
Rethinking Pruning for Accelerating Deep Inference At the Edge
Dawei Gao

SKLSDE & BDBC, Beihang University

david_gao@buaa.edu.cn

Xiaoxi He

ETH Zürich

hex@ethz.ch

Zimu Zhou

Singapore Management University

zimuzhou@smu.edu.sg

Yongxin Tong

SKLSDE & BDBC, Beihang University

yxtong@buaa.edu.cn

Ke Xu

SKLSDE & BDBC, Beihang University

kexu@nlsde.buaa.edu.cn

Lothar Thiele

ETH Zürich

thiele@ethz.ch

ABSTRACT
There is a growing trend to deploy deep neural networks at the edge

for high-accuracy, real-time data mining and user interaction. Ap-

plications such as speech recognition and language understanding

often apply a deep neural network to encode an input sequence and

then use a decoder to generate the output sequence. A promising

technique to accelerate these applications on resource-constrained

devices is network pruning, which compresses the size of the deep

neural network without severe drop in inference accuracy. How-

ever, we observe that although existing network pruning algorithms

prove effective to speed up the prior deep neural network, they

lead to dramatic slowdown of the subsequent decoding and may

not always reduce the overall latency of the entire application. To

rectify such drawbacks, we propose entropy-based pruning, a new

regularizer that can be seamlessly integrated into existing network

pruning algorithms. Our key theoretical insight is that reducing

the information entropy of the deep neural network outputs de-

creases the upper bound of the subsequent decoding search space.

We validate our solution with two state-of-the-art network prun-

ing algorithms on two model architectures. Experimental results

show that compared with existing network pruning algorithms, our

entropy-based pruning method notably suppresses and even elimi-

nates the increase of decoding time, and achieves shorter overall

latency with only negligible extra accuracy loss in the applications.

CCS CONCEPTS
•Human-centered computing→ Ubiquitous computing; • Com-
puting methodologies→ Neural networks.

KEYWORDS
Deep Learning; Sequence Labelling; Network Pruning; Automatic

Speech Recognition; Name Entity Recognition

ACM Reference Format:
Dawei Gao, Xiaoxi He, Zimu Zhou, Yongxin Tong, Ke Xu, and Lothar Thiele.

2020. Rethinking Pruning for Accelerating Deep Inference At the Edge. In

Proceedings of the 26th ACM SIGKDD Conference on Knowledge Discovery and

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’20, August 23–27, 2020, Virtual Event, CA, USA
© 2020 Association for Computing Machinery.

ACM ISBN 978-1-4503-7998-4/20/08. . . $15.00

https://doi.org/10.1145/3394486.3403058

Data Mining (KDD ’20), August 23–27, 2020, Virtual Event, CA, USA. ACM,

New York, NY, USA, 10 pages. https://doi.org/10.1145/3394486.3403058

1 INTRODUCTION
Accurate and real-time inference of user context at the edge (e.g., via
speech or videos captured by embedded microphones or cameras)

enables various applications such as personal assistants (e.g., Apple
Siri, Google Assistant) and smart home appliances (e.g., Amazon

Echo, Apple HomePod). To achieve high accuracy, researchers and

companies are adopting deep neural networks (DNNs) in many

complex inference tasks such as speech recognition, language un-

derstanding, and computer vision. For instance, DNNs have been in-

tegrated into the speech recognition products of Microsoft [28] and

Baidu [10]. Despite their excellent accuracy, DNNs are computation-

intensive, leading to large latency if executed in-edge or on-device,

where computation capability is limited [32].

One effective technique to accelerate deep neural networks is

network pruning [26, 32]. It radically reduces the complexity of

a DNN without severely sacrificing its inference accuracy by re-

moving unimportant units (e.g., neurons) in the network, which

potentially reduces execution latency of the DNN [2, 16].

Although network pruning proves effective to speed up an indi-
vidual DNN, we ask a different yet practical question: Does net-
work pruning always reduce the overall latency of the entire
deep inference application? A deep inference application refers

to an end-to-end solution for an inference task where a DNN is

employed as an intermediate data processing module. Of our par-
ticular interest are applications for sequence labelling tasks
to be running on low-end resource-constrained edge devices
which often do not have GPUs. One popular solution for se-

quence labelling tasks is to first use a DNN to encode the input

sequence into some intermediate representations and then adopt a

decoder to search for the most likely output sequence [22, 25, 27].

Such a DNN+decoder model architecture is common for a wide

spectrum of ubiquitous data mining applications such as speech

recognition [23, 31] and language understanding [12, 29]. For in-

stance, many state-of-the-art Automatic Speech Recognition (ASR)

systems [10, 23, 28, 31] utilize Recurrent Neural Networks (RNN)

for acoustic modeling of input speech. The acoustic scores gener-

ated by these deep models are then fed into a decoder containing a

beam search process to decode the most likely sequence of words.

Variants of DNN+decoder data processing pipeline are also typi-

cal in language understanding tasks e.g., Name Entity Recognition

(NER) [12, 29]. Common in the applications above, their end-to-end

latency consists of both the delay to generate intermediate repre-

sentations by the DNN (DNN inference time) and that to generate

https://doi.org/10.1145/3394486.3403058
https://doi.org/10.1145/3394486.3403058

the most likely output sequence via a maximum likelihood search

decoding like beam search (decoding time).
Through a measurement study, we observe that existing net-

work pruning algorithms [2, 16] may not always accelerate the

DNN+decoder architecture, although such an architecture is widely

used in many sequence labelling tasks such as ASR and NER. With

the increasing degree of pruning, the DNN inference time decreases

steadily, yet the decoding time tends to increase. Depending on

the proportion between DNN inference time and the subsequent

decoding time, the end-to-end latency may even exhibit a “U” shape

with an increasing degree of pruning. The phenomenon is observed

when applying different network pruning methods [2, 16] to models

of various applications [12, 23, 29].

To mitigate the negative impacts of pruning on the overall la-

tency of DNN-enabled sequence labelling applications, we propose

entropy-based pruning, a new regularizer that can be plugged into

existing pruning algorithms. Our key insight is that explicitly re-

ducing the information entropy of the DNN outputs results in the

decrease of the search space of beam search, and thus the decoding

time. Particularly, we theoretically prove that the search space of

the beam search decoder is upper bounded by a monotonically

increasing function of the entropy of the DNN outputs.

We evaluate the performance of our method on different models

in two representative applications: ASR [23] and NER [12, 23]. Ex-

perimental results show that our entropy-based pruning method

is able to suppress and even avoid the increase of decoding time,

thus achieving considerably shorter overall latency compared with

network pruning without using our regularizer.

The main contributions of this work are summarized as follows.

• We show that existing pruning algorithms (e.g., [2, 16]) may

not reduce the end-to-end latency (DNN inference time +

decoding time) of many DNN-enabled sequence labelling

tasks (e.g., ASR and NER) on low-end edge devices. In particu-

lar, the decoding time in these applications tends to increase

when the prior DNN is pruned. The phenomenon is observed

in various representative DNNs.

• To avoid slowdown of decoding due to network pruning, we

propose entropy-based pruning, a new regularizer that can

be seamlessly integrated into existing pruning algorithms.

Furthermore, the effectiveness of our solution is theoretically

guaranteed. To the best of our knowledge, this is the first

network pruning algorithm for deep inference acceleration

from the end-to-end latency perspective.

• We validate the effectiveness of our method on two common

sequence labeling tasks. Evaluations show that compared

with network pruning without our regularizer, the decoding

time is reduced by up to 1.6 times in ASR and 10.6 times

in NER. The corresponding overall latency is also signifi-

cantly shorter. The speedup is achieved with negligible extra

accuracy loss in the applications.

In the rest of this paper, we show the negative impact of network

pruning on sequence label tasks in Sec. 2, introduce our entropy-

based pruning method and prove its effectiveness in Sec. 3, evaluate

its performance in Sec. 4, review related work in Sec. 5, and finally

conclude in Sec. 6.

… …Input
sequences

Deep model
inference

Probability
distribution

Decode/
search

Decoder

… …

Figure 1: Typical data processing pipeline for sequence label-
ing tasks: A DNN (e.g., RNN, CNN+RNN) is first used to en-
code the input sequence into hidden representations. Then
a maximum likelihood search decoder is employed to gen-
erate the most likely output sequence.

2 MOTIVATION STUDY
This section presents a measurement study on the side effect of

pruning on the overall delay of two sequence labeling tasks.

2.1 Example Sequence Labeling Tasks of Deep
Inference Applications

A widely used model architecture to solve sequence labeling tasks

is DNN+decoder. Fig. 1 shows the data processing pipeline. The

input sequence (e.g., audio or video) is first encoded by a DNN into

certain probability distribution. Then this probability distribution is

fed into a decoder, which normally adopts beam search to generate

the final output sequence. For ease of illustration, we base our

measurements on two example sequence labeling tasks typical in

many deep inference applications, i.e., ASR and NER.

• Automatic Speech Recognition (ASR). ASR is an essen-

tial building block for voice-based input in many intelligent

assistant applications. It transforms speech audio into the

corresponding textual data (e.g., sentences in a natural lan-

guage). In a typical ASR model architecture, deep models

such as RNNs are used to correlate the input audio signals

to phonemes. Afterwards, the decoder usually uses a beam

search algorithm to find the most probable phonemes se-

quence, and then generates the most probable word sequence

with the assistance of lexicon and language model [11]. The

language model is usually predefined for a given language,

which describes the transition probability of words based

on prior grammatical and semantic knowledge. In this pa-

per, we adopt the RNN model preset in pytorch-kaldi [23]. It

takes the Mel-scale Frequency Cepstral Coefficients (MFCC)

extracted from the speech as input, and consists of four

Long Short-Term Memory (LSTM) layers. Each of the first

three layers contains 1, 024 LSTM cells, and is activated by

Rectified Linear units (ReLu). The output layer is activated

by softmax. The decoder is implemented with WFST [18],

which conducts beam search on a large graph consisted of

the language model and lexicon.

20406080100
CR (%)

0

20

40

60

80

100

No
rm

al
ize

d
Ti

m
e

(%
)

Inference time
Decoding time

(a) MNP

20406080100
CR (%)

0

20

40

60

80

100

120

No
rm

al
ize

d
Ti

m
e

(%
)

Inference time
Decoding time

(b) VIBNet

Figure 2: Normalized overall latency of the preset pytorch-
kaldimodel for automatic speech recognition (LSTM+ beam
search) after increasingly pruning the network by (a) MNP
and (b) VIBNet. Beam width is set to 13 as [21].

• Name Entity Recognition (NER). NER is a language un-

derstanding task crucial for interactions with voice assistant

applications. It classifies the text (often recognized by ASR)

into predefined categories (e.g., part of speech) to facilitate

further language mining or understanding. The input sen-

tence of NER is typically transformed into vector representa-

tions. The vector representations are then fed into an RNN

(a.k.a context encoder) to produce the encoded sequence.

Conditional Random Fields (CRFs) model followed by search

algorithms (usually beam search) is usually employed to as-

sign labels to each word in the input sentence. In this work,

we utilize the bi-LSTM-CRF model in [12, 29]. It contains a

bidirectional LSTM layer with 1024 units activated by ReLu,

a dense layer and a CRF layer. Then beam search is employed

to generate the final label sequences.

2.2 Side Effect of Network Pruning on Overall
Delay of Deep Inference Applications

We now show through measurements that although pruning speeds

up the DNN, it slows down the subsequent beam search based

decoding process. Consequently, the overall latency of the entire

application may even increase after applying pruning to the DNNs.

Settings. We test two state-of-the-art DNN pruning strategies:

• Magnitude-based Neuron Pruning (MNP) [16]. It is one
of the first structured pruning scheme for modern Con-

volutional Neural Networks (CNNs). MNP iteratively re-

moves unimportant filters (importance usually assessed by

𝐿1-norm) and retrains the network to recover its inference

accuracy. In our work, we adapt the method to RNNs.

• VIBNet [2]. It is one of the best-performing structured net-

work pruning methods. VIBNet removes unimportant neu-

rons by reducing redundancy between adjacent layers and

aggregating useful information into a sparse neuron subset.

We defer the model implementation details of these applications

to Sec. 4. We measure the DNN inference time, the decoding time

(via beam search), as well as the overall latency of each application

on the NVIDIA Jetson TX2 platform [17]. To simulate the computa-

tion resources of low-end edge devices, the GPUs on the platform

are disabled during measurements.

2030405060708090100
CR (%)

0

20

40

60

80

100

No
rm

al
ize

d
Ti

m
e

(%
)

Inference time
Decoding time

(a) MNP

2030405060708090100
CR (%)

0

20

40

60

80

100

No
rm

al
ize

d
Ti

m
e

(%
)

Inference time
Decoding time

(b) VIBNet

Figure 3: Normalized overall latency of a state-of-the-art
model for name entity recognition (bi-LSTM-CRF + beam
search) after increasingly pruning the bi-LSTM-CRF net-
work by (a) MNP and (b) VIBNet. Beam width is set to 3.

Observations. Fig. 2 and Fig. 3 show the normalized overall latency

of ASR, NER, and LRR with the decrease of Compression Rate (CR).

The numbers in each plot are normalized by the overall latency

of the application without applying network pruning to the DNN.

The compression ratio (CR) is calculated as the ratio between the

number of parameters in the pruned network and that of the original

network. We make the following observations.

• Although the DNN inference time in all the three applica-

tions is significantly reduced with the increase of pruning (a

smaller CR), the overall latency does not necessarily decrease

at the same pace, and can even increase when the DNN is

heavily pruned. For example, when MNP prunes the DNNs

used in ASR and NER to a compression ratio of 25% and 28%,

the corresponding overall latency decreases to 83% and 27%

of uncompressed baseline. However, when pruning the DNN

from a compression ratio of 25% to 5% in ASR via MNP, the

normalized overall latency contrarily increases from 83% to

90%. In NER, when compression ratio decreases from 28%

to 14%, the overall latency still stays around 27%. Similar

observations exist when adopting VIBNet to different DNNs.

• The reason behind the increase of the overall latency when

the DNN is heavily pruned is that pruning tends to have an

adverse impact on the decoding time of the beam search, the

consumer of the DNN outputs. For example, when pruning

the DNN in ASR using MNP / VIBNet, the decoding time

remains stable when the compression ratio decreases from

100% to 40% / 50%, and increases to 114% / 122% if the DNN

is pruned to a compression ratio of around 6%. In NER, the

decoding time remains stable when the compression ratio

is higher than 40%, but then increases to 332% when the

compression ratio is around 14%. Note that ASR is slightly

different from NER because it involves an extra effort to con-

vert phones into words. Hence the ratio of decoding time vs.

overall latency in significantly larger in ASR. Moreover, since

the computation cost of this extra effort is not influenced by

DNN, the percentage of increase in decoding time caused by

network pruning is also lower compared with NER.

Summary.Network pruning may not accelerate the popular model

architectures (DNN + decoder) used in sequence labeling tasks (e.g.,

ASR and NER). The reason is that pruning on the DNN tends to in-

crease the decoding time of the beam search afterwards. Depending

on the portion of DNN inference time and the subsequent decod-

ing time via beam search, the overall delay of the corresponding

application may exhibit a “U” shape with an increasing degree of

network pruning. The phenomenon is observed when applying

different network pruning methods to different applications.

3 METHOD
In this section, we propose entropy-based pruning, an effective

solution to eliminate the negative impact of network pruning on

the overall latency of sequence labelling tasks.

3.1 Understanding DNN+Decoder Architecture
Before introducing our method and prove its effectiveness, we first

explain the DNN+decoder model architecture in sequence labelling

tasks in a more formal manner. Table 1 summarizes important

notations that will be used throughout this section.

3.1.1 Sequence Labelling Task. We explain a sequence labelling

task from a probabilistic perspective.

Given a common probability space (Ω, F , 𝑃), an input stochastic
process is a stochastic process {𝑋𝑡 } with 1 ≤ 𝑡 ≤ 𝑇 defined on this

probability space, in which each random vector 𝑋𝑡 takes values in

the𝑀-dimensional real valued state spaceR𝑀 . A labelling stochastic
process is another stochastic process {𝑌𝑡 } defined on (Ω, F , 𝑃), in
which each random variable 𝑌𝑡 takes value from a finite alphabetY
for the output labels. Denote 𝑁 as the size of Y, i.e., 𝑁 = |Y|. We

use the corresponding lowercase letter to denote a realisation of

an stochastic process. For example, the realisation of an input sto-

chastic process {𝑋𝑡 } is a sequence of𝑀-dimensional real numbers,

denoted by x = {𝑥𝑖 |1 ≤ 𝑖 ≤ 𝑇 } = {𝑋𝑖 (𝜔) |1 ≤ 𝑖 ≤ 𝑇 } with 𝜔 ∈ Ω.
A sequence labelling task is to assign a sequence of labels (output

sequence), drawn from a fixed and finite alphabet L, to a sequence

of input data (input sequence) [7]. To solve the sequence labelling

task, we train a sequence labelling algorithm 𝑓 : R𝑀×𝑇 → Y𝑇

which takes sequences x = {𝑥1, 𝑥2, · · · , 𝑥𝑇 } as input and outputs

labelling sequences y = {𝑦1, 𝑦2, · · · , 𝑦𝑇 }.

3.1.2 DNN+Decoder Architecture. DNN+decoder is widely used to

solve sequence labelling tasks [22, 25, 27]. For ease of presentation,

we denote a sub-sequence of the first 𝑡 elements in x as x |𝑡 | =

{𝑥1, 𝑥2, · · · , 𝑥𝑡 }, and the sub-sequence of the first 𝑡 elements in y
as y |𝑡 | = {𝑦1, 𝑦2, · · · , 𝑦𝑡 }. Note that x |𝑇 | = x and y |𝑇 | = y.

The DNN+decoder architecture consists of two components:

• The DNN inputs vector sequences x and outputs vector se-

quences p = {p𝑡 }. The vectors in sequences p are p𝑡 =

{𝑝𝑡,𝑖 |1 ≤ 𝑖 ≤ 𝑁 }. Here 𝑝𝑡,𝑖 = 𝑝 (𝑥𝑡 |x |𝑡−1 |, y |𝑡−1 |, 𝑦𝑡 = 𝑖)
is the probability of observation 𝑥𝑡 at time 𝑡 , given all the

previous observations x |𝑡−1 | and the states (y |𝑡−1 |, 𝑦𝑡 = 𝑖).
Here 𝑦𝑡 = 𝑖 means “the state at time step 𝑡 is the 𝑖-th state in

the alphabet Y”.

• The decoder takes sequences p = {p𝑡 } from DNN as in-

put, and aims to find a labelling sequence y with the largest

𝑝 (y|x). This can be computed based on the Bayesian formula.

Specifically, for a given input sequence x, we have 𝑝 (y|x) =

𝑝 (x,y)
𝑝 (x) , where 𝑝 (x) is fixed for the input sequence x. Thus the
recursion formula becomes 𝑝 (x |𝑡 |, y |𝑡 |) = 𝑝 (x |𝑡−1 |, y |𝑡−1 |)
𝑝 (𝑦𝑡 |x |𝑡−1 |, y |𝑡−1 |) 𝑝 (𝑥𝑡 |x |𝑡−1 |, y |𝑡 |). Here 𝑝 (𝑥𝑡 |x |𝑡−1 |, y |𝑡 |)
is computed from the DNN; and 𝑝 (𝑦𝑡 |x |𝑡−1 |, y |𝑡−1 |) is called
the transition probability, which is often learned from prior

knowledge like the language mode used for ASR [21] and

CRF used for NER [12]. In the end, the decoder returns

the sequence with the highest joint probability with x, i.e.,
maxy 𝑝 (x, y). Normally a beam search is utilized to reduce

the searching space.

3.1.3 Understand Overall Latency. The overall delay of a sequence

labelling task adopting the DNN+decoder architecture consists of

the inference time and the decoding time.

• The inference time is often highly correlated to the model

size of the DNN. A DNN pruned to a smaller compression

ratio usually results in a shorter inference time.

• The decoding time is related to the search space of beam

search. At each time step 𝑡 , the input of beam search is the

reserved sequences 𝑆𝑡−1 = {y1, · · · , y |𝑆𝑡−1 |} at time 𝑡 −1 and

the DNN output vector p𝑡 . Beam search generates |𝑆𝑡−1 | ×𝑁

sequences by adding the possible states at time step 𝑡 to the

end of the sequences in 𝑆𝑡−1, and only those sequences with

probabilities larger than a given threshold 𝛽 are reserved

in the sequence set 𝑆𝑡 . Then 𝑆𝑡 is passed to the 𝑡 + 1 step.

Therefore, the decoding time at 𝑡 is decided by the number

of the reserved sequences at time 𝑡 − 1, i.e., |𝑆𝑡−1 |.

Remarks. In the DNN+decoder architecture, the DNN and the de-

coder are connected via the probability distribution sequences p𝑡 .
In particular, the DNN output p𝑡 is fed into the decoder when de-

ciding the reserved sequences at each time 𝑡 and the decoding time

is positively correlated to the size of the reserved sequences. We

argue that the increase of decoding time due to network pruning

observed in Sec. 2.2 can be avoided by reducing the information
entropy of p𝑡 , as we will explain in the subsections below.

3.2 Entropy-based Pruning
Our key insight to avoid the increase of decoding time after net-

work pruning is to explicitly regularizing the entropy of p𝑡 during
network pruning. Specifically, we propose to adopt the information

entropy of the DNN output sequence p𝑡 as a new regularizer:

𝐿𝑒 (p) =
1

𝑇

∑
p𝑡 ∈p

𝐻 (p𝑡) = − 1

𝑇

∑
p𝑡 ∈𝑝

𝑁∑
𝑖

𝑝𝑡,𝑖 log𝑝𝑡,𝑖 (1)

Consequently, the loss function of network pruning becomes

𝐿(p, p̂) = �̃�(p, p̂) + 𝛾𝑒𝐿𝑒 (p) (2)

where p̂ is the true labels, and �̃�(p, p̂) is the loss function specified

by the application, e.g., cross-entropy. The coefficient 𝛾𝑒 controls

the strength of the regularizer. In principle, a larger 𝛾𝑒 encourages

reduction of the decoding time, as we will show in Sec. 3.3 and

Sec. 4. Yet an overly large 𝛾𝑒 may notably impair the accuracy of

the application. We evaluate the impact of 𝛾𝑒 in Sec. 4.

Table 1: Summary of important notations.

Notation Description

x = {𝑥1, 𝑥2, · · · , 𝑥𝑇 } DNN input vector sequence

y = {𝑦1, 𝑦2, · · · , 𝑦𝑇 } decoder output sequence

x |𝑡 | sub-sequence of the first 𝑡 elements in x
y |𝑡 | sub-sequence of the first 𝑡 elements in y
𝑁 number of element in alphabet Y
p𝑡 = {𝑝𝑡,𝑖 |1 ≤ 𝑖 ≤ 𝑁 } DNN output vector sequence; decoder input vector sequence

𝑆𝑡 = {y1, · · · , y |𝑆𝑡 |} sequences reserved in time step 𝑡

s𝑡 (𝑖, 𝑗) sequence generated by adding the 𝑗-th state to the end of the 𝑖-th sequence in 𝑆𝑡−1
𝛽 threshold in beam search

𝐻 (·) information entropy

𝐵(p𝑡 , 𝛽) number of values in p𝑡 that ≥ 𝛽

𝑘 adjustable coefficient to control network pruning

3.3 Theoretical Analysis on Effectiveness of
Entropy based Pruning

We now theoretically prove that our entropy-based pruning, which

explicitly enforces the decrease of𝐻 (p𝑡), is able to reduce the search
space of beam search, and thus the decoding time.

3.3.1 Main Theoretical Claim. Recall from Sec. 3.1.3 that at time

step 𝑡 , the beam search needs to calculate the probability of each

possible path sequence until this moment. There is in total |𝑆𝑡−1 |×𝑁
sequences to consider. Since 𝑁 is the number of element in alphabet

Y and is therefore fixed for a given sequence labelling task, the

search space of the decoder is solely decided by |𝑆𝑡 | with 1 ≤ 𝑡 ≤
𝑇 −1 for a given threshold 𝛽 . Hence the effectiveness of our solution
can be validated by the following claim: reducing 𝐻 (p𝑡) using
our regularizer decreases the upper bound of |𝑆𝑡 | given the
threshold 𝛽 . Accordingly, the search space (and thus the decoding

time) of the decoder is likely to be reduced.

3.3.2 Proofs of Theoretical Claim. The proof is divided in two parts.

• Reducing 𝐻 (p𝑡) also reduces 𝐻 ({s𝑡 (𝑖, 𝑗)}), i.e., the entropy
of the distribution of sequences until time 𝑡 . s𝑡 (𝑖, 𝑗) denotes
the sequence generated by adding the 𝑗-th (1 ≤ 𝑗 ≤ 𝑁) state

to the end of the 𝑖-th (1 ≤ 𝑖 ≤ |𝑆𝑡−1 |) sequence in 𝑆𝑡−1.
• Reducing 𝐻 ({s𝑡 (𝑖, 𝑗)}) decreases the tight upper bound of

𝑆𝑡 given the threshold 𝛽 .

The first part of the proof is guaranteed by the following lemma.

Lemma 1. The upper bound of𝐻 ({s𝑡 (𝑖, 𝑗)}) is a strictly increasing
function of 𝐻 (p𝑡).

Proof. See Appendix A. □

For the second part of the proof, we first consider in general𝑀-

dimensional normalised vectors v ∈ R𝑀 , 𝑣𝑖 ≥ 0 with

∑𝑀
𝑖=1 𝑣𝑖 = 1.

v represents a discrete probability distribution with alphabet size

𝑀 . The information entropy of the underlying distribution of v is

denoted as 𝐻 (v) = ∑𝑀
𝑖=1 𝑣𝑖 log(1/𝑣𝑖). The number of elements of v

larger or equal than some constant 𝛽 ∈ R, 0 < 𝛽 ≤ 1 is defined as

𝐵(𝛽) = |{𝑖 | 1 ≤ 𝑖 ≤ 𝑀 ∧ 𝑣𝑖 ≥ 𝛽}|. We are interested in 𝐵(𝛽) as a
function of 𝐻 (v). As v is non-unique for a given 𝐻 (v) and𝑀 ≥ 2,

we determine tight upper bounds for 𝐵(𝛽), i.e., 𝐵(𝛽) ≤ 𝑈𝑡 (𝐻 (v), 𝛽)
for all v with entropy 𝐻 (v).

Lemma 2. The number of vector elements 𝐵(v, 𝛽) larger or equal
than some constant 𝛽 is bounded by 𝐵(v, 𝛽) ≤ 𝑈𝑡 (𝐻 (v), 𝛽), where
𝑈𝑡 (𝐻 (v), 𝛽) = min{𝑀, ⌊1/𝛽⌋, ⌊𝐻 (v)/(𝛽 log(1/𝛽))⌋} for 𝛽 ≤ 0.5. If

𝛽 > 0.5we find𝑈𝑡 (𝐻 (v), 𝛽) = 1 if𝐻 (v) ≤ (1−𝛽) log((𝑀 −1)/(1−
𝛽)) + 𝛽𝑙𝑜𝑔(1/𝛽) and𝑈𝑡 (𝐻 (v), 𝛽) = 0 otherwise. The bound is tight.

Proof. See Appendix B. □

With the help of Lemma 2 we can now show the relationship

between 𝐻 ({s𝑡 (𝑖, 𝑗)}) and |𝑆𝑡 |, as stated by the following lemma.

Lemma 3. The tight upper bound of |𝑆𝑡 | given 𝛽 is a monotonically

increasing function of 𝐻 ({s𝑡 (𝑖, 𝑗)}).

Proof. See Appendix C. □

Remarks. Combining Lemma 1 and Lemma 3, we have that |𝑆𝑡 | is
upper bounded by a monotonically increasing function of 𝐻 (p𝑡).
Therefore, reducing 𝐻 (p𝑡) will in general reduces |𝑆𝑡 |, and the

search space of beam search, which accelerates the decoding.

4 EVALUATION
In this section, we evaluate the performance of our entropy-based

pruning method on two data mining applications: ASR and NER.

We first introduce the general experimental setup, and then present

the specific settings and results for each individual application.

Finally we summarize the findings of our evaluation.

4.1 General Experimental Setup
This subsection presents the common experimental settings, includ-

ing the baseline algorithms, evaluation platform and metrics.

4.1.1 Compared Algorithms. We choose the same network pruning

algorithms in Sec. 2 as baselines and apply our method to them. We

compare the performance of the following four algorithms:

• MNP: It is the magnitude based neuron pruning algorithm

for CNNs [16] adapted to support RNNs. It iteratively prunes

the DNN. Denote the number of pruning iterations as 𝑛.

• VIBNet: It is one of best-performing neuron pruning al-

gorithm [2] that removes neurons based on the variational

information bottleneck. In VIBNet, a coefficient𝛾𝑘𝑙 is used to

control the strength of the information bottleneck. Normally

a large 𝛾𝑘𝑙 leads to a smaller CR.

• MNP-Ent: It applies our entropy-based pruning regularizer

to the MNP pruning algorithm. We set 𝛾𝑒 as 𝛾𝑒 = 𝑘𝑛, where

𝑘 is an adjustable coefficient.

• VIBNet-Ent: It applies our entropy-based pruning regular-

izer to the VIBNet pruning algorithm. We set 𝛾𝑒 as 𝑘 log
𝛾𝑘𝑙
0.3

in ASR and set 𝛾𝑒 as a a constant 𝑘 in NER.

4.1.2 Evaluation Platform. The experiments are conducted with

Python 3.6 and Tensorflow 1.13. All the DNNs used in our experi-

ments are trained (and pruned) in a workstation with 64GBmemory,

Intel Xeon Gold 5118 CPU and Quadro P5000 GPU. After training,

all the applications (DNN+decoder) are tested on Jetson Tx2 [17]

with 8G memory and ARM Cortex-A57 CPU. To simulate low-end

edge devices, the GPUs on the platform are disabled.

4.1.3 Evaluation Metrics. We quantify the performance of different

algorithms using metrics from the the following aspects:

• Latency. We are interested in the impact of different prun-

ing algorithms on the overall latency and the decoding time in
each application. As in Sec. 2, the overall latency is normal-

ized by the overall latency before applying pruning to the

corresponding DNN. The decoding time is also normalized

by the decoding time before network pruning.

• Accuracy. The adoption of network pruning should not

induce severe accuracy loss in the target application. The

accuracy metric is application-specific. For ASR, we adopt

word error rate (WER) as the accuracy metric. It is calculated

as𝑊𝐸𝑅 = 100 · 𝑆+𝐷+𝐼
𝑁 ′ %, where 𝑆 , 𝐷 and 𝐼 are the number

of substitution, deletion and insertion, and 𝑁 ′
is the total

number of the words. For NER, we use error rate (ER) as the

metric. It is calculated as 𝐸𝑅 = 100 · (1 − 𝐶
𝑁 ′)%, where 𝐶 is

the number of the words that are correctly labeled and 𝑁 ′
is

the total number of the words.

• Compression Ratio. The same as Sec. 2.2, the compression

ratio (CR) is calculated as the ratio between the numbers

of parameters in the pruned and the original DNN. The

compression ratio quantifies the degree of compression. A

smaller CR means a larger degree of network pruning.

4.2 Performance on ASR
Dataset.We evaluate the performance of different algorithms on

ASR using Librispeech [19], a large-scale English corpus. During

training, we choose 100 hours of speech data, which contains about

360, 000 sentences with lengths varying from 100 to 3, 000. These

sentences are pre-processed with the 3-gram language model in

kaldi [21] to generate MFCC features and the corresponding labels.

The input MFCC features have 39 dimensions, where the first- and

second-order frame-to-frame differences are 13 dimensions each

[5]. The features are classified into 3, 432 categories. See [21] for

more details about the pre-processing and feature extraction.

Model Implementation. We experiment with the LSTM model

described in Sec. 2.1 as the DNN and beam search in Sec. 3.1 as the

decoder. The LSTM model is optimized by momentum optimizer

with cross entropy loss function. The learning rate and momentum

are set to 0.01 and 0.9. The batch size is set as 32, and we train

20406080100
CR (%)

70

80

90

100

110

No
rm

al
ize

d
Ti

m
e

(%
)

MNP
MNP-Ent(0.01)
MNP-Ent(0.06)

MNP-Ent(0.11)
MNP-Ent(0.16)
MNP-Ent(0.21)

(a) Decoding time of MNP-Ent.

20406080100
CR (%)

60

70

80

90

100

No
rm

al
ize

d
Ti

m
e

(%
)

MNP
MNP-Ent(0.01)
MNP-Ent(0.06)

MNP-Ent(0.11)
MNP-Ent(0.16)
MNP-Ent(0.21)

(b) Overall latency of MNP-Ent.

20406080100
CR (%)

60

70

80

90

100

110

120

No
rm

al
ize

d
Ti

m
e

(%
)

VIBNet
VIBNet-Ent(1)
VIBNet-Ent(1.5)
VIBNet-Ent(2)

(c) Decoding time of VIBNet-Ent.

20406080100
CR (%)

60

70

80

90

100

No
rm

al
ize

d
Ti

m
e

(%
)

VIBNet
VIBNet-Ent(1)
VIBNet-Ent(1.5)
VIBNet-Ent(2)

(d) Overall latency of VIBNet-Ent.

Figure 4: Normalized decoding time and overall latency in
ASR with an increasing degree of pruning. MNP-Ent and
VIBNet-Ent with different values of 𝑘 are used to prune an
RNN (LSTM) network [23]. Note that 𝑘 = 0 means the corre-
sponding pruning method without our regularizer.

for two epochs. We directly use the beam search implemented in

kaldi for decoding. The default beam width is set to 13 as suggested

[21]. We vary 𝑘 in [0, 0.01, 0.06, 0.11, 0.16, 0.21] for MNP-Ent, and

[0, 1.0, 1.5, 2.0] for VIBNet-Ent. Pruning methods using different 𝑘

values are labeled with MNP/VIBNet-Ent(𝑘). In particular, 𝑘 = 0

(making 𝛾𝑒 = 0) means network pruning without our regularizer.

Results. Fig. 4 plots the normalized decoding time and the nor-

malized overall latency with different compression ratio on ASR.

Fig. 4(a) and Fig. 4(c) show the normalized decoding time of MNP-

Ent and VIBNet-Ent. For MNP-Ent, when 𝑘 is set to 0.06 or larger,

the normalized decoding time stops increasing after network prun-

ing. As 𝑘 increases to 0.21, entropy-based pruning decreases the

normalized decoding time further by 43%. Similar results are ob-

served for VIBNet, as the uptrend of decoding time is suppressed

when 𝑘 = 1.5. Fig. 4(b) and Fig. 4(d) show that corresponding nor-

malized overall latency when applying entropy-based pruning to

the two pruning algorithms. As is shown, entropy-based pruning is

able to allow a notable reduction in the overall latency after network

pruning. For example, when the DNN is pruned to a compression

ratio of 5% by MNP, the normalized overall latency decreases to

56% when applying our method (𝑘 = 0.21), whereas the normalized

overall latency is 90% without our method (i.e., when 𝑘 = 0).

Table 2 shows the corresponding test accuracy (measured by

word error rate) after applying different network pruning methods

to the DNN. Comparing MNP andMNP-Ent with the same compres-

sion ratio, the increase of WER when applying MNP-Ent is 0.45%

on average. No significant accuracy loss is induced when using

VIBNet-Ent either. Note that the results for VIBNet and VIBNet-

Ent are not at exactly the same compression ratio. This is because

Table 2: Word error rate (%) of ASR when applying MNP, MNP-Ent, VIBNet and VIBNet-Ent for network pruning.

Name

𝑘

CR(%)

82 67 55 45 37 30 25 21 14 5

MNP 0 15.31 16.26 15.31 14.56 14.18 13.99 15.12 14.37 14.18 17.77

MNP-Ent

0.01 15.88 15.12 16.07 13.8 14.37 14.37 14.37 15.5 13.42 16.82

0.06 14.93 15.31 15.88 15.69 15.69 14.37 13.99 14.37 15.12 17.58

0.11 15.88 15.88 16.26 16.26 14.93 15.31 14.56 15.88 15.53 17.84

0.16 16.07 14.93 16.00 16.07 15.01 15.41 16.26 14.93 15.31 17.77

0.21 16.45 16.26 16.64 15.69 14.93 13.61 16.07 15.31 15.12 18.71

VIBNet 0

CR(%) 100 85 75 62 34 20 13 7

WER 12.44 12.48 13.42 13.42 13.99 15.69 17.77 17.2

VIBNet-Ent

1

CR(%) 74 69 61 55 31 25 17 11

WER 13.99 13.99 13.8 13.61 14.56 15.88 17.2 18.53

1.5

CR(%) 76 72 64 58 33 27 19 12

WER 13.23 12.67 13.42 14.18 14.56 15.12 18.3 18.34

2

CR(%) 78 73 67 61 34 28 18 13

WER 13.99 13.42 13.23 14.74 14.56 17.2 17.96 18.56

the compression ratio is indirectly controlled by 𝛾𝑘𝑙 and thus diffi-

cult to be fine-tuned to a given value. In general, when applying

our entropy-based pruning method to existing network pruning

algorithms in ASR, only negligible extra accuracy loss is induced.

4.3 Performance on NER
Dataset. We use the English corpus in the CoNLL-2003 dataset

[24], which was first used in a shared task of language-independent

NER task in English and German. In the NER task in CoNLL-2003,

the words (tokens) needs to be classified into 45 part-of-speech

(POS) tags such as noun, verb, adverb etc. The training dataset of

the English corpus contains 14, 987 sentences and 20, 3621 tokens,

and the test dataset contains 3, 684 sentences and 46, 435 tokens.

Model Implementation.We experiment with the bi-LSTM-CRF

model described in Sec. 2.1 as the DNN and beam search in Sec. 3.1

as the decoder. Before feeding into the DNN, each token is first

embedded into a 300-dimensional vector with Glove [20], a popular

word-to-vector library pre-trained using the Wikipedia 2014 and

Gigaword 5 datasets. The DNN is ptimized by Adam [14] for 30

epochs in total, where the learning rate starts with 0.001 and decays

by 0.9 each epoch. For decoding, a C++ implemented beam search

is adopted with a default beam width of 3. For MNP, 𝑘 varies among

{0, 0.3, 0.4, 0.5}, and for VIBNet 𝑘 varies among {0, 0.5, 0.7, 1}. Sim-

ilar with the experiments of ASR, 𝑘 = 0 (𝛾𝑒 = 0) means network

pruning methods without our entropy-based pruning regularizer.

Results. Fig. 5 show the normalized decoding time and overall

latency when applying different network pruning methods to the

DNN in NER. As shown in Fig. (a) and Fig. (c), compared with

network pruning without using our regularizer, the increase of de-

coding time is suppressed by 209% (for MNP) and 697% (for VIBNet)

with our regularizer. In particular, when the compression ratio is

smaller than 30%, the decoding time of MNP and VIBNet surges

to 3 to 6 times of the decoding time before network pruning. In

contrast, the decoding time using our regularizer remains relatively

stable (especially with a larger 𝑘). As shown in Fig. (b) and Fig. (d),

when applying our method to the network pruning algorithms, the

overall latency is also significantly reduced.

20406080100
CR (%)

100

150

200

250

300

No
rm

al
ize

d
Ti

m
e

(%
)

MNP
MNP-Ent(0.3)
MNP-Ent(0.4)
MNP-Ent(0.5)

(a) Decoding time of MNP.

20406080100
CR (%)

20

40

60

80

100

No
rm

al
ize

d
Ti

m
e

(%
)

MNP
MNP-Ent(0.3)
MNP-Ent(0.4)
MNP-Ent(0.5)

(b) Overall latency of MNP.

20406080100
CR (%)

0
100
200
300
400
500
600
700

No
rm

al
ize

d
Ti

m
e

(%
)

VIBNet
VIBNet-Ent(0.5)
VIBNet-Ent(0.7)
VIBNet-Ent(1)

(c) Decoding time of VIBNet.

20406080100
CR (%)

40

60

80

100

No
rm

al
ize

d
Ti

m
e

(%
)

VIBNet
VIBNet-Ent(0.5)
VIBNet-Ent(0.7)
VIBNet-Ent(1)

(d) Overall latency of VIBNet.

Figure 5: Normalized decoding time and overall latency in
NER with an increasing degree of pruning. MNP-Ent and
VIBNet-Ent with different values of 𝑘 are used to prune an
RNN (bi-LSTM-CRF) network [12, 29]. Note that 𝑘 = 0means
the corresponding pruning method without our regularizer.

Table 3 shows the corresponding error rate when applying differ-

ent network pruning algorithms to the DNN in NER. Similar to the

results for ASR, our entropy-based pruning method only introduces

negligible increase in error rate (0.01% on average) compared with

pruning without our method.

4.4 Summary of Results
We summarize the main results of Sec. 4.2 and Sec. 4.3 as follows.

• Our entropy-based pruning method is able to suppress and

sometimes avoid the increase of decoding time, especially

when the DNN is heavily pruned. Compared with network

pruning without our method, the decoding time is reduced

Table 3: Error rate(%) of NER when applying MNP, MNP-Ent, VIBNet and VIBNet-Ent for network pruning.

Name

𝑘

CR(%)

83 69 58 48 34 28 14

MNP 0 15.26 15.18 15.26 14.7 14.68 14.94 14.83

MNP-Ent

0.3 15.49 15.2 15.06 15.04 14.68 14.52 14.66

0.4 15.47 15.31 14.98 15.17 14.95 14.89 14.66

0.5 15.38 15.16 15.13 15.01 14.64 14.62 14.78

VIBNet 0

CR(%) 100 86 67 53 45 30 28 18

ER 13.42 14.61 14.61 14.59 14.89 15.37 16 16.53

VIBNet-Ent

0.5

CR(%) 87 79 65 57 47 35 25 18

ER 13.65 14.09 14.52 14.55 14.87 15.55 16.08 18.14

0.7

CR(%) 88 77 66 58 41 30 25 19

ER 14.35 14.04 14.95 15.11 16.12 16.88 16.76 18.63

1

CR(%) 85 66 57 50 40 36 22 16

ER 13.72 14.9 15.45 16.08 16.21 16.01 17.7 18.1

by up to 1.6 times in ASR and 10.6 times in NER. The overall

latency is also considerably lower with our method: up to

1.5 times shorter in ASR and 2.1 times shorter in NER.

• Compared with pruning without our method, our entropy-

based pruning regularizer only introduces negligible extra

accuracy loss on average: 0.45% in ASR and 0.01% in NER.

5 RELATEDWORK
Our work follows the emerging trend to enable deep inference at

the edge [32]. We focus on network pruning, an effective model
compression technique for DNN acceleration. The technique is or-

thogonal to runtime optimization, another category of research on

efficient DNN execution.

Model Compression for DNN Acceleration. Deep neural net-

works are typically over-parameterized and their model size can be

radically reduced without decreasing model accuracy [3]. Pruning

is a popular model compression technique that eliminates unim-

portant operations (e.g., weights, neurons, kernels) in the model

[2, 16]. It can be combined with other techniques like quantization

to further reduce the precision of operations [9]. We refer readers

to [26] for a comprehensive overview on model compression.

A pruning method usually takes a pre-trained DNN as input, iter-

atively removes unimportant operations and retrains the model to

recover its accuracy, and finally outputs a compact model without

notable accuracy drop. Central in a pruning scheme is the crite-

ria to determine the importance of an operation, i.e., the impact

of removing one operation on the model accuracy. Various im-

portance metrics have been proposed, such as magnitude-based

[9, 16], sensitivity-based [4], information theory based [2], etc. The

granularity of pruning is also crucial. Neuron pruning [2, 16]) is

preferable than weight pruning [4, 9]) because the latter requires

special hardware to achieve the expected DNN speedup [8].

We base our measurements and evaluations on two state-of-

the-art structured pruning methods: MNP [16], one of the first

magnitude-based neuron pruning schemes, and VIBNet [2], one of

the best-performing structured pruning proposals based on informa-

tion theory. We show that although both pruning methods reduce

the inference time of DNNs, the overall latency (inference time +

decoding time) of the entire application may even grow. This is

because the importance criteria in existing pruning methods do not

explicitly account for the delay of the subsequent data processing

modules (e.g., Viterbi beam search in our context) in the application.

In contrast, we propose the first-of-its-kind pruning method that

avoids slowdown of the entire deep inference application.

Runtime Optimization for Efficient DNN Execution. Given
an uncompressed or compressed DNN, its execution efficiency can

be improved via various software runtime optimization [6, 13, 15]

or hardware accelerators [1, 8]. Runtime optimization is common

for accelerating DNN execution on commodity mobile and edge

devices such that no extra hardware is needed.

Runtime optimization aims to improve the resource utilization

when executing DNNs on resource-constrained devices. For exam-

ple, the execution of a DNN can be partitioned between a cloud/edge

server and an edge device to reduce its delay [13]. Certain intensive

computation can be offloaded to mobile GPUs on high-end edge

devices [6]. There are also generic solutions that schedule DNN ex-

ecution among heterogeneous computation resources and devices

[15]. Our focus is orthogonal to runtime optimization. The impact

of pruning on the overall delay of deep inference applications is

agnostic to the resource utilization of the underlying DNN.

Our work is inspired by [30], which points out the side effect of

pruning on the overall latency of DNN-based speech recognition

applications. Compared with [30], our work differs in two aspects:

(i)We conduct amore comprehensive study of the impact of pruning

on the overall latency of deep inference applications.We experiment

with various more complex DNNs (feed-forward networks, RNNs)

and different applications (automatic speech recognition, name

entity recognition). Conversely, the study in [30] only explores a

simple feed-forward network and one application. (ii) We devise a

new pruning method that avoids slowdown of these applications

rather than a hardware accelerator of the subsequent beam search.

Our solution is simple to implement, does not involve hardware

modification, and has wider applicability.

6 CONCLUSION
In this work, we investigate the impact of network pruning for

accelerating DNN-powered data mining applications on resource-

constrained edge devices. We observe that while existing network

pruning algorithms speed up an individual DNN, they tend to slow

down the subsequent decoding process common in many sequence

labelling tasks. Consequently, the end-to-end delay of the whole

applicationmay not necessarily decrease after DNNpruning. Tomit-

igate this negative impact of network pruning, we design entropy-

based pruning, a regularizer that can be plugged into existing net-

work pruning algorithms. We theoretically prove the effectiveness

of the new regularizer and evaluate its performance on two model

architectures in different applications. Evaluations show that com-

pared with network pruning without our regularizer, the decoding

time is reduced by up to 1.6 times in ASR and 10.6 times in NER.

The corresponding overall latency in these applications is also sig-

nificantly shorter. We envision our work as a reference for future

research on DNN compression from a holistic perspective.

ACKNOWLEDGEMENT
We thank the anonymous reviewers for their valuable suggestions

and comments. Dawei Gao, Yongxin Tong and Ke Xu’s work was

partially supported by the National Key Research and Development

Program of China under Grant No. 2018AAA0101100, the National

Science Foundation of China (NSFC) under Grant No. 61822201,

U1811463 and 71531001, and the Beijing Municipal Science and

Technology Project under Grant Z191100002519012. Xiaoxi He and

Lothar Thiele’s work was supported in part by the Swiss National

Science Foundation in the context of the NCCR Automation. Zimu

Zhou’s research was supported in part by the Singapore Ministry

of Education (MOE) Academic Research Fund (AcRF) Tier 1 grant.

Zimu Zhou is the corresponding author.

REFERENCES
[1] Yunji Chen, Tianshi Chen, Zhiwei Xu, Ninghui Sun, and Olivier Temam. 2016.

DianNao family: energy-efficient hardware accelerators for machine learning.

Commun. ACM 59, 11 (2016), 105–112.

[2] Bin Dai, Chen Zhu, Baining Guo, and David Wipf. 2018. Compressing neural net-

works using the variational information bottleneck. In Proceedings of International
Conference on Machine Learning. ACM, New York, NY, USA, 1143–1152.

[3] Misha Denil, Babak Shakibi, Laurent Dinh, Nando De Freitas, et al. 2013. Predict-

ing parameters in deep learning. In Proceedings of Advances In Neural Information
Processing Systems. Curran Associates Inc., Red Hook, NY, USA, 2148–2156.

[4] Xin Dong, Shangyu Chen, and Sinno Pan. 2017. Learning to prune deep neural

networks via layer-wise optimal brain surgeon. In Proceedings of Advances in
Neural Information Processing Systems. Curran Associates Inc., Red Hook, NY,

USA, 4860–4874.

[5] Sadaoki Furui. 1986. Speaker-independent isolated word recognition based on

emphasized spectral dynamics. In Proceedings of International Conference on
Acoustics, Speech, and Signal Processing, Vol. 11. IEEE Press, Piscataway, NJ, USA,

1991–1994.

[6] Petko Georgiev, Nicholas D Lane, Cecilia Mascolo, and David Chu. 2017. Ac-

celerating mobile audio sensing algorithms through on-chip gpu offloading. In

Proceedings of Annual International Conference on Mobile Systems, Applications,
and Services. ACM, New York, NY, USA, 306–318.

[7] Alex Graves. 2012. Supervised sequence labelling. In Supervised sequence labelling
with recurrent neural networks. Springer, 5–13.

[8] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz,

and William J Dally. 2016. EIE: efficient inference engine on compressed deep

neural network. In Proceedings of Annual International Symposium on Computer
Architecture. ACM, New York, NY, USA, 243–254.

[9] Song Han, Huizi Mao, andWilliam J Dally. 2016. Deep compression: Compressing

deep neural networks with pruning, trained quantization and huffman coding.

In Proceedings of International Conference on Learning Representations.
[10] Awni Hannun, Carl Case, Jared Casper, Bryan Catanzaro, Greg Diamos, Erich

Elsen, Ryan Prenger, Sanjeev Satheesh, Shubho Sengupta, Adam Coates, et al.

2014. Deep speech: scaling up end-to-end speech recognition. arXiv:1412.5567

[11] Geoffrey Hinton, Li Deng, Dong Yu, George Dahl, Abdel-rahman Mohamed,

Navdeep Jaitly, Andrew Senior, Vincent Vanhoucke, Patrick Nguyen, Brian Kings-

bury, et al. 2012. Deep Neural Networks for Acoustic Modeling in Speech Recogni-

tion: The Shared Views of Four Research Groups. IEEE Signal Processing Magazine

29, 6 (2012), 82–97.

[12] Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidirectional LSTM-CRF Models for

Sequence Tagging. arXiv:1508.01991

[13] Yiping Kang, Johann Hauswald, Cao Gao, Austin Rovinski, Trevor Mudge, Jason

Mars, and Lingjia Tang. 2017. Neurosurgeon: collaborative intelligence between

the cloud and mobile edge. In Proceedings of International Conference on Archi-
tectural Support for Programming Languages and Operating Systems. ACM, New

York, NY, USA, 615–629.

[14] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-

mization. In Proceedings of International Conference on Learning Representations.
[15] Nicholas D Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, Lei Jiao,

Lorena Qendro, and Fahim Kawsar. 2016. DeepX: A software accelerator for low-

power deep learning inference on mobile devices. In Proceedings of International
Conference on Information Processing in Sensor Networks. ACM, New York, NY,

USA, 1–12.

[16] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. 2017.

Pruning filters for efficient convnets. In Proceedings of International Conference
on Learning Representations.

[17] SparshMittal. 2019. A Survey on optimized implementation of deep learningmod-

els on the NVIDIA Jetson platform. Journal of Systems Architecture - Embedded
Systems Design 97 (2019), 428–442.

[18] Mehryar Mohri, Fernando Pereira, and Michael Riley. 2002. Weighted finite-state

transducers in speech recognition. Computer Speech & Language 16, 1 (2002),
69–88.

[19] Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. 2015.

Librispeech: An ASR corpus based on public domain audio books. In Proceedings
of International Conference on Acoustics, Speech and Signal Processing. IEEE Press,

Piscataway, NJ, USA, 5206–5210.

[20] Jeffrey Pennington, Richard Socher, and Christopher D. Manning. 2014. Glove:

Global Vectors forWord Representation. In Proceedings of Conference on Empirical
Methods in Natural Language Processing. 1532–1543.

[21] Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas Burget, Ondrej Glembek,

Nagendra Goel, Mirko Hannemann, Petr Motlicek, Yanmin Qian, Petr Schwarz,

Jan Silovsky, Georg Stemmer, and Karel Vesely. 2011. The Kaldi Speech Recog-

nition Toolkit. In Proceedings of Workshop on Automatic Speech Recognition and
Understanding. IEEE Press, Piscataway, NJ, USA.

[22] Rohit Prabhavalkar, Kanishka Rao, Tara N. Sainath, Bo Li, Leif Johnson, and

Navdeep Jaitly. 2017. A Comparison of Sequence-to-Sequence Models for Speech

Recognition. In Proceedings of Interspeech. 939–943.
[23] Mirco Ravanelli, Titouan Parcollet, and Yoshua Bengio. 2019. The Pytorch-

kaldi Speech Recognition Toolkit. In Proceedings of International Conference on
Acoustics, Speech and Signal Processing. IEEE Press, Piscataway, NJ, USA, 6465–

6469.

[24] Erik F. Tjong Kim Sang and Fien De Meulder. 2003. Introduction to the CoNLL-

2003 Shared Task: Language-Independent Named Entity Recognition. In Proceed-
ings of Conference on Natural Language Learning at HLT-NAACL. ACL, Strouds-
burg, PA, USA, 142–147.

[25] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014. Sequence to sequence learning

with neural networks. In Proceedings of Advances in Neural Information Processing
Systems. Curran Associates Inc., Red Hook, NY, USA, 3104–3112.

[26] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. 2017. Efficient

processing of deep neural networks: A tutorial and survey. Proc. IEEE 105, 12

(2017), 2295–2329.

[27] Subhashini Venugopalan, Marcus Rohrbach, Jeffrey Donahue, Raymond Mooney,

Trevor Darrell, and Kate Saenko. 2015. Sequence to sequence-video to text. In Pro-
ceedings of International Conference on Computer Vision. IEEE Press, Piscataway,

NJ, USA, 4534–4542.

[28] Wayne Xiong, Jasha Droppo, Xuedong Huang, Frank Seide, Michael Seltzer,

Andreas Stolcke, Dong Yu, and Geoffrey Zweig. 2017. The microsoft 2016 con-

versational speech recognition system. In Proceedings of International Conference
on Acoustics, Speech and Signal Processing. IEEE Press, Piscataway, NJ, USA,

5934–5938.

[29] Vikas Yadav and Steven Bethard. 2018. A Survey on Recent Advances in Named

Entity Recognition from Deep Learning models. In Proceedings of International
Conference on Computational Linguistics. ACL, Santa Fe, NM, USA, 2145–2158.

[30] Reza Yazdani, Marc Riera, Jose-Maria Arnau, and Antonio González. 2018. The

dark side of DNN pruning. In Proceedings of Annual International Symposium on
Computer Architecture. ACM, New York, NY, USA, 790–801.

[31] Shiliang Zhang, Ming Lei, Zhijie Yan, and Lirong Dai. 2018. Deep-FSMN for

Large Vocabulary Continuous Speech Recognition. In Proceedings of International
Conference on Acoustics, Speech and Signal Processing. IEEE Press, Piscataway, NJ,

USA, 5869–5873.

[32] Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang. 2019. Edge

Intelligence: Paving the Last Mile of Artificial Intelligence With Edge Computing.

Proc. IEEE 107, 8 (2019), 1738–1762.

https://arxiv.org/abs/1412.5567
https://arxiv.org/abs/1508.01991

A PROOF OF LEMMA 1
Proof. For the sake of brevity we use 𝑎𝑖, 𝑗 to denote the transi-

tion probability from the sequence y𝑖 in 𝑆𝑡 to 𝑗-th state, given also

the input sequence x |𝑡−1 | , i.e., 𝑎𝑖, 𝑗 = 𝑝 (𝑦𝑡 = 𝑗 |x |𝑡−1 |, y𝑖). Recall
that y𝑖 is the 𝑖-th Sequence in 𝑆𝑡−1, as defined in Sec. 3.1.2, and by

definition we have s𝑡 (𝑖, 𝑗) = (y𝑖 , 𝑦𝑡 = 𝑗). We have:

𝐻 ({s𝑡 (𝑖, 𝑗)}) = −
|𝑆𝑡−1 |∑
𝑖

𝑁∑
𝑗

𝑝 (y𝑖)𝑎𝑖, 𝑗𝑝𝑡, 𝑗 log(𝑝 (y𝑖)𝑎𝑖, 𝑗𝑝𝑡, 𝑗)

= −
|𝑆𝑡−1 |∑
𝑖

(𝑝 (y𝑖) log𝑝 (y𝑖)
𝑁∑
𝑗

𝑎𝑖, 𝑗𝑝𝑡, 𝑗)

−
𝑁∑
𝑗

(𝑝𝑡, 𝑗 log𝑝𝑡, 𝑗
|𝑆𝑡−1 |∑
𝑖

𝑝 (y𝑖)𝑎𝑖, 𝑗)

−
|𝑆𝑡−1 |∑
𝑖

𝑁∑
𝑗

𝑝 (y𝑖)𝑎𝑖, 𝑗𝑝𝑡, 𝑗 log𝑎𝑖, 𝑗

With

∑𝑁
𝑗 𝑎𝑖, 𝑗𝑝𝑡, 𝑗 ≤ 1 and

∑ |𝑆𝑡−1 |
𝑖

𝑝 (y𝑖)𝑎𝑖, 𝑗 ≤ 1, we find that

𝐻 ({s𝑡 (𝑖, 𝑗)}) ≤ −
|𝑆𝑡−1 |∑
𝑖

𝑝 (y𝑖) log 𝑝 (y𝑖) −
𝑁∑
𝑗

𝑝𝑡, 𝑗 log𝑝𝑡, 𝑗 (3)

−
|𝑆𝑡−1 |∑
𝑖

𝑁∑
𝑗

𝑎𝑖, 𝑗 log𝑎𝑖, 𝑗

= 𝐻 (𝑆𝑡−1) + 𝐻 (p𝑡) −
|𝑆𝑡−1 |∑
𝑖

𝑁∑
𝑗

𝑎𝑖, 𝑗 log𝑎𝑖, 𝑗 (4)

Since 𝐻 (𝑆𝑡−1) is fixed at time step 𝑡 and 𝑎𝑖, 𝑗 is pre-learned, (4) is a

strictly increasing function of 𝐻 (p𝑡). □

B PROOF OF LEMMA 2
Proof. If 𝑀 = 1 we have 𝐻 (v) = 1 as any other entropy 𝐻 (v)

is infeasible. We find 𝐵(v, 𝛽) = 𝑈𝑡 (𝐻 (v), 𝛽) = 1 for all 0 ≤ 𝛽 ≤ 1.

At first let us suppose, that 𝛽 ≤ 0.5 and all vector elements

satisfy 𝑣𝑖 ≤ 0.5 and therefore, the contributions to the entropy

𝐸 are all monotonically increasing and concave. We show that a

vector v which violates the bound cannot exist. Clearly, 𝐵(v, 𝛽) >
𝑀 or 𝐵(v, 𝛽) > ⌊1/𝛽⌋ is impossible due to Lemma 1. Suppose

there is a vector v with 𝐵(v, 𝛽) > ⌊𝐻 (v)/(𝛽 log(1/𝛽))⌋. Then∑𝑀
𝑖=1 𝑣𝑖 log(1/𝑣𝑖) ≥ 𝐵(v, 𝛽)𝛽 log 1/𝛽 ≥ (⌊𝐻 (v)/(𝛽 log(1/𝛽))⌋ +

1) (𝛽 log 1/𝛽) > 𝐻 (v).
Now let us look at the case where 𝑣1 > 0.5. Note that obviously

at most one element of v can exceed 0.5. Given 𝑣1, we find that

0 ≤ 𝐻 (v) ≤ (1 − 𝑣1) log((𝑀 − 1)/(1 − 𝑣1)) + 𝑣1𝑙𝑜𝑔(1/𝑣1) where
the lower bound is obtained with 𝑣1 = 1, and the upper bound

reduces monotonically with increasing 𝑣1 and is obtained with all

other𝑀 − 1 elements of 𝑝 equal to (1 − 𝑣1)/(𝑀 − 1). Therefore, if
𝛽 > 0.5we find𝑈𝑡 (𝐻 (v), 𝛽) = 1 if𝐻 (v) ≤ (1−𝛽) log((𝑀 −1)/(1−
𝛽)) + 𝛽𝑙𝑜𝑔(1/𝛽) and 𝑈𝑡 (𝐻 (v), 𝛽) = 0 otherwise. If 𝛽 ≤ 0.5, then

the bound ⌊𝐻 (v)/(𝛽 log(1/𝛽))⌋ still holds as the overall achievable
entropy 𝐻 (v) is smaller if one element satisfies 𝑣𝑖 > 0.5.

For the tightness of the bound we restrict ourselves to 𝑣𝑖 ≤ 0.5

for brevity, We show that there exists a vector 𝑝 for all terms of

𝐵(v, 𝛽) = 𝑈𝑡 (𝐻 (v), 𝛽). Suppose 𝑣𝑖 = 1/𝑀 and 𝛽 ≤ 1/𝑀 , then

𝐵(v, 𝛽) = 𝑀 ; in this case, the two other terms of the upper bound

are larger than 𝑀 . Now suppose that 𝑀𝛽 = ⌊1/𝛽⌋ elements of

𝑝 satisfy 𝑣𝑖 = 𝛽 , 𝛽 > 1/𝑀 and all other vector elements are (1 −
𝑀𝛽𝛽)/(𝑀−𝑀𝛽). One can show that in this case, the two other terms

of the bound are larger than ⌊1/𝛽⌋. Finally, suppose that 𝐻 (v) =
log(𝑀𝛼) and𝑀𝛼 < 𝑀 elements of 𝑝 satisfy 𝑣𝑖 = 1/𝑀𝛼 and all other

elements are 0. If 𝛽 = 1/(𝑀𝛼 + 1) we find ⌊𝐻 (v)/(𝛽 log(1/𝛽))⌋ =
⌊(𝑀𝛼+1) log(𝑀𝛼)/log(𝑀𝛼+1))⌋ = 𝑀𝛼 . Moreover, we have ⌊1/𝛽⌋ =
𝑀𝛼 + 1. □

C PROOF OF LEMMA 3
Proof. The probability distribution of s𝑡 (𝑖, 𝑗) is discrete and can

be represented by some vector v ∈ R |𝑆𝑡−1 |×𝑁 with 𝑣𝑖, 𝑗 = 𝑝 (s𝑡 (𝑖, 𝑗)).
And by definition we have |𝑆𝑡 | = |{(𝑖, 𝑗) |𝑝 (s𝑡 (𝑖, 𝑗)) ≥ 𝛽}| = 𝐵(𝛽).
Applying Lemma 2we have that 𝐵(𝐻 ({s𝑡 (𝑖, 𝑗)}, 𝛽) is monotonically

increasing function of 𝐻 ({s𝑡 (𝑖, 𝑗)}). □

	Abstract
	1 Introduction
	2 Motivation Study
	2.1 Example Sequence Labeling Tasks of Deep Inference Applications
	2.2 Side Effect of Network Pruning on Overall Delay of Deep Inference Applications

	3 Method
	3.1 Understanding DNN+Decoder Architecture
	3.2 Entropy-based Pruning
	3.3 Theoretical Analysis on Effectiveness of Entropy based Pruning

	4 Evaluation
	4.1 General Experimental Setup
	4.2 Performance on ASR
	4.3 Performance on NER
	4.4 Summary of Results

	5 Related Work
	6 Conclusion
	References
	A Proof of Lemma 1
	B Proof of Lemma 2
	C Proof of Lemma 3

