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Abstract—Driver status monitoring systems are a vital compo-
nent of smart cars in the future, especially in the era when an
increasing amount of time is spent in the vehicle. The heart
rate (HR) is one of the most important physiological signals
of driver status. To infer HR of drivers, the mainstream of
existing research focused on capturing subtle heartbeat-induced
vibration of the torso or leveraged photoplethysmography (PPG)
that detects cardiac cycle-related blood volume changes in the
microvascular. However, existing approaches rely on dedicated
sensors that are expensive and cumbersome to be integrated or
are vulnerable to ambient noise. Moreover, their performance on
the detection of HR does not guarantee a reliable computation
of heart rate variability (HRV) measure, which is a more
applicable metric for inferring mental and physiological status.
The accurate computation HRV measure is based on the precise
measurement of the beat-to-beat interval, which can only be
accomplished by medical-grade devices that attach electrodes to
the body. Considering these existing challenges, we proposed a
facial expression based HRV estimation solution. The rationale
is to establish a link between facial expression and heartbeat
since both are controlled by the autonomic nervous system.
To solve this problem, we developed a tree-based probabilistic
fusion neural network approach, which significantly improved
HRV estimation performance compared to conventional random
forest or neural network methods and the measurements from
smartwatches. The proposed solution relies only on commodity
camera with a light-weighted algorithm, facilitating its ubiquitous
deployment in current and future vehicles. Our experiments are
based on 3,400 km of driving data from nine drivers collected
in a naturalistic field study.

Index Terms—heart rate variability, vital sign monitoring, non-
intrusive measurement, in-vehicle environment, car data

I. INTRODUCTION

Daily driving is an integral part of the day for many people,
a fact that is frequently demonstrated by statistics. For exam-
ple, in Germany 68% of the working population uses their car
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for commuting and more than 25% of them commute daily
more than 30 minutes per direction [1]. However, in the U.S.,
about 90% of all citizens (aged 16 or older) drove 2.5 trips
daily from 2019–2020 on average, which corresponds to about
1 hour of driving time or 30 miles (≈ 48.3 km) of distance
[2] per day. Moreover, the industry imagines the vehicle as
the 3rd living space (after home and workplace) of people
[3], which has a tremendous impact on people’s lives. Never-
theless, driving is still a cognitively demanding task [4]. The
prolonged driving time induces excessive stress [5], [6], which
has the potential to impair mental and physiological health
[4]. Furthermore, inattentiveness, drowsiness, and fatigue con-
stitute one of the main factors of traffic accidents [7]. The
timely recognition of the driver’s status can be of significant
benefit to improve driver states with just-in-time intervention
(JITI) [8]–[11]. The recognition and regulation of driver status
are particularly meaningful in the era of (semi-)automated
vehicles. During the transition to fully automated vehicles (L2,
L3 automation), drivers need to be mentally and physically
prepared to take over the driving task at any given moment
[12]. Therefore, the vision of future intelligent cars extends
the idea of being a simple means of transportation toward a
dedicated space where drivers’ mental and physiological states
are taken care of. Ultimately, identifying the status of drivers
in vehicles is one important step toward safer driving and
better life quality. From a broader perspective, the enhanced in-
vehicle experience under the concept of ambient intelligence
facilitates Internet-of-Things (IoT) enabled the transformation
of a vehicle into a well-being and safety platform, where
the driving performance, mental and physiological status are
improved by restoring driver status in an optimal range, as
illustrated in Figure 1 [13], [14].

Heart rate variability (HRV) and its measures are the most
promising physiological signals to recognise driver status.
Various studies have demonstrated their relevance to infer stats
like stress, drowsiness, or inattentiveness. HRV is the variation
in the time interval between heartbeats (inter-beat interval,
IBI), and it can be characterised by HRV measures in time
and frequency domains. In the context of our work, there are
three most relevant and fundamental HRV measures in existing
literature. In time domain, the root mean square of successive
differences between IBIs (RMSSD) is a widely used measure.
Increased RMSSD is associated with fatigue or drowsiness
states, whereas stress can cause a decrease in HRV [15]–
[17]. Furthermore, Taelman et al. observed that mental tasks
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Fig. 1. Driving performance vs. cognitive load according to Yerkes-Dodson
law, adapted from [14]. In future cars, intelligent vehicle systems are envi-
sioned to be able to regulate excessive fatigue or stressful states of drivers,
in order to further improve driving experience and safety [14].

can significantly reduce the proportion of successive normal
beat to normal beat intervals (NN-interval) with a difference
greater than 50 ms (pNN50) [18]. In addition to the signal in
the time domain, HRV measures in the frequency domain are
also powerful indicators. Patel et al. and Vicente et al. found
statistically significant evidence that low frequency (LF) and
high frequency (HF) ratio (LF/HF ratio) is in alert status higher
than fatigue status while driving [19], [20]. To sum it up,
excessively low or high states of the depicted HRV measures
(RMSSD, LF/HF ratio, and pNN50) are strongly associated
with the drivers’ cognitive load and psychological status.

As a consequence, researchers and automobile manufactur-
ers have taken pioneer efforts in driver heart rate detection.
For example, BMW built a skin-resistance sensor into the
steering wheel for heart rate monitoring [7], [21]. Similarly,
Toyota and Denso monitored electrocardiography (ECG) and
photoplethysmogram (PPG) using a steering wheel equipped
with different electrodes and green light LEDs (525nm) [7],
[22], [23]. In contrast, Ford and Denso utilised the driver seat
[24], [25]. Although these methods seem to promise advanced
and widely validated technology (as PPG used in today’s
smartwatches), researchers agree that these approaches cannot
yet provide reliable measurements. For instance, [26] evaluated
the performance of steering wheel integrated sensor under lab
condition and concluded that there was an average error of
6% and the maximal error could escalate to 20%. Such error
is far greater than commodity smartwatches, as we evaluated
in this study (see Figure 9a). In [25], Wartzek et al. found
that seat-integrated sensors could not reliably detect heart rate
from drivers in all situations because seat integrated sensors
are, for example, vulnerable to the thickness and the material
of outer clothing as well as the weight of drivers.

To overcome such drawbacks, Zheng et al. recently de-
signed a radio frequency device and leveraged ultra-wide
band (UWB) impulse. The drivers’ heart rate can be inferred
by analysing of the Doppler frequency shift of UWB signal
induced by heartbeat, respiration and ambient noise [27].
Although the method of [27] can accurately detect drivers’

heart rate, inherent disadvantages exist. First, such a method
requires a special purpose UWB device, which is not readily
available. Second, due to ambient noise and physical constraint
of sampling rate, IBI can only be measured with moderate
accuracy (about 50% of IBI measurements have an error
greater than 50 ms [27]). Such an accuracy limitation can
be tolerated, when only the average heart rate is detected
since HR is computed as the inverse of the mean IBI in a
certain interval. The noise in the IBI measurement is cancelled
out by the mean operation. However, considering critical
metrics, such as RMSSD or LF/HF ratio, the inaccuracy will
be magnified because these measures are sensitive even to
the small inaccuracies in the measurements. Recently, with
the advancement of computer vision techniques, remote PPG
(rPPG) [28], [29] has attracted prominent attention. The funda-
mental principle of rPPG is as follows. Heartbeat (hence blood
volume in vessels) induces subtle colour variations on the
human skin surface, which can be captured by an RGB camera.
Signal processing techniques are then applied to analyse such
variation; thus human cardiac activities can be monitored.
Although rPPG technique is appealing, many efforts are still
needed before it can be applied to the real world scenario.
Remote PPG is sensitive to illumination and motion artefacts.
More importantly, commodity cameras record video at 30
or 60 Hz, which by Nyquist–Shannon sampling theorem is
insufficient for the accurate measurements of IBIs, of which
the variation is at millisecond-level. Existing research on
HR/HRV detection using rPPG was conducted in well-defined
lab conditions; therefore their generalisability to real-world
scenarios remains unclear [30]. In a nutshell, the existing
contact-less monitoring methods do not guarantee a reliable
measurement of HRV in real world scenarios.

In light of these existing challenges, we propose an alterna-
tive way to monitor driver status through HRV. As described
above, drivers’s cognitive load and mental status are strongly
characterised by excessively low or high HRV measures (i.e.,
RMSSD, LF/HF ratio, and pNN50). Therefore, instead of
attempting to derive HRV measures from inherently noisy IBI
measurements, we propose a facial expression-based approach
to detect the onset of HRV outliers. On the basis of existing
literature, we define HRV outlier as samples whose values are
one standard deviation below or above the mean [31], [32].

Facial expressions are strongly connected and influenced
by the autonomic nervous system (ANS). On the one hand,
human cardiac activity is controlled by ANS. The sympa-
thetic nervous system (SNS) accelerate the heart rate through
the discharge of epinephrine and norepinephrine while the
parasympathetic nervous system (PNS) releases acetylcholine
to induce deceleration [33]. On the other hand, ANS also func-
tions involuntarily and cope-with affective arousal in reaction
to circumstance accordingly [34]; To estimate HRV from facial
expression, we employed the state-of-the-art machine learning
scheme and developed a novel tree-based probabilistic fusion
neural network approach. Compared with existing contact-less
and non-intrusive UWB or rPPG based methods [27], [29],
the advantage of our facial expression-based method and our
contribution can be summarised as follows.

• Our approach relies on commodity RGB camera working
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at 30 FPS, which is very likely to be integrated in future
vehicles as a part of driver monitoring systems [35], [36].
Thus, no additional UWB devices are needed.

• We verified our approach based on around 3, 400 km
(68.6 hours) of driving data collected from a two-week
field study, involving nine participants during uncon-
trolled daily driving activities on public roads.

• A novel tree-based probabilistic fusion neural network
approach is developed to optimise HRV estimation per-
formance. The proposed tree-based probabilistic fusion
framework outperformed conventional convolutional or
recurrent neural networks and classic tree based machine
learning models by up to 6.9% in balanced accuracy.

• We benchmark our method against consumer smartwatch
measurement. Smartwatch can be seen as a proxy of
the upper bound of rPPG since its close contact with
the skin mitigates a large portion of noise due to il-
lumination and motion artefacts. Our evaluation shows
that the proposed approach can even outperform high-
end consumable smartwatches by a large margin.

• To the best of our knowledge, this is the first study that
verifies the feasibility of facial expression-based HRV
outlier detection based on driving data collected from
public roads in real driving scenarios. Since the overall
environment is challenging compared with laboratory
conditions, our results are likely to be more reliable.

The remainder of the paper is organised as follows: We
present our field study in Section II. We introduce our methods
for HRV estimation in Section III. Section IV summarises
the results of our methods. The implication of the method
and discovery is discussed in Section V. Finally, Section VI
presents the conclusion.

II. EXPERIMENT SETTINGS

We conducted a two-week field study with nine daily
commuters (originally then; one participant’s data were re-
moved due to corruption) during their normal driving routine
on public roads. A variety of sensory data, including HRV,
facial expression, and smartwatch records, is collected from
the daily the driving activity of participants in naturalistic
condition. The participants were supposed to use the vehicles
for their daily drives, including business trips and vacations.
Our university’s ethics committee authorised the approval for
the experiments prior to the study.

A. Subjects

The nine participants (four females and five males, mean
age, 37 ± 8 years) were recruited from a large enterprise
(more than 1,000 employees) through an internal call in
their company social media forum. Our selection focused on
ordinary daily commuters that are representative of a large
variety of people.

B. Data Collection Equipment and Protocol

We mounted two webcams (Logitech HD Pro Webcam
C920) on the dashboard of the vehicle to record the faces of the

(a) Firstbeat measurement [37] (b) Webcam deployment

Fig. 2. Data collection equipment.

drivers and the traffic context. The traffic context information
is not relevant to this study and will not be explored. HRV data
were collected using a medical-grade heart monitoring device
(Firstbeat Bodyguard 2), as shown in Figures 2a and 2b. The
sampling rate of the heart monitoring device was 1000 Hz.
For the sake of a more comprehensive comparison participants
also wore a recent consumer smartwatch (Garmin vı́voactive
3) during driving.

C. Characteristics of Driving Activity

It was crucial for our dataset to capture representative
driving situations. This subsection presents some important
statistics related to our dataset.

After data cleansing, we had about 68.6 hours of video data
with associated HRV measurements during driving. The total
driving distances of each participant are plotted in Figure 3.
Most drivers drove for reasonably long distances (more than
300 km) during the field study. The GPS records of the
vehicles are presented as a heatmap in Figure 4. As shown in
this figure, most participants drove around the area of Stuttgart,
Germany. Overall, our dataset covered a wide range of daily
driving activities like commuting, shopping trips, and leisure
activities at the weekend.
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Fig. 3. Accumulated driving distance

D. Characteristics of Heart Rate Variability Measure

HRV is measured over a period of time. We applied an
overlapping sliding window with a length of 5 min and a
step size of 30 s to compute HRV measures (i.e., RMSSD,
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10 km

Fig. 4. GPS heatmap of the most active area

LF/HF ratio, and pNN50). The choice of 5 min follows
the convention of short term HRV measurement [38], [39].
We refer to such 5-min segments as HRV segments. The
entire facial expression-based HRV detection framework is
similar to the one used in [40] and is shown in Figure 5.
We take facial expressions in HRV segments as input data to
estimate the HRV measures associated with the corresponding
segments. From the recording of Firstbeat Bodyguard 2, the
ground truth of HRV measures is computed based on a
standardised wearable data processing toolkit [41]. These HRV
segments are randomly shuffled for training and testing. To
avoid the intersection between training and test datasets caused
by overlapping sliding windows, we discard HRV segments
that intersect both datasets for each shuffle, as illustrated in
Figure 16.

Facial 
expression 

Heart rate variability is measured as inter beat interval (data sampling rate at 
1000Hz)

Driving begins Driving ends

Facial expression of driver from face camera, detected using Affectiva

HRV
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. . .

Facial expression Machine 
learning model

HRV outlier 
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Fig. 5. HRV outlier detection framework

Next, we inspect the distribution of HRV, which is illustrated
in Figure 6. Owing to the influence of age and gender, there
is significant difference among participants in terms of the
median and range [38]. To account for such individual factors,
we define HRV outlier detection as a binary classification
problem and predict whether a given driver’s HRV measures
are excessively low or high with respect to his/her personal
empirical distribution. We distinguished between low and high
HRV outlier detection, as formulated in Equation 1 and 2,
respectively. Such definition is similar to [31], [32], in where
the authors defined outliers for stress or mental status estima-
tion as one standard deviation above or below the mean HRV.
Consequently, HRV measures within one standard deviation
of the personal mean are considered normal. It means that we
develop two machine learning models, one for the detection of
low outliers of HRV measures and the other for high outliers.
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Fig. 6. Distribution of RMSSD, LF/HF ratio, and pNN50 of the nine drivers
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(1)
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=

{
rest, <= per. mean+ per.std

high outlier, > per. mean+ per.std
(2)

We performed data cleansing and removed IBI artefacts (<
250 ms or > 2000 ms). We removed HRV segments where
the driver faces appeared in less than 70% of video frames as
well as HRV segments with no valid IBI signal. Finally, we
obtained in total 3876 HRV segments, the distribution of low
and high outliers, and normal samples are given in Table I.

TABLE I
SAMPLE COUNTS FOR DIFFERENT CATEGORY

RMSSD LF/HF ratio pNN50

low 513 584 423
normal 2840 2636 2858

high 523 656 595

III. METHODS

This section explains our approach to infer HRV outliers
from facial expressions.

A. Data Preprocessing

Detection of Facial Action Units. The facial action units
(AUs) is used in the facial action coding system (FACS) to
describe the muscle movement currently active in the face,
such as “nose wrinkle” or “cheek raise” [42] Based on the
active level and the combination of AUs, facial expressions
such as anger, fear, and joy can be quantitatively determined.

The manual coding process of FACS requires profound
expert knowledge and is laborious. To alleviate this problem,
we leveraged the automatic FACS coding algorithm from
Affectiva, a spin-off of MIT’s Media Lab. Affectiva’s facial
expression recognition technology uses computer vision and
deep learning techniques to first detect the active level of
AUs, based on which another mapping function is established
between facial expression and AUs [43]. The Affectiva’s major
advantage is that it is built on a very large foundational dataset,
consisting of more than 9.7 million facial images of people,
with more than 5 billion facial frames [43]. Additionally,
based on the in-vehicle data of more than 20,000 hours
featuring more than 4,000 unique individuals, Affectiva is
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well optimised to automotive in-cabin environment [43]. Given
these features, Affectiva’s solution can reliably capture facial
movements. In this study, we used one of the latest stable
versions (ics-2.2.1).
Feature Engineering. Affectiva detects AUs for each frame
and presents the results as the activation level of each AU
in the range of 0 to 100. The entire list of detected AU
is the following:“browRaise”,“browFurrow”, “noseWrinkle”,
“upperLipRaise”, “mouthOpen”, “eyeClosure”, “cheekRaise”,
“eyeWiden”, “innerBrowRaise”, “yawn”, “blink”, “blinkRate”,
“lipCornerDepressor”, “lidTighten” and “smile” (all 15 AUs
provided by the Affectiva SDK). We build feature vectors
(FVs) for AUs through a sliding window, with both the length
and the step size equal to five seconds. In each sliding window,
we compute mean, min, max, median, standard deviation,
quantile-25%, quantile-75%, kurtosis and skewness for each
AU. That is to say, for every 5 seconds, a 135-dimension
(15 AUs × 9 features) FV is generated. From a 5-min HRV
segment, a sequence of 60 FVs (5min / 5s = 60) is generated.

In addition to AUs, HRV is heavily influenced by the time
of day. We incorporate this prior information by including time
features defined as current time (formatted in the 24 h-scale),
day of the week, an indicator of driving at night, seconds
before dawn, seconds after dusk, seconds before sunrise, and
seconds after sunset. The last four features were set to zero if
driving had occurred after or before the corresponding event.
By merging the time features to each FV, the final input to the
machine learning models has the shape of 60steps× 142dim.

B. Machine Learning Approaches

Standard Pipeline. We first verify the feasibility of the HRV
outlier detection in the wild by exploring a random forest
model. Despite the simplicity of tree-based models, they often
outperform more complicated models such as neural networks
or support vector machines (SVM) [44]. This is especially the
case with a lack of prior insight about underlying data property
or domain knowledge [45].

Our random forest based pipeline is depicted in Figure 7.
In the training phase, we assign all FVs in an HRV segment
the same label as the HRV segment, meaning that the input
instance to the random forest is each FV. In the test phase, we
perform prediction on all FVs in each HRV segment. The final
prediction for one HRV segment is aggregated from prediction
results of all FVs in that HRV segment. In this study, we use
the majority vote as the aggregation function.
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Fig. 7. HRV outlier detection using standard random forest pipeline

The input FVs are sequences of time-series data. Therefore,
to further explore the possibility of other machine learning
models, the choice of random forest can be replaced by
prevalent (1D) convolutional neural network (CNN), recurrent

neural network (RNN), and multilayer perceptron (MLP), etc.
We used random forest as well as various neural networks as
baseline method and the evaluation is presented in Section IV.

Tree-based Probabilistic Fusion Network (TPFN). As we
will show in Table IV and V in Section IV, when tree-
based models are applied in the standard pipeline, they usually
outperform neutral network models. The tree-based model
often perform better than other models in practise [44], [45].
The reason is that the hierarchy decision stage of tree-based
models does not impose restrictions on the distribution of
inputs; the merit of the ensemble mechanism of random forest
makes it extremely robust to unseen data [44]–[46]. Unlike
neural networks whose architecture is sensitive to specific
data distribution and requires profound domain knowledge,
recent work suggested that random forests can help discover
the underlying structure of data [44], [45]. As such, we develop
a hybrid model that uses a tree-based model to create a
probabilistic embedding from data, which is further fused and
processed by a neural network. The details of our proposed
model are explained as follows.

We first compute the probability embedding of each AU.
This is performed by building 15 random forests for the 15
feature subsets of all AUs. Each feature subset contains not
only features of the corresponding AU, but also the prior
mentioned time features. Therefore, each random forest takes
FVs of 16 dim. (nine statistical features from AUs and seven
time features) as input. We train these 15 random forests
similar to those in Figure 7. After that, instead of aggregating
the predictions of the random forests, we take the prediction
probability (with closer to 0 being more likely to be class
0, and vice versa), which is again a time-series sequence of
form 60 step × 15 AUs, as input to a neural network. The
neural network take the fusion of the probability from the
random forests and further predicts the HRV outlier for the
entire sequence. In this study, we used a multilayer perceptron
(two layers, each with 16 neurons and sigmoid as activation)
to classify on every step the fused probability and then with a
final classification that is aggregated (by majority vote) from
the 60 votes.
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Fig. 8. Tree based probabilistic fusion model

IV. EVALUATION

In this section, we evaluate the proposed method against
state-of-the-art machine learning models. The evaluation is
performed by constructing a general model for all drivers.
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Fig. 9. Absolute and relative errors of high-end smartwatch compared with
Firstbeat [37]

In the following, we will provide an insight into the HRV
measurement accuracy of the current high-end commodity
smartwatch compared with medical-grade heart rate monitor
(Firstbeat). Next, we comprehensively compare the proposed
approach with various baseline methods.

A. Measurement Accuracy of Smartwatch

Smartwatches and other wearable devices are becoming
popular in people’s daily life. The low cost and ubiquitous
property make them an ideal tool for health monitoring. There-
fore, we should first inspect if their measurement accuracy
meets the requirement of HRV detection in the wild.

For this purpose, we use the measurement of the Firstbeat
as the gold standard to compute the errors of smartwatches.
The absolute and relative errors of mean heart rate and
RMSSD of HRV segments are illustrated in Figure 9. In
this study, we have an overlap of 21.25 hours of Firstbeat
data with smartwatch measurements. Due to the in-the-wild
property of the experiment, drivers sometimes did not wear
the smartwatch.

It it obvious in Figure 9a that the smartwatch can very
accurately measure the average heart rate. The mean value
of the absolute error is only around 1 beat per minute. This
magnitude of error agrees with the latest systematic evalua-
tion of smartwatches [15], [47]. However, the errors become
significant when using the measured IBI from a smartwatch
to compute RMSSD, as illustrated in Figure 9b. The mean
of the relative errors is almost 100%. More comparisons
between smartwatch and Firstbeat measurements are given in
Figure 19. Although the sensors of smartwatches tremendously
improved and will continue (e.g. ECG monitoring is now
available in certain smartwatches, the prerequisite of its usage
is that the users must sit still without arm movements; thus,
limited applicability while driving [15]), the current high-end
smartwatch that measures the accurate mean heart rate does
not provide reliable HRV measurements while driving.

B. Comparison with Baseline Methods

In this subsection, we present the baseline methods to be
compared and analyse the results quantitatively.
Baseline Methods. This part describes the baseline methods
in detail. On the one hand, the chosen baselines, such as

smartwatch and time models, are used to demonstrate that
our proposed facial expression based approach is a good
and necessary complement of currently prevalent heart rate
monitoring methods; on the other hand, the comparison with
the tree-based and neural network models can demonstrate that
the proposed tree-based probabilistic fusion is an efficient way
to learn data representation.

• Smartwatch Model. Although smartwatches exhibit un-
reliable measurements of HRV, as described in Sec-
tion IV-A, it is still meaningful to evaluate whether the
noise in the smartwatch is consistent. This means, for
example, if the noise adds a consistent offset to the
HRV measurements, HRV outlier detection can still be
accurately performed since we are interested in whether
HRV is lower or higher than the personal baseline level.
We refer to the smartwatch model as SM.

• Time Model. It is well known that the time of day has a
strong impact on HRV [48]. For example, HRV tends to
be higher during working hours than at night because the
body must react to the accumulated stress and cognitive
load. We demonstrate the time-dependent variation of
RMSSD in Figure 10. More examples of LF/HF ratio and
pNN50 are given in Figure 17 and 18 in the Appendix.
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Fig. 10. RMSSD of the nine drivers in different time interval

Therefore, it is crucial to inspect the possibility of in-
ferring HRV outlier purely based on time. To this end,
instead of defining a rule based model, we build a Time
Model (referred as TM) by constructing a random forest
using only time features (7D). The TM resembles the
settings in Figure 7 except for the input FVs.

• Tree Based Models. As described in Section III-B,
random forest (refered as RF) can be used as the
machine learning back-end in the pipeline. To explore
the feasibility of other tree-based models, we further
replace random forest with one of the latest tree-based
models, the Deep Forest (referred as DF) [46]. For RF,
DF and tree-part of TPFN, a grid-search of parameters
is performed. The candidate parameters are described
in Table VI. The optimal parameters for all tree-based
models are determined as depth of tree = None (i.e.,
unlimited depth), number of trees = 200, min samples
split = 2, min samples leaf = 1.

• Neural Network Models. Over the last decade, neural
network techniques have experienced tremendous im-
provement. Therefore, it is meaningful to benchmark our
proposed tree-based probabilistic fusion approach with
them. We implemented 1D convolutional neural network
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(referred as CNN), Multilayer-perceptron (referred as
MLP) as well as recurrent neural network (referred as
RNN) to the time-series FVs. To be more precise, the
CNN, as depicted in Figure 11, consists of two cascaded
1D convolutional filters (kernel size = 3, filter size = 64,
dropout rate = 0.5, and activation = sigmoid) followed by
a linear fully connected (FC) layer with 16 neurons and a
Softmax operation that reduces the flatted convolutional
output to two dimensions, corresponding to the binary
classification.
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Fig. 11. CNN baseline model

RNN, as shown in Figure 12, uses two recurrent layers
(dropout rate = 0.5) with 16 gated recurrent units (GRU)
followed by a linear FC layer with 16 neurons and a
Softmax operation that reduces the hidden states of GRUs
to two dimensions, similar to CNN.
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Fig. 12. RNN baseline model

MLP resembles the pipeline in Figure 7, where random
forest is replaced by a two-layer multilayer perceptron
(activation = sigmoid, dropout rate = 0.5) with 32 units
in each layer. The classification is performed on each FV
and the final prediction is the aggregation (majority vote)
of all FVs in an HRV segment.
The chosen architectures for CNN, RNN and MLP are
similar to the ones used in [49], [50], which have been
proven to be effective in predicting various physiological
and psychological status. Additionally, the optimal pa-
rameter settings of the above mentioned neural networks
were determined using grid search. This is done by
applying a 5-fold cross validation to the training dataset.
Subsequently, each network is re-trained on a total train-
ing dataset with the optimal parameters. This procedure
of parameter searching is similar to that of [50]. The
candidate parameters for the grid search are described
in Table VII - IX. Furthermore, for all networks, we
further grid searched on optimiser (SGD and ADAM),
normalisation schemes (Z-score normalisation, min-max

normalisation, and logarithmic transformation1), and gra-
dient clipping schemes (norm type = 2-norm, the option
for max. norm was iterated over 1, 10, 100). Finally, all
neural network models (including the neural network part
of TPFN) are trained by ADAM with a learning rate of
0.005; Z-score normalisation and gradient clipping with
max. norm = 10 are applied. The loss function is defined
as cross-entropy.

Numeric Results. We perform the binary classification on an
unbalanced dataset (majority : minority ≈ 82% : 18%).
Therefore balanced accuracy is used as the metric, which
is an unweighted mean of accuracy over all classes. Thus,
this metric is not biased towards the majority class and can
provide a more accurate evaluation of the overall performance.
As relevant HRV metrics, we selected RMSSD and evaluated
LF/HF ratio and pNN50 since they are closely related to
mental status, as explained in Section I.

We first compare the proposed approach with HRV outlier
detection based on smartwatch measurements. That is to
say, for SM we computed HRV measures from smartwatch-
measured IBI and use the computed HRV measures to detect
HRV outliers. Smartwatch measurements are available for
21.25 hours of 68.58 hours. To ensure a fair comparison,
the proposed TPFN is trained for the remaining 47.3 hours.
After that, TPFN and SM were validated on the same dataset
where smartwatch measurements are available. The result is
described in Table II and III. The proposed TPFN method
outperforms SM in all cases, with an improvement ranging
from 3.6% to 13.1%. The evaluation demonstrated that the
IBI measured by smartwatches could not precisely compute
HRV measures despite accurate heart rate measurement. The
measurement noise does not constitute a constant offset, mak-
ing HRV outlier detection based on smartwatches imprecise.

TABLE II
BALANCED ACCURACY OF LOW HRV OUTLIER DETECTION, SMARTWATCH

(SM) VS. PROPOSED SOLUTION (TPFN)

Model RMSSD LF/HF ratio pNN50

SM 68.2 52.7 55.1
TPFN 73.3 60.3 68.2

TABLE III
BALANCED ACCURACY OF HIGH HRV OUTLIER DETECTION,

SMARTWATCH (SM) VS. PROPOSED SOLUTION (TPFN)

Model RMSSD LF/HF ratio pNN50

SM 64.7 58.6 61.0
TPFN 68.3 70.6 71.9

Next, we compare the proposed TPFN with prevalent ma-
chine learning models. We randomly split the dataset into train
(70%) and test (30%) sets. The final results are presented
as the average of 10 repeated experiments using 10 different
random seeds. The standard deviations of the 10 repetitions
are indicated in brackets in corresponding tables.

1to avoid numerical issues, logarithmic transform is applied as A =
log(|A|+ 1)
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The results are presented in Table IV and V. TM performs
by distance the worst despite the strong correlation between
HRV and time [38]. Neural network approaches (CNN, RNN
and MLP), despite their higher complexity, achieve worse
results than tree-based models (RF and DF). Finally, the best
performance is achieved by the proposed hybrid TPFN model
that combines the merits of both tree based model and neural
networks. The TPFN model outperforms other best performing
baseline models by an average of 3.4% and up to 6.9% in
balanced accuracy.

TABLE IV
BALANCED ACCURACY OF LOW HRV OUTLIER DETECTION

Model RMSSD LF/HF ratio pNN50

TM 60.3 (1.7) 58.0 (2.2) 61.5 (2.5)
RF 62.4 (2.1) 61.6 (2.7) 66.8 (2.2)
DF 62.8 (2.8) 61.8 (2.7) 66.6 (2.2)

CNN 59.1 (3.3) 57.9 (2.9) 55.3 (3.7)
RNN 58.4 (3.2) 56.1 (3.1) 57.3 (3.3)
MLP 60.5 (2.5) 55.5 (5.3) 56.3 (4.7)
TPFN 69.7 (2.2) 65.3 (2.7) 71.4 (2.1)

TABLE V
BALANCED ACCURACY OF HIGH HRV OUTLIER DETECTION

Model RMSSD LF/HF ratio pNN50

TM 56.0 (2.4) 61.4 (2.8) 59.2 (2.6)
RF 65.5 (2.3) 64.5 (2.7) 65.5 (2.4)
DF 66.8 (2.4) 64.8 (2.7) 65.8 (2.3)

CNN 56.0 (3.5) 60.2 (3.4) 60.3 (4.7)
RNN 60.5 (2.3) 61.1 (2.7) 62.2 (4.2)
MLP 59.7 (3.8) 58.1 (3.8) 60.4 (4.5)
TPFN 68.3 (2.1) 65.7 (2.7) 69.2 (2.2)

To better visualise the performance of the outlier detection,
the confusion matrices of TPFN are plotted in Figure 13 - 15.
The confusion matrices show that the proposed TPFN is not
particularly biased towards the majority class, except for the
high outlier detection of LF/HF ratio in Figure 14. Meanwhile,
the model maintains low false negative and false positive rates,
as illustrated in the sub-diagonals of the confusion matrices.
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Fig. 13. Confusion matrix of RMSSD outlier detection

V. DISCUSSION

In this section, we discuss the proposed approach in terms
of prediction usability, reliability and potential limitations.
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Fig. 14. Confusion matrix of LF/HF ratio outlier detection
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Fig. 15. Confusion matrix of pNN50 outlier detection

A. Usability

The proposed approach relies on a driver monitoring cam-
era. Although such a camera is not widely installed in current
vehicles, it is becoming an integral and essential component of
future cars. The reason is that a driver monitoring camera is an
essential safety feature that prevents inattention or drowsiness
while driving. European Union (EU) is the pioneer in pushing
forwards this safety feature. In 2019, a general safety regula-
tion was passed by the EU Council of Ministers. The safety
regulation requires that all new vehicles on the EU market
must install advanced safety systems to prevent distraction and
drowsiness. Such an advanced safety system is very likely to
be implemented through a driver monitoring camera [35], [36],
[51]. Starting in 2022, all new type-approved vehicles with
a certain level of autonomy must fulfil this requirement. By
2026, this law will cover all newly produced cars regardless
of their level of automation [51], [52]. In the United States,
two safety-related traffic bills have been introduced or passed
(H.R.2 - Moving Forward Act and S.4123 - SAFE Act of
2020). This may lead to the requirement that driver monitoring
camera becomes mandatory in new vehicles [51]. In China,
the regulations requiring long-distance trucks to use driver
monitoring have already been implemented in certain regions,
in particular for vehicles transporting hazardous goods. More
similar regulations are expected to follow [51]. We can an-
ticipate that driver monitoring cameras will become essential
and mandatory in many regions of the world in the future.
The proposed solution can be well integrated into future cars
without any additional hardware cost.

The proposed solution plays an important complementary
role to the emerging driver monitoring solutions such as
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activity recognition and gaze detection [53], [54]. While driver
activity recognition and gaze detection algorithms can infer
whether a driver’s behaviours are allowed during driving, these
algorithms do not guarantee if a driver’s mental status is
favourable. Various studies suggested that incremental cog-
nitive load impact drivers’ visual behaviour and their gaze
is therefore focused on the central road region [55], [56].
Even worse is that increased cognitive load reduces drivers’
awareness of incidents occurring within the restricted visual
field, namely “look but fail to see” [14]. Such shortcomings
of driver activity or gaze monitoring techniques can be well
compensated by our proposed algorithm, which assesses the
cognitive load of drivers through HRV estimation.

Finally, the monitoring of HRV measures provides a signifi-
cant derivative benefit from the well-being perspective. Driving
is not the only source of stress and mental load in daily lives.
Occupational burn-out, sentimental relation between couples,
and mood disorders, etc. can lead to sub-optimal states and
could manifest themselves in the changes of HRV measures
[38], [57]. The HRV monitoring technique in combination with
well-being interventions that regulate drivers’ psychological
status [9], [10], in essence, does not only reduces stress and
cognitive load from driving, but also from other daily events
[14]. The smart vehicles in the future should not only be a
tool for transportation, but also an intelligent 3rd living space
integrated with a wellness platform [14].

B. Reliability

The proposed HRV estimation solution provides supportive
service to improve the user experience. Upon the detection
of excessively low or high HRV measures, intelligent vehicle
systems can deliver corresponding interventions to regulate
the sub-optimal states of drivers. State-of-the-art driver stress
or mental regulation strategies mainly consist of music or
mindfulness intervention, breath exercise, control of ambient
auditory, lighting or aero (wind) feedback, and odour stimu-
lation, etc. [9], [10], [58]–[60].

Unlike obstacle avoidance or pedestrian detection systems
that have almost zero tolerance for false detection, the HRV
estimation in our context can engage in ambiguity when
the system is uncertain about its estimation. This is in line
with the Guidelines for Human-AI Interaction proposed by
Amershi et al. [61]. There is a certain grey zone that tolerates
ambiguous decisions. In the case of uncertainty, the reliability
of the system can be further improved by adopting the inter-
action between system and users, for instance, through verbal
communication [62], an inquiry of the necessity of intervention
[9], or adjusting intensity/option of intervention [63] etc. On
the other hand, interventions yield a stronger effect, especially
if users are in a sub-optimal state (and hence a state of
high “vulnerability”), because more potential for improvement
exists. That being said, wrongly applied interventions (i.e.,
user in the optimal state) to regulate low HRV measures are
unlikely to move the user from optimal state to a state of high
HRV measures [63]. If interventions are provided based on
wrong HRV estimation, the consequence is not as dangerous
as, for instance, miss-detection of lane marks or pedestrians.

C. Limitations

This research should be assessed considering its limitations.
Even though our experiments were performed under natu-
ralistic conditions, a very challenging setting, the proposed
approach does not generalise to the leave-one-subject-out
setting. This drawback could be attributed to the fact that we
have only nine drivers in our dataset. The limited sample size
is not diverse enough for a machine learning model to learn a
generalisable pattern among different subjects. We expect that
a large scale field study with a greater number of the subject
could be conducted to further explore the generalisability of
facial expression-based HRV estimation.

In addition, it is worth noting that the estimation of LF/HF
ratio is generally inferior than the other HRV measures. We
believe that this difference can be explained by the fact that
subject respiration heavily influences the frequency compo-
nents of HRV [64], [65]. More specifically, both respiration
and autonomic nerve activities contribute to the deviation in
LF/HF ratio, whereas only the latter factor can be reliably
interpreted by the proposed facial expression-based inference
model. For future work, we see potential in integrating a
respiration detection module and thus fusing the information
of breath to further improve the HRV estimation, which shall
be one of our focuses in future research.

Furthermore, although the excessively low or high HRV
measures are strong indicators of certain physiological and
psychological status, an exact measurement of HRV measures
could bring more insight into a user’s health status (e.g., moni-
toring of hypertension or other cardiovascular diseases), which
is not accomplished in this study as no study subject reported
any relevant complications. The exact measurement of HRV
relies on precise capturing of IBI, which can be achieved
by rPPG under well-defined lab condition. The fundamental
mechanism of rPPG that detects the heartbeat induced peak of
blood volume in a vessel is a more straightforward approach
for measuring the exact value of HRV. However, rPPG is not as
robust as our approach and is vulnerable to ambient noise due
to illumination and motion artefacts [66]. With the positive
results demonstrated in this study, researchers in the future
could focus on a fusion approach that leverages the robustness
of our approach to reduce noise in rPPG; thus, achieving a re-
liable HRV measurement in the wild. At the same time, future
work could extend our work by investigating the feasibility of
applying the proposed facial expression-based HRV estimation
outside the vehicle. For example, a potential use case could
be patients with cardiovascular diseases who need low-cost
monitoring of their current condition. The mandatory step
to validate our approach would be the collection of medical
data from affected patients and subsequent experiments on this
data.

VI. CONCLUSION AND OUTLOOK

Several studies and surveys pointed out that the sub-optimal
state of drivers is the main cause of traffic accidents [7]. The
National Highway Traffic Safety Administration (NHTSA)
suggested that 94% of accidents resulted from human errors
[67]. Therefore, a strategy for monitoring drivers’ status and
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driving performance becomes crucial in the reduction of the
number of accidents. Such a driver monitoring system is
particularly meaningful in the upcoming era of ever automated
vehicles, where driver status needs to be maintained to ensure
a seamless takeover of the control of cars. Although several
HRV estimation approaches have been proposed, the mediocre
accuracy, inconvenient deployment and the lack of ubiquity
prevent them from becoming a practical and prevalent solution.

To address the existing challenges and embrace future tech-
nologies, we proposed a facial expression-based approach for
HRV measure outlier detection. The reason is that empirical
research showed that excessively low or high HRV measures
are strongly correlated with various sub-optimal mental and
psychological states of people [15], [16], [19], [20]. The
merit of the proposed approach is three-fold. First, HRV
estimation is a meaningful and even necessary complement
to visual human activity recognition (HAR) based driver
monitoring. While HAR captures drivers’ physical behaviours,
HRV estimation evaluates their mental status. Second, driver
monitoring cameras will become a mandatory component
of future vehicles in many regions. Therefore the proposed
approach does not induce any extra hardware cost, providing a
higher degree of ubiquity than smartwatches and UWB based
technologies. Our evaluation demonstrates that the proposed
tree-based probabilistic fusion network approach outperforms
a consumer smartwatch in HRV measure outlier detection by
up to 13.1% in terms of balanced accuracy. The positive results
and the ubiquity of the proposed approach demonstrated its
great potential in improving driving experience and safety.
Finally, the proposed tree-based probabilistic fusion network
approach outperforms other prevalent pure tree-based or neural
network based methods by an average of 3.4% in balanced
accuracy. The idea of the tree-based probabilistic embedding
should inspire researchers to consider the possibility of hybrid
models that leverages the merits of the tree-based models,
especially when no rich prior domain knowledge is available.

The concept of facial expression-based estimation of HRV
measures proposed in this work could further facilitate various
IoT-based services and applications. For example, in mobile
crowd sensing [68], [69], car ridesharing companies (Uber,
Didi, etc.) could determine whether a driver is an optimal
state based on the proposed HRV estimation approach. After
that, task allocation can be optimised by assigning more
demanding tasks to the drivers of better states or enforcing
mandatory pause to the drivers who are temporally not fit
for working. Thus, the quality of service will be improved.
Another example is smartphone-based mobile sensing of user
physiological and psychological states. One major limitation of
smartphone-based sensing is the lack of accurate physiological
data [31], [50], [70]. With the help of the proposed method,
users’ HRV estimation can be shared via data link between
smartphones and the devices that capture facial expressions
(e.g., intelligent vehicles, webcam of laptops, and surveillance
cameras). In this way, smartphone-based mobile sensing can
achieve a more comprehensive understanding of users’ status.
The method proposed in this work, in essence, conceptualises a
more robust and more accurate way of pervasive monitoring of
users’ mental states. The concept targets “IoT Data Analytical

Services”, one of the ten main challenges in developing an IoT
service outlined by Bouguettaya et al. [71]. The purpose of
IoT data analytics is to distil heterogeneous IoT data in order
to provide domain-specific actionable knowledge of adequate
quality [71]. In our vision, the facial expression-based HRV
estimation of users should not only be limited to drivers, but
can also be generalised to broader applications where users’
mental state should be considered. As such, we expect to see
interdisciplinary research from psychology, neuroscience, and
computer science could benefit from our idea and further push
forward the pervasive sensing of user status.
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[49] P. Schmidt, R. Dürichen, A. Reiss, K. Van Laerhoven, and T. Plötz,
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APPENDIX
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Fig. 16. Processing of HRV segments to avoid intersection between training
and test data
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Fig. 17. LF/HF ratio of the nine drivers in different time interval
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Fig. 18. pNN50 of the nine drivers in different time interval

TABLE VI
CANDIDATE PARAMETERS FOR GRID SEARCH FOR TREE-BASED MODELS

RF, DF, TFPN

depth of tree 10, 20, 50, None

number of trees 50, 100, 200, 300

min samples split 2, 5, 10

min samples leaf 1, 2, 5
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Fig. 19. Absolute and relative errors of high-end smartwatch compared with
Firstbeat [37]

TABLE VII
CANDIDATE PARAMETERS FOR GRID SEARCH FOR CNN

CNN

# conv. layers 2, 4, 8

# filter per layer 8, 16, 32

kernel size 3, 5, 7

dropout rate 0.3, 0.5, 0.7

learning rate 0.01, 0.05, 0.005

activation ReLU, sigmoid

FC layer settings
(neurons in each layer)

[16], [32], [64],
[16,16], [32,32], [64,64]

TABLE VIII
CANDIDATE PARAMETERS FOR GRID SEARCH FOR RNN

RNN

# layers 1, 2, 4

# hidden units 8, 16, 32

dropout rate 0.3, 0.5, 0.7

learning rate 0.01, 0.05, 0.005

activation ReLU, sigmoid

FC layer settings
(neurons in each layer)

[16], [32], [64],
[16,16], [32,32], [64,64]

TABLE IX
CANDIDATE PARAMETERS FOR GRID SEARCH FOR MLP

MLP

# layers 2, 4, 8

# neurons in layer 8, 16, 32

dropout rate 0.3, 0.5, 0.7

learning rate 0.01, 0.05, 0.005

activation ReLU, sigmoid


