance, while not only LOS condition but also
strong signals in NLOS cases experience small variances. To
distinguish these scenarios, we propose to suppress the impacts
of subcarriers with lower power and magnify the contributions
of stronger subcarriers. On this basis, we propose a frequency-
selected metric of variances of phase difference as follows,
which we term as ρ-factor.

ρ =

∑n
i=1 σ

2
∆φ̂i
|H(fi)|∑n

j=1 |H(fj)|
(7)

where |H(fi)| is the mean amplitude of two antennas at the ith

subcarrier (since ∆φ̂i is the phase difference of two antennas,
we use their mean amplitude as weights accordingly).

To this end, ρ-factor acts as a potential feature that incorpo-
rates both space diversity and frequency diversity and we thus
utilize it for our real-time LOS identification subsequently.

IV. REAL-TIME LOS IDENTIFICATION

Although we have advanced superior features, significant
challenges reside when delivering the features to enable a
practical system: 1) How to efficiently measure and process
the required information from commodity wireless NICs? 2)
How to design a robust and accurate scheme for practical
LOS detection? 3) Last but not the least, how to extend LOS
identification for truly mobile receivers? In this section, we
address these issues and present the design of our real-time
LOS identification scheme, called PhaseU.

A. Data Measurement
PhaseU collects CSI data from commercial WLAN NICs.

After collecting sufficient measurements, PhaseU extracts de-
sired features and infers the current LOS or NLOS conditions.

The packet intervals and packet quantity are determined ac-
cording to the accuracy and delay requirements of specific
applications and will be discussed in detail in Section V.

As observed in [9], raw CSI data could contain fitful
outliers. Hence we filter the raw CSIs through the Hampel
identifier [20] to sift outliers before calculating the ρ-factor.

B. Identification

Given a set of CSI samples from N packets, we calculate
the variance of phase difference as in Section III and then
formulate the following binary hypothesis test with LOS
condition H0 and NLOS condition H1.{

H0 : ρ < ρth
H1 : ρ > ρth

(8)

where ρth denotes a pre-defined threshold. According to our
measurements (detailed in Section V), a pre-calibrated unified
threshold can fit most scenarios including diverse link lengths,
packet numbers and blockage conditions.

C. Selecting Antenna Combination

An increasing number of commercial WLAN devices have
been and will be manufactured with more than two anten-
nas, including daily-use wireless routers, ordinary laptops,
and edge-cutting pads and smartphones. While PhaseU only
requires two antennas, we argue that more antennas can yield
more robust and accurate performance.

Given m(m ≥ 2) antennas on the receiver, we can derive
m(m−1)

2 groups of phase differences. As shown in Figure 6,
we observe that the variances of phase difference do vary
over different antenna combinations. Moreover, the variations
fluctuate more severely under NLOS conditions yet always
keep low in LOS propagation. Thus we propose to incor-
porate all possible antenna combinations to enable a robust
hypothesis test for LOS identification. Concretely, we extend
the hypothesis test in Equation 8 using the median of ρ-factors
on different antenna combination:{

H0 : med (ρi,j) ≤ ρth, 1 ≤ i, j ≤ m, i 6= j
H1 : med (ρi,j) > ρth, 1 ≤ i, j ≤ m, i 6= j

(9)

where ρi,j denotes the ρ-factor on antenna i and j.

D. Mobile Scenarios

Previous discussion implicitly assumes a static transmitter-
receiver link, which guarantees that the path arriving angles
and antenna spacing remain unchanged. Note that the variance
of phase is closely related to the changes of propagation
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channels. Therefore, in case of a mobile receiver2, the phase
variance due to LOS/NLOS propagation may be overshadowed
by that induced by receiver location change, since the change
in receiver’s attitude alters the path arriving angles.

To extend PhaseU to mobile scenarios, we resort to explore
a “static” periods during user movements. The feasibility of
this strategy arises from three folds:

1) For a moving user, there are frequent moments when
he/she stops for a while to, e.g., look around, greet
somebody, or just check a message on the phone.

2) Such “static” moments can be instantly and accurately
captured by inertial sensors embedded on most modern
tablets and smartphones [7], [21].

3) As we will demonstrate in Section V, measurements
within a millisecond-level period are adequate for
PhaseU. Hence, such immediate “static moments” might
be long enough for accurate LOS identification.

We thus propose to fortify PhaseU for mobile contexts by
adding a motion detection module to capture “static moments”
before collecting CSI data. Then only the effective CSIs
gathered within such static moments will be used for LOS
identification as in stationary cases and the results serve as a
LOS/NLOS indicator for adjacent time during a trajectory.

There have been extensive research on human mobility de-
tection via inertial sensors [7], [21]. These techniques employ
multi-module sensors, including accelerometer, gyroscope,
compass, etc., to infer human mobility such as steps. Since we
only need to infer whether the device, instead of human, is in
motion, we employ an intuitive threshold-based method. We
only utilize the gyroscope since it is more sensitive to device
attitude changes. The gyroscope readings are almost zeros
when a device keeps stationary, while alters vastly when any
motion occurs. Hence a threshold-based method is sufficient
and efficient for motion detection in PhaseU.

V. EXPERIMENTS AND EVALUATION

A. Experiment Methodology

Experiment Environments: We conduct the measurements
over two weeks in an academic building with corridors and
offices, as in Figure 7. Concretely, we collected data in various
space including the corridors, one office room, one classroom,
and two laboratory rooms. The corridors are enclosed with
both bearing walls and non-bearing walls. All rooms are
furnished with cubicle desks, computers and other plastic,
wooden and metallic furniture. The classroom is further
equipped with a metal platform and more desks and chairs.

Data Collection: We collect data along the corridors and
in different rooms. Specifically, we perform measurements at
around 100 spots, with different environment settings, i.e.,
diverse TX-RX distances from 1m to 20m , different AP
heights including 1m, 1.5m and 2m, various sampling rates,
etc. Half of the testing spots are in LOS conditions while

2We only consider receiver mobility since the receiver such as a smartphone
is usually attached to a user, while the transmitter is often an AP fixed
somewhere such as on the wall.

80m

30
m

Corridors

Lab
Lab

Classroom

Office

Corridors

Figure 7. Experiment building (testing areas are highlighted)

the others in NLOS conditions. For each spot, we collect 50
groups of data, each containing 1000 packets. For mobile
cases, a volunteer holds a laptop attached with a Google
Nexus 7 pad and walks around. The laptop collects CSIs
while the smartphone records inertial sensor data. LOS/NLOS
propagations are manually marked as ground-truth.

Data are collected from diverse transmitters and receivers.
We consider three types of wireless routers (one TP-LINK
and one Tenda with single antenna, and one Cisco with
multiple antennas installed by the university) as the transmitter
operating in IEEE 802.11n AP mode at 2.4GHz. A LENOVO
laptop with two antennas and a mini desktop (physical size
170mm×170mm) with three external antennas are used as the
receiver pinging packets from the transmitter. Both of them
are equipped with Intel 5300 NIC and run Ubuntu 10.0 OS.

Evaluation Metrics: We mainly focus on two metrics to
evaluate PhaseU. 1) LOS Detection Rate: The fraction of cases
where the LOS condition is correctly identified for all LOS
cases. 2) NLOS Detection Rate: The fraction of cases where
the NLOS condition is correctly identified for all NLOS cases.
(Note that the False Alarm Rate is also interchangeably used,
which is simply subtracting the NLOS detection rate from 1.)

To demonstrate the advanced performance of PhaseU, we
compare our scheme with two related approaches that both
exploit channel statistics of signal envelopes.

1) Rician-K factor: The most classical and well-known
approach for LOS identification [16]. We employ a
practical estimator for Rician-K factor as in [12].

2) LiFi: A most recent work in LOS identification, which
exploits amplitude features of CSI on WiFi devices [15].

B. Performance
We first report the overall performance of PhaseU and then

evaluate the impact of different factors.
1) Overall Performance: To quantitatively evaluate the

overall performance of PhaseU, we use the Receiver Operating
Characteristic (ROC) curves to plot the LOS detection rate
against the probability of false alarms. It is a classical graphical
view of trade-off between false positives and false negatives
over a wide range of thresholds. In general, closer the ROC
curve is to the upper left corner, the better performance is
indicated. Figure 8 shows the LOS identification performances
using 500, 200, and 10 packets, respectively. PhaseU achieves
a LOS detection rate of 94.35% with a false alarm of 5.91%
using 500 packets. Even with only 10 packets, PhaseU retains
high LOS and NLOS detection rates (91.61% and 89.78%).
Hence PhaseU can perform accurate LOS identification in 1
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second using only beacon packets, which are broadcast at
10Hz by default on COTS APs.

From the ROC curves, we derive a general threshold for ρ-
factor that results in balanced LOS and NLOS detection rates.
We use 500 packets, the minimum number in LiFi [15], as
benchmark quantity for subsequent evaluation. As illustrated in
Figure 9, PhaseU greatly outperforms Rician-K and LiFi by up
to 20% in both LOS and NLOS detection rates using identical
amount of measurements. LiFi only performs slightly better
than Rician-K in static scenarios, although it reports reasonable
performance in case of mild user-intervened mobility [15].

In the following, we evaluate the impacts of various param-
eters and demonstrate the benefits of individual components
considered in PhaseU design.

2) Impact of Packet Quantity: The quantity of packets acts
as the most critical factor for real-time LOS identification.
We test packet numbers from 10 to 1000. As shown in
Figure 10, PhaseU consistently achieves high LOS and NLOS
detection rates using different amount of packets (with the
same threshold). The average LOS and NLOS detection rates
over all cases are 90.84% and 91.01%, respectively. Best
balanced detection rates higher than 90% are reached in cases
of 200 to 500 packets while the worst case of LOS and NLOS
detection rates of 96.12% and 74.47% appears with 10 packets.
For comparison, we test the performance of LiFi and Rician-K
under the same packet amount range. As shown in Figure 10,
PhaseU significantly outperforms previous approaches across
all cases, with average improvement of more than 35% and
14% in LOS and NLOS detection performance, respectively.
Moreover, both LiFi and Rician-K could achieve balanced
performance only with more than 1000 packets, which makes
them infeasible for real-time applications. PhaseU reduces
the quantity requirement by more than 100x. For the best
detection rates of about 90% using 1500 packets of LiFi [15],
PhaseU enables similar performance with 15x fewer packets.

We also notice that for both methods, the NLOS detec-
tion rate significantly increases while the LOS detection rate
slightly decreases with the increasing of packet quantity. This
is because that we adopt a variance-based metric for detection.
In general, the more packets are involved, the larger the
variances are. Thus for a fixed threshold (ρth in Equation 9),
the LOS and NLOS detection rates would certainly exhibit
opposite trends over the packet amounts. Fortunately, on the
one hand, the drop of LOS detection rate is small compared
to the grow of NLOS rate. On the other hand, this unbalanced
performance can be tackled by elaborating a packet-quantity-

related threshold.
We evaluate the accuracy over packet quantity instead of

time because a receiver can perceive packets from an AP at a
wide range of rates. In general, if the receiver is connected to
an AP, the packet rate can be up to 1000 packets per second;
otherwise, 10 CSI observations can be measured per second
from the beacon packets periodically broadcast by each AP. In
this sense, we conclude that PhaseU achieves millisecond-level
real-time LOS/NLOS identification for connected APs as well
as 1-second level identification of unconnected APs nearby,
which is far beyond the achievement of previous schemes.

3) Impact of Obstacle Diversity: Although we do not
explicitly test the performance of PhaseU for each type of
blockages, our experiments naturally involve diverse obstacles,
including concrete walls, metal platforms and wooden doors.
Hence we separately examine the performance of PhaseU in
different experimental areas as depicted in Figure 11. There is
no significant performance gap among all the cases. The lowest
NLOS detection rate of 89.27% appears in case of wooden
doors. The metal platform and multi-wall cases slightly exceed
others partially because through-metal propagation magnify
the difference between LOS and NLOS conditions.

4) Benefits of Multiple Antenna Combinations: As depicted
in Figure 12, selecting antenna combinations clearly produces
better performance than any single antenna pair. Concretely,
on our three-antenna device, using only one antenna pair
(i.e., antenna 1 and 2, 1 and 3, or 2 and 3) yields best and
worst LOS detection rates of 87.44% and 77.52% and NLOS
rates of 84.09% and 77.61% (all are the most balanced LOS
and NLOS rates). Hence we could summarize that selecting
multiple antenna pairs harvests higher performance while
PhaseU also works satisfactorily with two-antenna devices.
Given that more and more devices are manufactured with three
or more antennas, PhaseU is justifiable to provide accurate
LOS identification for most devices.

5) Benefits of Frequency Diversity: We evaluate the per-
formance improvements brought by frequency diversity in
Figure 13. For comparison, we adopt the mean variances of
difference of all subcarriers at the average performance of
each subcarrier. As is shown, using variances weighted by
envelopes of different subcarriers yields marginal performance
gain especially on the NLOS detection rate (6% improvement).
This result further validates our observation of inverse pro-
portionality between variances of phase difference and CFR
envelopes and further demonstrates the necessity of weighting
variances against envelopes across difference subcarriers.
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Figure 14. PhaseU achieves remarkable performance in mobile scenarios. For each case, LOS alarms are marked with lighter color and NLOS alarms darker.

C. Performance in Mobile Scenarios

Real-time LOS identification even in mobile scenarios is
a spotlight feature of our PhaseU design. To evaluate the
performance of PhaseU for mobile users, we let a user walk
naturally and stop occasionally and record CSI measurements
as well as inertial sensor data along the trajectory. We collect
four traces, two LOS and two NLOS conditions. For real-time
LOS/NLOS identification, we use 100 packets for each test,
i.e., 0.2s if using a packet rate of 500 per second.

We first infer receiver motion by the gyroscope. As shown
in Figure 14a and Figure 14b, the gyroscope is extremely
sensitive to device motion and thus acts as an accurate in-
dicator for receiver motion. Then for each “static moment”,
we employ LOS identification on the corresponding CSIs.
Figure 14 illustrates two examples of the identification results.
As seen, PhaseU correctly identifies LOS or NLOS conditions
in almost all the detected static moments. More specifically,
PhaseU successfully predicts LOS condition for 80.08% of the
static time and NLOS condition for 82.91%. For comparison,
both LiFi and Rician-K fail to identify LOS condition in real-
time mobile environments, with respective LOS detection rate
of only 6.75% and 10.81%. Most of the time LOS conditions
are mistakenly predicated as NLOS. In conclusion, we believe
PhaseU is capable of accurate real-time LOS identification
even for mobile users, which is far beyond the achievement
of previous identification schemes for WiFi.

VI. RELATED WORKS

Related works roughly fall into the following categories.
Exploiting Channel Statistics: Awareness of LOS and

NLOS propagation is a primitive in wireless communications
and localization, and various channel characteristics have been
explored to distinguish the two conditions [22]. Given precise

channel power delay profiles such as high-resolution CIR
measurements in UWB systems, metrics depicting both power
[23] and delay characteristics [24] have been utilized. For
commodity bandwidth constrained systems, researchers turn
to analyze the more accessible signal power distributions from
multiple packets at the cost of degraded real-time performance
and often halt at simulation [16]. The recently PHY layer
CSI accessible on COTS WiFi devices has brought about new
possibilities since both amplitude and phase information at the
granularity of OFDM subcarrier is revealed to upper layers.
Prior work such as [15] adopted features of CSI amplitudes
in the context of constrained mobility. In contrast, our work
harnesses the largely unexplored phase information, and aims
at pervasive and real-time LOS identification applicable for
both static and truly mobile scenarios.

Leveraging MIMO: The popularity of MIMO technology
has extended LOS identification to the spatial dimension. The
key insight is that observations from spatially separated loca-
tions or antennas potentially magnify the difference in spatial
stableness between LOS and NLOS paths. By comparing two
angular spectra from adjacent antenna arrays [5], peaks with
significant angular changes correspond to NLOS paths [5].
However, the calculation of angular spectra requires large
number of antenna elements [5] or sophisticated correlation
techniques [14]. To further reduce hardware and computation
complexity, other researchers explore various non-geometrical
features such as phase fluctuation [19]. The closest to our
work is [19], which also exploits MIMO as an enhancement
when deriving phase features. However, the scheme in [19]
is only validated by simulation while ignoring important
uncertain noises in practical measurements. Our work takes
the similar principle, yet builds upon real measurements, and
most importantly, leverages frequency diversity to improve
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identification accuracy and investigates inertial sensors to
enable identification in mobile contexts and implements a real-
time system on COTS devices.

VII. CONCLUSIONS

In this paper, we propose PhaseU, a real-time LOS identifi-
cation scheme that works in both static and mobile scenarios
on commodity WiFi infrastructure. We explore and exploit the
phase feature of PHY layer information, harnessing both space
diversity and frequency diversity. Accounting for mobile sce-
narios, we incorporate inertial sensors to infer static moments
when the device appears to be motionless for identification.
We prototype PhaseU in various indoor spaces. Experimental
results demonstrate that PhaseU far outperforms previous
approaches in both static and mobile contexts. Furthermore,
PhaseU enables real-time capability with millisecond-level
delay for a connected AP and 1-second delay for unconnected
APs, which is beyond achievement of existing approaches. We
envision this work as an important step towards pervasive LOS
identification scheme, which paves the way for various WLAN
based communication and sensing services.

APPENDIX A
PHASE ANALYSIS

Phase Calibration. To mitigate the impact of random
noises, we perform a linear transformation on the raw phases,
as recommended in [17]. The key idea is to eliminate δ and β
by considering phase across the entire frequency band. Firstly,
we define two terms a and b as follows:

a =
φ̂n − φ̂1

kn − k1
=
φn − φ1

kn − k1
− 2π

N
δ (10)

b =
1

n

n∑
j=1

φ̂j =
1

n

n∑
j=1

φj −
2πδ

nN

n∑
j=1

kj + β (11)

If the subcarrier frequency is symmetric, which indicates∑n
j=1 kj = 0, b can be expressed as b = 1

n

∑n
j=1 φj + β.

Subtracting the linear term aki + b from the raw phase φ̂i
in Equation 2, we obtain a linear combination of true phases,
denoted as φ̃i, from which the random phase offsets have been
removed (omitting the small measurement noise Z):

φ̃i = φ̂i − aki − b = φi −
φn − φ1

kn − k1
ki −

1

n

n∑
j=1

φj (12)

Note that such linear transformation is not strictly applicable
to IEEE 802.11n, where the subcarrier indices are asymmetric,
i.e.,

∑n
j=1 kj = 0. Nevertheless, we observe that conducting

the transformation on raw phases retrieved by 802.11n devices
can still mitigate the randomness to a large extent in practice.

Variance of Calibrated Phase. Since we cannot obtain the
true phase but a calibrated measurement φ̃i, we demonstrate
the relationship between the variances of the calibrated and
the true phases. Suppose φi are i.i.d over frequency, and thus

σ2
φ̃i

= ciσ
2
φi
, ci = 1 + 2

k2
i

(kn − k1)2
+

1

n
(13)

This means the variances of sanitized phases and true phases
differ by only a frequency-related constant multiple ci.
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