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Abstract—Air pollution is a major concern for public health
and urban environments. Conventional air pollution monitoring
systems install a few highly accurate, expensive stations at rep-
resentative locations. Their sparse coverage and low spatial
resolution are insufficient to quantify urban air pollution and
its impacts on human health and environment. Advances in low-
cost portable air pollution sensors have enabled air pollution
monitoring deployments at scale to measure air pollution at high
spatiotemporal resolution. However, it is challenging to ensure
the accuracy of these low-cost sensor deployments because the
sensors are more error-prone than high-end sensing infrastruc-
tures and they are often deployed in harsh environments. Sensor
calibration has proven to be effective to improve the data qual-
ity of low-cost sensors and maintain the reliability of long-term,
distributed sensor deployments. In this paper, we review the
state-of-the-art low-cost air pollution sensors, identify their major
error sources, and comprehensively survey calibration models as
well as network recalibration strategies suited for different sensor
deployments. We also discuss limitations of exiting methods and
conclude with open issues for future sensor calibration research.

Index Terms—Air pollution sensors, air quality sensor
networks, low cost sensors and devices, sensor calibration.

I. INTRODUCTION

URBAN air pollution affects the quality of life and public
health. Pollutants such as particulate matter (PM), ozone

(O3), carbon monoxide (CO), or nitrogen dioxide (NO2) can
cause respiratory illnesses or cardiovascular diseases. A study
by the World Health Organization estimated that 11.6% of all
global deaths in 2012 can be traced back to air pollution [1].
Heavily polluted air also leads to environmental problems such
as acid rain, stratospheric ozone depletion, and global climate
change. Monitoring air pollution is of growing importance to
increase public awareness and involvement in human health
and sustainable urban environments [2].

Traditionally, air pollutants are monitored by fixed sites with
expensive high-end sensing infrastructure run by governmen-
tal authorities. These monitoring sites are usually distributed
sparsely and only suffice to estimate the average pollution
affecting large populations. However, air pollution is known
to be a complex phenomenon with sophisticated spatial and
short-term variations [3]. For instance, in major streets, the
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pollutant concentrations may vary within tens of meters and
over time within minutes [4]. Therefore, it is desirable to
increase the spatiotemporal resolution of available air pollu-
tion information for the public to assess their personal health
risks and take precaution measures.

A driving factor that enables these increased monitoring
efforts is the availability of low-cost portable air pollution
sensors. These sensors are usually small, consume low power,
cost roughly between $10 and $1000 and are able to measure
the concentrations of all the major air pollutants. Compared
to bulky high-end solutions (≥ $10 000), low-cost sensors
are particularly convenient for large-scale static and mobile
deployments [5]–[8]. By now, low-cost air pollution sen-
sors have been successfully integrated into various long-term
deployments to provide fine-grained air pollution information
for quantitative studies and public services [9].

Unfortunately the data provided by these deployments is
often lacking sufficient accuracy [9], [10]. Many researchers
report about serious inaccuracies when comparing the low-cost
sensor measurements to reliable and accurate measurement of
conventional monitoring sites [11], [12]. The reason for this
unsatisfying performance can be linked to various limitations
of state-of-the-art low-cost sensors, such as low signal-to-noise
ratios or interference from environmental factors [13], [14].

In order to improve the data quality of existing and future
air quality monitoring deployments, active research efforts are
devoted to counteract these limitations with appropriate sensor
calibration. By calibrating a low-cost sensor its measurements
are transformed in a way that the calibrated measurements
are able to closely agree with reference measurements from
a high-end device. Sensor calibration is indispensable both
before and after the deployments of low-cost air pollution
sensors. Predeployment calibration is crucial to identify the
primary error sources, select and train calibration models for
low-cost sensors to properly function in the target deployment.
Periodic post-deployment calibration is necessary to maintain
consistency among distributed sensors and ensure data quality
of long-term deployments.

Although calibration for air pollution sensors dates back
to decades ago [15], [16], it has attracted increasing research
interest because: 1) newly available air pollution sensors push
the boundaries in terms of power consumption and portability
while neglecting sensing accuracy and 2) air pollution sensors
are deployed in new scenarios such as in crowdsourced urban
sensing [17] and personal sensing [18], [19].

Related Surveys: Several surveys discuss low-cost air pol-
lution sensor solutions and their different applications in
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real-world deployments. Rai et al. [5] summarized existing
low-cost air pollution sensor technologies and divide them
into two groups: 1) PM and 2) gaseous sensors. This
survey provides an overview of existing testing and eval-
uation reports that highlight various important character-
istics and limitations of state-of-the-art sensors. Similar
articles focus on sensors for particular pollutants, e.g.,
Spinelle et al. [7] on volatile organic compounds (VOC) and
benzene measurements, Jovaševic-Stojanović et al. [6] on PM
and Baron and Saffell [8] on electrochemical (EC) sensors for
gaseous pollutants. Yi et al. [9] reviewed the existing appli-
cations of low-cost air pollution sensors in static, vehicle, and
community-based sensor networks. Thompson [17] provides
an in-depth review of crowdsourced air pollution monitor-
ing and their current demands and requirements for future
successful deployments.

Our Contribution: While the related survey articles gener-
ally highlight the low accuracy of low-cost sensors, there is a
lack of a comprehensive review of the reasons for the low data
quality and calibration methods to improve it. In this paper,
we summarize the existing scientific literature and give an in-
depth list of different limitations of state-of-the-art low-cost
sensors. The majority of this survey is devoted to different cal-
ibration models that have been proven successful in tackling
the limitations and improving the data quality of low-cost air
pollution sensors, and effective methods to recalibrate large-
scale air pollution monitoring deployments. The discussed
works stem from different research communities including
atmospheric chemistry, measurement technology, and sensor
networks. Thus, this survey provides a global picture of the
diverse scientific results.

Roadmap: In Section II, we describe the most promi-
nent sensing principles used in low-cost sensors. Further, we
describe six common limitations that lead to generally inaccu-
rate measurements. In Section III, we present three calibration
models that are used to counteract different limitations that
pose a challenge in any sensor deployment. In Section IV, we
specifically focus on methods that maintain high data quality
in long-term deployments. These network calibration methods
are tailored to recalibrate the models presented in Section III
in real-world deployments where access to highly accurate
reference measurements is scarce. Finally, we conclude this
survey in Section V and discuss multiple possible future work
directions.

II. AIR POLLUTION SENSORS

Fast advances in technology and strong commercialization
efforts are main drivers for an increasing number of low-cost
sensors available nowadays [20]. Compared to high-end mon-
itoring systems low-cost sensors typically require significantly
less power and smaller packaging. Although these properties
make low-cost sensors favorable for various large-scale mon-
itoring applications, a diverse list of limitations hinders them
to achieve a similar level of data quality as more sophisti-
cated sensors. This section reviews the sensing technologies of
low-cost air pollution sensors, summarizes their most common
error sources, and points out the calibration opportunities to
improve their measurement accuracy.

A. Sensor Types and Sensing Principles

As highlighted in [5] and [9], common low-cost sen-
sors can roughly be divided in two groups defined by
their target pollutant, i.e., PM (Section II-A1) and gases
(Section II-A2).

1) Particulate Matter Sensors: PM describes a mixture of
solid and fluid particles, which are typically classified by
their size in diameter. PM10 describes the mass concentra-
tion of particles with a diameter smaller than 10 µm, PM2.5
smaller than 2.5 µm. Ultrafine particles are nano-particles with
diameters usually below 0.1 µm. These particles are known
to cause serious effects on environment and human health
and, thus, monitoring their concentration, size distribution, and
composition is of high importance [2].

Low-cost PM sensors are almost exclusively based on opti-
cal sensing principles. The most prominent principle is based
on light scattering, where air is pumped into a small cham-
ber. Inside the chamber a light source, either an LED or a
low-power laser, is illuminating the air. Depending on the num-
ber of particles in the air mixture, the light is scattered with
different intensity, which can be measured by a photodiode.
Certain low-cost PM sensors apply more sophisticated optical
principles to also differentiate sizes of particles.

2) Gas Sensors: The most relevant gaseous pollutants in
outdoor air with serious negative effects on human beings, ani-
mals, and the environment are sulphur dioxide (SO2), oxides
of nitrogen (NO, NO2, NOx = NO + NO2), CO, and O3 [2]. In
indoor air mainly carbon dioxide (CO2), VOC, and in some
cases also CO are known to be possibly present in harmful
concentrations [21].

The majority of commercially available low-cost gas sensors
is therefore targeting to measure the concentration of one of
these gases. With the exception of CO2, which is either directly
measured with light scattering sensors [20] or approximated by
the presence of VOCs [22], the most popular sensing principles
are based on EC or metal oxide layer reactions.

1) Electrochemical: An EC sensor consists in its sim-
plest form of two electrodes: a) a working electrode
and b) a counter electrode. Gases are either oxidized
or reduced at the working electrode, which results in
electronic charges generated. The generated potential
difference at the two electrodes allows a current flow.
This current is usually linearly proportional to the gas
concentration. More advanced EC sensors incorporate
one or two additional electrodes to improve stability and
sensitivity [23], [24].

2) Metal Oxide: Metal oxide sensors (MOXs) use a sensing
layer, where gases are either absorbed or desorbed. This
reaction causes a change in conductivity of the material.
In order to increase sensitivity the sensing layer needs
to be heated to temperatures of at least 250 ◦C. State-
of-the-art metal oxide sensors are capable of measuring
all the major gaseous pollutants [25].

Based on the above sensing principles, manufacturers pro-
duce low-cost sensors and offer different features. Some
sensors solely output an analog signal while others offer
on-device signal processing, e.g., digitization of the analog
signals or internal calibration. In the remainder of this survey
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Fig. 1. Overview of typical low-cost error sources and their corresponding
calibration approaches indicated by gray lines.

we do not differentiate between these different features. We
regard a low-cost air pollution sensor as a black box with
a signal output. The sensor is applied out-of-the-box and its
output is used for comparison and calibration with references.
This is the general approach done in the studies presented in
this survey.

B. Error Sources

One of the most essential questions regarding the aforemen-
tioned low-cost sensors is how their measurements perform
in comparison to high-quality references. An ideal sensor
fully agrees with its corresponding reference sensor, i.e.,
exhibits a perfect linear relationship, as illustrated in Fig. 2(a).
Unfortunately, the main reason why low-cost sensors have
not yet been established as a trust-worthy air pollution mon-
itoring fashion is their generally poor measurement accu-
racy [11]–[14]. In an exhaustive test report by Jiao et al. [12]
perform a black box testing approach for multiple sensors.
Out of 38 tested sensors only 17 correlate well to their corre-
sponding reference sensors. Through exhaustive sensor testing
schemes and signal analysis researchers were able to detect
multiple different error sources of state-of-the-art low-cost sen-
sors. As a result, most low-cost sensors significantly deviate
from an ideal sensor (Fig. 2).

We divide the error sources in two groups, internal and
external error sources, also summarized in Fig. 1. Note that we
do not include error sources that have not yet been thoroughly
tackled by calibration methods, such as slow response time or
sensor mobility effects [26], [27].

1) Internal Error Sources: Internal error sources are gener-
ally known error sources and typically related to the working
principle of low-cost sensors.

• Dynamic Boundaries: Dynamic boundaries define the
range of a pollutant concentration in which a sensor is
sensitive to. Especially the lower boundary, the limit of

detection (LOD) [28], is important. Below this bound-
ary the noise of a sensor signal starts to dominate and it
becomes impossible to differentiate between concentra-
tion levels. Low-cost sensors often have an LOD that is
close to the range of interest or even surpasses it. As a
result, measurements at low pollution concentration are
subject to high noise. An example of a low-cost sen-
sor affected by high noise at low concentration due to
imperfect dynamic boundaries is depicted in Fig. 2(b).
Especially PM [5] and EC sensors [29] are known to be
significantly affected by low signal-to-noise ratios at low
concentrations. It is important that calibration procedures
are applied with respect to this limitations.

• Systematic Errors: Systematic errors are of nonrandom
nature and typically either characterized by a constant
offset over the whole range of concentrations or an
under- or overestimation of the concentration in certain
ranges [11], [13], [14]. An example of a sensor response
with a constant offset is illustrated in Fig. 2(c). They
can often be attributed to imperfect calibration parame-
ters and are generally not related to the sensing principle.
Popular examples where systematic errors pose a chal-
lenge are factory calibrated sensors, as elaborated in detail
in Section III.

• Nonlinear Response: Due to the nature of certain low-cost
sensing techniques nonlinear relationships between a sen-
sors and a references response are unavoidable. Nonlinear
behavior is known to be an issue particularly for a wide
range of PM sensors [30], [31] and metal oxide sen-
sors [32]. Often sensor manufacturers already linearize
the sensor response, e.g., by internal signal processing,
or provide information about typical nonlinear behav-
ior in the datasheet. However, additional factors such as
environmental conditions are known to cause nonlinear
behavior as well [33]. Fig. 2(d) shows an example of
a nonlinear sensor response. A linear relationship is in
general favorable because it allows the use of simple
calibration models.

• Signal Drift: Low-cost sensors generally cannot maintain
a stable measurement performance over a long time [34]–
[36]. This usually happens due to aging and impurity
effects, and leads to a slow drift of the sensors sensitivity.
Signal drift is one of the most common error sources and
seriously impedes long-term deployments with low-cost
sensors.

2) External Error Sources: External error sources are
induced by the working conditions of a sensor, such as
environmental factors, and therefore are heavily deployment
dependent.

• Environmental Dependencies: Changing environmental
conditions can cause problems that almost any low-
cost sensor is facing. Various laboratory reports show
that certain physical ambient properties, especially tem-
perature and humidity conditions, can have a serious
effect on a sensors response. For instance, increasing
humidity is notably decreasing the sensitivity of metal
oxide [24], EC [37], and PM sensors [38]. As a result,
low-cost sensors usually perform significantly worse in
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Fig. 2. Comparison of measurements (arbitrary unit) from a reference sensor (x-axis) versus measurements of different low-cost sensors (y-axis). (a) Response
of a perfect low-cost sensor, (b) low-cost sensor affected by high noise at low concentration due to imperfect dynamic boundaries, (c) low-cost sensor suffering
from systematically overestimated measurements, and (d) senor with a nonlinear response. The ideal response is a perfectly linear relationship between low-cost
sensor and reference.

field deployments than in a laboratory setup. Further,
environmental dependencies can also be responsible for
nonlinear responses, e.g., for EC sensors [33].

• Low Selectivity: Typical metal oxide and EC sensors
suffer from low selectivity. This means they are not exclu-
sively sensitive to their intended target gas but are also
cross-sensitive to, sometimes various, interfering sub-
stances in the air [39]. Especially in complex outdoor
air these cross-sensitivities impose a fundamental chal-
lenge for low-cost gas sensors. PM sensors are usually not
affected by cross-sensitivities because they are intended
to detect a composition of different particles. However,
in some cases where low-cost PM sensors are either
used to detect particles from certain sources like car
exhaust or to distinguish different particle sizes, cross-
sensitivities are also considered as a fundamental error
source [5]. Compared to environmental dependencies,
the low selectivity problem is caused by purely chemi-
cal inferences and requires more sophisticated calibration
efforts.

C. Sensor Deployments and Calibration Opportunities

A commonly used solution to reduce the errors of low-cost
air pollution sensors is calibration. Calibration finds a rela-
tionship, i.e., a calibration model that maps the measurements
of a low-cost sensor to those of an accurate reference sen-
sor. Sensor calibration is performed both before and after the
deployment of air pollution sensors to deal with different error
sources (see Fig. 1).

1) Predeployment Calibration: The aim of predeployment
calibration is to try to identify all possible internal and
external error sources of a sensor in an observed and/or con-
trolled environment before deploying the sensor in the field.
Predeployment calibration usually assumes continuous avail-
ability of a high-quality reference sensor. One or multiple
error sources listed in Fig. 1 can be detected by compar-
ing the low-cost sensor to the reference sensor. These error
sources are then tackled by developing a suited calibration
model (Section III).

2) Post-Deployment Calibration: Post-deployment calibra-
tion is used for counteracting error sources that impede a con-
sistent performance of a calibration model over time or in the
actual deployment environment. These error sources are either
heavily deployment dependent, such as harsh environmental

conditions, or due to signal drift, which commonly occurs in
long-term deployments. During post-deployment calibration,
large numbers of sensors with irregular access to reference
measurements need to be calibrated. This is achieved by
applying the calibration models extracted from predeploy-
ment calibration to different network recalibration strategies
(Section IV).

In Sections III and IV, we outline the existing calibration
approaches, which are found in literature and used in low-cost
air pollution sensor deployments.

III. CALIBRATION MODELS

Calibration models are applied in both predeployment
and post-deployment calibration. We start with the basic
and fundamental model, i.e., offset and gain calibration, in
Section III-A. Building on this basic model Section III-B
presents a first extension that corrects for temperature and
humidity effects. Finally, Section III-C summarizes an addi-
tional extension of the previous two models by also consider-
ing potential interference from other pollutants.

A calibration model takes the raw measurements of a
low-cost sensor and transforms them to calibrated measure-
ments, leveraging prior knowledge, e.g., datasheets or addi-
tional information, e.g., measurements from auxiliary sensors.
Various mathematical methods can be applied and calibration
models may vary for different types of sensors. Calibration
parameters can be derived through measurements either in a
laboratory setup (controlled environment) or in the field next
to reference monitoring sites (observed environment). Table I
provides a summary of available literature and different char-
acteristics with respect to the three calibration models. We
exclusively focus on calibration models that are either specif-
ically tailored for air pollution sensors or general models that
have been proven successful when applied to real-world air
quality sensors.

A. Offset and Gain Calibration

Offset and gain calibration tackles calibration errors due
to dynamic boundaries and systematic errors and removes
potential nonlinear responses. It is one of the most essential
calibration models that maps the raw sensing measurements
to a target pollutant concentration.

1) Principles: Offset and gain calibration fits a calibration
curve, either a linear or a nonlinear one, to model relationships
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TABLE I
OVERVIEW OF SENSOR CALIBRATION MODELS PRESENTED IN THE LITERATURE

between raw sensor readings and pollutant concentrations. The
calibration curve is defined by an offset term, i.e., the sensor’s
response to complete absence of the target pollutant, and a
gain term that characterizes the sensor’s response to increasing
pollutant concentrations. Optimal offset and gain parameters
capture the behavior of a sensor within its sensitivity range,
i.e., the dynamic boundaries, and remove systematic errors
attributed to poorly fitted calibration parameters.

2) Methods: The most popular methods to calculate offset
and gain terms are ordinary least squares for a linear cal-
ibration line and nonlinear curve fitting, for instance with
an exponential [31] or power law [30] gain term. Offset
and gain calibration can be performed in both lab and field
setups.

• Lab Tests: One way to acquire a calibration curve is to
expose a sensor to various target pollutant concentrations
in a controlled laboratory setup. Austin et al. [31] expose
a low-cost PM sensor to different aerosol air mixtures
in an air-tight enclosure. The gathered measurements are
used to calculate a calibration curve defined by an offset
and an exponential gain term. Castell et al. [11] fol-
lowed a similar approach and calibrated different EC
sensors by exposing them to five different gas mixing
ratios. Their sensors show high correlation (R2 ≥ 0.92)
and, thus, a simple linear calibration based on ordinary

least squares was used to adapt the offset and gain
terms. Similar laboratory calibration can be found in
additional works [40], [42]. For certain commercially
available low-cost sensors an initial laboratory calibra-
tion is already performed in the factory. Manufacturers
usually follow similar approaches as found in the lit-
erature and either provide the sensors response over a
range of target pollutant concentrations [65] or in the
form of a calibration curve recorded in a laboratory
setup [66].

• Field Tests: Various recent works propose to directly cal-
ibrate their sensors in an environment that is similar
to the final deployment. The most prominent way is
installing the sensors under test next to high-end sen-
sors. For instance, Dacunto et al. [30] jointly deploy a
low-cost PM2.5 sensor with a high-end device in differ-
ent indoor locations. In outdoor deployments the most
prominent approach is to install the sensors under test
directly next to governmental monitoring stations that
often feature a variety of accurate pollution sensors. For
instance, Fig. 3 shows a monitoring station of the gov-
ernmental air quality monitoring network in Switzerland.
Spinelle et al. [13], [14] deployed 17 different low-cost
gas sensors next to high-quality sensors of a air quality
monitoring station in a semi-rural area. Carotta et al. [41]
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Fig. 3. Governmental monitoring station located in a suburban area in
Switzerland.

deployed different MOX sensors next to a monitoring sta-
tion located at a high traffic road and next to one in a
low traffic intensive area. The highly accurate measure-
ments from these monitoring stations are used to train
and evaluate the calibration of the low-cost sensors.

3) Discussion: While laboratory setups are faster than field
tests, many researchers [11], [20], [32], [41] recommend field
tests for offset and gain calibration. In a laboratory setup,
the environmental conditions during exposure are typically
held constant, e.g., at room temperature and moderate rela-
tive humidity. Further, the chamber is usually filled with clean
air mixed with the target pollutant concentration, i.e., with-
out possible interference from other pollutants. In contrast,
field tests allow that the sensors to be exposed to situations
with realistic environmental conditions, e.g., changing meteo-
rological parameters or interfering gases. Because the sensors
are exposed to realistic pollution concentrations the parame-
ters can be optimized to capture the behavior of the sensor
within expected concentration ranges, i.e., with respect to the
dynamic boundaries. For instance, Castell et al. [11] calcu-
lated an offset of their calibration curve around 1 ppb in a
laboratory calibration and around 166 ppb in a field calibra-
tion for a CO sensor. By recalibrating the CO sensor, i.e.,
adapting its offset term, in the field they finally reduce the
measurement error from 181 ppb by over a factor 2 to 87 ppb.
Zimmermann et al. [55] showed similar results with four dif-
ferent sensors. Offset and gain calibration models calculated
in a laboratory perform poorly in an outdoor deployment and
are not in line with recalibrated models.

As explained in Section II-A2, errors of air pollution sensors
can be environment-dependent. In part, in-field offset and gain
calibration implicitly mitigates the impact of these external
errors. However, environmental conditions are complex and
subject to short- and long-term changes. As a result, simple
offset and gain calibration achieves significantly worse results
in field than in laboratory tests. For instance, Castell et al. [11]
observed a drop of R2 = 0.99 to 0.3 of a NO2 sensor when
moving from laboratory to field tests. To explicitly account for
these environmental conditions temperature, relative humidity
and interfering gases, advanced calibration models are needed,
as we will describe in Sections III-B and III-C.

B. Temperature and Humidity Correction

Temperature and humidity correction augments air pollu-
tion measurements with concurrently measured temperature
and humidity readings to calibrate the low-cost air pollution
sensor.

1) Principles: The motivation of temperature and humid-
ity correction stems from the influence of different temperature
or relative humidity settings on sensors observed in laboratory
tests. Pang et al. [37] observed a relative drop in sensitivity
of roughly 20% for EC sensors when the relative humidity is
increased from 15% to 85%. A similar observation is made by
Wang et al. [24] for a metal oxide sensor. The sensor almost
completely loses its sensitivity when changing from dry air
to an extreme relative humidity of 95%. Wang et al. [38]
demonstrated that increasing humidity can lead to an over-
estimation of the particle number of typical low-cost light
scattering sensors. Similar sensitivity losses are also experi-
enced under changing ambient temperature as summarized by
Rai et al. [5]. These results make it evident that changing
environmental conditions such as temperature and humidity
need to be incorporated in the calibration process in order
to improve the overall measurement accuracy of virtually any
low-cost air pollution sensors.

2) Methods: Temperature and humidity correction is ubiq-
uitous due to the availability of cheap and small but precise
low-cost temperature and humidity sensors. Most works
include these additional measurements in their calibration
methods, and extend the single-variant mathematical models in
offset and gain calibration (Section III-A) to the corresponding
multivariant models.

A simple approach found in most of the investigation is
to find the linear combination of raw air pollution, tempera-
ture and humidity sensor measurement that best captures the
target reference concentration. The results in [12], [20], [29],
and [43]–[46] all use multiple least squares to calculate this
combination and show beneficial results for any type of
low-cost sensor. Different approaches apply more complex
methods to model the impact of temperature and humidity.
Masson et al. [32] derived a detailed model that captures the
physical effect of ambient temperature on their MOX sensor.
Popoola et al. [33] developed a temperature baseline correction
algorithm for EC sensors. They observe notable differences in
temperature sensitivity for CO and nitrogen oxide (NO) sen-
sors. While the CO sensor showed a linear relationship to its
reference, the NO sensor exhibits a strong exponential relation-
ship. Therefore, they model the reaction to temperature with a
linear line fit for the CO sensor and a exponential curve fit for
the NO sensor, which is used to correct the corresponding sen-
sor signal. They are able to show a significant improvement for
the NO sensor by improving the correlation from R2 = 0.02
to R2 = 0.78. Tsujita et al. [50] and Sohn et al. [51] sim-
ilarly modeled the relationship of MOX sensors to humidity
and temperature with exponential terms and compensate for
them by fitting a calibration curve.

3) Discussion: The extensive list of different sensors that
significantly improve their accuracy after temperature and
humidity correction underline the severity of the problem.
Temperature and humidity correction needs to be performed
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for any air pollution sensor regardless of its underlying sens-
ing principles. In rare cases, the impact of ambient conditions
can be precisely modeled using chemical process theory. This
approach, however, requires deep knowledge of the underlying
sensing principle, e.g., physical properties of the metal oxide
sensing layer. Therefore, more simpler data driven methods
dominate the different calibration methods. Due to the popu-
larity of the problem recent low-cost sensors, especially fully
digital sensor solutions, already integrate an internal tempera-
ture and humidity correction [66], [67]. However, the various
field calibration works emphasize the benefit of directly com-
pensate for temperature and humidity dependencies. Thus, it
becomes evident that static correction schemes by manufac-
turers or laboratory calibration may be replaced by in-field
calibration for optimal performance.

C. Sensor Array Calibration

Sensor array calibration is a generic extension of tempera-
ture and humidity correction that tackles another environmen-
tal dependent factor, interfering gases.

1) Principles: As described in Section III-A laboratory
tests are usually performed by exposing the sensor to clean
air that is mixed with the target pollutant. In most real-world
deployments the air mixture is composed of multiple differ-
ent components [23]. For instance, in outdoor and common
indoor air multiple pollutants appear concurrently at diverse
concentrations. These complex air mixtures particularly pose
a substantial challenge for gaseous pollutant sensors. Instead
of being selective to one single pollutant, low-cost sensors are
typically sensitive to multiple pollutants at the same time with
different intensities [24], [39]. This low-selectivity problem
is also referred to as cross-sensitivities and, broadly put,
equivalent to the temperature and humidity dependency, i.e.,
different factors in the environment are influencing a sensors
response. Thus, the basic concept is the same as the tempera-
ture and humidity correction but often requires more complex
methods.

By concurrently measuring all the cross-sensitivities it is
possible to compensate for all interfering pollutants. This
approach requires a sensor array, i.e., multiple different jointly
deployed low-cost sensors. One option to create a sensor array
is to install multiple sensors in a box to ensure common air
sampling. Note that the majority of sensor arrays also include
temperature and humidity sensors and, thus, in this case sen-
sor array calibration is also performing a temperature and
humidity correction.

2) Methods: Popular sensor array calibration methods can
be divided in multiple least squares and neural networks.

• Multiple Least Squares: For certain cross-sensitivity prob-
lems a multiple least squares regression can be success-
fully used for calibration. One of the most popular exam-
ples is the cross-sensitivity of NOx EC sensors on O3
concentrations [52], and vice-versa [37]. Pang et al. [37]
are compensating for potential influences of ambient NO
and NO2 concentrations on the signal of a O3 EC sensor.
The NO and NO2 concentrations are, however, measured
by a high-end sensing device. The effect of the two

cross-sensitivities follow a linear behavior and, thus, a
linear multiple least squares calibration can be success-
fully applied. Another investigation [52] follows a similar
approach, but compensates for the cross-sensitivity to O3
of a NO2 EC sensor. The O3 measurements are measured
by another low-cost metal oxide sensor. It is shown that
the measurement error of the cross-sensitive NO2 sen-
sor can be reduced by over 80% by simply incorporating
measurements of an additional O3 sensor in the calibra-
tion. Multiple least squares are effective to compensate
for cross-sensitivities of 1) EC sensors to 2) the oxidizing
gases NOx and O2.

• Neural Networks: In more complex cases, linear cali-
bration models do generally not perform well [13], [14]
and, therefore, different authors investigate the feasibility
of nonlinear calibration models, mostly based on neu-
ral networks or related machine learning methods (see
Table I). Spinelle et al. [13], [14] showed for a wide range
of low-cost gas sensors an overall better performance of
neural network-based sensor array calibration compared
to multiple least squares and particularly to a offset and
gain calibration based on ordinary least squares. For
multiple O3 and NO2 sensors the coefficient of determi-
nation R2 is improved from values below 0.3 to at least
0.85 and 0.55, respectively, using neural networks instead
of linear models. They also show that for some sensors, in
particular metal oxide CO and EC NO sensors, the cross-
sensitivity limitation appears to be too severe and could
not be solved by calibration with reasonable performance.
Similar results are reported by Vito et al. [58], [59], [63],
Esposito et al. [60]–[62], Lewis et al. [64],
Barakeh et al. [57], and Zimmermann et al. [55].
Different types of machine learning techniques, with
the majority being neural networks, are able to resolve
cross-sensitivities of commercial low-cost sensors with
the help of sensor array calibration.

3) Discussion: Compared to the other two calibration mod-
els, sensor array calibration is not a necessity for all sensors.
The necessity of sensor array calibration mainly depends on
the sensitivity profiles of low-cost sensors and the target pol-
lutant. For instance, O3 can in general be accurately measured
with a single low-cost sensor due to the aggressive nature
of ozone that in return simplifies the development of selec-
tive sensing principles. Other pollutants, for instance NOx,
are affected by the presence of aggressive interference fac-
tors and complicate the design of selective sensors. This two
interacting factors pose a substantial challenge in choosing
the optimal sensor array composition, i.e., what low-cost sen-
sors are required to accurately measure the target pollutant.
Therefore, various works [54], [55], [59] present a thorough
analysis on which sensor array composition achieves the best
performance in terms of measurement accuracy, precision, and
stability. Such an analysis requires concurrent data of multiple
different low-cost sensors that need to be tested on their fea-
sibility in different sensor arrays. In some cases, the available
low-cost sensors may not suffice for a successful array due to
unresolved cross-sensitivities [13]. Thus, finding the optimal
sensor array to tackle all cross-sensitivities remains an open
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problem. Further, similar to the two previous models authors
agree that predeployment sensor array calibration needs to be
performed in the field. The complex composition of pollutants
in outdoor air requires the sensors under test to be exposed in
their target deployment for a successful calibration.

D. Comparisons of Calibration Models

In summary, the most essential calibration model that is
necessary for all types of sensors is a simple offset and
gain calibration, i.e., mapping the raw sensor measurements
to a pollutant concentration. Popular mathematical methods
are linear regression or simple curve fitting possibly incor-
porating a nonlinear gain term. Due to the severity of the
environmental dependency problem extending the basic model
with a temperature and humidity correction becomes indis-
pensable in order to significantly improve the measurement
accuracy of any low-cost sensor. The correction can easily
be done by concurrently measuring environmental parameters
and include them in multivariable methods, such as multiple
least squares or nonlinear curve fitting. Finally, additional
environmental influences from interfering gases can be elim-
inated by incorporating sensor array calibration techniques.
Cross-sensitivities are mostly problematic for EC and metal
oxide sensors and heavily deployment dependent. Sensor array
calibration requires concurrent measurements from different
low-cost sensors and often sophisticated machine learning
methods to capture the complex relationship between multiple
cross-sensitive sensor and the target pollutant concentration.
Overall sensor array calibration has been shown to produce
most accurate data. Spinelle et al. [13], [14] evaluated the
performance of the three different calibration steps with differ-
ent gas sensors. For instance, the NO concentration measured
by a calibrated sensor array achieves 15 and 41 times lower
measurement errors compared to a single NO sensor with and
without temperature correction, respectively. Similar results
are shown by Zimmermann et al. [55]. Their sensor array cal-
ibration based on both linear and nonlinear methods achieves
an almost one order of magnitude lower error than a simple
laboratory offset and gain calibration for four different types
of sensors.

The number of additional sensors and the amount of mea-
surements needed to learn the model parameters increase with
the complexity of calibration models. Compared to the other
two calibration models, sensor array calibration also requires
more training samples, i.e., covering a large range of different
outdoor situations and, thus, is more time-consuming and com-
plex to perform. Vito et al. [58] show a clear positive trend of
accuracy and precision with increasing training data. Finally,
they achieve a stable calibration with training data collected
over 100 days. These long training epochs efforts are, how-
ever, justified in order to achieve high data accuracy during
long-term deployments possibly spanning multiple years.

Note that a prerequisite to apply calibration models is the
access to a highly accurate reference. A reference is usually
available in lab or field tests before actual deployment of air
pollution sensors. However, the sensors after deployment may

have irregular access to a reference, which requires additional
calibration strategies, as we will discuss in the next section.

IV. NETWORK CALIBRATION

Low-cost sensors are usually deployed in either a static or
mobile sensor network for long-term air pollution monitoring.
Even after predeployment calibration, these sensors need peri-
odic recalibration due to sensor drift over time and changes in
the target environments. Some works report a significant drift
after already 1 month of deployment [35]. Thus, recalibrating
sensors appears to be an absolute necessity in any long-term
deployment.

An important commonality of post-deployment calibration
is the lack of reference sensors to verify and potentially recal-
ibrate low-cost sensors. This section reviews existing network
recalibration methods, which calibrate a network of sensors
with irregular or even no access to a highly accurate refer-
ence. We group the existing literature into three fundamental
network calibration approaches, i.e., blind (Section IV-A),
collaborative (Section IV-B) and transfer (Section IV-C) cal-
ibration, based on their assumptions or usage of virtual
references. Table II holds a list of works that present network
calibration methods specifically tailored for air quality sensors.
Note that calibration in sensor networks is a general problem
and, thus, some of the presented methods can also be directly
applied or adapted to other type of sensor network applications
consisting of temperature and relative humidity sensors [91],
microphones [92], or barometers [93].

A. Blind Calibration

The concept of blind calibration [94] or macro calibra-
tion, is originally designed for general sensor networks and
has also been applied to temperature and relative humidity
sensor networks [91], [94]. The idea is to achieve a high sim-
ilarity between measurements of all sensors in a network. A
key assumption is that neighboring sensors measure almost
identical values, or are at least correlated. This assumption
is often not true for air pollution monitoring deployments.
First, air pollution is known to be a highly complex system
with large spatiotemporal gradients. Second, typical interde-
vice differences of low-cost air pollution sensors hinder equal
measurements even in a dense small-scale network. As a
result measurements of air pollution sensors in a large-scale
deployment are in general neither identical nor necessarily cor-
related. A more practical assumption is to exploit situations
in space and time where we can safely assume that all sen-
sors within the given deployment measure the same pollution
concentrations.

Tsujita et al. [50] installed a low-cost NO2 sensor in the
city of Tokyo, Japan. They recognize that the major error
source of their sensor appears to be baseline drift of the
calibration parameters over time. Because they continuously
install their sensor at different locations where no accurate
governmental stations are deployed, they propose an auto-
calibration method. The sensor can be calibrated to reference
stations that are not necessarily in their spatial vicinity when
one can safely assume that the NO2 concentration is almost
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TABLE II
OVERVIEW OF NETWORK CALIBRATION METHODS

identical at any point in the deployment region. To check
these circumstances they use NO2 measurements from four
different monitoring stations and recalibrate the offset term
of their low-cost sensor as soon as all four stations report a
NO2 concentration below 10 ppb. A similar method is also
applied by Pieri and Michaelides [71]. A slightly adapted
approach is presented by Moltchanov et al. [69]. Instead of
assessing the possibility of a uniform concentration with ref-
erence measurements, they use specific time periods. In order
to calibrate low-cost O3 sensors they assume that the O3 con-
centration is uniform during night time (01:00–04:00 A.M.),
when local emissions of precursors, e.g., NO2 traffic emis-
sions, are negligible. During these time periods they calibrate
six O3 sensors to the reference measurements of one monitor-
ing station. Because O3 usually reaches concentrations close to
zero during night, this approach again only allows for an off-
set recalibration. Finally, Mueller et al. [35] also divide their
low-cost sensors in two groups, i.e., sensors that measures
traffic related pollution variations deployed in inner city areas
and background pollution sensors in outer city areas. This sce-
nario is also illustrated in Fig. 4. They assume that at inner
city locations O3 and NO2 concentrations are usually uniform
during night and at outer city locations during the afternoon.
Individual sensors installed in the inner city are then calibrated
to a remote monitoring station in the inner city during night-
time and correspondingly for sensors located in the outer parts
of the city in the afternoon.

B. Collaborative Calibration

Collaborative calibration extends blind calibration by cre-
ating virtual references where two mobile sensors meet in
space and time such that they should measure the same phys-
ical phenomena. The basic idea of collaborative calibration
is to exploit situations where two or more mobile sensors

Fig. 4. Blind calibration scenario with rurally located sensors S1, S2, rural
reference R1, urban sensors S3, S4, and urban reference R2. Sensors that are
located in similar areas (rural or urban) are calibrated to references in similar
areas during times when it is safe to assume that all sensor measurements are
identical.

meet in space and time, i.e., referred to as sensor ren-
dezvous. The notion of sensor rendezvous can also be found in
other sensor network problems, such as energy efficient data
collection [95] or sensor fault detection [77]. Further, collabo-
rative calibration exploiting sensor rendezvous is also used in
other sensor networks, e.g., crowdsensing applications using
microphones [92] or barometers [93].

Sensor rendezvous can be utilized as references for cali-
brating mobile air pollution sensors. Sensors in a rendezvous
are assumed to sense the same physical air and the range
of a rendezvous can be empirically determined. For instance,
Xiang et al. [75] defined a distance of at most 2 m between
two sensors to constitute a rendezvous in an indoor air pol-
lution monitoring deployment. Saukh et al. [78] showed that
a distance of 50 m in urban outdoor deployments is a reason-
able upper limit. Whenever a mobile low-cost sensor is in a
sensor rendezvous with a highly accurate sensor, e.g., from a
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Fig. 5. Collaborative multihop calibration scenario exploiting sensor ren-
dezvous (RV) between static reference R1 and mobile sensors M{1,2,3,4}.
Whenever sensor M1 is in the vicinity of the reference R1 the low-cost sen-
sor can be calibrated. In return, the freshly calibrated M1 is calibrating M2
during redenzvous, and so forth.

governmental monitoring site, the low-cost sensor can use the
reference measurement for calibration [78].

Arfire et al. [83] applied a nonlinear temperature correc-
tion for mobile EC sensors in a collaborative fashion with a
reference sensor. Hasenfratz et al. [76] presented three differ-
ent calibration methods based on weighted least squares that
also incorporate the age of measurement at the time of the
calibration parameter calculations. The methods in [76] are
also applied by Budde et al. [80] to calibrate PM sensors
in a participatory sensing scenario. These methods assume
that a sensor is in rendezvous with one or more reference
sensors multiple times under different conditions so that the
sensor can collect a calibration dataset with high variance for
calibration.

Unfortunately, not all sensors necessarily are in rendezvous
with reference sensors frequently enough. As a consequence,
some sensors in the network cannot be recalibrated. Therefore,
some works additionally exploit rendezvous between a freshly
calibrated and an uncalibrated low-cost sensor. In this case a
sensor that has been freshly calibrated is used to calibrate an
uncalibrated one, e.g., a sensor that has no rendezvous with
references. In return, the second freshly calibrated sensor can
also be used to calibrate others, and so on. Calibration is there-
fore performed in a chain-like fashion and, thus, this concept
is also known as multihop calibration. A typical multihop
calibration chain is illustrated in Fig. 5. Although multihop
calibration allows to calibrate more sensors compared to cali-
bration exclusively with references, it also poses multiple chal-
lenges. The most severe challenge is error accumulation over
multiple hops, first reported by Hasenfratz et al. [76] and in
detail evaluated by Saukh et al. [78] and Kizel et al. [34]. Due
to the nature of least squares-based calibration models at every
hop of the calibration chain calibration errors are accumulated.
To counteract this error accumulation Saukh et al. [78] pro-
pose to use an alternative method, i.e., the geometric mean
regression. It is not suffering from error accumulation, the-
oretically and practically proven, and is successfully used
for offset and gain calibration of a real-world air pollution
network. Maag et al. [79] presented a method that is tailored
for sensor array calibration while also not suffering from error
accumulation. Additional challenges of multihop challenges
are tackled in [81] and [82]. Fu et al. [81] studied the effect
of reference sensor placement on the performance of multihop
calibration and present an algorithm to optimally design a
practical deployment of static reference and mobile low-cost
sensors. A privacy preserving multihop calibration scheme for

Fig. 6. Transfer calibration scenario between a reference sensor R1 and
sensors S{1,2,3,4}. In a first step, sensors S{2,3,4} are standardized to a master
sensor S1 in order to achieve high similarity of raw measurements. In a second
step, a calibration model acquired by the master S1 with reference R1 is
transferred to all other sensors S{2,3,4}.

participatory and crowd sensing deployments is introduced by
Markert et al. [82].

C. Transfer Calibration

The third group of network calibration methods is known
as transfer calibration. It has its origins mainly in indus-
trial deployments using electronic noses (e-noses), i.e., metal
oxide sensor arrays for hazardous odor detection. Although
the related work mainly focus on e-nose calibration, transfer
calibration can be applied to any sensor model. E-noses are
typically calibrated by neural networks to detect multiple dif-
ferent odors or gases with one calibration model. Training such
a neural network requires a lot of effort mainly due to train-
ing sample collection and model optimization. MOX sensor
arrays do typically not produce identical responses compared
to similar arrays, even coming from the same production
batch [85], i.e., there are significant interdevice differences for
e-noses. Therefore, each e-nose needs to be calibrated inde-
pendently and mass production becomes an almost impossible
task. Transfer calibration tackles this problem by applying a
two-step calibration process. Assuming multiple e-noses, one
e-nose acts as a master sensor. In a first step, all nonmaster
e-noses standardize their raw sensor array signals individually
to the raw ones of the master. This step is usually performed
by linear regression methods, such as robust regression [86],
ridge regression [89], direct standardization [87], or weighted
least squares [85], and counteracts the interdevice differences.
In a second step, the master node calibrates its response to
the target gas or odor concentrations, e.g., by training a neural
network calibration model [85], [86]. This model is now trans-
ferred to all nonmaster nodes, as illustrated in Fig. 6. Other
popular methods used in the second step are support vector
machines regression [87], [89] or classification-based methods
to classify the presence of a certain gas using support vector
machines [87], [89] or logistic regression [89]. Some works
also combine the two steps using a global training frame-
work, such as auto encoders by Zhang et al. [84] or a mixture
of multitask and transfer learning by Yan and Zhang [88].
Bruins et al. [90] showed that the standardization in the
first step can also be performed by applying an elab-
orate heating temperature control of the MOX sensor
array.
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TABLE III
DIRECT COMPARISON OF THE THREE NETWORK CALIBRATION METHODS

Since transfer learning only requires one complex calibra-
tion process for the master sensor array, it is clearly able
to minimize calibration efforts in large-scale deployments.
Unfortunately transfer learning approaches have mainly been
evaluated in lab setups and not yet intensively in real-world
deployments. One of the only transfer calibration adapta-
tions using a real-world large-scale PM sensor deployment
is presented by Cheng et al. [40]. In a first laboratory calibra-
tion step the PM sensors are standardized to a master sensor
using second degree curve fitting. In the second step a neural
network is used to perform a temperature and humidity cor-
rection. The neural network is constantly updated through out
the deployment. Overall they achieve an increase in approx-
imately 8% measurement accuracy compared to uncalibrated
situations.

D. Comparisons of Network Recalibration Strategies

The three network calibration approaches all rely on dif-
ferent assumptions and fundamental design choices and, thus,
also have different advantages. Table III compares the three
methods and list their advantages and disadvantages. The
least complex method based on blind calibration exploits time
periods and locations of reference and low-cost sensors for
calibration to assure that all sensors generate identical mea-
surements. While this approach can be applied to any type
of sensor in any deployment, the opportunities for calibration
are generally sparse and, hence, only offset and gain calibra-
tion can be successfully performed. In order to increase the
opportunities for calibration, collaborative calibration exploits
meeting points or rendezvous between sensors. Consequently,
collaborative calibration can only be applied to mobile sen-
sor deployments. Depending on the mobility of the sensors it
might not possible to calibrate all sensors within the network,
e.g., a sensor with no rendezvous cannot be calibrated. So
far it is unclear how collaborative calibration scales with the
network size. This is not a substantial problem for the other
two methods.

Finally, transfer calibration uses a two-step approach by
first standardizing all deployed sensors to a master sensor
and then transferring calibration parameters acquired by the
master to all sensors. Transfer calibration has no restrictions
on the possible calibration models or the mobility of sensor,
with the exception of the static master sensor next to a refer-
ence. However, transfer calibration assumes that all sensors in
the network: 1) drift in a equal way as the master node and
2) are equally affected by environmental conditions. These
two assumptions are in general not true in typical air qual-
ity monitoring networks [85]. Therefore, up to now transfer
calibration has not achieved satisfactory performance. Further,
there is only little experience in real-world deployments.

Overall, all the methods have been proven to be suc-
cessful in counteracting decreasing accuracy in their specific
long-term deployments. In general the average measurement
accuracy is increased after recalibrating a sensor network and,
thus, the existing results point out the necessity of recali-
bration. However, the different strengths and weaknesses of
the three methods presents the need for an universal network
calibration method. Currently, there is no one-for-all network
calibration solution available. Recent research efforts investi-
gate the possibility of a general applicable network calibration
method, e.g., by combining different aspects from the three
methods. Some theoretical investigations already provide mix-
tures of different models. For instance, Dorffer et al. [72]–[74]
combined the two ideas of blind and collaborative network cal-
ibration to increase the possibilities for sensor recalibration. A
key benefit of enhancing and mixing different network cali-
bration aspects will thus help to assure that all sensors in a
network can be calibrated. We discuss a detailed possibility in
Section V.

V. CONCLUSION

In this survey, we review the sensing principles and error
sources of low-cost air pollution sensors, and the calibration
models and recalibration strategies to improve the accuracy
of these sensors before and after their deployments. Back to
decades ago, air pollution information was accessible only
at coarse spatiotemporal resolution. Advances in portable air
pollution sensors have enabled fine-grained air pollution mon-
itoring at low cost. Along with the convenience brought by
low-cost sensors come with the challenges in ensure quality
of their measurements. We demonstrate the effective calibra-
tion models and strategies suited to improve the accuracy
of diverse air pollution sensors in various deployments. In
the era of Internet of Things, where air pollution monitoring
becomes more crowdsourced and personal, we also identify
several largely open and attractive opportunities for future
sensor calibration research.

A. Calibration Model Benchmarking

Popular ways to assess the performance of calibration mod-
els are metrics related to measurement error and correlation. A
widely used metric is the root-mean-squared-error between the
calibrated measurements and its reference counterpart. Equally
popular is the coefficient of determination R2, which captures
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the amount of variance of the reference measured is finally
captured in the calibrated measurements. There exist a variety
of other statistical measures used in related work. An open
challenge in assessing the performance of calibration meth-
ods is a unified way to declare a limit of these metrics when
the calibrated measurement suffices for a certain application.
Some researchers already follow benchmarks proposed by offi-
cial authorities, for instance, the data quality objective (DQO)
presented by the European Parliament [7], [11], [14]. The
DQO provides a clear metric that air quality sensors need to
satisfy in order to be applied as official measurement provider.
As expected calibrating low-cost sensors in order to fulfill
these objectives is very challenging, but also not necessarily
needed for quantitative applications such as personal exposure
assessment. A possible future direction is to build a bench-
marking framework that defines data quality guidelines for
low-cost air quality sensor networks with respect to different
pollutants and applications.

B. Context-Aware Network Recalibration

As presented in Section IV, all network recalibration
schemes need to identify situations where it is safe to assume
that multiple sensors measure the same or similar phe-
nomenon. The recalibration opportunities are either based on
coarse assumptions (in blind and transfer calibration) or mobil-
ity (in collaborative calibration). With the rise of big data and
urban computing the relationship between a sensors context,
e.g., detailed land-use data, and the expected pollution con-
centration can be precisely modeled and is deeply understood.
By classifying sensor locations according to their land-use
context, e.g., nearby traffic, elevation or population density,
a number of confident and new recalibration opportunities can
be increased. These context-based virtual recalibration oppor-
tunities will greatly improve the calibration ability of a sensor
network and allow additional calibration models as well as
mathematical methods.

C. Calibration With Little Overhead

Machine learning methods, such as neural networks, have
become popular tools for sensor calibration in the last few
years. Although they offer powerful capabilities of capturing
complex and possibly nonlinear relationships between multiple
sensors, they require large amounts of measurements to train
an accurate calibration model via standard supervised learn-
ing. This can be a burden for model updating in network
recalibration, especially for sensors that have limited refer-
ence samples. In addition, the number of samples available
for calibration may vary for different sensors in a deploy-
ment. Consequently, the accuracy of calibration models can
also differ for different sensors due to imbalanced training
data. Some recent study [19] has exploited techniques such
as semi-supervised learning to reduce the amounts of training
data for sensor array calibration. However, it remains open
how to reduce the training overhead of network recalibration
and achieve consistent calibration accuracy for all sensors in
a networked deployment.

D. Quantification of Trust

Due to limited access to reference data during a sensor
network deployment not only recalibration is a challenging
task but also the evaluation of the calibration performance.
Control mechanisms to assess the trust of the calibrated
measurements offer therefore additional future research direc-
tions. Metrics such as accuracy bounds for sensor measure-
ments [96], discrete reputation scores [97], or internode sensor
confidence [98] and correlation [77] can be applied in a
network-wide trust model to provide a notion of quality of ser-
vice of the air quality monitoring sensor network. Additionally,
by observing a trust metric one can estimate the need for
recalibrating certain sensors within the network or apply fil-
tering methods to assure high data quality. Different related
works [99] propose trust mechanisms in general networks,
however, these have not yet been applied in the specific
scenarios of air pollution monitoring networks.
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