
IEEE INTERNET OF THINGS JOURNAL, VOL. 1, NO. 1, MAY 1, 2023 1

RAPNet: Resolution-Adaptive and Predictive Early
Exit Network for Efficient Image Recognition

Youbing Hu, Student Member, IEEE, Yun Cheng, Member, IEEE, Zimu Zhou, Member, IEEE,
Zhiqiang Cao, Student Member, IEEE, Anqi Lu, Member, IEEE, Jie Liu, Fellow, IEEE,

Min Zhang, Member, IEEE and Zhijun Li, Member, IEEE

Abstract—Deploying compute-intensive deep neural networks
(DNNs) on resource-constrained end devices has become a
prominent trend, enabling localized intelligence. However, ef-
ficiently deploying these DNNs at scale poses challenges. To
address this, extensive research has focused on the early exit
architecture based on convolutional neural networks (CNNs),
which dynamically adapt network depth to reduce inference
computation. Nevertheless, the sequential execution of all in-
ternal classifiers (ICs) and subsequent termination based on
an exit criterion is inefficient. Motivated by these insights, we
introduce a resolution-adaptive prediction network (RAPNet)
architecture. RAPNet comprises a lightweight prediction network
that captures global image features and an inference network
integrated with an early exit architecture. The prediction network
accurately determines the optimal IC position conditioned on
the input images for efficient image classification. Additionally,
we incorporate resolution-adaptive inference and feature fusion
mechanisms by computational reuse, to effectively mitigate image
spatial redundancy and improve the accuracy of ICs. We conduct
extensive experiments across various datasets and architectures to
demonstrate that RAPNet achieves a significantly better accuracy
vs. computational trade-off than other recently proposed early
exit methods. For instance, when using MobileNet as the base
network, RAPNet achieves significant accuracy improvements of
12% and 5.7% on the Tiny Imagenet and CIFAR-100 datasets
respectively, surpassing other early exit methods with similar
computational constraints.

Index Terms—Deep learning, early exit network, resolution
adaptive inference, predictive early exit

I. INTRODUCTION

INTELLIGENT applications driven by deep neural net-
works (DNNs) are experiencing a remarkable surge in

popularity [1]. These applications are extensively utilized on
wearable devices like smartphones and smartwatches, provid-
ing intelligent services across various domains [2], [3], [4].
With advancements in hardware platforms for end devices [9],
[17] and the exceptional feature extraction capabilities of con-
volutional neural networks (CNNs) [18], DNNs have achieved
unprecedented success in tasks such as image classification

Youbing Hu, Zhiqiang Cao, Anqi Lu, Jie Liu, Min Zhang and Zhijun Li
are with the Faculty of Computing, Harbin Institute of Technology, Harbin
150000, China (e-mail: youbing@stu.hit.edu.cn; zhiqiang cao@stu.hit.edu.cn;
luanqi@stu.hit.edu.cn; jieliu@hit.edu.cn; zhangmin2021@hit.edu.cn; lizhi-
jun os@hit.edu.cn).

Yun Cheng is with the Swiss Data Science Center, ETH Zurich and EPFL,
8092 Zurich, Switzerland (e-mail: yun.cheng@sdsc.ethz.ch).

Zimu Zhou is with the School of Data Science, City University of Hong
Kong, Hong Kong, China (e-mail: zimuzhou@cityu.edu.hk).

[6], object detection [7], [10], [11] and semantic segmentation
[15], [16]. However, the resource constraints of most end
devices, due to their compact size and lightweight nature,
pose significant challenges in efficient DNN deployment [50],
[76]. Furthermore, as DNN models directly interact with users
on these devices, it is crucial to ensure high-quality user
experience (QoE) by imposing strict limitations on the infer-
ence efficiency of these models [19]. The advent of dynamic
neural network technology [20] has effectively addressed these
challenges by dynamically allocating computational resources
among samples in an uneven manner.

Efficient inference of DNNs on resource-constrained de-
vices has been a focus of extensive research, leading to various
technical approaches [12], [13]. These approaches encompass
static models like knowledge distillation [21], network pruning
[22], [23], and network architecture search (NAS) [24], [27], as
well as dynamic models such as early exit architectures [14],
[25], [28]. Unlike static models that allocate uniform compu-
tational resources to all samples, dynamic models have gained
significant attention for their adaptive and efficient allocation
of computational resources to individual samples. Among
dynamic models, early exit neural networks have emerged as
a simpler yet highly efficient approach, captivating researchers
in the pursuit of efficient neural network architectures.

The early exit architecture improves a convolutional neural
network (CNN) by attaching internal classifiers (ICs) into
its hidden layer, which are jointly trained using a weighted
optimization objective function. During inference, the ICs are
executed sequentially until a convincing inference result is
obtained, determined by comparing the confidence with a
fixed threshold set as the exit criterion. Recent advancements
in optimizing early exit architectures include techniques like
training early exit networks using knowledge distillation [28]
and enabling better collaboration among ICs by integrating
the outputs of preceding ICs into the decisions of subsequent
ICs through computational reuse [29], [30]. These methods
have demonstrated outstanding recognition performance, as
exemplified by the state-of-the-art approach, ZTW [29].

Although progress has been made in early exit architectures,
existing approaches primarily focus on reducing computational
overhead stemming from model redundancy. However, they
tend to overlook the computational cost associated with the
ICs themselves and the spatial redundancy of samples. In
current implementations, all ICs are executed sequentially at
a fixed resolution during inference, resulting in suboptimal
computational efficiency. Additionally, the shallow ICs lack

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3428554

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on August 03,2024 at 05:56:32 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 1, NO. 1, MAY 1, 2023 2

a global receptive field, leading to a significant decrease
in accuracy. To achieve efficient inference of deep neural
networks (DNNs) on resource-constrained end devices without
sacrificing accuracy, a dynamic approach is needed to address
both the computational cost arising from spatial redundancies
in samples and model redundancies. However, it has the
following challenges:

1) Effectively addressing the challenge of sequentially exe-
cuting all ICs and dynamically selecting the optimal IC
based on the input images for efficient image recognition
remains a formidable task. This challenge is exacerbated
by the varying accuracy and computational cost associ-
ated with each IC in the early exit network.

2) Designing an adaptive inference mechanism within the
early exit network to address the spatial redundancy of
samples without incurring additional computational cost
is a significant challenge. This challenge arises from the
fixed size of input images in the early exit network,
which hinders the consideration of spatial redundancy
and necessitates the development of a solution capable
of supporting arbitrary resolutions.

3) Enabling shallow ICs to learn global feature represen-
tations of samples without introducing additional com-
putational overhead poses a significant challenge. This
is because shallow ICs inherently lack the capability
to capture comprehensive global features, leading to a
notable decline in their accuracy. Overcoming this chal-
lenge requires finding a solution that can provide global
feature representation to shallow ICs while maintaining
computational efficiency.

In this paper, we proposed a Resolution-Adaptive Pre-
diction Network (RAPNet) architecture, which comprises a
lightweight prediction network capable of learning the global
feature representation of images and an early exit inference
network. RAPNet’s prediction network can precisely predict
the optimal early exit position of input images in the early
exit inference network, avoiding the high computational cost
introduced by sequentially executing all ICs. Meanwhile, we
designed resolution adaptive inference and feature fusion mod-
ules by computational reuse. The former is achieved through
a specialized internal classifier structure that enables the
processing of input images with arbitrary resolutions, thereby
reducing computational costs associated with spatial redun-
dancy. The latter involves fusing the global features learned
by the predictive network with the local features extracted by
the CNN. This fusion enhances the semantic information of
the input IC, resulting in a significant improvement in accuracy
without incurring additional computational costs. This effect is
particularly pronounced for ICs located at CNN shallow layers.
In summary, the contributions of this work are summarized as
follows:

1) We proposed the Resolution-Adaptive Prediction Net-
work (RAPNet), comprising a lightweight prediction net-
work and an early exit inference network. The prediction
network efficiently learns global image features and ac-
curately predicts the optimal early exit position within
the inference network, avoiding the need for sequential

execution of all ICs and minimizing computational costs.
2) We have developed a dedicated internal classifier within

the inference network to support input images of any
resolution, effectively reducing computational costs as-
sociated with spatial redundancy in the image.

3) We introduced a feature fusion mechanism that leverages
the global features extracted from the prediction network,
effectively addressing the limited global feature represen-
tation in the ICs of the early exit network. This fusion
mechanism greatly improves the accuracy of the internal
classifiers within the inference network.

4) We conducted extensive experimental evaluations for the
proposed methods on image classification tasks. The
results demonstrated that RAPNet achieves a significantly
better accuracy-computational trade-off than other re-
cently proposed early exit methods. For instance, when
leveraging MobileNet as the base network, RAPNet im-
proved the accuracy of the Tiny Imagenet and CIFAR-
100 datasets by 12% and 5.7%, respectively, compared
to other early exit methods with similar computational
constraints.

In the rest of the paper, we introduce the related work in
Sec. II and elaborate on the RAPNet design in Sec. III. Finally,
we evaluate the performance of RAPNet in Sec. IV and give
concluding remarks in Sec. V.

II. RELATED WORK

A. Vision Transformer

Inspired by the remarkable success of Transformer in NLP
tasks [35], researchers developed Vision Transformer [36] for
image recognition. The Vision Transformer divides input im-
ages into sequences of image blocks and transforms them into
tokens as input. The backbone structure of the Transformer
consists of stacked building blocks, each of which contains
self-attention layers and feedforward networks for processing
these tokens. Vision Transformer builds on the self-attention
mechanism to efficiently capture remote dependencies between
patches from the input images and is widely adopted in the
computer vision community [34], [37], [38]. However, the lack
of induction bias [36] requires ViT models to be pre-trained on
very large datasets such as JFT-300M [39] in order to pursue
the desired performance. Extensive research efforts have been
dedicated to enhancing the efficiency and minimizing the
computational burden of the visual transformer [40], [41],
[42], [43], [44]. Swin Transformer [45] develops multi-stage
network architectures with down-sampling and obtains better
inference efficiency. DeiT [43] introduces an extra token for
knowledge distillation. LV-ViT [44] leverages all tokens to
compute the training loss, and the location-specific supervision
label of each patch token is generated by a machine annotator.

Our work leverages the ability of self-attention to capture
long-range dependencies between patches and to extract global
features from the input images. However, compared to existing
efficient ViT models, our work is significantly different in
several aspects. Firstly, we focus on CNN models with early
exit structure and merely use the self-attention mechanism to
extract global features from the input images. Furthermore,

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3428554

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on August 03,2024 at 05:56:32 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 1, NO. 1, MAY 1, 2023 3

when applying the self-attention mechanism, we do not require
a fine-grained partition of the image. Instead, we extract
coarse-grained global features. As a result, the model can
maintain a smaller depth and a shorter sequence length of
tokens.

B. Conditional Computation and Multi-Scale Features

Conditional computation based on deep neural networks
was first proposed in [59], [60], and since then more so-
phisticated and efficient methods have been proposed in this
field, including dynamic routing [61], cascading with multiple
networks [26], [62], [63] and skipping intermediate layers
[66] or channels [64], [65]. Besides the above, early exit
architectures [25] are widely studied in the field of dynamic
neural networks [20] by adding ICs to the network allowing
easy samples to exit earlier. BranchyNet [25] is the first to
add an IC to the hidden layer of a CNN and then utilize
a confidence-based early exit strategy to allow samples with
sufficient confidence to an early exit. Shallow-Deep Networks
(SDN) [32] is a conceptually simple but efficient method that
uses the top-1 accuracy of the softmax output compared to a
fixed-threshold confidence score as an early exit policy, sig-
nificantly improving the efficiency of network inference while
enabling researchers to further understand the phenomenon of
network overthinking. Patience-Based Early Exit (PBEE) [31]
combines the outputs of the previous ICs and terminates the
inference only when the outputs of the successive τ ICs are
consistent, and it outperforms SDN on a number of NLP tasks.
Zero Time Waste (ZTW) [30] further reuses the computational
results of the previous classifier, adding direct connections be-
tween ICs and combining previous outputs in an ensemble-like
manner, its performance has been further improved. The Exit
Predictor (EP) [33] method achieves computational savings by
introducing a prediction exit mechanism to allow easy samples
to bypass the execution of certain ICs.

CNN’s extract global features by increasing depth to con-
tinuously enlarge the perceptual field, which uses pooling
operations or convolution operations with steps for down-
sampling [49], [67], which may limit the network’s ability
to recognize objects at arbitrary scales. Recent studies have
proposed to utilize both coarse global features and fine local
features in the network, which has significantly improved the
performance of the network in many vision tasks, including
image classification [5], object detection [7], semantic segmen-
tation [8], and pose estimation [71]. DS-Net [75] proposed an
Intra-scale Propagation module to process two different reso-
lutions in each block and an Inter-Scale Alignment module to
perform information interaction across features at dual scales.
Moreover, the multi-scale structure [63] shows a promising
ability in adaptive inference and memory-efficient network
[72], [73]. RANet [26] designs a resolution-adaptive network
structure by sequentially maintaining multiple network layers
from low to high resolution, which exists simultaneously
throughout the network with multiple scale feature maps that
are used sequentially from low to high resolution for object
recognition, reducing the computational overhead from the
spatial redundancy of samples.

Our approach is based on the early exit architecture and
the idea of a predictive exit mechanism [33], but it differs
significantly. First, our method predicts precisely which IC to
use for inference, while the EP method only predicts which
ICs can be skipped. Secondly, our mechanism uses the global
feature representation of input samples, considering spatial
redundancy, whereas the EP method relies on local features
and ignores spatial redundancy. Finally, our method improves
IC accuracy through computational reuse without wasting
extra computations, unlike the EP method, which introduces
extra computations for coarse-grained IC prediction.

III. METHOD

The early exit network incorporates ICs into the hidden
layer of the CNN. It selectively allocates computational re-
sources to each input image based on an exit criterion,
determining whether to terminate the execution of the current
IC. However, executing multiple ICs sequentially to identify
challenging images and achieve high computational accuracy
can lead to wasteful computations for ICs that do not meet
the exit criterion. Furthermore, ICs attached to shallow layers
of the CNN lack access to global features of the input image
due to limited receptive fields. Consequently, the accuracy of
these shallow ICs significantly decreases. Inspired by these
observations, we introduce a resolution-adaptive predictive
early exit network, aiming to improve the computational effi-
ciency of early exit CNNs. Our approach focuses on accurately
predicting the optimal IC for each image within the early
exit network, thereby improving computational efficiency. Ad-
ditionally, we seek to significantly improve the accuracy of
shallow ICs and reduce the spatial redundancy of images by
leveraging computational reuse techniques.

Specifically, we propose a Resolution-Adaptive Predictive
Network, which consists of a lightweight prediction network
capable of extracting global features of the input image and
an early exit CNN network. The prediction network directly
predicts the optimal IC within the early exit CNN by extracting
global features from the input image. This approach avoids
the computational waste associated with activating all ICs
in sequence. Additionally, to address the issue of reduced
accuracy in shallow ICs due to limited global receptive fields,
we introduce a feature fusion mechanism that significantly
improves the accuracy of these classifiers. To mitigate the
computational cost from spatial redundancy in input images,
we design ICs for the early exit CNN network that can support
arbitrary resolutions. This customization is achieved without
sacrificing accuracy, as demonstrated in Fig. 5.

A. Overview

Inference. We start by describing the inference procedure
of RAPNet, which is shown in Fig. 1. For each test sample
x ∈ R C×H×W (C, H , and W represent channel, height,
and width respectively), it is first partitioned x into the tokens
t ∈ R K×E , K being the total number of tokens and E the
embedding dimension of each token. Then the global features
of the input image are extracted by stacking N transformer
blocks comprising multi-head self-attention and FFN. Finally,

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3428554

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on August 03,2024 at 05:56:32 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 1, NO. 1, MAY 1, 2023 4

Fig. 1. An overview of RAPNet. The Internal Classifier (IC) is a dedicated internal classifier designed to support input images of any resolution. RAPNet
consists of a lightweight prediction network that utilizes global features learned from the images and an early exit inference network. The prediction network
uses the multi-head self-attention mechanism to captures the global features of the image and predicts the optimal IC within the inference network. Subsequently,
the input images are sequentially fed into the inference network, starting from low to high resolution. At test time, different resolutions of the images are
sequentially activated until a convincing prediction (e.g. sufficiently confident) has been obtained or the final classifier has been inferred.

these global features are computed by an exit predictor to
obtain L− 1 output values s, where each value si ∈ (0, 1), L
is the number of layers of the early exit CNN network. The exit
predictor will be introduced in Sec. III-B. Once the value of si
is greater than η of a pre-set adjustable threshold, the i-th IC of
the early exit CNN is selected as the final executive classifier.
Otherwise the l-th classifier of the base network is selected
as the final executive classifier. When the inference network
starts performing task inference, the resolution of the input
image is activated sequentially from low to high resolution
until a convincing prediction (greater than threshold γ) has
been obtained or the final classifier has been inferred. The
resolution adaptive inference will be described in detail in
Sec. III-C. It is worth noting that if there is no si greater
than η, then the l-th classifier of the base network is chosen
as the final executing classifier, using only the original input
resolution, because we do not modify the structure of the base
network, and therefore it does not support other resolutions of
the input images.

Training. To ensure RAPNet is trained properly, we propose
a 3-stage training scheme, where the first two stages are in-
dispensable, and the third stage is designed to further improve
the performance.

Stage-1: Training the prediction network backbone. When
designing the prediction network, we employ a linear pro-
jection to align the dimensionality of the extracted global
features with the number P of classes in the classification
task. During training, we exclude the exit predictor and treat
the linear projection as a standalone classifier. Subsequently,
we minimise the loss Lpred (Eq. 1) to train the backbone of
the prediction network.

Lpred = CE(ppred; y) (1)

where ppred is the output of the prediction network, y is the
ground true label, CE(.;.) represent the cross entropy loss.

Stage-2: Training early exit inference networks supporting
arbitrary input resolution. In this stage, we fuse the global
features obtained from the prediction network’s backbone,
trained in stage-1, into each IC of the inference network.
These fused features are utilized during the training of the
inference network, as described in Sec. III-D. We trained the
early exit inference network by utilizing images of varying
input resolutions, aiming to minimize the classification loss
Lcls (Eq. 2).

Lcls = CE(pf ; y) +
M∑

r=m

L−1∑
i=1

KL(pi,m;pf) (2)

where KL(.;.) represent the Kullback-Leibler divergence. pf

is the predicted output of the base network. m is the resolution
of the input image, e.g. for the ImageNet dataset we set
m ∈ M={112×112, 162×162, 224×224}. pi is the predicted
output of the i-th IC. It is worth noting that the output pf of
the final classifier is computed only once based on the original
input resolution.

Stage-3: Finally, we fine-tune the exit predictor of the
prediction network. In this stage, we freeze the backbone of the
prediction network and then fine-tune the exit predictor only.
We added on the exit predictor and then let RAPNet’s infer-
ence network serve as the network that generates supervised
data to fine-tune the exit predictor for a given set of images
{xb, yb}Bb=1. Specifically, for each mini-batch of images, a
resolution m is randomly chosen from the set of resolutions

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3428554

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on August 03,2024 at 05:56:32 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 1, NO. 1, MAY 1, 2023 5

M . The images are then resized to the resolution m×m and
fed into the inference network, resulting in L−1 Softmax top-
1 scores ci,b. These scores are compared with a predetermined
threshold η (during training, we always set η to 0.5), and if
ci,b is greater than η, µi,b=1, otherwise µi,b=0. Finally, we
minimize the loss function of Eq. 3 to update exit preditor.

Lpred =
1

B

B∑
b=1

L−1∑
i=1

BCE(si,b;µi,b) (3)

where si,b ∈ (0, 1) is the output distribution calculated after
the Sigmoid function of the exit predictor, BCE(.;.) is the
binary cross entropy loss.

B. Prediction Network

The primary role of the RAPNet prediction network is to
effectively extract the global feature representation from the
input image and utilize these features to predict the optimal
IC within the inference network. At test time, the prediction
network is executed first for each input image to determine
its optimal IC within the inference network. Therefore, it
is crucial for the prediction network to be lightweight in
order to ensure efficient execution. In Fig. 1, the backbone
of the RAPNet prediction network utilizes a multi-head self-
attention mechanism to efficiently capture the global features
of the input image. It comprises three main components: patch
embedding, N transformer blocks, and linear projection. The
patch embedding step divides and embeds the input image
into t ∈ R K×E tokens. These tokens are then processed
by N transformer blocks, which extract the global feature
representation of the image. Each transformer block consists
of multi-head self-attention and MLP layers, with LayerNorm
used for residual concatenation. Finally, the extracted global
feature representation is mapped to the same dimension as the
classification task (e.g. 100 for the cifar100 dataset) through
a linear transformation. This dimension mapping aids in the
training of the prediction network. To achieve a lightweight
and efficient prediction network for RAPNet, we adopt the
Swin Transformer [45] as the backbone. Specifically, we
empirically set the network depth N to 2 and the embedding
dimension E to 48, as indicated in Table IV. Consistent with
the original paper, the window size is set to M = 7 by
default. This choice ensures that the prediction network can
effectively extract the global features of the input image while
maintaining its lightweight nature.

The exit predictor of the prediction network utilizes linearly
transformed global feature inputs to determine the optimal IC
in the inference network. This enables the prediction network
to exit the processing and provide the best IC for the image
within the inference network. The exit predictor in RAPNet
operates in a similar manner to the early exit architecture,
leveraging a predictive network to effectively learn global
feature representations of images. Subsequently, these global
features are used to calculate a probability si for each IC.
When the probability si for the i-th IC surpasses a predefined
adjustable threshold η, the inference network selects the i-th IC
as the final classifier for execution. This approach eliminates

Fig. 2. The structure and execution process of RAPNet’s exit predictor. At
test time, we introduce two thresholds α and η to realize a trade-off between
performance and computational. The value of α controls the proportion of
images that can be directly recognized using the global features extracted by
the prediction network. The value of η is used to select the optimal IC for
the image within the inference network.

the need for sequential execution of all ICs, resulting in
improved efficiency.

Fig. 2 depicts the structure and execution process of
RAPNet’s exit predictor. It consists of a Softmax-based exit
criterion and a linear transformation module followed by a
Sigmoid function. The linear transformation module maps
the input global features to the same dimension L − 1 as
the hidden layer of the inference network. The Sigmoid
function is then employed to transform the values between
0 and 1, representing the probability of selecting each IC. We
introduce two thresholds α and η to realize a trade-off between
performance and computational. The threshold α controls the
percentage of input images that can be directly classified using
the global features extracted by the prediction network, result-
ing in minimal computational cost. In our implementation, if
Softmax’s top-1 output max(cj) > α, the inference terminates
immediately and the attribute input to category j. Otherwise,
the input image undergoes further processing by the optimal
IC predicted by the exit predictor. During the training process,
we set the value of α to 1, which indicates that all images are
included in the training of the RAPNet inference network. If
si > η, the i-th classifier is selected as the final classifier for
inference. When performing inference, the classifiers before
the selected IC are skipped, and any subsequent ones are no
longer executed, which significantly saves the computational
overhead introduced by the sequence execution of all ICs. If
all si are less than η, the L-th classifier of the base network is
used to infer and no ICs are needed to execute the inference.

C. IC Supporting Resolution-Adaptive Inference

Fig. 3 provides a detailed overview of the IC in RAPNet,
which consists of an initialization layer, a feature fusion
module, and an output layer. The initialization layer applies
M consecutive convolution operations with step sizes based
on the input image resolution. This efficiently reduces the
feature map size and decreases the computational cost of the
IC. For instance, in this paper, M is set to 2 if the input
image resolution is greater than 112, 1 if the resolution is
greater than 64, and 0 if the resolution is less than 64. The
feature fusion module is explained in detail in Sec. III-D. The
output layer consists of a feature reduction (FR) layer and a

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3428554

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on August 03,2024 at 05:56:32 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 1, NO. 1, MAY 1, 2023 6

Fig. 3. The IC details of RAPNet. The ICs in RAPNet include initialization
layers, a feature fusion module, and an output layer. The initialization layers
use consecutive convolution layers with a stride of 2 and batch normalization
to quickly reduce the feature map size and computational cost. The feature
fusion module addresses the lack of global features in ICs. The output layer
is a fully convolutional network, allowing for input images of any resolution.

fully convolutional (FC) layer. In the case of high-resolution
images, despite the downsampling operations performed in
the initialization layer to reduce the feature map size, the
resulting feature maps can still be quite large. To further
decrease the computational cost and reduce the feature map
size, RAPNet incorporates the AdaptiveMaxPool2d operation
for feature reduction. Following the approach in SDN [32], we
choose the pooling size such that any feature map larger than
4x4 is pooled into a size of 4×4, while smaller sizes remain
unchanged.

The ICs of RAPNet utilize fully convolutional layers instead
of fully connected layers as the final classifiers, allowing for
the flexibility to handle input images of any resolution. The
number of input channels in the fully convolutional layer
corresponds to the number of output channels obtained after
fusion through the feature fusion module. The number of
output channels corresponds to the number of classes in the
classification task, while the size of the convolutional kernel
matches the size of the feature map outputted by the FR layer.

In Fig. 5, we introduced six early exits in Wideresnet and
Resnet, placed at 15%, 30%, . . .90% of the network’s total
FLOPs. The converted networks are denoted as EE-Wideresnet
and EE-Resnet, with the suffix -Conv indicating the use of
fully convolutional layers for the ICs. As can be seen from
the figure, replacing the fully-connected layer with a fully-
convolutional layer results in a significant improvement in the
accuracy of the earlier ICs, while the later ICs show only
a slight decrease in accuracy. For example, the accuracy of
the first IC in EE-Restnet-Conv and EE-WideResNet-Conv
improves by more than 4%, and most of the other ICs show
higher accuracy compared to their performance before the
replacement. Only the fifth IC in EE-Restnet has slightly
lower accuracy than EE-Resnet-Conv. Thus, using a fully-
convolutional layer not only avoids increasing the compu-
tational effort, but also improves the accuracy of the ICs
compared to using a fully-connected layer.

By designing the ICs of RAPNet as fully convolutional
networks, it supports input images of arbitrary resolutions.
Therefore, during the training of RAPNet, we use input images
with different down-sampled resolutions and train the early
exit inference network using the loss function in Eq. 2. It is

Fig. 4. The feature fusion module of RAPNet. Reshape and up-sampling
operations are employed to align the spatial dimension of global features
represented as tokens and local features represented as feature maps. The 1×1
convolution is applied to align their channel dimensions. The BN layers are
utilized to alleviate the semantic gap between different feature representations.

worth noting that all input images of different resolutions share
the same set of parameters. At test time, each input image first
passes through the prediction network to determine its optimal
IC in the inference network. Subsequently, the input image
is sequentially fed into the inference network from low to
high resolutions until a convincing prediction (greater than the
threshold value γ) is obtained or the final classifier completes
the inference. Here, we use a confidence-based exit criterion
and set the threshold value as γ.

D. Feature Fusion

Fig. 4 presents the details of the feature fusion module. The
feature map dimension extracted by CNN is C×H×W , where
C, H , and W are the channel, height, and width of the feature
map, respectively. While the patch embedding of the global
features extracted by the prediction network is K ×E, where
K is the number of image patches and E is the embedding
dimension. The feature fusion module of RAPNet first re-
shapes the patch embeddings, then adapts its spatial dimension
with the CNN feature map alignment using the up-sampling
operation, and finally adapts the channel dimension with the
CNN feature map alignment using the 1×1 convolution. By
aligning the patch embeddings with the feature map in both
spatial dimension and channel dimension, there is still a huge
semantic gap between the patch embeddings and the feature
map. To alleviate this semantic gap, we normalize the patch
embeddings using BN.

IV. EVALUATION

This section discusses the performance results of RAPNet.
We present four datasets and four baselines for evaluating the
accuracy achieved by RAPNet. Then, we discuss the impact of
different components of RAPNet on the overall performance
separately. Finally, we reported the energy consumption of
RAPNet when performing inference on the Nvidia Jetson
Nano device.

A. Experimental Setup

The RAPNet is implemented with Pytorch1 1.11.0. We used
four popular open-source datasets on classification tasks to

1https://pytorch.org/

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3428554

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on August 03,2024 at 05:56:32 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 1, NO. 1, MAY 1, 2023 7

1 2 3 4 5 6 7
Exit index

35

40

45

50

55

60
Ac

cu
ra

cy
(%

)

EE-WideResNet
EE-WideResNet-Conv

(a)

1 2 3 4 5 6 7
Exit index

25

30

35

40

45

50

55

Ac
cu

ra
cy

(%
)

EE-ResNet
EE-ResNet-Conv

(b)

Fig. 5. Change in the accuracy of the IC on the Tiny Imagenet test set after replacing the fully-connected layer with a fully-convolutional layer, denoted by
the suffix “-Conv”. The utilization of full-convolutional layers not only reduces computational but also improves the accuracy of the IC. (a) WideResNet. (b)
ResNet.

evaluate the proposed RAPNet: CIFAR-10 [46], CIFAR-100
[46], Tiny Imagenet [48] and ImageNet [47] datasets, and four
common CNN architectures ResNet-56 [49], MobileNet [51],
WideResNet [52] and VGG-16BN [53] as the base networks.
To evaluate the efficiency of the models, we calculated the
average number of FLOPs required to perform forward pass
on a single sample and use it as a hardware-independent
measure of inference cost. The top-1 accuracy commonly used
for classification tasks was used as a performance metric.
During the evaluation of RAPNet’s energy consumption, we
conducted experiments using an Nvidia Jetson Nano (Nano)
equipped with an ARM A57 CPU, 4GB of memory, and a
128-core Maxwell GPU as the testing device.

Both the CIFAR-10 and CIFAR-100 datasets contain 50,000
training and 10,000 test images of resolution 32×32, corre-
sponding to 10 and 100 classes, respectively. We hold out
5,000 images in the training set as a validation set to search the
optimal confidence threshold for resolution adaptive inference.
Tiny Imagenet contains 100,000 training and 10,000 test
images of resolution 64×64. For resolution adaptive inference,
we randomly hold out 10, 000 images in the training set as
the validation set to search threshold for resolution adaptive
inference. The ImageNet dataset contains 1.2 million images
of 1,000 classes for training, and 50,000 images for validation.
For adaptive inference tasks, we use the original validation set
for testing, and hold out 50,000 images from the training set
as a validation set.

We apply standard data augmentation schemes on the
CIFAR, Tiny ImageNet and Imagenet datasets. On the two
CIFAR datasets, images are randomly cropped to samples
with 32×32 pixels after zero-padding 4 pixels on each side.
Furthermore, images are horizontally flipped with probability
0.5 and RGB channels are normalized by subtracting the
corresponding channel mean and divided by their standard
deviation. On Tiny ImageNet dateset, images are randomly
cropped to samples with 64×64 pixels after zero-padding 8
pixels on each side. Then, images are horizontally flipped
with probability 0.5, and brightness, contrast and saturation are
modified with probability 0.2. The RGB channels are normal-
ized by subtracting the corresponding channel averages and

dividing by their standard deviations. On ImageNet, images
are horizontally flipped with probability 0.5 and RGB channels
are normalized by subtracting the corresponding channel mean
and divided by their standard deviation for training, and apply
a 224 × 224 center crop to images at test time.

We train the proposed models using stochastic gradient
descent (SGD) with a multi-step learning rate policy. To
enable resolution-adaptive inference in RAPNet, we train the
model using different input resolutions simultaneously. For the
CIFAR dataset, we use an input resolution set M of {16×16,
28×28, 32×32}. For the TinyImageNet, the resolution set M
is set to {32×32, 48×48, 64×64}. Finally, for ImageNet, the
resolution set M is set to {112×112, 192×192, 224×224}.
The batch size of both CIFAR and Tiny ImageNet datasets is
set to 128. The batch size of the ImageNet dataset is set to
64. In all datasets and models, we use a momentum of 0.9.
For VGG-16BN and WideResNet we set the weight decay
to 0.0005 and the other models to 0.0001. Moreover, for the
CIFAR and Tiny ImageNet datasets, the models are trained
from scratch for 100 epochs with an initial learning rate of
0.06, which is divided by a factor of after 35, 60 and 85
epochs. The same training scheme is applied to the ImageNet
dataset. And we train the model from scratch using an initial
learning rate of 0.01 for 90 epochs and the initial learning rate
decreases after 30 and 75 epochs. Throughout the experiment,
we maintained a fixed value of η at 0.5 for RAPNet, ensuring
consistency with the training phase.

For the prediction network, we consistently used the follow-
ing settings in all experiments: the attention head count was
set to 6, the embedding dimension E was set to 48, and the
depth N of the transformer block was set to 2.

We compared RAPNet to the following recent state-of-the-
art approaches for early exit architectures described in the
literature.

1) SDN [32]: Shallow-Deep networks (SDN) is a conceptu-
ally simple and effective method in which a comparison
of top-1 execution based on the softmax output with
a fixed threshold is used as an exit criterion. Internal
classifiers are attached to layers selected according to
the number of computational operations required to reach

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3428554

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on August 03,2024 at 05:56:32 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 1, NO. 1, MAY 1, 2023 8

them.
2) PBEE [31]: Patience-Based Early Exit (PBEE) archi-

tecture, which terminates inference after τ consecutive
unchanging answers. In this paper, we set τ=2, meaning
that if the answer of the current IC is the same as
the answers of the previous two ICs, we terminate the
execution and return that answer, otherwise we continue
the computation.

3) ZTW [30]: Zero Time Waste (ZTW), early exit archi-
tecture by computational reuse and integration. The fea-
ture representation is augmented by directly connecting
the output of the previous IC with the output of the
subsequent classifier via computational reuse, while the
prediction results of the previous classifier are combined
with the prediction results of the subsequent classifier
using arithmetic integration.

4) EP [33]: Exit Predictor (EP), a predictive early exit
mechanism based on deeply separable convolution [58]
was designed to guide some apparently hard samples to
bypass some early exit computation.

B. Performance Comparison of Different Methods

1) RAPNet Performance on Different Computational: We
examined the highest accuracy of the different methods given
the same computational resources (relative to the percentage of
the base network computational operations). To ensure a fair
comparison, we re-executed the open-source code provided
in the papers for SDN, PBEE, and ZTW, considering the
given resource constraint. We selected the configuration that
yielded the highest precision in our experiments. As for the EP
method, we implemented it based on the description provided
in the paper and fine-tuned the hyper-parameters to achieve the
maximum accuracy. For RAPNet, we adjusted the threshold
values α and γ to maximize accuracy within the given resource
constraint. The results are presented in Table I.

Based on the table provided, several observations can be
made regarding the different methods. Firstly, PBEE consis-
tently achieves the lowest accuracy among all methods, espe-
cially when operating under low computational settings (less
than 50%). This is primarily because PBEE lacks flexibility in
adapting to computational constraints, as it requires consistent
prediction results for a fixed number of τ consecutive ICs.
On the other hand, SDN employs a fixed confidence threshold
as the exit criterion and dynamically allocates computational
resources to different samples, effectively managing computa-
tions within the specified computational limits. For example,
when utilizing MobileNet as the base network with a computa-
tional limit of 10%, SDN successfully computes easy samples
using the first IC and challenging samples using the base net-
work. This approach results in a significant reduction of 90%
in computational cost while sacrificing only 10% of accuracy
on the C10 dataset. In contrast, ZTW introduces direct con-
nections between individual classifiers through computational
reuse. This allows the predictions from previous classifiers to
contribute to the decisions made by subsequent classifiers,
resulting in improved IC performance and higher accuracy
compared to SDN, EP, and PBEE across all four models. The

EP method enables certain distinct hard samples to bypass
the execution of multiple ICs through a prediction early exit
mechanism. However, the introduction of a prediction network
inherently introduces additional computational overhead, and
the accuracy of the prediction network predictions critically
impacts the overall accuracy. Consequently, to meet the con-
straints of low computational, only the previous classifiers are
utilized for prediction, leading to poorer end-to-end accuracy.
For instance, when the computational power is set to 10%,
the VGG model sacrifices 20% accuracy on the C10 dataset,
representing a 10% reduction compared to SDN.

Compared to the aforementioned methods, RAPNet consis-
tently achieves the highest accuracy across various computa-
tional resources, demonstrating minimal accuracy degradation.
This can be attributed to RAPNet’s efficient reduction of
computational overhead, addressing both model redundancy
and sample space redundancy through the predictive exit
mechanism and resolution-adaptive inference. Additionally,
RAPNet effectively leverages global features of input samples
to enhance the accuracy of ICs, resulting in significantly higher
accuracy compared to the mentioned methods, especially when
computational power is limited to less than 25%. For instance,
when utilizing ResNet as the base network, RAPNet exhibits
a maximum accuracy improvement of approximately 11%
compared to the state-of-the-art ZTW method on the T-IM
dataset. In contrast to EP’s predictive early exit mechanism,
which introduces additional computational overhead merely
to bypass unnecessary classifier execution, RAPNet’s predic-
tive early exit mechanism is more precise and enhances IC
accuracy through computational reuse. While PBEE incor-
porates information reuse from previous layers to determine
computation termination, this approach alone is insufficient
to effectively reduce computational waste in the network.
Similarly, although ZTW introduces integration among classi-
fiers through computational reuse, the limitation of lacking
global feature extraction from samples restricts the extent
of computational reduction. Overall, RAPNet’s combination
of an accurate predictive early exit mechanism and feature
extraction capabilities enables superior performance in terms
of accuracy and computational efficiency compared to the
mentioned methods.

The evaluation results of the 60 models mentioned above
demonstrate that RAPNet consistently outperforms other base-
line methods in terms of computational efficiency while main-
taining high accuracy. This superior performance is observed
across all datasets, models, and architecture combinations. To
further validate our observations on larger datasets, we con-
ducted experiments on ImageNet using a pre-trained ResNet-
50 model from the torchvision package. The results presented
in Table II demonstrate that RAPNet exhibits significant
improvements over the four tested baselines even in this more
challenging scenario.

2) Quantitative Analysis: Fig. 6 shows the number of cor-
rectly identified images by RAPNet at different stages on the
CIFAR-100 dataset, using WideResNet as the base network.
The value of α is fixed at 0.9, while γ is adjusted accordingly.
The figure also demonstrates the accuracy variation of RAP-
Net across different computational settings. By adjusting the

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3428554

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on August 03,2024 at 05:56:32 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 1, NO. 1, MAY 1, 2023 9

TABLE I
RESULTS ON FOUR DIFFERENT ARCHITECTURES AND THREE DATASETS: CIFAR-10 (C10), CIFAR-100 (C100) AND TINY IMAGENET (T-IM). TEST

ACCURACY PERCENTAGE (%) FOR RESOURCE BUDGETS: 10%, 15%, 25%, 50%, 75%, 100% OF THE BASE NETWORK. THE FIRST
COLUMN SHOWS TEST ACCURACY OF THE BASE NETWORK.

WideResNet VGG
Data Algo 10% 15% 25% 50% 75% 100% Data Algo 10% 15% 25% 50% 75% 100%

T-IM
59.9

SDN 30.8 33.3 36.8 46.0 54.7 59.4

T-IM
58.8

SDN 30.7 37.1 40.1 50.5 57.4 59.6
PBEE 24.6 24.6 29.9 37.8 52.7 58.5 PBEE 21.5 21.5 30.4 45.2 55.2 60.1
ZTW 32.4 37.9 40.0 50.1 57.5 60.2 ZTW 31.7 39.6 41.4 52.3 59.3 60.1
EP 25.2 27.7 34.4 47.4 56.0 59.6 EP 22.9 29.3 37.5 48.8 56.5 60.1

RAPNet 42.3 43.0 44.0 51.9 59.2 60.3 RAPNet 44.6 45.5 47.1 55.4 60.3 60.3

C100
75.3

SDN 51.9 53.3 55.9 65.1 71.6 75.0

C100
70.6

SDN 50.1 56.2 58.5 67.2 70.6 71.4
PBEE 41.3 41.3 46.7 57.2 66.0 73.2 PBEE 37.8 37.8 51.2 65.3 65.3 70.9
ZTW 52.1 53.8 59.5 69.1 74.5 76.2 ZTW 52.0 57.3 60.2 69.3 72.6 73.5
EP 46.2 48.8 50.1 61.2 72.4 75.3 EP 39.4 43.6 56.2 66.7 71.5 71.7

RAPNet 53.1 54.6 60.3 70.8 74.9 76.2 RAPNet 56.7 58.9 61.5 70.2 72.6 73.5

C10
94.1

SDN 79.8 81.7 83.8 91.7 94.1 94.4

C10
92.9

SDN 78.1 83.4 85.4 92.1 93.0 93.0
PBEE 72.2 72.2 78.0 84.0 90.3 93.8 PBEE 62.3 62.3 75.0 86.0 91.0 93.1
ZTW 81.7 83.5 86.7 92.9 94.5 94.7 ZTW 81.9 84.8 87.1 92.5 93.2 93.2
EP 74.5 79.6 83.2 89.6 92.2 94.3 EP 65.2 68.7 76.1 88.1 92.4 93.0

RAPNet 84.4 86.0 90.1 94.2 94.8 94.8 RAPNet 85.0 86.2 90.5 92.6 93.2 93.2
ResNet-56 MobileNet

Data Algo 10% 15% 25% 50% 75% 100% Data Algo 10% 15% 25% 50% 75% 100%

T-IM
53.8

SDN 23.8 27.8 31.2 41.2 49.9 54.5

T-IM
59.6

SDN 28.2 32.1 35.6 47.1 55.3 58.9
PBEE 21.2 21.2 29.0 37.6 48.2 53.4 PBEE 20.8 20.8 26.7 38.4 50.3 55.6
ZTW 25.4 31.7 35.2 46.2 53.7 56.3 ZTW 30.1 34.3 37.3 49.5 56.7 59.7
EP 22.4 25.7 34.4 41.8 52.1 55.0 EP 22.5 28.9 37.0 47.0 55.8 57.7

RAPNet 44.0 44.1 46.3 51.3 54.2 56.4 RAPNet 45.6 46.3 47.2 51.1 57.5 60.1

C100
69.0

SDN 42.3 45.1 47.1 57.2 64.7 69.0

C100
65.1

SDN 49.0 52.1 54.3 63.5 66.8 67.8
PBEE 38.6 38.6 45.2 53.5 60.1 67.0 PBEE 39.1 39.1 47.1 61.6 61.6 67.0
ZTW 46.2 49.7 51.3 62.1 68.4 70.7 ZTW 50.5 53.7 54.5 65.2 68.4 69.0
EP 41.6 48.2 50.5 58.5 67.7 69.1 EP 45.6 50.9 54.7 66.4 68.1 68.1

RAPNet 54.7 56.2 60.4 64.9 69.4 70.8 RAPNet 56.9 59.4 61.7 67.6 68.4 69.0

C10
92.9

SDN 74.3 76.4 77.7 87.3 91.1 92.0

C10
90.7

SDN 80.3 84.7 86.1 90.5 90.8 90.8
PBEE 62.7 62.7 69.8 81.8 87.5 91.0 PBEE 66.7 66.7 76.3 85.9 89.7 90.9
ZTW 75.5 78.1 80.3 88.7 91.5 92.1 ZTW 82.4 85.2 86.7 90.9 91.4 91.4
EP 64.6 71.1 75.4 86.2 89.7 91.9 EP 69.6 75.3 78.4 91.2 91.4 91.4

RAPNet 83.7 83.9 85.2 90.8 92.1 92.1 RAPNet 84.1 87.8 90.7 91.3 91.5 91.5

TABLE II
REPORT ON THE ACCURACY(%) OF RAPNET SCALED UP TO

LARGE-SCALE DATASET IMAGENET (IMN).

Data Algo 10% 15% 25% 50% 75% 100%

IMN
76.1

SDN 20.3 26.7 33.8 53.8 69.7 75.8
PBEE 18.7 18.7 28.3 28.3 62.9 73.3
ZTW 26.8 31.4 34.9 54.9 70.6 76.3
EP 20.1 25.9 34.2 54.1 69.8 75.0

RAPNet 36.2 40.1 46.9 58.7 71.5 76.3

Fig. 6. No. of images correctly classified at different stages. R-E represents
the number of images recognized by the prediction network, while R-m
(m ∈ {16, 28, 32}) represents the number of images recognized at different
resolutions.

threshold γ, RAPNet models can be obtained with different
computational budgets. With a larger γ, more images will be
recognized using a higher resolution. For instance, when the
computational budget is set to 0.6 GFLOPs, approximately
70% of the total images are recognized at a low resolution of
16×16. However, as the computational budget (γ) increases,
more images require recognition at higher resolutions. When
the computational budget is set to 1.5 GFLOPs, the number
of images recognized at a resolution of 32×32 increases
from around 0.2% to 20%, while the percentage of images
recognized at 16×16 resolution decreases to 38%. Therefore,
increasing the value of γ incurs higher computational cost,
while also increasing the number of correctly classified images
at higher resolutions, resulting in a gradual improvement in
accuracy. Furthermore, we have also found that there is no
change in the number of images that are terminated during
execution by the predictor, as the value of α remains fixed.

3) The Effect of Thresholds on RAPNet Performance:
Table III presents the computational cost and accuracy results
of RAPNet using the ResNet model on the T-IM dataset,
considering different values of α and γ trade-offs. The exit
rate (ER) denotes the rate at which execution is terminated
based on α, and we emphasize the values of α and γ that
yield the maximum accuracy.

From the table, we can observe that the impact of thresholds
on RAPNet performance is crucial, and setting inappropriate

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3428554

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on August 03,2024 at 05:56:32 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 1, NO. 1, MAY 1, 2023 10

TABLE III
THE TRADE-OFF BETWEEN THE ACCURACY AND COMPUTATIONAL COST OF RESNET ON DIFFERENT THRESHOLDS α AND γ ON THE

TINY IMAGENET DATASET.

α ER(%) γ FLOPs Acc(%) α ER(%) γ FLOPs Acc(%) α ER(%) γ FLOPs Acc(%)

0.1 97.4

0.2 0.028G 44.0

0.2 84.9

0.2 0.033G 43.5

0.3 68.4

0.2 0.040G 42.7
0.3 0.028G 44.0 0.3 0.037G 43.9 0.3 0.048G 43.4
0.4 0.028G 44.0 0.4 0.047G 44.9 0.4 0.071G 45.8
0.5 0.029G 44.1 0.5 0.056G 45.9 0.5 0.089G 47.9
0.6 0.029G 44.1 0.6 0.062G 46.3 0.6 0.107G 49.3

0.4 53.8

0.2 0.046G 41.3

0.5 42.0

0.2 0.051G 40.0

0.6 33.1

0.2 0.055G 38.8
0.3 0.046G 41.8 0.3 0.055G 41.8 0.3 0.070G 40.2
0.4 0.055G 45.9 0.4 0.087G 45.9 0.4 0.115G 45.7
0.5 0.087G 49.8 0.5 0.120G 49.8 0.5 0.167G 52.0
0.6 0.120G 51.3 0.6 0.144G 51.3 0.6 0.189G 54.2

0.7 25.6

0.2 0.058G 37.6

0.8 18.6

0.2 0.062G 36.4

0.9 12.2

0.2 0.064G 35.6
0.3 0.075G 39.0 0.3 0.082G 38.6 0.3 0.079G 37.0
0.4 0.131G 46.0 0.4 0.134G 44.7 0.4 0.142G 44.4
0.5 0.174G 51.2 0.5 0.191G 51.3 0.5 0.204G 51.4
0.6 0.216G 54.3 0.6 0.239G 54.2 0.6 0.249G 54.3

thresholds can lead to a very large drop in accuracy. For
example, when the accuracy is approximately 55.2%, setting
the appropriate α = 0.4 and γ = 0.6 makes the computational
cost of RAPNet 0.120 GFLOPs. Setting the inappropriate α =
0.7 and γ = 0.5 results in a 1.45× increase in the computational
cost to 0.174 GFLOPs. With the gradual increase of α, the
value of ER becomes increasingly decreasing, which means
that the prediction network fails to have high confidence in
more samples to be recognized. Consequently, more samples
will be inferred using the inference network, leading to a
gradual increase in accuracy. For example, when the value of
γ is set to the constant 0.6, the accuracy of RAPNet increases
from 44.1% to 54.3% as α gradually increases from 0.1 to
0.9. Meanwhile, the number of images whose execution is
terminated by the predicted network decreases from 97.4% to
12.2%. When the value of α is a constant, those hard samples
that are not terminated by the prediction network for inference,
will execute the early exit classifier predicted by the prediction
network and then exit. With the increase of γ, more samples
will be distributed by the prediction network to be executed
by the ICs with higher accuracy in the back, and therefore
the recognition accuracy is increasingly higher. For example,
when α = 0.5 and γ = 0.2, 58.0% (1 - ER) of the samples
will be executed by the inference network towards the front
classifier and return the result, while with γ increases to 0.6,
more samples will be executed by the classifier towards the
back and return the result. Therefore, the accuracy increases
from 40.0% to 51.3% while the computational cost increases
from 0.051 to 0.144 GFLOPs.

C. Ablation Study

In this section, we use WideResNet as the base network
on the CIFAR-100 dataset to study the effects of different
designs and training methods on RAPNet performance, if not
otherwise specified.

1) Impact of Different Designs on RAPNet Performance:
Fig. 7 (a) presents a detailed analysis of RAPNet’s per-
formance under different combinations. Firstly, we examine
the impact of different α values on RAPNet’s performance.
As shown in the figure, an increase in α results in more

images being processed by RAPNet’s early exit inference
network, leading to a slight increase in computational cost.
This is because a lower α value leads to more images being
recognized directly by RAPNet’s prediction network extracting
global features, which has the least computational cost. We set
α = 0.90 as default for its optimal performance.

Secondly, we fix α at 0.90 and analyze the performance
without the feature fusion module of RAPNet (light black
curve). The results indicate that the feature fusion module has
a significant influence on RAPNet’s performance, particularly
at lower computational budgets (below 0.5 GFLOPs), where it
contributes to a performance gain of over 5%. Fig. 8 (b) further
illustrates the impact of different designs on the accuracy of
RAPNet’s internal classifiers. We observe a similar trend to
Fig. 7 (a), which remains consistent across various resolutions,
with a more pronounced effect at lower resolutions. For
instance, in the case of the second internal classifier using
16×16 resolution (RAPNet (α=0.9, R-16) vs. RAPNet (α=0.9,
R-16, w/o feature fusion)), the accuracy of RAPNet improves
by 8%. These results well demonstrate the effectiveness of our
design of feature fuse.

Third, we removed the exit predictor of RAPNet and eval-
uated its impact on RAPNet performance (green curve). We
discovered that the removal of the exit predictor module results
in an increase in computational cost. This is because RAPNet’s
exit predictor efficiently saves computation by directly and
accurately predicting the optimal internal classifier for each
image in the inference network. In contrast, without the exit
predictor, the inference process becomes sequential, requiring
the execution of all internal classifiers until a convincing
prediction (e.g. sufficiently confident) has been obtained or
the final classifier has been inferred. The above results effec-
tively demonstrate that our designed exit predictor efficiently
reduces computational waste by avoiding sequential execution
of internal classifiers.

Fourth, we conducted an analysis on the effect of RAPNet’s
resolution-adaptive inference design by removing it (orange
curve). We observed a significant increase in computational
cost, particularly when the computational budget is below
1.25 GFLOPs. This is attributed to the presence of substantial
spatial redundancy in the images, wherein using a 32×32

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3428554

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on August 03,2024 at 05:56:32 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 1, NO. 1, MAY 1, 2023 11

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50 2.75
FLOPs(G)/image

50

55

60

65

70

75

Ac
cu

ra
cy

(%
)

RAPNet(=0.75)
RAPNet(=0.90)
RAPNet(=1.00)
RAPNet(=0.90,w/o feature fusion)
RAPNet(=0.90,w/o exit predictor)
RAPNet(=0.90,w/o adaptive inference)
RAPNet(=0.90,w/o adaptive inference and feature fuse)

(a)

1 2 3 4 5 6 7
Exit index

50

55

60

65

70

75

Ac
cu

ra
cy

(%
)

RAPNet(=0.9,R-32)
RAPNet(=0.9,R-28)
RAPNet(=0.9,R-16)
RAPNet(=0.9,R-32, w/o feature fuse)
RAPNet(=0.9,R-28, w/o feature fuse)
RAPNet(=0.9,R-16, w/o feature fuse)
RAPNet(w/o adaptive inference)
RAPNet(w/o adaptive inference and feature fuse)

(b)

Fig. 7. Performance analysis of removing each of the RAPNet designs. (a) Accuracy comparison of different RAPNet designs. (b) Internal classifier accuracy
comparison of different RAPNet designs. R-m represents the accuracy of each internal classifier within RAPNet at the corresponding resolution m. They are
trained simultaneously and share the same model parameters.

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25 2.50
FLOPs(G)/image

55

60

65

70

75

Ac
cu

ra
cy

(%
)

RAPNet(CE+KL)
CE+CE

(a)

1 2 3 4 5 6 7
Exit index

55

60

65

70

75

Ac
cu

ra
cy

(%
)

CE+KL(R-32)
CE+KL(R-28)
CE+KL(R-16)
CE+CE(R-32)
CE+CE(R-28)
CE+CE(R-16)

(b)

Fig. 8. Performance analysis of RAPNet under different training strategies. (a) Performance comparison of RAPNet under different training strategies. (b)
Internal classifier accuracy comparison of different RAPNet training strategies. R-m represents the accuracy of each internal classifier within RAPNet at the
corresponding resolution m. They are trained simultaneously and share the same model parameters.

resolution to recognize a portion of easy images becomes
computationally inefficient. These results strongly demonstrate
that our resolution-adaptation design effectively reduces the
spatial redundancy in the images.

Finally, we analyzed the impact of simultaneously removing
RAPNet’s resolution adaptive inference and feature fusion
designs on its performance (red curve). We found that these
two designs played a crucial role in improving the performance
of RAPNet. When both designs were removed simultaneously,
the performance of RAPNet decreased by more than 15%.
Additionally, in Fig. 8 (b), we observed a significant decline
in the accuracy of the shallow-layer internal classifier of
the inference network when both designs were removed. For
instance, after removing these two designs, the accuracy of
the first internal classifier drops to 48%, which is 10% lower
compared to the accuracy of the first internal classifier in
RAPNet, which is 58%.

Through the above ablation study, we highlight the im-
portance of each component in the RAPNet design. The
collaborative inference enabled by RAPNet’s prediction exit
mechanism effectively reduces computational requirements
during task inference, including both model complexity and

spatial redundancy of images.
2) Impact of Training Strategy on RAPNet Performance:

As shown in Eq. (2), we use CE(,;,) to make the output of
the final classifier of the base network fit the truth label, and
KL(,;,) to make the output of internal classifiers at different
resolutions fit the output of the final classifier of the base
network. We also try to make the output of internal classifiers
at different resolutions and the output of the final classifier of
the base network both fit the truth label:

ˆLcls = CE(pf ; y) +
M∑

r=m

L−1∑
i=1

CE(pi,m; y) (4)

Fig. 8 (a) illustrates that the implementation of CE + CE
(Eq. 4) leads to a decrease in accuracy compared to the original
CE + KL (Eq. 2). Additionally, Fig. 8 (b) provides further
evidence that the decrease in accuracy observed in the CE +
CE training strategy is due to lower accuracies of each internal
classifier compared to CE +KL at different resolutions. We
choose Eq. 2 as the loss function because of the significant
benefits in resolution adaptive inference stage.

3) Impact of Prediction Network Complexity on RAPNet
Performance: Since for each inference, RAPNet’s prediction

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3428554

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on August 03,2024 at 05:56:32 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 1, NO. 1, MAY 1, 2023 12

TABLE IV
THE PREDICTION NETWORK OF RAPNET HAS THE ACCURACY AND
COMPUTATIONAL COST WHEN VARYING TRANS BLOCK DEPTH N

AND EMBEDDING DIMENSION E .

N E 10% 15% 25% 50% 75% 100%

1
24 25.0 28.2 30.5 37.1 49.9 53.5
48 30.3 31.4 34.5 42.1 53.9 53.9
96 - - 34.6 42.6 48.4 53.1

2
24 37.5 37.6 40.3 46.6 50.8 54.3
48 44.0 44.1 46.3 51.3 54.2 54.3
96 - - - 45.5 47.1 50.8

3
24 43.2 43.2 45.8 49.0 53.0 54.2
48 - - 31.1 37.0 44.7 54.4
96 - - - - 25.8 36.9

network has to execute, its complexity is crucial for the whole
architecture. We selected the ResNet-56 model on the T-IM
dataset to test the impact of RAPNet’s prediction network on
the overall architecture performance at different complexity
levels, and the reported presents in Table IV, where we
use a placeholder to represent that the computational power
constraint is not met.

Due to the RAPNet prediction network using an efficient
VIT model like Swin Transformer, we set the head of self-
attention to 8 throughout the prediction network, thus its
computational cost is controlled by the depth N of the Trans
Block and the embedding dimension E. These two parameters
can be adapted to obtain a prediction network with different
computational costs. From the table, we can observe that both
embedding dimension and Trans Block are highly computa-
tionally intensive, and their variations significantly affect the
accuracy and may also result in insufficient computational
power. For example, when the depth of trans block N = 1
and the embedding dimension E = 96, the computational cost
of the RAPNet prediction network has exceeded the constraint
with low computational power constraint (less than 15%), and
obviously cannot get the prediction result. Similarly, when
the embedding dimension is constant, increasing the depth
N , although it can greatly improve the accuracy, may also
lead to the computational power not meeting the constraint.
For example, when E = 48 and N are increased from 1
to 2, the average improvement in accuracy is 8.6% and
the maximum up to 13.9%. However, when N is increased
from 2 to 3, the computational power of less than 15% will
not meet the constraint. Moreover, we also found that more
complex prediction network even decreases the performance
of RAPNet. Consequently, we argue that an appropriately
sized prediction network is crucial for RAPNet. In this paper,
through a comprehensive analysis of experimental data, we
then set the depth of trans block N = 2 and embedding
dimension E = 48, which can achieve the highest accuracy
while the computational effort is moderate.

D. Energy Consumption on RAPNet

We choose VGG as the base model and deployed RAPNet
to perform inference on the Nano device, and then used
jetson stats to measure its energy consumption at runtime. We
measured the energy consumption over 100 inferences from

Fig. 9. The energy consumption of RAPNet vs. baselines.

the Tiny ImageNet test set and calculated their average as the
reported energy consumption, as shown in Figure 9.

From the Fig. 9, we found that RAPNet is the most energy-
efficient because it precisely predicts the exit position by the
predictive early exit mechanism and substantially improves the
accuracy of the IC by the feature fusion mechanism, thus using
the least computational cost and obtaining the lowest energy
consumption is 281mJ. For the PBEE, we found that its energy
consumption is 635mJ and is the most energy-consuming
method due to the fact that it needs to perform at least τ (τ=2)
ICs for each inference, so it performs more computational
operations resulting in more energy consumption. For the EP,
although it bypasses some unnecessary execution of ICs by the
prediction early exit mechanism, the accuracy of the prediction
network and the additional computational cost introduced
by itself also impose energy consumption. With the SDN,
it does not introduce any additional computational cost, so
its energy consumption is lower than both EP and PBEE,
which is 483mJ. Similarly, ZTW does not introduce additional
computational cost, but it improves the accuracy of ICs by
computational reuse so that more images will exit from the
front IC when the same exit criterion is used, which saves com-
putational operations resulting in lower energy consumption.
Compared to the most energy-efficient ZTW among baselines,
RAPNet achieved 1.43× the energy savings.

V. CONCLUSION

In this paper, we propose a Resolution-Adaptive Prediction
Network (RAPNet) architecture, a dynamic network architec-
ture that adaptively adapts the computational cost for each im-
age. RAPNet is composed of a lightweight prediction network
with a global feature representation of the learned input image
and an early exit inference network. The prediction network
can accurately predict the optimal exit position of that sample
on the inference network. Furthermore, we further design
resolution-adaptive inference and feature fusion modules for
RAPNet by computational reuse. The former is achieved
through a specialized internal classifier structure that enables
the processing of input images with arbitrary resolutions,
thereby reducing computational costs associated with spatial
redundancy. The latter fuses the global features with the local
features learned by the early exit network to augment the
semantic information of the features input to the ICs, which

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3428554

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on August 03,2024 at 05:56:32 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 1, NO. 1, MAY 1, 2023 13

substantially improves the accuracy of the ICs. We conduct
extensive experiments across various datasets and architectures
to demonstrate that RAPNet achieves a significantly better
accuracy-computational trade-off than other recently proposed
early exit methods. For instance, when leveraging MobileNet
as the base network, RAPNet improved the accuracy of the
Tiny Imagenet and CIFAR-100 datasets by 12% and 5.7%
respectively, compared to the current state-of-the-art early exit
methods with similar computational resources.

REFERENCES

[1] A. Canziani, A. Paszke, and E. Culurciello, “An analysis of deep
neural network models for practical applications,” arXiv preprint
arXiv:1605.07678, 2016.

[2] C. Shen, Y. Chen, Y. Liu and X. Guan, ”Adaptive Human–Machine
Interactive Behavior Analysis With Wrist-Worn Devices for Pass-
word Inference,” in IEEE Transactions on Neural Networks and
Learning Systems, vol. 29, no. 12, pp. 6292-6302, Dec. 2018, doi:
10.1109/TNNLS.2018.2829223.

[3] H. Kwon, C. Tong, H. Haresamudram, Y. Gao, G. D. Abowd, N. D.
Lane, and T. Ploetz, “Imutube: Automatic extraction of virtual on-body
accelerometry from video for human activity recognition,” Proceedings of
the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies,
vol. 4, no. 3, pp. 1–29, 2020.

[4] L. Chen, Y. Zhang, and L. Peng, “Metier: A deep multi-task learning
based activity and user recognition model using wearable sensors,”
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, vol. 4, no. 1, pp. 1–18, 2020.

[5] S. Laskaridis, S. I. Venieris, M. Almeida, I. Leontiadis, and N. D. Lane,
“Spinn: synergistic progressive inference of neural networks over device
and cloud,” in Proceedings of the 26th annual international conference
on mobile computing and networking, 2020, pp. 1–15.

[6] J. Cheng, J. Wu, C. Leng, Y. Wang and Q. Hu, ”Quantized CNN: A
Unified Approach to Accelerate and Compress Convolutional Networks,”
in IEEE Transactions on Neural Networks and Learning Systems, vol. 29,
no. 10, pp. 4730-4743, Oct. 2018, doi: 10.1109/TNNLS.2017.2774288.

[7] S. Jiang, Z. Lin, Y. Li, Y. Shu, and Y. Liu, “Flexible high-resolution
object detection on edge devices with tunable latency,” in Proceedings
of the 27th Annual International Conference on Mobile Computing and
Networking, 2021, pp. 559–572.

[8] F. Sultana, A. Sufian, and P. Dutta, “Evolution of image segmentation
using deep convolutional neural network: a survey,” Knowledge-Based
Systems, vol. 201, p. 106062, 2020.

[9] M. Almeida, S. Laskaridis, I. Leontiadis, S. I. Venieris, and N. D. Lane,
“Embench: Quantifying performance variations of deep neural networks
across modern commodity devices,” in The 3rd international workshop
on deep learning for mobile systems and applications, 2019, pp. 1–6.

[10] Y. Hu, Z. Li, Y. Chen, Y. Cheng, Z. Cao, and J. Liu, “Content-aware
adaptive device–cloud collaborative inference for object detection,” IEEE
Internet of Things Journal, vol. 10, no. 21, pp. 19 087–19 101, 2023.

[11] Y. Zhang, J.-H. Liu, C.-Y. Wang, and H.-Y. Wei, “Decomposable
intelligence on cloud-edge iot framework for live video analytics,” IEEE
Internet of Things Journal, vol. 7, no. 9, pp. 8860–8873, 2020.

[12] Y.-T. Yang and H.-Y. Wei, “Edge–iot computing and networking re-
source allocation for decomposable deep learning inference,” IEEE Inter-
net of Things Journal, vol. 10, no. 6, pp. 5178–5193, 2023.

[13] Y. Chen, T. Zhao, P. Cheng, M. Ding, and C. W. Chen, “Joint
front–edge–cloud iovt analytics: Resource-effective design and schedul-
ing,” IEEE Internet of Things Journal, vol. 9, no. 23, pp. 23 941–23 953,
2022.

[14] Q. Wang, W. Fang, and N. N. Xiong, “Tlee: Temporal-wise and
layer-wise early exiting network for efficient video recognition on edge
devices,” IEEE Internet of Things Journal, pp. 1–1, 2023.

[15] L. Weng, K. Pang, M. Xia, H. Lin, M. Qian, and C. Zhu, “Sgformer: A
local and global features coupling network for semantic segmentation
of land cover,” IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 16, pp. 6812–6824, 2023.

[16] C. Chen, C. Wang, B. Liu, C. He, L. Cong, and S. Wan, “Edge
intelligence empowered vehicle detection and image segmentation for
autonomous vehicles,” IEEE Transactions on Intelligent Transportation
Systems, vol. 24, no. 11, pp. 13 023–13 034, 2023.

[17] S. Wang, A. Pathania, and T. Mitra, “Neural network inference on mobile
socs,” IEEE Design & Test, vol. 37, no. 5, pp. 50–57, 2020.

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Communications of the ACM,
vol. 60, no. 6, pp. 84–90, 2017.

[19] A. Cartas, M. Kocour, A. Raman, I. Leontiadis, J. Luque, N. Sastry,
J. Nuñez-Martinez, D. Perino, and C. Segura, “A reality check on infer-
ence at mobile networks edge,” in Proceedings of the 2nd International
Workshop on Edge Systems, Analytics and Networking, 2019, pp. 54–59.

[20] Y. Han, G. Huang, S. Song, L. Yang, H. Wang, and Y. Wang, “Dynamic
neural networks: A survey,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2021.

[21] G. Hinton, O. Vinyals, J. Dean et al., “Distilling the knowledge in a
neural network,” arXiv preprint arXiv:1503.02531, vol. 2, no. 7, 2015.

[22] S. Lin, R. Ji, Y. Li, C. Deng and X. Li, ”Toward Compact ConvNets
via Structure-Sparsity Regularized Filter Pruning,” in IEEE Transactions
on Neural Networks and Learning Systems, vol. 31, no. 2, pp. 574-588,
Feb. 2020, doi: 10.1109/TNNLS.2019.2906563.

[23] Z. Liu, J. Li, Z. Shen, G. Huang, S. Yan, and C. Zhang, “Learning
efficient convolutional networks through network slimming,” in Proceed-
ings of the IEEE international conference on computer vision, 2017, pp.
2736–2744.

[24] Y. Liu, Y. Sun, B. Xue, M. Zhang, G. G. Yen, and K. C. Tan, “A survey
on evolutionary neural architecture search,” IEEE transactions on neural
networks and learning systems, 2021.

[25] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Branchynet: Fast
inference via early exiting from deep neural networks,” in 2016 23rd
International Conference on Pattern Recognition (ICPR). IEEE, 2016,
pp. 2464–2469.

[26] L. Yang, Y. Han, X. Chen, S. Song, J. Dai, and G. Huang, “Reso-
lution adaptive networks for efficient inference,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2020,
pp. 2369–2378.

[27] Y. Li, M. Dong, Y. Wang, and C. Xu, “Neural architecture search via
proxy validation,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 45, no. 6, pp. 7595–7610, 2023.

[28] S. Scardapane, M. Scarpiniti, E. Baccarelli, and A. Uncini, “Why should
we add early exits to neural networks?” Cognitive Computation, vol. 12,
no. 5, pp. 954–966, 2020.

[29] H. Li, H. Zhang, X. Qi, R. Yang, and G. Huang, “Improved techniques
for training adaptive deep networks,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2019, pp. 1891–1900.

[30] M. Wołczyk, B. Wójcik, K. Bałazy, I. T. Podolak, J. Tabor, M. Śmieja,
and T. Trzcinski, “Zero time waste: Recycling predictions in early exit
neural networks,” Advances in Neural Information Processing Systems,
vol. 34, pp. 2516–2528, 2021.

[31] W. Zhou, C. Xu, T. Ge, J. McAuley, K. Xu, and F. Wei, “Bert loses
patience: Fast and robust inference with early exit,” Advances in Neural
Information Processing Systems, vol. 33, pp. 18 330–18 341, 2020.

[32] Y. Kaya, S. Hong, and T. Dumitras, “Shallow-deep networks: Under-
standing and mitigating network overthinking,” in International confer-
ence on machine learning. PMLR, 2019, pp. 3301–3310.

[33] R. Dong, Y. Mao, and J. Zhang, “Resource-constrained edge ai with
early exit prediction,” Journal of Communications and Information Net-
works, vol. 7, no. 2, pp. 122–134, 2022.

[34] K. Han, Y. Wang, H. Chen, X. Chen, J. Guo, Z. Liu, Y. Tang,
A. Xiao, C. Xu, Y. Xu, Z. Yang, Y. Zhang, and D. Tao, “A survey on
vision transformer,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 45, no. 1, pp. 87–110, 2023.

[35] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” Advances in
neural information processing systems, vol. 30, 2017.

[36] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition at
scale,” arXiv preprint arXiv:2010.11929, 2020.

[37] X. Zhu, W. Su, L. Lu, B. Li, X. Wang, and J. Dai, “Deformable detr:
Deformable transformers for end-to-end object detection,” arXiv preprint
arXiv:2010.04159, 2020.

[38] B. Cheng, A. Schwing, and A. Kirillov, “Per-pixel classification is not
all you need for semantic segmentation,” Advances in Neural Information
Processing Systems, vol. 34, pp. 17 864–17 875, 2021.

[39] C. Sun, A. Shrivastava, S. Singh, and A. Gupta, “Revisiting unreasonable
effectiveness of data in deep learning era,” in Proceedings of the IEEE
international conference on computer vision, 2017, pp. 843–852.

[40] M. Chen, M. Lin, K. Li, Y. Shen, Y. Wu, F. Chao, and R. Ji, “Coarse-
to-fine vision transformer,” arXiv preprint arXiv:2203.03821, 2022.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3428554

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on August 03,2024 at 05:56:32 UTC from IEEE Xplore. Restrictions apply.

IEEE INTERNET OF THINGS JOURNAL, VOL. 1, NO. 1, MAY 1, 2023 14

[41] Y. Liang, C. Ge, Z. Tong, Y. Song, J. Wang, and P. Xie, “Not all
patches are what you need: Expediting vision transformers via token
reorganizations,” arXiv preprint arXiv:2202.07800, 2022.

[42] L. Li, D. Thorsley, and J. Hassoun, “Sait: Sparse vision transformers
through adaptive token pruning,” arXiv preprint arXiv:2210.05832, 2022.

[43] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jégou, “Training data-efficient image transformers & distillation
through attention,” in International conference on machine learning.
PMLR, 2021, pp. 10 347–10 357.

[44] Z.-H. Jiang, Q. Hou, L. Yuan, D. Zhou, Y. Shi, X. Jin, A. Wang,
and J. Feng, “All tokens matter: Token labeling for training better
vision transformers,” Advances in neural information processing systems,
vol. 34, pp. 18 590–18 602, 2021.

[45] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using shifted
windows,” in Proceedings of the IEEE/CVF international conference on
computer vision, 2021, pp. 10 012–10 022.

[46] A. Krizhevsky, G. Hinton et al., “Learning multiple layers of features
from tiny images,” 2009.

[47] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[48] Z. Abai and N. Rajmalwar, “Densenet models for tiny imagenet classi-
fication,” arXiv preprint arXiv:1904.10429, 2019.

[49] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[50] X. Chen et al., ”SmartDeal: Remodeling Deep Network Weights for Ef-
ficient Inference and Training,” in IEEE Transactions on Neural Networks
and Learning Systems, doi: 10.1109/TNNLS.2021.3138056.

[51] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[52] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv
preprint arXiv:1605.07146, 2016.

[53] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[54] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition at
scale,” arXiv preprint arXiv:2010.11929, 2020.

[55] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using shifted
windows,” in Proceedings of the IEEE/CVF International Conference on
Computer Vision, 2021, pp. 10 012–10 022.

[56] K. M. Abdul Kadhar and G. Anand, “Introduction to the raspberry pi,”
in Data Science with Raspberry Pi. Springer, 2021, pp. 49–78.

[57] A. A. Süzen, B. Duman, and B. Şen, “Benchmark analysis of jetson
tx2, jetson nano and raspberry pi using deep-cnn,” in 2020 International
Congress on Human-Computer Interaction, Optimization and Robotic
Applications (HORA). IEEE, 2020, pp. 1–5.

[58] L. Sifre and S. Mallat, “Rigid-motion scattering for texture classifica-
tion,” arXiv preprint arXiv:1403.1687, 2014.

[59] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating
gradients through stochastic neurons for conditional computation,” arXiv
preprint arXiv:1308.3432, 2013.

[60] A. Davis and I. Arel, “Low-rank approximations for conditional
feedforward computation in deep neural networks,” arXiv preprint
arXiv:1312.4461, 2013.

[61] M. McGill and P. Perona, “Deciding how to decide: Dynamic routing
in artificial neural networks,” in International Conference on Machine
Learning. PMLR, 2017, pp. 2363–2372.

[62] X. Wang, Y. Luo, D. Crankshaw, A. Tumanov, F. Yu, and J. E. Gonzalez,
“Idk cascades: Fast deep learning by learning not to overthink,” arXiv
preprint arXiv:1706.00885, 2017.

[63] G. Huang, D. Chen, T. Li, F. Wu, L. Van Der Maaten, and K. Q.
Weinberger, “Multi-scale dense networks for resource efficient image
classification,” arXiv preprint arXiv:1703.09844, 2017.

[64] J. Lin, Y. Rao, J. Lu, and J. Zhou, “Runtime neural pruning,” Advances
in neural information processing systems, vol. 30, 2017.

[65] B. E. Bejnordi, T. Blankevoort, and M. Welling, “Batch-shaping
for learning conditional channel gated networks,” arXiv preprint
arXiv:1907.06627, 2019.

[66] A. Graves, “Adaptive computation time for recurrent neural networks,”
arXiv preprint arXiv:1603.08983, 2016.

[67] G. Huang, Z. Liu, G. Pleiss, L. Van Der Maaten, and K. Weinberger,
“Convolutional networks with dense connectivity,” IEEE transactions on
pattern analysis and machine intelligence, 2019.

[68] T.-W. Ke, M. Maire, and S. X. Yu, “Multigrid neural architectures,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2017, pp. 6665–6673.

[69] T.-Y. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
2117–2125.

[70] H. Zhao, X. Qi, X. Shen, J. Shi, and J. Jia, “Icnet for real-time semantic
segmentation on high-resolution images,” in Proceedings of the European
conference on computer vision (ECCV), 2018, pp. 405–420.

[71] K. Sun, B. Xiao, D. Liu, and J. Wang, “Deep high-resolution repre-
sentation learning for human pose estimation,” in Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, 2019,
pp. 5693–5703.

[72] S. Liu, B. Guo, K. Ma, Z. Yu, and J. Du, “Adaspring: Context-
adaptive and runtime-evolutionary deep model compression for mobile
applications,” Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, vol. 5, no. 1, pp. 1–22, 2021.

[73] H. Wang, B. Guo, J. Liu, S. Liu, Y. Wu, and Z. Yu, “Context-aware
adaptive surgery: A fast and effective framework for adaptative model
partition,” Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, vol. 5, no. 3, pp. 1–22, 2021.

[74] Z. Peng, W. Huang, S. Gu, L. Xie, Y. Wang, J. Jiao, and Q. Ye,
“Conformer: Local features coupling global representations for visual
recognition,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021, pp. 367–376.

[75] M. Mao, R. Zhang, H. Zheng, T. Ma, Y. Peng, E. Ding, B. Zhang, S. Han
et al., “Dual-stream network for visual recognition,” Advances in Neural
Information Processing Systems, vol. 34, pp. 25 346–25 358, 2021.

[76] S. Wiedemann, K. -R. Müller and W. Samek, ”Compact and Compu-
tationally Efficient Representation of Deep Neural Networks,” in IEEE
Transactions on Neural Networks and Learning Systems, vol. 31, no. 3,
pp. 772-785, March 2020, doi: 10.1109/TNNLS.2019.2910073.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3428554

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: CITY UNIV OF HONG KONG. Downloaded on August 03,2024 at 05:56:32 UTC from IEEE Xplore. Restrictions apply.

