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Abstract—Dense deployments of commodity air quality sensors
have proven effective to provide spatially-resolved information on
urban air pollution in real-time. However, long-term operation
of a dense sensor deployment incurs enormous maintenance
expenses and efforts. A cost-effective alternative is to first collect
measurements with an initial dense deployment and then rely
on a small subset of sensors for air quality map generation.
To avoid dramatic accuracy degradation in air quality maps
generated using the downscaled sparse deployment, we design
MapTransfer, an air quality map generation scheme which
augments the current sensor measurements from the downscaled
sparse deployment with appropriate historical data from the
initial dense deployment. Due to the spatiotemporal complexity
of air pollution, it is challenging to select the best historical data
and fuse them with measurements from the downscaled deploy-
ment to accurate map generation. To overcome this challenge,
MapTransfer adopts a learning-based data selection scheme and
integrates the best historical data with the current measurements
via a multi-output Gaussian process model at sub-region levels.
Evaluations on a large-scale PM2.5 sensor deployment show
that MapTransfer reduces the overall mean absolute error of
air quality maps by 45.9%, compared with using data from the
downscaled deployment alone.

I. INTRODUCTION

Advances in air quality sensor technologies have enabled
urban-scale sensor deployments for fine-grained air pollution
monitoring [1]–[4]. With densely deployed sensors, real-time,
spatially-resolved air quality maps can be generated by spatial
interpolation models like Gaussian processes [5], even without
training complex models and integrating heterogeneous data
sources [1], [6]–[8]. The availability of such urban air quality
maps not only raises public awareness of air pollution but
also empowers authorities to craft and evaluate policies. For
instance, the concentration of particulate matter (PM) with
diameters less than 2.5 micron (PM2.5), an air pollutant that
may cause respiratory diseases [9], is constantly monitored in
many major cities in China via large-scale static [1] or mobile
sensor networks [2], [4]. The hourly updated PM2.5 city maps
generated via these sensor measurements facilitate citizens to
adjust travel plans and authorities to make policy and control
emissions [10], [11].

Although many dense air quality sensor deployments have
been reported from both the academia and industries [1]–[4],
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much fewer remain operating after certain period of time. A
major reason for the short life-time of dense deployments is
the tedious efforts and high costs for sensor maintenance. For
instance, low-cost air quality sensors have to be periodically
re-calibrated [12], [13], and many may break after 3 months
[14]. In practice, many companies have to downscale their
deployments (i.e., only keep a sensor subset of the initial
deployment) for long-term air quality monitoring due to budget
concerns [15]. Particularly, a downscaled deployment may
only contain small portion (e.g., 1/3 or 1/4) of sensors in
the original dense deployment. Due to the dynamics and
complexity of urban air pollution, fine-grained air quality map
generated with such a sparse sensor deployment is likely to
suffer significant accuracy drop. According to our experiments
with an urban PM2.5 monitoring deployment, the average
mean absolute error (MAE) of air quality maps generated
using measurements from a dense deployment of 200 sensors
would dramatically increase from 5.1 to 21.8 if measurement
of merely 50 sensors are used (see Sec. IV-A), whereas an
MAE below 10 is considered accurate for applications such
as urban PM2.5 maps [1], [14], [16].

To improve the accuracy of air quality maps generated with
measurements from a sparse downscaled deployment, we de-
sign MapTransfer, a novel air quality map generation scheme
which augments the current measurements with historical data
collected from the initial dense deployment. The underlying
rationale is intuitive: the downscaled deployment monitors the
same region as the initial dense deployment, and hence it
is probable that the current air quality distribution over the
whole region is the same or similar to that at some time
point in history. Hence it may improve the accuracy of the air
quality map generated with the sparse deployment by properly
transferring and augmenting knowledge of air quality in this
region from the historical data in the dense deployment.

However, it faces multiple challenges to transform the idea
above into a working system.

1) How to integrate current measurements from the down-
scaled deployment and historical data from the initial
dense deployment for map generation? Air quality maps
generated from the dense deployment typically rely on
Gaussian processes [5]–[7]. To seamlessly integrate
knowledge learned from the dense deployment, we adopt
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Fig. 1. Deployment of air quality sensors in a 50 km× 30 km region: (a) illustration of an air quality sensor; (b) dense initial deployment with 200 sensors;
(c) sparse downscaled deployment with 50 sensors.

Multi-Output Gaussian Process (MOGP) [17], an exten-
sion of Gaussian processes, for map generation.

2) How to select the best historical data to improve the
accuracy of air quality map generation? Due to the
complexity and dynamics of urban air pollutant con-
centrations, it is non-trivial to select the best historical
measurements. As we show in real-world PM2.5 mea-
surements, conventional criteria such as such as Root
Mean Square Error (RMSE) or Correlation Coefficient
(CORR) often lead to negative transfer [18] and even
an accuracy drop in the generated air quality map
(see Sec. V-A). MapTransfer exploits a learning-based
instance selection (LIS). It extracts a rich set of features
from both PM2.5 measurements and auxiliary meta data
sources e.g., meteorological information, and applies a
neural network to select the best instances for air quality
map generation.

3) At what scale should data augmentation be performed?
We observe that the correlation between measurements
in the initial and the downscaled deployments is not
homogeneous over the entire monitoring region (see
Sec. VI-A). Such spatial locality in correlation indicates
that knowledge transfer and data augmentation at the
scale of the entire region may impair the performance
of map generation. To exploit spatial locality during data
augmentation, MapTransfer utilizes sub-region selection
(SRS) to split the whole region into sub-regions and
search for the best instance transfer for each sub-region.

The contributions of this paper are summarized as follows.

• We propose MapTransfer, the first practical urban air
quality map generation scheme for downscaled sensor
deployments by transferring knowledge and augmenting
historical data from the initial dense deployment.

• We comprehensively evaluate the performance of Map-
Transfer with measurements collected from a large-scale
PM2.5 monitoring system consisting of 260 sensors over
one and a half years. Experimental results show that
MapTransfer is able to reduce the overall MAE of PM2.5

maps generated with a downscaled deployment by 45.9%

(from 21.8 to 11.8), achieving an accuracy suited to raise
public awareness and take measures for emission control
[10], [11], as well as data mining applications [16], [19].

In the rest of this paper, we formally define our problem and
introduce our datasets in Sec. II. Then we present an overview
of our MapTransfer method in Sec. III and explain its core
modules in Sec. IV, Sec. V and Sec. VI. The evaluations are
shown in Sec. VII and we discuss the limitations of our method
in Sec. VIII. We review related work in Sec. IX, and finally
conclude in Sec. X.

II. PRELIMINARIES

In this section, we formally define the problem of air quality
map generation from downscaled sensor deployments, and
then introduce the datasets collected from a large-scale PM2.5

sensor deployment that will be used throughout this paper.

A. Problem Definition

We start by defining some basic concepts that will be used
throughout this paper.

Definition 1 (deployment): A deployment refers to a sensor
network activated during a certain period of time.

In our first-dense-then-sparse scenario, a dense sensor net-
work is used for air quality monitoring only during the initial
phase. It is then downscaled to a sparse sensor network by
activating only a subset of the original sensors.

Definition 2 (dense deployment): A dense deployment is a
sensor network used during the initial phase. All sensors are
activated in a dense deployment.

Definition 3 (sparse deployment): The sparse deployment is
the downscaled sensor network. Only a subset of the sensors
in the initial phase are activated in the sparse deployment.

Definition 4 (Air Quality Map Generation for Downscaled
Sensor Deployments Problem): Given a dense and a sparse
deployment covering the same urban region, the problem is to
effectively utilize the historical sensor measurements from the
dense deployment to increase the accuracy of the air quality
map generated from the sparse deployment.



B. Datasets

We collect measurements from a large-scale PM2.5 mon-
itoring deployment consisting of 260 low-cost sensors (see
Fig. 1a) in Beijing, China. The sensors upload their readings
to a server every minute. We collect PM2.5 readings from the
260 sensors over a period of 18 months from January 1st, 2018
to July 1st, 2019. These 260 sensors are randomly divided into
two groups with 200 and 60 sensors. The data collected from
the 200 sensors are used to generate hourly air quality maps
for the 50 km×30 km rectangular area in Fig. 1b and Fig. 1c,
with a resolution of 1 km × 1 km. The other 60 sensors are
used for testing the accuracy of the generated maps. Since we
aim to generate hourly air quality maps, we down-sample the
per minute raw sensor measurements to per hour by averaging
all the measurements within each hour.

We simulate the scenario from an initial dense deployment
to a downscaled sparse sensor deployment as follows. The
200 sensors during the whole year of 2018 are regarded as
the dense deployment. Then during the first half year of 2019,
it is downscaled to the sparse deployment with 50 randomly
picked sensors from the original 200 sensors. Consequently,
the PM2.5 measurements collected from these 200 sensors
form two datasets:

• dense dataset: It contains the hourly PM2.5 measure-
ments from all 200 sensors (dense deployment) from
January 1st, 2018 to January 1st, 2019.

• sparse dataset: It contains the hourly PM2.5 measure-
ments from the 50 sensors (sparse deployment) from
January 2nd, 2019 to July 1st, 2019.

For ease of presentation, we call one instance (i.e., the hourly
averaged PM2.5 measurements from a sensor deployment) in
the dense (sparse) dataset as a dense (sparse) instance.

III. MAPTRANSFER OVERVIEW

MapTransfer adopts multi-output Gaussian process (MOGP)
to integrate data from both the dense and the sparse deploy-
ments for map generation. Furthermore, to boost the accuracy
of air quality map generation, we add two novel modules
before MOGP: learning-based dense instance selection (LIS)
and sub-region selection (SRS), which are illustrated in Fig. 2.

• Multi-Output Gaussian Process (MOGP): MOGP
serves as a unified map generation model which takes
multiple instances to generate air quality maps. Specif-
ically, a current sparse instance and an appropriate his-
torical dense instance are used as the input of MOGP,
whereas the output is the improved air quality map of
the sparse instance. Details are explained in Sec. IV.
In the workflow of MapTransfer, MOGP is also used
to generate the training dataset for the Learning-based
Instance Selection module, which is described in Sec. V.

• Learning-based Instance Selection (LIS): The aim of
LIS is to avoid negative transfer in dense instance se-
lection. LIS extracts a rich set of features from both the
dense and the sparse datasets as well as auxiliary meta
data sources such as meteorological data, then it selects

All Historical Dense Instances 

…

LIS: Learning-based Instance Selection

Selected Dense Instances Sparse Instance

SRS: Sub-Region Selection

MOGP: Multi-Output Gaussian Process

…

Fig. 2. Workflow of MapTransfer.

the best dense instances using an artificial neural network
(ANN). Given a current sparse instance, LIS selects the
top-n best dense instances, which will be used together
with the current sparse instance in the following Sub-
Region Section module. Details are explained in Sec. V.

• Sub-Region Selection (SRS): The aim of SRS is to
further improve the accuracy of air quality map gener-
ation by exploiting spatial locality. SRS explores differ-
ent region splitting scheme to divide the whole region
into sub-regions, and searches among the top-n dense
instances selected by LIS for the one that yields the most
accurate air quality map in each sub-region for the current
sparse instance. Then these sub-regions of different dense
instances are stitched into a fictive dense instance, which
is fed into MOGP with the current sparse instance for
map generation. Details are explained in Sec. VI.

In real-world situation, the constantly changing environment
arises challenges for MapTransfer to keep being effective
over long-term sparse deployments. Significant changes in
the urban environment, like new high-rise buildings causing
changes in meteorological dynamics, will severely reduce the
transferable knowledge in the local region. Therefore, when
the accuracy of the air quality map generated by MapTransfer
severely decreases in some local regions, new sensors need
to be deployed to explore and learn the changes of the
environment. Furthermore, when the changed environment is
monitored by the added sensors after some period of time,
these sensors can be downscaled again in order to reduce main-
tenance costs. The data collected during this temporary local
dense deployment can be used by MapTransfer to improve the
air quality map in the future. The detailed procedures of this
mechanism is however out of the scope of this paper.



(a) (b)
Fig. 3. Accuracy improvement in air quality map versus similarity between the sparse and the best dense instance, where the similarity is measured by (a)
RMSE and (b) correlation coefficient.

IV. MULTI-OUTPUT GAUSSIAN PROCESS MODEL

In this section, we first review how to generate an air quality
map from a dense (sparse) instance and then explain how to
integrate a dense and a sparse instance for map generation.

A. Map Generation via Gaussian Process

To generate an air quality map, we need a mapping
x 7→ f(x), where x ∈ R2 is a 2-dimensional geographical
coordinate, and f(x) ∈ R is the real-valued air quality index.
Gaussian processes (GP) [5] proves effective to model and
learn this mapping when measurements from a dense deploy-
ment are available [1], [6]. They assume that the function f
is distributed as a GP with mean function m and covariance
function k [5], which can be written as:

f ∼ GP(m, k) (1)

Given a measurement instance, the parameters in the mean
function m and covariance function k are learned on this
instance, then the learned GP distribution is used to calculate
the real-valued air quality indices at each grid. Finally we have
an air quality map generated by the instance via GP.

The accuracy of the air quality map generated by GP heavily
relies on the density of the sensor deployment. As an example,
we compare the accuracy of the air quality maps generated by
the dense instances and the sparse instances collected from the
two deployments in Sec. II-B using GP. Specifically, we use
measurements from the two deployments collected during the
same period of time (January 1st, 2019 to July 1st, 2019), and
assess the accuracy of the generated air quality maps. The map
accuracy is assessed by MAEs calculated at the locations of the
60 test sensors. The MAEs averaged over the first half year of
2019 of maps generated using dense and sparse instances are
5.1 and 21.8, respectively. For PM2.5 concentration, an MAE
below 10 is considered accurate for data mining applications
[16]. The example shows that air quality maps generated with
merely sparse instances have limited accuracy and augmenting
historical dense instances is necessary.

B. Map Generation via Multi-Output Gaussian Process

To augment the current sparse instances with historical
dense instances for air quality map generation, we adopt Multi-
Output Gaussian Process [17]. It is an extension of GP which
jointly considers multiple correlated distributions. Suppose we
have one sparse instance and one dense instance. f1(x) and
f2(x) are the air quality indices over the monitored region at
the hour of the sparse and dense instance. MOGP assumes that
the distributions of f1 and f2 are correlated, and they conform
to a multi-output Gaussian process:[

f1
f2

]
∼ GP

([
m1

m2

]
,

[
k1,1 k1,2
k2,1 k2,2

])
(2)

where the multi-output mean functions
[
m1

m2

]
and multi-output

covariance functions
[
k1,1 k1,2
k2,1 k2,2

]
are learned on both the

sparse and dense instance. Here we still use f1(x) to generate
the air quality map at the hour of the sparse instance. However,
instead of being solely decided by the sparse instance, this air
quality map generated via MOGP also takes the dense instance
into account.

A crucial assumption for MOGP yielding high-accuracy air
quality maps is that the selected dense instance is strongly
correlated to the sparse instance in question, which is neces-
sary to enable positive knowledge transfer for the underlying
phenomenon (PM2.5 in our case). If the sparse and dense
instances are similar, the accuracy of the dense map will also
benefit from the measurements of sparse instance. Due to the
complexity and dynamics of urban PM2.5 concentrations, it
is challenging to select the best dense instance and properly
apply MOGP for accurate PM2.5 map generation.

V. LEARNING-BASED DENSE INSTANCE SELECTION

This section first shows that traditional unsupervised criteria
for dense instance selection leads to negative transfer, and then
explains our learning-based dense instance selection in detail.
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Fig. 4. An illustration of learning-based dense instance selection (LIS).

TABLE I
ALL FEATURES USED IN LIS.

Categories Features No.
FT hour of day, day of week, month and isHoliday 4 × 2
FM temperature, humidity, pressure, wind speed and wind power 5 × 2 × 9

FGP

GP Features : nug psill, nug range, nug kapple, sph psill, sph range, sph kapple;
Statistical Features : mean/minimum/maximum values of all the observations; Cross
validation features : mae, rmse

11 × 2 × 3

FC RMSE and correlation coefficient; co rmse, co mae 4

A. Dense Instance Selection via Unsupervised Criteria

RMSE and correlation coefficient (CORR) are two com-
monly used unsupervised criteria for instance selection in
environmental science [20]–[23]. As a measurement study,
we first randomly pick one sparse instance to generate an
air quality map using GP and measure its MAE (denoted
as EGP ) by comparing with the 60 test sensors. Then we
select one dense instance with the two selection criteria and
generate another air quality map via MOGP, where its MAE
is denoted by EMOGP . Hence we can quantify the transfer
gain by ∆E = EGP −EMOGP , where a positive value means
an improvement in air quality map accuracy, and a negative
value means a degradation due to negative transfer.

Fig. 3 plots the relationship between transfer gain ∆E
and the value of used instance selection criterion, i.e., RMSE
(Fig. 3a) or CORR (Fig. 3b). As shown in the figures, there is
no strong relationship between the transfer gain and the two
criteria. In many cases, the value of ∆E becomes negative,
indicating dense instances selected by RMSE or CORR may
often decrease the air quality map accuracy.

B. Dense Instance Selection via Supervised Learning

Fig. 4 shows the structure of our learning-based instance
selection (LIS) scheme. The core of LIS is a neural network
which captures the potential non-linear relationship between
the accuracy improvement and the instance similarity. The
neural network compares the current sparse instance with each
historical dense instance and predicts the transfer gain of the

dense instance, i.e., how much the accuracy of the generated
air quality map will improve by using both the dense and
the sparse instances via MOGP, over using only the sparse
instance via GP. The neural network also accounts for other
meta data such as time and meteorological information when
assessing the transfer gain. Given a current sparse instance,
LIS will go over all the historical dense instances, selects the
top-n dense instances with the highest predicted transfer gain,
and then passes these dense instances to the SRS module.

1) Input Features: We pick features from both the dense
and sparse instances as well as the corresponding meta data.
Specifically, the following categories of features are consid-
ered. (see Table I for a complete list of features used in LIS).

• Date time feature vector FT . Intuitively, month and day
of week are correlated to the periodical changes in air
quality [24]. So we use hour of day, day of week, month
and isHoliday from both the dense and sparse instances
as our date time feature vectors FT .

• Meteorological feature vector FM . Air quality is influ-
enced by many meteorological factors. We use five me-
teorological features for instance selection: temperature,
humidity, pressure, wind speed and wind power. These
features are collected from 9 meteorological stations in
our deployment (see Fig. 3a).

• GP summary feature vectors FGP . Since our end goal
is to improve the accuracy of the generated air qual-
ity maps, it is reasonable to utilize the parameters
of the maps i.e., parameters of the Gaussian pro-
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Fig. 5. Air quality maps generated by (a) a sparse instance on February 23rd, 2019; (b) one dense instance in the selected from history based on RMSE;
and (c) another dense instance selected from history based on RMSE.

cesses as features for instance selection. We choose all
the optimized GP parameters as FGP which includes
nug psill, nug range, nug kapple, sph psill, sph range,
sph kapple [20], [25]. In addition to the above GP
parameters features, we also add the statistical values
such as mean/minimum/maximum values of all the obser-
vations, and prediction power index such as the Leave-
p-out cross-validation error [26] from both the dense
and sparse instances, which is denoted as s mae,s rmse,
t mae, t rmse. What’s more, to account for the temporal
dynamics of air quality maps, we also include the GP
summary features one hour before and after the current
instance.

• Cross-instance feature vectors FC . Apart from the com-
monly used unsupervised criterion of RMSE and correla-
tion coefficient as the interaction feature vectors between
dense and sparse instances, we also add another Leave-p-
out cross-validation error measurement [26] as an index
of how the dense instance helps. This index uses p
observations in sparse instance as the validation set,
MOGP uses the observations in dense instance and the
remaining observations in sparse instance as the training
set and test the errors on validation set. This is repeated
for all observation in sparse instance in which sparse
observations can be separated this way, and then the error
is averaged for all trials, to give overall effectiveness. We
denote this error as co rmse,co mae.

2) Training: We only rely on the historical dense data to
train the neural network. Specifically, we use the data collected
by the sensors in the sparse deployment in the year of 2018 as
training sparse data. The data from the remaining 150 sensors
in the dense deployment in the year of 2018 are used as target
data. The number of dense instances and the number of sparse
instances used for training are both 8650.

To generate the ground truth labels to train the neural
network, consider one instance from the training sparse data
(training sparse instance), one instance at the same hour
from the target data (target instance), and one arbitrary dense
instance. Etrain

MOGP is the MAE of predicting the target instance

using both the training sparse instance and the dense instance
via MOGP, and Etrain

GP is that using only the training sparse in-
stance via GP. Then the ground truth ∆E = Etrain

GP −Etrain
MOGP

is used to train the neural network.

VI. SUB-REGION SELECTION

Recall that SRS aims to improve the accuracy of generated
air quality maps by exploit spatial locality in correlation
among instances. In this section, we first demonstrate the
spatial locality via measurements, and then explain the two
core issues in sub-region selection.

A. Spatial Locality of Correlation between Instances

Here we show that directly using the entire monitoring
region of dense instances may lead to sub-optimal perfor-
mance. Fig. 5a shows an air quality map generated by one
sparse instance on February 23rd, 2019, with EGP = 23.5.
We then select two historical dense instances with lowest
RMSE, denoted by Dense-L and Dense-R, and use MOGP
to generate two air quality maps, as shown in Fig. 5b and
Fig. 5c, respectively. When using these two dense instances
for MOGP-based map generation transfer, the transfer gains
are 6.9 and 7.6, indicating an improvement to a certain degree.
However, it is easy to observe that the left half of Fig. 5b
looks very similar to the same left half of Fig. 5a. Also the
right half of Fig. 5c looks similar to the right half of Fig. 5a.
This indicates that the dense instance Dense-L correlated to
the sparse instance more in the left half sub-region, and the
Dense-R more in the right half sub-region. If we stitch the
left half sub-region of the Dense-L and right half sub-region
of the Dense-R together to form a stitched instance, and then
use this to augment the current sparse instance, the resulting
transfer gain increases to ∆E = 13.4, which almost doubles
the transfer gain than using the entire monitoring region of
Dense-L or Dense-R individually. Hence due to the spatial
locality of correlations between sparse instances and historical
dense instances, it is preferable to transfer information from
sub-regions of different dense instances, instead of the whole
monitoring region of one single dense instance.
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Fig. 7. Potential different splitting methods to split the whole region to 2, 3 or 4 sub-regions.

B. Sub-Region Selection as Two-Step Optimization

The output of SRS is one stitched instance, which is made
up of several sub-regions from different dense instances. SRS
needs to address the following two issues: (i) how to split the
sub-regions, and (ii) which dense instance contributes the most
in each sub-region. This can be seen as a two-step optimization
problem whose objective is to maximize the transfer gain of
the final stitched instance.

1) Finding the most suitable dense instance for each sub-
region: To solve this two-step optimization problem, we start
with the second step. Consider one sparse instance A and
one dense instance B. Assume that the whole monitoring
region is already divided into several sub-regions. In one
of the sub-regions, the measurements of instance A form a
sub-instance a, and that of instance B form b. We calculate
the cross validation error of MOGP with a and b, i.e., for
each measurement in sub-instance a, we use the rest of
the measurements and also sub-instance b to estimate this
measurement via MOGP and calculate the estimation error.
Then the estimation error is averaged over all measurements
in a, and we get the cross validation MOGP (CV-MOGP) error
metric. For each sub-region, we select the dense instance with
the lowest CV-MOGP error and stitch them together to output
the stitched instance.

2) Dividing monitoring region into sub-regions: Given the
most suitable dense instance for each sub-region, we can
now search for the best splitting scheme to divide the whole
monitoring region into sub-regions. We introduce a splitting
point to divide the monitoring region into multiple adjacent
rectangular sub zones, as shown in Fig. 7. Given a splitting
point location and a splitting method, we could use the CV-
MOGP error metric to find the most suitable dense instances
for each sub-region and compute the overall CV-MOGP error,
i.e., the summation of CV-MOGP error of each sub-region.
Hence we can use Dual Annealing method [27] to find the
best splitting point and best splitting method, which yield the

lowest overall CV-MOGP error.
3) Two-step Optimization: We denote the location of split-

ting point in 2D space with (lx, ly), and splitting method with
m, which is an categorical variable from (a) to (g) as shown
in Fig. 7. The LIS module outputs Nd dense instances, and
the number of split sub-regions is denoted by Ns. For the
current sparse instance, we denote the CV-MOGP error in the
i-th sub-region with the j-th dense instance as ECV

i,j , where
i = 1, · · · , Ns and j = 1, · · · , Nd. The SRS module addresses
the two-step optimization:

min
(lx,ly),m

Ns∑
i=1

min
j

ECV
i,j (3)

Finally, SRS combines the sub-region of each selected dense
instance into one stitched instance, which is then combined
with the current sparse instance to generate an air quality map
via MOGP, as shown in Fig. 2.

VII. EVALUATION

This section presents the evaluation of MapTransfer. We first
introduce the experiment setup (Sec. VII-A) and then present
the overall performance (Sec. VII-B). Finally we show the
effectiveness of each module (Sec. VII-C and Sec. VII-D).

A. Experiment Setup

Datasets and Metrics. We evaluate the performance of dif-
ferent map generation transfer schemes using the same setting
and datasets in Sec. II-B. That is, for a given sparse instance
from the sparse dataset, each map generation transfer scheme
selects dense instances from the dense dataset and generates
an air quality map. We then assess the accuracy of the map
using measurements from the 60 testing sensors. Although
we conduct our evaluations using data collected in Beijing,
China, the principles of our method is not specific to Beijing
and applies to other regions as well. We mainly evaluate the
accuracy of the air quality map by the mean absolute error



TABLE II
OVERALL PERFORMANCE AND PERFORMANCE IN CASE OF HEAVY POLLUTION (PM2.5 CONCENTRATION > 150 ug/m3) OF DIFFERENT MAP

GENERATION TRANSFER METHODS.

Overall Performance Performance on Heavy Pollution

Method MAE on Test Dataset Reduction in MAE (%) over
Sparse GP

MAE on Test Dataset Reduction in MAE (%) over
Sparse GP

Sparse GP 21.8 - 36.4 -
RMSE + MOGP 18.2 16.5 32.2 11.5
RMSE + SRS + MOGP 16.9 22.5 30.3 16.8
COEF + MOGP 17.1 21.6 26.9 26.1
COEF + SRS + MOGP 16.2 25.7 25.8 29.1
LIS + MOGP 13.6 37.6 20.8 42.9
MapTransfer 11.8 45.9 17.9 50.8

(MAE), because MAE is used in various air quality related
research, including sensor calibration, spatial interpolation [6],
temporal prediction [28] and data mining [19].
Baselines. We compare the performance of our MapTransfer
(LIS + SRS + MOGP) with the following baselines.

• Sparse GP: It directly generates an air quality map with
a sparse instance without any dense instance.

• RMSE + MOGP: It adopts RMSE for dense instance
selection and MOGP for map generation transfer.

• CORR + MOGP: It applies the correlation coefficient
(CORR) for dense instance selection and MOGP for map
generation transfer.

• RMSE + SRS + MOGP: It uses RMSE for dense instance
selection and SRS to stitch dense instances, before apply-
ing MOGP for map generation transfer.

• CORR + SRS + MOGP: It uses CORR for dense instance
selection and SRS to stitch dense instances, before apply-
ing MOGP for map generation transfer.

• LIS + MOGP: It uses LIS for dense instance selection and
then MOGP for map generation transfer without using
SRS to stitch dense instances.

Other Experimental Settings. We implement the LIS module
using a fully-connected neural network with the architecture
of (168,84,22,1), where 168 is the dimension of input features
(see Table I) of the neural network and 1 is the dimension
of the output i.e., transfer gain ∆E = EGP − EMOGP .
The hyper-parameter of the two hidden layer dimensions,
(84,21) are selected via grid search [29]. All the codes are
implemented in python and the experiments were conducted
with a Linux machine with 32 cores.

B. Overall Performance

Table II shows the overall performance of different map
generation transfer methods. We are also interested in the
performance of these methods in case of heavy pollution
(PM2.5 concentration > 150 ug/m3) because accurate air
quality maps during heavily polluted days are particularly
important for authorities to take proper actions. The overall
MAE is 21.8 if only a sparse instance is used to generate the
air quality map. Without the assist of any dense instance, the
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Fig. 8. Histograms of MAEs of air quality maps generated using different
transfer methods.

MAE increases to 36.4 in case of high PM2.5 concentration.
Even the basic map generation transfer methods help reduce
the MAEs, i.e., a reduction of 16.5% in overall MAE with
RMSE + MOGP and 21.6% with CORR + MOGP. Our
LIS method notably outperforms the two conventional criteria
(RMSE and CORR), achieving a reduction of 37.6% in overall
MAE and 42.9% in case of heavy pollution, compared with the
air quality map generated with only a sparse instance. Our SRS
scheme reduces the MAEs with all the three dense instance
selection methods. Combining LIS and SRS, our MapTransfer
yields the best performance: a reduction of 45.9% in overall
MAE and 50.8% in high pollution cases, compared with
Sparse GP. The overall MAE is reduced to 11.8.

Fig. 8 shows distributions of MAEs using our method. We
also plot the MAE distribution using Sparse GP and Dense
GP, where the latter refers to generating air quality maps
with a dense instance. The accuracy of the maps generated
by Sparse GP and Dense GP serves as the upper and lower
bounds of map generation transfer. As is shown, MapTransfer
not only reduces the average MAEs, but also significantly
decreases the variance of MAEs.

Summary of Results. MapTransfer is the most effective
among all map generation transfer schemes. Compared with air
quality maps generated using sparse instances only, it reduces
the overall MAE of air quality maps from 21.8 to 11.8, a
reduction of 45.9%. The improvement is more significant in
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Fig. 9. Confusion matrices of prediction accuracy of ∆E by using only RMSE + CORR; and sequentially adding (b) all cross-instance features, (c) GP
summary features, and (d) meteorological features.
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Fig. 10. Feature importance for predicting the transfer gain ∆E.

case of heavy pollution, where the reduction in MAE reaches
50.8%. Meanwhile, MapTransfer also dramatically reduces the
variations of errors in the generated air quality maps.

C. Effectiveness of Learning-based Dense Instance Selection

This series of experiments investigates the contributions of
different features in LIS on the performance of map generation
transfer. For ease of illustration, the predicted transfer gain is
quantized into integer labels from −2 to 2, which correspond
to ∆E in the following ranges: below −10, −10 to −5, −5
to 5, 5 to 10, and above 10 .

Fig. 9 shows the normalized confusion matrices of the
prediction accuracy of ∆E (quantized into an integer from
−2 to 2) using different feature vectors described in Sec. V.
If only RMSE + CORR are used, the prediction accuracy
is only 0.68 with a large variance. The prediction accuracy
increases to 0.75 and 0.83 after adding all the cross-instance
features and the GP summary features, respectively. When the
meteorological features are also added, the final prediction
accuracy reaches 0.88. Compared with using only the conven-
tional RMSE+CORR, the prediction accuracy improves by
about 20% when all features are used.

Fig. 10 shows the importance of each feature used in LIS.
As is shown, cross-instance features such as co mae, co rmse

are significant. GP summary features such as sph psill,
nug psill and meteorological features also help improve the
prediction accuracy of the transfer gain.

Summary of Results. Using a rich feature set for dense in-
stance selection (see Table I) improves the prediction accuracy
of transfer gain ∆E by about 20% than using merely RMSE
and CORR. Cross-instance features and Gaussian process
summary features are essential for dense instance selection.

D. Effectiveness of Sub-Region Selection

In this subsection, we first take a closer look at the perfor-
mance of SRS on map generation transfer for a single sparse
instance, and then analyze the sub-regions selected by SRS.

Fig. 11a shows an air quality map generated by GP using
a sparse instance collected at 4:00 a.m. on February 23rd,
2019. Fig. 11b and Fig. 11c plot the maps generated by GP
using the two best dense instances selected by LIS (denoted
as Dense-L and Dense-R, respectively). Fig. 11d illustrates the
map generated by GP using the best dense instance stitched
by SRS (denoted by Dense-S). We plot the maps generated
by GP rather than the raw instances for ease of visualization.
As is shown, even the best historical dense instances selected
by LIS do not resemble the sparse instance in the entire
region. Conversely, the dense instance output by SRS, which
properly stitches certain sub-regions of the two best dense
instances, looks notably more similar to the sparse instance,
and potentially results in an air quality map with a higher
accuracy. Fig. 12b, Fig. 12c and Fig. 12d show the air quality
maps generated by MOGP using the sparse instance and the
two best dense instances (Dense-L and Dense-R) as well as the
stitched dense instance (Dense-S). Compared with the ground
truth in Fig. 12a, the map generated by augmenting the sparse
instance with the stitched instance is the most similar to the
ground truth. The results are more obvious when we plot
the errors of the generated maps in Fig. 13, using only the
sparse instance, or augmented by either dense instance or the
stitched one. The average MAE of using the sparse instance
is 23.5, whereas the average MAE reduces to 14.3 or 15.2
if Dense-L or Dense-R is combined with the sparse instance.
The errors are still unsatisfactory and there are notable high-



(a) GP(Sparse) (b) GP(Dense-L) (c) GP(Dense-R) (d) GP(Dense-S)

Fig. 11. Air quality maps generated by GP with (a) a sparse instance (denoted as Sparse); (b) one best dense instance selected by LIS (denoted as Dense-L);
(c) another best dense instance selected by LIS (denoted as Dense-R); and (d) a dense instance stitched by SRS (denoted as Dense-S).

(a) Ground Truth (b) MOGP(Sparse,Dense-L) (c) MOGP(Sparse,Dense-R) (d) MOGP(Sparse,Dense-S)

Fig. 12. (a) Group truth; air quality maps generated by MOGP with the sparse instance i.e., Sparse, and (b) Dense-L, (c) Dense-R, (d) Dense-S. The black
circles are areas with large errors.

(a) GP(Sparse) (b) MOGP(Sparse,Dense-L) (c) MOGP(Sparse,Dense-R) (d) MOGP(Sparse,Dense-S)

Fig. 13. Errors of air quality maps generated by (a) GP with Sparse; (b) MOGP with Sparse and Dense-L; (c) MOGP with Sparse and Dense-R; (d) MOGP
with Sparse and Dense-S.

error areas in Fig. 13b and Fig. 13c. In contrast, when the
stitched dense instance is used along with the sparse instance,
the average MAE drops to 10.1, which is acceptable in many
data mining applications. More importantly, we observe more
evenly distributed errors across the entire region of interests
(see Fig. 13d). The results show that SRS is able to eliminate
high-error areas in air quality maps and thus improves the

overall accuracy of air quality maps.

To understand how the regions are split when applying SRS
on the sparse instances, we plot the distributions of splitting
points and the number of split sub-regions in Fig. 14. We
have the following observations. (i) Most splitting points locate
around the center of whole monitoring region, which avoids
sub-regions with very few sensors. (ii) For all the 7 splitting
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Fig. 14. Splitting points distributions and ratios. The points in (a) and (b) split the regions into 2 sub-regions; The points in (c), (d), (e) and (f) split the
region into 3 sub-regions; The points in (g) splits the regions into 4 sub-regions.

methods described in Sec. VI, the methods which splits the
region to 2 sub-regions (Fig. 14a and Fig. 14b) account for
47.3% of all the sparse instances. The methods which split
the region to 3 sub-regions (see Fig. 14c, Fig. 14d, Fig. 14e,
Fig. 14f) take up 8.1%, 9.0%, 14.4% and 17.1% of all the
cases. Finally the method that splits the region to 4 sub-regions
(Fig. 14g) only has 4.1% shares among the splitting results.

Summary of Results. Directly transferring a dense instance
of the entire region improve the accuracy of the generated air
quality maps (an average MAE of about 14.7), yet leads to
high-error sub-regions. SRS wisely stitches dense instances,
which potentially eliminates high-error sub-regions and thus
yields air quality maps of higher accuracy (an average MAE
of 10.1). For a rectangular region of 50 km×30 km, splitting
it into 2 to 3 sub-regions suffices to achieve high accuracy.

E. Impact of Numbers of Sensors in Sparse Deployment

In this subsection, we evaluate how the number of sensors
in the sparse deployment affects the accuracy of the air quality
maps and identifies the number of sensors needed to obtain
an MAE < 10.

Fig. 15 shows the MAE of the air quality maps generated
with sparse instances of different numbers of sensors. When
the number of sensor in the sparse deployment increases from
50 to 150, the MAE of sparse GP, which directly generates
an air quality map with a sparse instance without any dense
instance, decreases from 21.8 to 11.7.

The MAE of MapTransfer also decreases constantly with
the increasing number of sensors in the sparse deployment.
When using 70 sensors, the MAE of air quality map generation
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Fig. 15. Impact of number of sensors in sparse deployment on air quality
map generation accuracy.

drops to below 10 (9.8). When increasing the number of
sensors in the sparse deployment to 100 and 150, the MAE of
MapTransfer is further reduced to 8.1 and 7.2, respectively.

VIII. DISCUSSIONS

Gaussian Process Regression for Map Generation. Our
air quality map generation method is based on the Gaussian
Process Regression for the following two reasons. (i) We
aim to take advantage of the historical data from a dense
deployment to improve the air quality map accuracy generated
from the sparse deployment. We do not assume access to
rich heterogeneous urban data, as required in many other air
quality map generation schemes [30]–[32]. Our work is a



best-effort exploration on the accuracy maintainable after a
dense deployment is downscaled to a sparse one. (ii) Gaussian
Process regression proves effective in case of a dense sensor
deployment [6]. Fusion of additional urban data is comple-
mentary to our work and may further improve the accuracy of
air quality map generation. However, due to limited access to
urban data in the region where our sensors are deployed, it is
difficult to implement urban data based air quality inference
methods [30]–[32] for direct performance comparison.

Dealing with Changes of Environmental Characteristics.
Our solution explicitly assumes that the environmental char-
acteristics relevant to air quality are relatively stable in the
long-term. This assumption may break in case of abnormal
climate changes. Hence it is important to detect the changes
of environmental characteristics in the monitored area. One so-
lution is to exploit the uncertainty of the air quality estimates.
Specifically, given the sparse instances, we can use spatial
interpolation methods to predict the air quality index with the
corresponding uncertainty at a given location, as in [33]–[35].
If the uncertainty at certain locations changes frequently, it
indicates that the environmental characteristics have changed
and new sensors should be deployed.

Data Duration and Imputation. We choose one year as the
length of training dataset based on the following observations:
(i) Our target is to select the best dense instance from historical
data, so one year is a reasonable choice which covers seasonal
variations of urban air quality; (ii) We only have access to 18
months of data, so we split the data to 2:1 as the training data
(one year training data) and test data (half year test data). Note
that there can be missing sensor measurements in long-term
sensor deployments. In case of missing data, existing missing
data completion methods for air quality data such as [36] can
be applied before inputting the data into our method.

IX. RELATED WORK

The availability of low-cost sensors and big urban data has
revolutionized the landscape of urban air quality monitoring.
In addition to conventional model-driven methods [37], [38],
there is a growing research interest to generate real-time, fine-
grained air quality maps with a data-driven approach [1], [3],
[7], [30]–[32], [39].

One thread of data-driven methods emphasize fusion of het-
erogeneous urban data [30]–[32], [40], [41]. U-Air [32] infers
fine-grained air quality information throughout Beijing, China
based on the air quality data reported by 35 monitoring stations
and a variety of urban data such as meteorology, traffic flow,
human mobility, road networks, and point of interests (POIs).
Third-Eye [31] feds images, weather data, and PM2.5 data
into two deep learning models for accurate PM2.5 inference.
PANDA [30] utilizes a deep multi-task learning based model
for air quality prediction by using the 6 monitoring stations in
Hangzhou, China and urban features including meteorology,
traffic, factory air pollutant emission, road network and POIs.
Wei et al. [40] propose a multi-modal transfer learning method
to transfer knowledge on urban air quality from one city with

sufficient multi-modal data and labels, to cities lack of such
data and labels. Our work is most relevant to [40] yet differs
in two problem settings. (i) We aim at knowledge transfer
and data augmentation from an initial dense deployment to a
downscaled sparse deployment, whereas [40] targets at inter-
city knowledge transfer. (ii) Our solution is designed for spatial
interpolation based map generation methods e.g., Gaussian
processes (see below) while [40] is suited for data fusion based
air quality inference schemes.

The other category of popular data-driven methods relies
more on measurements collected from a large-scale monitoring
system with low-cost air quality sensors. The idea is to
interpolate air quality reading from measurements collect by
sensors nearby. Wong et al. [8] compare different spatial
interpolation methods for air quality inference and report
that Gaussian processes are fit for accurate air quality map
generation. AirCloud [1] applies Gaussian process to generate
high-quality air quality maps with a large-scale static PM2.5

sensor deployment. Jutzeler et al. [7] design a region-based
Gaussian process model for ultra-fine particle concentration
inference with a mobile low-cost deployment, and show that
the model yields higher accuracy than land-use regression
[3]. Cheng et al. [6] compare different spatial interpolation
methods given a dense air quality monitoring deployment and
find that Gaussian process outperforms the others in terms
of the accuracy of the generated air quality maps. Since an
initial dense sensor deployment is available in our problem,
we mainly adopt Gaussian-based spatial interpolation methods
for accurate air quality map generation.

X. CONCLUSION

In this paper, we propose MapTransfer, an air quality map
generation method for downscaled sensor deployments. Key
novelties of MapTransfer include a multi-output Gaussian
process model to integrate both the sparse and the dense in-
stances, a learning-based dense instance selection module that
avoids negative transfer, and a sub-region selection scheme
that exploits spatial locality among instances to improve
accuracy of air quality map generation. Experiments on real-
world air quality sensor deployments show that compared
with air quality maps generated with a sparse instance only,
MapTransfer reduces the overall MAEs by 45.9%, achieving
an air quality map accuracy sufficient for many data mining
applications. We envision our work as a practical solution for
long-term cost-effective urban air quality monitoring with a
downscaled sensor deployment.
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I. Aguilera et al., “Apheis: Health impact assessment of long-term
exposure to pm 2.5 in 23 european cities,” European Journal of
Epidemiology, vol. 21, no. 6, pp. 449–458, 2006.

[10] D. Hasenfratz, O. Saukh, C. Walser, C. Hueglin, M. Fierz, T. Arn,
J. Beutel, and L. Thiele, “Deriving high-resolution urban air pollution
maps using mobile sensor nodes,” Pervasive and Mobile Computing,
vol. 16, pp. 268–285, 2015.
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