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Abstract

Pre-trained language models have been widely adopted as back-
bones in various natural language processing tasks. However,
existing pre-trained language models ignore the descriptive
meta-information in the text such as the distinction between the
title and the mainbody, leading to over-weighted attention to in-
significant text. In this paper, we propose a hypernetwork-based
architecture to model the descriptive meta-information and inte-
grate it into pre-trained language models. Evaluations on three
natural language processing tasks show that our method notably
improves the performance of pre-trained language models and
achieves the state-of-the-art results on keyphrase extraction.
Index Terms: descriptive meta-information, hypernetworks,
pre-trained language model

1. Introduction

Pre-trained language models like BERT [1], RoBERTa [2], AL-
BERT [3] etc. have been successful in various natural language
processing (NLP) tasks. After being pre-trained on large-scale
language corpora, these models can be used as backbones for
different downstream tasks such as Text Classification, Ma-
chine Reading Comprehension (MRC), Textual Entailment and
Named Entity Recognition. For a given downstream task, the
backbones only need to be fine-tuned with a few additional lay-
ers without substantial task-specific architecture modifications.

Despite their easy adoption and superior performance, these
pre-trained language models only exploit plain text features
such as word embedding and sentence embedding. That is, they
treat the input text equally and ignore the inherent context in the
text such as the distinction between the title and the mainbody,
or semantic roles e.g., who, what and how [4, 5]. Ignorance of
such information can lead these deep learning based models to
pay over-weighted attention to insignificant words [6, 7].

To this end, we integrate descriptive meta-information into
pre-trained language models to improve their performance on
downstream tasks. That is, instead of treating all text equally,
we differentiate between meta-text and main-text, where the
meta-text contains descriptive meta-information of the main-
text. The descriptive meta-information for text, e.g., titles, key-
words and abstracts, is known to assist humans to comprehend
complex text. Such information is also easily accessible in the
input data of many NLP tasks. For example, the data input for
text classification and keyphrase extraction can be considered
as pairs of title (meta-text) and mainbody (main-text), where
the title is often a high-level summary of the mainbody. Simi-
larly, the input text for MRC is pairs of question (meta-text) and
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mainbody (main-text), where the question provides guidance to
find answers in the mainbody.

Prior studies [8, 9, 10] model descriptive meta-information
in text via attention mechanisms. R-Net [9] encodes questions
and passages separately for MRC, applies attention to obtain
question-aware context representations, and uses self-attention
to further refine question-aware representations. SQLA [8]
adopts a hierarchical attention network to extract both question-
aware context and passage-aware context for MRC tasks. At-
tention mechanism has also been utilized in modeling the ti-
tle and full-text (title and mainbody) for keyphrase generation.
Title-Guided Net [10] encodes titles and full-text separately and
applies attention-based matching to aggregate the descriptive
meta-information from the title for each token in the full-text.

All the attention-based approaches [8, 9, 10] require train-
ing an end-to-end model, which often performs worse than
using state-of-the-art pre-trained language models [1, 2, 3] as
backbones, especially with limited training data. Moreover, as
we empirically show in Sec. 3, directly applying attention-based
methods on top of state-of-the-art pre-trained language models
may even decrease the accuracy due to parameter redundancy
[11, 12]. We argue that a naive integration of attention-based
schemes into pre-trained language models is sub-optimal as the
core of the transformer blocks in pre-trained language models is
already based on multi-head attention [13]. Therefore, an alter-
native mechanism that (i) models descriptive meta-information
and (ii) works in synergy with pre-trained language models is
vital to further improve the performance on many NLP tasks.

In this paper, we model the descriptive meta-information
via hypernetworks [14]. A hypernetwork is a neural network
that generates the weights for another neural network. Based on
the hypernetwork, we design a new architecture built upon ex-
isting pre-trained language models that extracts the descriptive
meta-information in the meta-text for more effective process-
ing of the main-text. As illustrated in Fig. 1, both meta- and
main-text are first encoded via a pre-trained language model
into embedding. The embedding of the meta-text is then fed
into a hyper encoding layer to generate the weights of the infer
encoding layer. Afterwards, the infer encoding layer converts
the embedding of the main-text into representations for task-
specific fine-tuning. Our proposed architecture coincides with
how humans process the meta- and main-text: the interpretation
of the main-text is dependent on the meta-text, where the low-
level knowledge on both the meta- and main-text comes from
the universal language ability (pre-trained language models).

Our main contributions and results are as follows.

* To the best of our knowledge, this is the first study that
models descriptive meta-information in NLP tasks via
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Figure 1: Overview of our method. Meta-text ui,uz, - ,u,
and main-text vi,va, - - - , vy, are encoded by a pre-trained lan-
guage model. The embeddings of meta-text are input into a hy-
per encoding layer to output descriptive meta-information z,
which generates the parameters for the infer encoding layer.
The embeddings of the main-text are fed into the infer encoding
layer to generate the fused representation, Hy, H3,---  H} ,
which is input into the task-specific layers for fine-tuning.

hypernetworks. It is also the first attempt to model de-
scriptive meta-information with BERT-like pre-trained
models. Our proposed architecture seamlessly integrates
descriptive meta-information modeling into pre-trained
language models, and allows the meta-text to explicitly
affect the processing of the main-text.

* Evaluations on three NLP tasks across nine benchmarks
show that our hypernetwork-based architecture outper-
forms the state-of-the-art attention based mechanisms
in modeling descriptive meta-information and works in
synergy with mainstream pre-trained language models.
Particularly, our model achieves a high inference accu-
racy on keyphrase extraction benchmarks, exceeding the
state-of-the-art pre-trained models by 4.7%, 2.8%, and
4.3% on Inspec, SE-2010, and SE-2107.

2. Our Method

We represent the meta-text and main-text in NLP tasks as a text-
pair (u, v) where u and v are the token sequences of the meta-
and main-text, respectively, and w contains descriptive meta-
information about v, i.e., u provides a descriptive overview of
the information in v. We take advantage of the existing pre-
trained language model to encode both w and v into their em-
beddings. The embeddings are then fed into a hypernetwork to
learn the descriptive meta-information. Specifically, the embed-
ding of w is input into a hyper encoding layer and the embed-
ding of v is input into an infer encoding layer, where the output
of the hyper encoding layer generates the weights for the infer
encoding layer. We elaborate on each component below.

2.1. Pre-trained Language Model Encoder

We use BERT [1] or other transformer-based pre-trained lan-
guage model as the encoder to embed each token into a fixed-
length vector. Specifically, given a text-pair (u, v), where u and
v are sequences of tokens for the meta- and main-text, where
the lengths of u and v are [,, and [,,, we obtain the embedding
of u and v as follows:

H" = PTM ([u;v]) (1)
HY, HY = Split(H") ?)

where PTM is a pre-trained language model. We use BERT
[1], RoBERTa [2] and ALBERT [3] in our evaluation. [-;-] de-
notes concatenation, and Split(-) means splitting, i.e., H*Y €
RUuHXN g split into H* € R™“*N and HY € RV,
where N is the hidden size of the pre-trained language model.

The pre-trained language models encode rich hierarchy of
linguistic information e.g., syntactic and semantic features into
the representation of w and v [15]. However, since u and v
are concatenated as the input without differentiating meta- and
main-text, the output representations fail to model the impact of
u on v, i.e., the descriptive meta-information, which motivates
us to explicitly model the descriptive meta-information via a
hypernetwork, as described next.

2.2. Hyper Encoding Layer

The hyper encoding layer takes the embedding H* of u as input
to generate the weights of the infer encoding layer for model-
ing v. Specifically, we first apply a long short-term memory
(LSTM) unit to compress H" into a vector z, where z € RV=.
We set N, as a small constant (16 or 32 in this paper).

z = LSTM (H") 3

where z is the descriptive meta-information of text-pair (u, v).
Then the weights of infer encoding layer are generated as:

W[h = thz (4)
Wie = Wazz )
Wiy = W,z (6)

where W}, W5, and W, are learnable parameters. Wy, €
RNtr Wi, € RNz and Wy, € RVTo are the weights of infer
encoding layer, which is also an LSTM unit (see Sec. 2.3). We
make the following notes on the hyper encoding layer.

» Since the weights of the infer encoding layer are depen-
dent on z, the descriptive meta-information contained in
the meta-text is explicitly modeled and conveyed to the
downstream tasks.

e The LSTM unit is chosen to account for the varied length
of H*. The processing of meta-text by LSTM is consis-
tent with human reading behavior.

* For a different text-pair (u,v), the weights of the cor-
responding infer encoding layer also differ. Thus, our
model can be considered as an instance-wise dynamic
network where the hyper encoding layer is at infer-
ence time but the parameters of the infer encoding layer
adapts according to the input instances. Instance-wise
dynamic networks are effective in improving the repre-
sentation of neural networks in various applications [16].

2.3. Infer Encoding Layer

The infer encoding layer is another LSTM unit. The standard
formulation of a LSTM is given by:

fe =0 (Winhi—1 + Wigxe + by)
iy = 0 (Winhi—1 + Wigxe + b;)
5t = tanh (Wchhtfl + chcmt + bc)
ct=ftOci—1+1it O
ot = 0 (Wonhi—1 + Wogxe + bo)
h: = o¢ ® tanh (c¢)

@)

where HY, from H, is the input x; at time step ¢, h, is the hidden
state at ¢, o is sigmoid function, Wy, Wy, Win, Wiz, Wen,
Wee, Won, Woa, by , by, be and b, are learnable parameters.



As mentioned in Sec. 2.2 , all the parameters of the infer
encoding layers are generated by Wy, Wiz, and Wiy:

(th7 W’ihv Wch7 Woh) = Chunk (WIh)
(Wf17 Wioﬁ Wcz, Woz) = Chunk (W[I) (8)
(bf7 bi7 bc, bo) = Chunk (ij)

where Wiy, , Wi , Wen , Won € RNnXNn , N x4Np, = N,
and Wi, , Wia , Wew , Wop € RNWXNe Ny 5 AN, = Ny,
and by, b; , be , bo € RYVr AN}, = Ny, Chunk is the operation
to split a tensor into a specific number of equal-sized chunks.

2.4. Putting It Together

From Sec. 2.2 and Sec. 2.3, the embedding H" of the meta-text
generates the descriptive meta-information z, which generates
the parameters for the infer encoding layer that takes the em-
bedding H" of the main-text as input. We implement the above
hypernetwork via LSTM units, i.e.,

H® = LSTM(H,; ) )

where H® is the fused representation of the input text-pair
(u, v) for downstream tasks. The embeddings H* and H" are
encoded by pre-trained language models as in [1, 2, 3].

During training, only the parameters of hyper encoding
layer, infer encoding layer and task-specific layers will be up-
dated jointly by gradient descent.

3. Evaluation

We experiment with three popular NLP tasks: text classifica-
tion, machine reading comprehension, and keyphrase extrac-
tion. As introduced in Sec. 2, our method transforms an input
text-pair into a representation H*, which can be then fed into a
task-specific layer for fine-tuning as in standard pre-trained lan-
guage models. The input text is tokenized dependent on the pre-
trained language model, with a maximum length of 384 for ma-
chine reading comprehension and 512 for the other two tasks.
We set the hidden size of hyper encoding layer and infer encod-
ing layer to 512. All models are implemented in PyTorch. We
present the detailed setups and results for each task below.

3.1. Text Classification

Datasets. We experiment on four datasets: THUNews [17],
AGnews[18], INEWS', and ToutiaoNews’. THUNews is a
widely used Chinese news classification benchmark. Each in-
stance is labeled with one of the 14 news categories (finance,
technology, sports, etc.). The task is to predict the category
each instance belongs to. AGnews is similar to THUNews but
is a English dataset for news classification. INEWS is a Chi-
nese news dataset for sentiment classification (positive, nega-
tive or neutral). ToutiaoNews contains Chinese news published
by TouTiao. An instance in the former three datasets is in the
form of (title, passage) whereas an instance in ToutiaoNews
is (title, keyphraseset). Table 1 summarizes their statistics.

Setups. The representation H* is directly passed to a fully con-
nected layer to obtain the class logits. The training objectives
are Cross-Entropy and we use Adam with weight decay regu-
larization as the optimizer. The learning rate is set to 2e-5 with
weight decay of 0.01. We choose BERT [1], RoBERTa [2] and

Thttps://github.com/CLUEbenchmark/CLUE
Zhttps://github.com/fatecbf/toutiao-text-classfication-dataset/

Table 1: Statistics of text classification datasets.

Corpus Class  Train Dev Test
THUNews 14 33.3k 42k 42k
ToutiaoNews 15 267.8k 57k 57k
AGnews 4 120k N/A 7.6k
INEWS 3 5.4K 1k 1k

ALBERT [3] as baselines. Specifically, BERT-large-uncased?,
RoBERTa-large*, ALBERT-xlarge’ are chosen for English cor-
pus while BERT-large-zh?, RoOBERTa-wwm-ext-large [19] and
ALBERT-xlarge-zh® for Chinese corpus.

Results. Table 2 summarizes the classification accuracy of dif-
ferent pre-trained language models without and with hypernet-
works for incorporating the descriptive meta-information in the
text pairs. For the same pre-trained language model, the clas-
sification accuracy increases by 0.18% to 8% when adding the
hypernetwork. For all the four datasets, the highest classifica-
tion accuracy is achieved when the hypernetwork is integrated
into the pre-trained language model.

Table 2: Performance of text classification.

THU Toutiao

Method INEWS News News AGnews
BERT 74.14% 90.36% 85.53% 94.55%
RoBERTa 75.91% 90.32% 86.98% 94.98%
ALBERT 75.0% 90.29% 85.67% 94.97%
BERT+Hypernet (ours) 80.13% 93.47% 89.21% 95.06%

RoBERTa+Hypernet (ours) 80.91% 93.56 % 90.05 % 95.36%
ALBERT+Hypernet (ours) 80.22% 93.50% 89.34% 95.14%

3.2. Machine Reading Comprehension

Datasets. We experiment with two MRC benchmark datasets:
SQuAD 1.1 [20] and SQuAD 2.0 [21]. SQuAD 1.1 contains
over 100,000 question-answer pairs from more than 500 arti-
cles. The task is to predict the answer text span in the passage
given a question and a passage containing the answer. SQUAD
2.0 combines the 100,000 questions in SQuAD 1.1 with over
50,000 new, unanswerable questions. For SQuAD 2.0, the task
is to not only answer questions when possible, but also decide
whether there is an answer in the paragraph.

Setups. In this task, the representation H* is passed to a fully
connected layer to get the start logits s and end logits e of all to-
kens. We use cross-entropy as the training objective. Total span
extraction loss is the sum of a cross-entropy for the start and
end positions. We use Adam with weight decay regularization
as the optimizer and set the learning rate of 3e-5 with weight
decay of 0.01. In addition to the naive BERT and its variants as
baselines, we also experiment with the following methods.

¢ R-Net [9]: a state-of-the-art method for MRC, which
uses a gated attention-based recurrent network to learn
the matching between the question and the passage and
a self-attention layer to learn the global information of
the passage. We use pre-trained language models to ob-
tain the representation of the question and the passage.
Then, the representation of the question and the passage
are fed into R-Net to predict the answer span.

3https://github.com/google-research/bert
“https://huggingface.co/transformers
Shttps://github.com/google-research/ ALBERT



e SLQA [8]: a novel hierarchical attention model for
MRC. It applies co-attention and self-attention to focus
on the correct answer span. SLQA is integrated with pre-
trained language models in the same way as R-Net.

Results. Table 3 lists the Exact Match (EM) and F1 score of dif-
ferent methods. Comparing the results on the same pre-trained
language model, our approach outperforms the attention-based
R-net and SLQA. SLQA and R-Net sometimes perform even
worse than the naive pre-trained language models. For exam-
ple, the EM and F1 score of SLQA+BERT are lower than BERT
on both SQuAD 1.1 and SQuAD 2.0. This might be explained
by parameter redundancy. Research [11, 12] has shown that
there are redundant parameters in pre-trained language models
that adopt multi-head attention. Integrating attention-based R-
Net or SLQA with the transformer-based language models adds
more attention, which may exacerbate the parameter redun-
dancy problem. Among all the methods, RoOBERTa+Hypernet
performs the best. This is expected because RoOBERTa-large is
a more powerful pre-trained language model than BERT-large-
uncased and ALBERT-xlarge on MRC task [1, 2, 3].

Table 3: Performance of machine reading comprehension.

SQuAD 1.1 SQuAD 2.0
Method (EM/F1) (EM/F1)
BERT 84.1%/90.9* 78.7%/81.9%
RoBERTa 88.9/94.6 86.5%/89.4*
ALBERT 86.4%/92.9% 84.1%/87.9%
BERT+R-Net [9] 84.9/91.9 81.9/85.1
RoBERTa+R-Net [9] 88.7/94.5 87.1/89.7
ALBERT+R-Net [9] 86.8/92.9 83.6/86.5
BERT+SLQA [8] 84.3/90.7 77.0%/80.2%
RoBERTa+SLQA [8] 86.7/92.1 86.9/89.9
ALBERT+SLQA [8] 86.5/92.8 84.2/88.0
BERT+Hypernet (ours) 87.4/93.3 84.5/86.4
RoBERTa+Hypernet (ours)  89.7/95.2 87.2/90.1
ALBERT+Hypernet (ours) 89.2/94.8 85.8/87.3

* result from the published paper; otherwise from our implementation.

3.3. Keyphrase Extraction

Datasets. We test on three keyphrase extraction datasets: In-
spec [22], SemEval-2010 [23] and SemEval-2017 [24]. Inspec
contains title and abstracts from 2000 scientific articles. SE-
2010 consists of 284 articles published by ACM and SE-2017
contains 500 open access scientific articles by ScienceDirect.
Table 4 summarizes the statistics of the datasets.

Table 4: Statistics of keyphrase extraction datasets.

Corpus Train Dev Test

Inspec 1k 0.5k 0.5k
SE-2010  0.13K 14 0.1k
SE-2017  0.35k 50 0.1k

Setups. In this task, the representation H*° is passed to a fully
connected layer with a conditional random field (CRF) to get the
label scores of all tokens. We include CRF as part of the task-
specific layer because adding the CRF significantly improve the
performance of keyphrase extraction [25]. The training objec-
tive here is to maximize the log-likelihood. We use Adam with
weight decay regularization as the optimizer, and set the learn-
ing rate of 2e-3 with weight decay of 0.01.

In addition to the naive pre-trained language models[25],
we also experiment with the Title-Guided Network (TG) [10], a
state-of-the-art sequence-to-sequence model which uses a title-
guided encoder for keyphrase generation. Specifically, we inte-
grate the encoder of TG (the main contribution of TG) into the
pre-trained language model. We first use the language model to
obtain the representations of the title and the full-text (including
title and the mainbody). Then these representation vectors are
fed into TG to predict the label of each token.

Results. Table 5 shows the F1 score of different methods. Com-
pared with using the pre-trained language models alone, adding
both TG and our hypernetwork notably improves the perfor-
mance on all datasets. Our hypernetwork achieves more notable
improvement, validating the advantage of the hypernetwork
over the attention-based approach. The results also demonstrate
employing hypernetwork helps the model work better with very
small training dataset, which is critical for most NLP tasks as
large-scale annotated data is unavailable [4].

Table 5: Performance of keyphrase extraction.

Method Inspec  SE-2010  SE-2017
BERT+BiLSTM-CRF[25] 0.591 0.330 0.522
SciBERT+BiLSTM-CRF[25] 0.593 0.357 0.521
RoBERTa+BiLSTM-CRF[25] 0.595 0.278 0.508
ALBERT+BiLSTM-CRF 0.591 0.346 0.524
BERT+TG-CREF [10] 0.595 0.334 0.530
SciBERT+TG-CRF [10] 0.597 0.363 0.535
RoBERTa+TG-CRF [10] 0.604 0.297 0.521
ALBERT+TG-CRF [10] 0.601 0.346 0.522
BERT+Hypernet-CRF (ours) 0.620 0.349 0.546
SciBERT+Hypernet-CRF (ours) 0.621 0.367 0.544
RoBERTa+Hypernet-CRF (ours)  0.623 0.348 0.533
ALBERT+Hypernet-CRF (ours) 0.621 0.353 0.547

Please note that [25] did not report the results on ALBERT.

4. Conclusion

In this paper, we propose a novel hypernetwork-inspired ar-
chitecture to integrate descriptive meta-information into pre-
trained language models. We explicitly differentiate the meta-
and the main-text and design an LSTM-based hypernetwork to
model meta-text-dependent processing of the main-text. Evalu-
ations on text classification, machine language comprehension,
and keyphrase extraction show that our method notably out-
performs the state-of-the-art pre-trained language models and
existing attention-based descriptive meta-information modeling
schemes. One future direction of our work is to extend to multi-
modal data e.g., text-speech pairs, and exploit hypernetworks
to integrate descriptive meta-information into multi-modal pre-
training models [26, 27, 28] for spoken language understanding,
visual-linguistic, and other tasks.
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