
Pruning-Aware Merging for Efficient Multitask Inference
Xiaoxi He

ETH Zürich

Zürich, Switzerland

hex@ethz.ch

Dawei Gao

SKLSDE & BDBC, Beihang University

Beijing, China

david_gao@buaa.edu.cn

Zimu Zhou

Singapore Management University

Singapore, Singapore

zimuzhou@smu.edu.sg

Yongxin Tong

SKLSDE & BDBC, Beihang University

Beijing, China

yxtong@buaa.edu.cn

Lothar Thiele

ETH Zürich

Zürich, Switzerland

thiele@ethz.ch

ABSTRACT
Many mobile applications demand selective execution of multiple

correlated deep learning inference tasks on resource-constrained

platforms. Given a set of deep neural networks, each pre-trained

for a single task, it is desired that executing arbitrary combina-

tions of tasks yields minimal computation cost. Pruning each net-

work separately yields suboptimal computation cost due to task

relatedness. A promising remedy is to merge the networks into

a multitask network to eliminate redundancy across tasks before

network pruning. However, pruning a multitask network combined

by existing network merging schemes cannot minimise the com-

putation cost of every task combination because they do not con-

sider such a future pruning. To this end, we theoretically identify

the conditions such that pruning a multitask network minimises

the computation of all task combinations. On this basis, we pro-

pose Pruning-Aware Merging (PAM), a heuristic network merging

scheme to construct a multitask network that approximates these

conditions. The merged network is then ready to be further pruned

by existing network pruning methods. Evaluations with different

pruning schemes, datasets, and network architectures show that

PAM achieves up to 4.87× less computation against the baseline

without network merging, and up to 2.01× less computation against

the baseline with a state-of-the-art network merging scheme.

CCS CONCEPTS
• Computing methodologies→ Neural networks.

KEYWORDS
Deep Learning; Network Pruning; Multitask Inference

ACM Reference Format:
Xiaoxi He, Dawei Gao, Zimu Zhou, Yongxin Tong, and Lothar Thiele. 2021.

Pruning-Aware Merging for Efficient Multitask Inference. In Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

KDD ’21, August 14–18, 2021, Virtual Event, Singapore
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8332-5/21/08. . . $15.00

https://doi.org/10.1145/3447548.3467271

Input

Task A Task B Task C

Merge Prune

Network

Output

A B C A B C

Figure 1: Efficient multitask inference by “merge & prune”.
Three networks pre-trained for tasks 𝐴, 𝐵 and 𝐶 are first
merged into a multitask network and then pruned.

(KDD ’21), August 14–18, 2021, Virtual Event, Singapore. ACM, New York,

NY, USA, 11 pages. https://doi.org/10.1145/3447548.3467271

1 INTRODUCTION
Deep neural networks that can run locally on resource-constrained

devices hold potential for various emerging applications such as au-

tonomous drones and social robots [7, 18]. These applications often

simultaneously perform a set of correlated inference tasks based

on the current context to deliver accurate and adaptive services.

Although deep neural networks pre-trained for individual tasks are

readily available [17, 24], deploying multiple such networks easily

overwhelms the resource budget.

To support these applications on low-resource platforms, we

investigate efficient multitask inference. Given a set of correlated

inference tasks and deep neural networks (each network pre-trained

for an individual task), we aim to minimise the computation cost

when any subset of tasks is performed at inference time.

One naive solution to efficient multitask inference is to prune
each network for individual tasks separately. A deep neural network

is typically over-parameterised [5]. Network pruning [3, 4, 8, 21, 25]

can radically reduce the number of operations within a network

without accuracy loss in the inference task. This solution, however,

is only optimal if a single task is executed at a time. When multiple

correlated tasks are running concurrently, this solution is unable to

save computation cost by exploiting tasks relatedness and sharing

intermediate results among networks.

A more promising solution framework is “merge & prune”, which
merges multiple networks into a multitask network, before pruning
it (Fig. 1). A few pioneer studies [2, 13] have explored network merg-

ing schemes to eliminate the redundancy among multiple networks

pre-trained for correlated tasks. However, pruning a multitask net-

work merged via these schemes can only minimise computation

cost when all tasks are executed at the same time.

https://doi.org/10.1145/3447548.3467271
https://doi.org/10.1145/3447548.3467271

In this paper, we propose Pruning-Aware Merging (PAM), a

new network merging scheme for efficient multitask inference.

By applying existing network pruning methods on the multitask

network merged by PAM, the computation cost when performing

any subset of tasks can be reduced. Extensive experiments show

that “PAM & Prune” consistently achieves solid advantages over

the state-of-the-art network merging scheme across tasks, datasets,

network architectures and pruning methods.

Our main contributions and results are as follows:

• We theoretically show that pruning a multitask network

may not simultaneously minimise the computation cost of

all task combinations in the network. We then identify con-

ditions such that minimising the computation of all task

combinations via network pruning becomes feasible. To the

best of our knowledge, this is the first explicit analysis on

the applicability of network pruning in multitask networks.

• We propose Pruning-Aware Merging (PAM), a heuristic net-

work merging scheme to construct a multitask network that

approximately meets the conditions in our analysis and en-

ables “merge & prune” for efficient multitask inference.

• We evaluate PAM with various pruning schemes, datasets

and architectures. PAM achieves up to 4.87× less computa-

tion cost against the baseline without network merging, and

up to 2.01× less computation cost against the baseline with

the state-of-the-art network merging scheme [13].

In the rest of this paper, we review related work in Sec. 2, in-

troduce our problem statement in Sec. 3, theoretical analysis in

Sec. 4 and our solution in Sec. 5. We present the evaluations of our

methods in Sec. 6 and finally conclude in Sec. 7.

2 RELATEDWORK
Our work is related to the following categories of research.

Network Pruning. Network pruning reduces the number of oper-

ations in a deep neural network without loss in accuracy [4, 25]. Un-

structured pruning removes unimportant weights [6, 8, 9]. However,

customised hardware [10] is compulsory to exploit such irregular

sparse connections for acceleration. Structured pruning enforces

sparsity at the granularity of channels/filters/neurons [3, 19, 21, 27].

The resulting sparsity is fit for acceleration on general-purpose pro-

cessors. Prior pruning proposals implicitly assume a single task in

the given network. We identify the challenges to prune a multitask

network and propose a network merging scheme such that pruning

the merged multitask network minimises computation cost of all

task combinations in the network.

Multitask Networks. A multitask network can be either con-

structed from scratch via Multi-Task Learning (MTL) or merged

from multiple networks pre-trained for individual tasks. MTL joint

trains multiple tasks for better generalisation [29], while we focus

on the computation cost of running multiple tasks at inference

time. Network merging schemes [2, 13] aim to construct a com-

pact multitask network from networks pre-trained for individual

tasks. Both MTZ [13] and NeuralMerger [2] enforce weight sharing

among networks to reduce their overall storage. In contrast, we

account for the computation cost of a multitask network. Although

constructing a multitask network using these schemes [2, 13] and

(a)

X

(b)

' A
iL

' ,A B
iL

'B
iL

(c)

X
A
iL

B
iL

,A B
iL

,A BG AG

ˆ AY ˆ AY
ˆ BYˆ BYpredicitons of , A BY Y

Figure 2: Important notations: (a) graph representation𝐺𝐴,𝐵
of amultitask network for tasks𝐴 and 𝐵, with𝑁𝐴 = 2 hidden
layers for task𝐴 and𝑁𝐵 = 3hidden layers for task𝐵; (b) layer
outputs for the 𝑖-th layer; (c) subgraph 𝐺𝐴 for task 𝐴.

pruning it via existing pruningmethods can reduce the computation

when all tasks are concurrently executed, they cannot minimise the

computation cost for every combination of tasks.

3 PROBLEM STATEMENT
We define and analyse our problem based on the graph represen-

tation of neural networks. The graph representation reflects the

computation cost of neural networks (see below) and facilitates an

information theoretical understanding on network pruning (see

Sec. 4). Fig. 2 shows important notations used throughout this paper.

For ease of illustration, we explain our analysis using two tasks.

Extensions to more than two tasks are in Sec. 5.4.

3.1 Graph Representation of Neural Networks

Task. Consider three sets of random variable X ∈ X, Y𝐴 ∈ Y𝐴 ,
and Y𝐵 ∈ Y𝐵 . Task 𝐴 outputs Ŷ𝐴 , a prediction of Y𝐴 , by learning

the conditional distribution Pr{Y𝐴 = y|X = x}. Task 𝐵 outputs Ŷ𝐵 ,
a prediction of Y𝐵 , by learning Pr{Y𝐵 = y|X = x}.
Single-Task Network. For task 𝐴, a neural network without feed-

back loops can be represented by an acyclic directed graph 𝐺𝐴 =

{𝑉𝐴, 𝐸𝐴}. Each vertex represents a neuron. There is an edge be-

tween two vertices if two neurons are connected. The vertex set𝑉𝐴
can be categorised into three types of nodes: source, internal and

sink node. deg
− (𝑣)/deg+ (𝑣) is the indegree/outdegree of a vertex 𝑣 .

• Source node set v𝐴
𝑋
= {𝑣 |𝑣 ∈ 𝑉𝐴 ∧ deg− (𝑣) = 0} represents

the input layer. Each source node represents an input neuron
and outputs a random variable 𝑋𝑖 ∈ X. The output of the
input layer is the input random variable set X.
• Internal nodes 𝑣𝑖 ∈ {𝑣 |𝑣 ∈ 𝑉 ∧ deg

− (𝑣) ≠ 0 ∧ deg+ (𝑣) ≠ 0}
represents the hidden neurons. The output of each hidden

neuron is generated by calculating the weighted sum of its

inputs and then applying an activation function.

• Sink node set v𝐴
𝑌
= {𝑣 |𝑣 ∈ 𝑉 ∧ deg+ (𝑣) = 0} represents the

output layer. Each sink node represents an output neuron
and the output is calculated in the same way as the hidden

neurons. The output of the output layer is the prediction Ŷ𝐴

of ground-truth labels Y𝐴 .
We organise the hidden neurons 𝑣𝑖 of𝐺

𝐴
into layers v𝐴

𝑖
by Algo-

rithm 1. 𝑁 + (v) represents the out-coming neighbours of the vertex

set v. Algorithm 1 can organise any acyclic single-task network

into layers and the layer outputs satisfy the Markov property.

Algorithm1:Organise vertices in the graph representation
of a neural network into layers.

Input: A neural network graph 𝐺𝐴

Output: 𝑁 + 1 layers v𝐴
𝑖
with 𝑖 = 1, · · · , 𝑁 + 1.

1 v𝐴
0
← v𝐴

𝑋
;

2 𝑖 ← 0;

3 while 𝑁 + (v𝐴
𝑖
) ≠ v𝐴

𝑌
do

4 v𝐴
𝑖+1 ← ∅;

5 for each node 𝑣𝐴
𝑖,𝑗
∈ v𝐴

𝑖
do

6 if 𝑁 + (𝑣𝐴
𝑖,𝑗
) ∩ v𝐴

𝑌
≠ ∅ then

7 v𝐴
𝑖+1 ← v𝐴

𝑖+1 ∪ {𝑣
𝐴
𝑖,𝑗
};

8 end
9 end

10 v𝐴
𝑖+1 ← v𝐴

𝑖+1 ∪
(
𝑁 + (v𝐴

𝑖
) \ v𝐴

𝑖

)
;

11 𝑖 ← 𝑖 + 1;
12 end
13 𝑁 ← 𝑖;

14 v𝐴
𝑁+1 ← v𝐴

𝑌
;

Multitask Network. For task 𝐴 and 𝐵, a multitask network with-

out feedback loops can be represented by an acyclic directed graph

𝐺𝐴,𝐵 . All paths from the input neurons to the output neurons for

task 𝐴 form a subgraph 𝐺𝐴 (see Fig. 2(c)), which is in effect the

same as a single-task network. When only task𝐴 is performed, only

𝐺𝐴 is activated. Subgraph𝐺𝐵 is defined similarly. We also organise

vertices of 𝐺𝐴 and 𝐺𝐵 into layers with Algorithm 1. Layer outputs

of 𝐺𝐴 and 𝐺𝐵 are denoted as L̃𝐴
𝑖
and L̃𝐵

𝑖
. Suppose 𝐺𝐴 and 𝐺𝐵 have

respectively𝑁𝐴 and𝑁𝐵 hidden layers.We assume𝑁𝐴 ≤ 𝑁𝐵 w.l.o.g..

Then the 𝑖-th layer output of 𝐺𝐴,𝐵 is defined as L𝐴,𝐵
𝑖

= L̃𝐴
𝑖
∪ L̃𝐵

𝑖

with 𝑖 = 0, · · · , 𝑁𝐴 . As shown in Fig. 2(b), L𝐴,𝐵
𝑖

consists of three

sets of neurons: L′𝐴
𝑖
, L′𝐵
𝑖

and L′𝐴,𝐵
𝑖

.

Remarks. The above definitions have two benefits. (i) The com-

putation cost of a neural network is an increasing function of the

size of the graph, i.e., the number of edges plus vertices. Reducing

the computation cost of the network is transformed into remov-

ing edges or vertices in the graph. (ii) For a single-task network

with 𝑁𝐴 hidden layers, its layer outputs form a Markov chain:

Y𝐴 → L𝐴
0
→ · · · → L𝐴

𝑁𝐴+1. All layer outputs L
𝐴,𝐵
𝑖

in a multitask

network also form a Markov chain. The Markov property allows

an information theoretical analysis on neural networks [23, 26].

3.2 Problem Definition
Given two single-task networks 𝐺𝐴 and 𝐺𝐵 pre-trained for task

𝐴 and 𝐵, we aim to construct a multitask network𝐺𝐴,𝐵 such that

pruning on 𝐺𝐴,𝐵 can minimise the number of vertices and edges

in 𝐺𝐴,𝐵 , 𝐺𝐴 and 𝐺𝐵 while preserving inference accuracy on 𝐴 and

𝐵. To ensure minimal computation of any subset of tasks, we need
to minimise the number of vertices and edges in any subgraph. For
two tasks,𝐺𝐴,𝐵 corresponds to running task 𝐴 and 𝐵 concurrently;

𝐺𝐴 (𝐺𝐵) corresponds to running task𝐴 (𝐵) only. Next, we show the

difficulty to optimise all subgraphs simultaneously.

4 THEORETICAL UNDERSTANDING
This section presents a theoretical understanding on the challenges

to prune a multitask network and identifies conditions such that

minimising the computation cost of all task combinations via prun-

ing becomes feasible (Theorem 1). Proofs are in Appendix A.

4.1 Why Pruning a Single-task Network Work
Pruning a single-task network reduces the computation cost of a

neural network while retaining task inference accuracy by sup-

pressing redundancy in the network [4, 25]. From the information

theoretical perspective [23, 26], since the layer outputs form a

Markov chain, the inference accuracy for a given task 𝐴 is posi-

tively correlated to the task related information transmitted through

the network at each layer, measured by 𝐼 (L𝐴
𝑖
;Y𝐴). All other infor-

mation is irrelevant for the task. Hence the redundancy within a
single-task network can be defined as below.

Definition 1. For the 𝑖-th layer in the single-task neural net-

work 𝐺𝐴 , the redundancy of the layer is defined as R𝐴 (L𝐴𝑖) =∑
𝐿𝐴
𝑖,𝑗
∈L𝐴

𝑖
𝐻 (𝐿𝐴

𝑖,𝑗
) − 𝐼 (L𝐴

𝑖
;Y𝐴).∑

𝐿𝐴
𝑖,𝑗
∈L𝐴

𝑖
𝐻 (𝐿𝐴

𝑖,𝑗
) measures the maximal amount of information

the layer can express. 𝐼 (L𝐴
𝑖
;Y𝐴) measures the amount of task 𝐴

related information in the layer output. By definition, R𝐴 (L𝐴𝑖) ≥ 0.

Remarks.
∑
𝐿𝐴
𝑖,𝑗
∈L𝐴

𝑖
𝐻 (𝐿𝐴

𝑖,𝑗
) is positively correlated to the number

of vertices and incoming edges of the 𝑖-th layer. Therefore, in a

well trained network where 𝐼 (L𝐴
𝑖
;Y𝐴) can no longer increase, the

computation cost can be minimised by reducing R𝐴 (L𝐴𝑖).
Accordingly, pruning a single-task network can be formalised

as an optimisation problem

minimise

𝑁𝐴+1∑
𝑖=1

(
R𝐴 (L𝐴𝑖) − 𝜉𝑖 · 𝐼 (L

𝐴
𝑖 ;Y

𝐴)
)

(1)

where 𝜉𝑖 > 0 controls the trade-off between inference accuracy and

computation cost.

Remarks. Existing pruning methods implicitly assume a single-

task network. That is, they are all designed to solve optimisation

problem (1), even though the concrete strategies vary. We now

show the problems that occur when these pruning methods are

applied to a multitask network.

4.2 Why Pruning a Multitask Network Fail
As mentioned in Sec. 3.2, we aim to minimise the computation

cost of any subset of tasks, which is a multi-objective optimisation

problem. As wewill show below, existing network pruningmethods

are unable to handle these objectives simultaneously.

We first define redundancy when performing two tasks at the

same time, similarly as in Definition 1.

Definition 2. For a multitask network𝐺𝐴,𝐵 , the redundancy of its

𝑖-th layer is R𝐴,𝐵 (L𝐴,𝐵𝑖) =
∑
𝐿
𝐴,𝐵
𝑖,𝑗
∈L𝐴,𝐵

𝑖

𝐻 (𝐿𝐴,𝐵
𝑖,𝑗
) − 𝐼 (L𝐴,𝐵

𝑖
;Y𝐴,Y𝐵).

Following the above definitions of redundancy, our objective in

Sec. 3.2 is equivalent to minimising the redundancy in𝐺𝐴,𝐵 as well

as in its two subgraphs 𝐺𝐴 and 𝐺𝐵 , which leads to the following

three-objective optimisation (still, we assume 𝑁𝐴 ≤ 𝑁𝐵 w.l.o.g.):

minimise

𝑁𝐴+1∑
𝑖=1

(
R𝐴 (L̃𝐴𝑖) − ˜𝜉𝐴𝑖 · 𝐼 (L̃

𝐴
𝑖 ;Y

𝐴)
)
,

𝑁𝐵+1∑
𝑖=1

(
R𝐵 (L̃𝐵𝑖) − ˜𝜉𝐵𝑖 · 𝐼 (L̃

𝐵
𝑖 ;Y

𝐵)
)
,

𝑁𝐴∑
𝑖=1

(
R𝐴,𝐵 (L𝐴,𝐵𝑖) − 𝜉

𝐴
𝑖 · 𝐼 (L̃

𝐴
𝑖 ;Y

𝐴) − 𝜉𝐵𝑖 · 𝐼 (L̃
𝐵
𝑖 ;Y

𝐵)
)

(2)

Reducing R𝐴 (L̃𝐴𝑖), R𝐵 (L̃
𝐵
𝑖
) and R𝐴,𝐵 (L𝐴,𝐵𝑖) decreases the number

of vertices and edges in𝐺𝐴 ,𝐺𝐵 and𝐺𝐴,𝐵 , respectively. 𝜉
𝐴
𝑖
, 𝜉𝐵
𝑖
, ˜𝜉𝐴
𝑖
, ˜𝜉𝐵
𝑖
>

0 are parameters to control the trade-off between computation cost

and inference accuracy, as well as to balance task 𝐴 and 𝐵.

To solve optimisation problem (2) with prior network pruning

methods, we observe two problems.

Problem 1: The first two objectives in (2) may conflict. This
is because reducing R𝐵 (L̃𝐵𝑖) may decrease 𝐼 (L̃𝐴

𝑖
;Y𝐴) (proofs in

Appendix A.1). In other words, when pruning subgraph 𝐺𝐵 , it is

possible that some information related to task A is removed from

the shared vertices between𝐺𝐴 and𝐺𝐵 . Hence 𝐼 (L̃𝐴𝑖 ;Y
𝐴) decreases

and the inference accuracy of task 𝐴 deteriorates.

Problem 2: It is unclear how to minimise the third objective
in (2).Asmentioned in Sec. 4.1, most pruning methods are designed

with a single-task network in mind. It is unknown how to apply

them to a multitask network 𝐺𝐴,𝐵 with architecture in Fig. 2 (a).

4.3 When Pruning a Multitask Network Work
The two problems in Sec. 4.2 show that not all multitask networks

can be pruned for efficientmultitask inference. However, amultitask

network can be effectively pruned if it meets the conditions stated

by the following theorem.

Theorem 1. If ∀ 1 ≤ 𝑖 ≤ 𝑁𝐴 , the conditions below are satisfied:

𝐼 (L′𝐴𝑖 ; L′𝐵𝑖 ;Y𝐴;Y𝐵) = 0

𝐼 (L′𝐴,𝐵
𝑖

;Y𝐴 |L′𝐴𝑖 ,Y
𝐵) = 0

𝐼 (L′𝐴,𝐵
𝑖

;Y𝐵 |L′𝐵𝑖 ,Y
𝐴) = 0

(3)

where 𝐼 (L′𝐴
𝑖
; L′𝐵
𝑖
;Y𝐴;Y𝐵) is the co-information [1], then the three-

objective optimisation problem (2) can be reduced to two non-

conflicting optimisation problems that can be solved independently:

minimise

𝑁𝐴+1∑
𝑖=1

R𝐴 (L̃𝐴𝑖) − ˜𝜉𝐴𝑖 · 𝐼 (L̃
𝐴
𝑖 ;Y

𝐴),

minimise

𝑁𝐵+1∑
𝑖=1

R𝐵 (L̃𝐵𝑖) − ˜𝜉𝐵𝑖 · 𝐼 (L̃
𝐵
𝑖 ;Y

𝐵)
(4)

Each of the two optimisation problems (4) are in effect single-

task pruning problem like optimisation problem (1), which can be

effectively solved by prior pruning proposals.

Remarks. Theorem 1 provides important guidelines to design the

network merging scheme for our problem in Sec. 3.2. Specifically,

if 𝐺𝐴 and 𝐺𝐵 can be merged into a a multitask network 𝐺𝐴,𝐵 such

that conditions (3) are satisfied, we can simply apply existing net-

work pruning on the two subgraphs 𝐺𝐴 and 𝐺𝐵 to minimise the

computation cost when performing any subset of tasks.

5 PRUNING-AWARE MERGING
Based on the above analysis, we propose Pruning-Aware Merging

(PAM), a novel network merging scheme that constructs a multitask

network from pre-trained single task networks. PAM approximately

meets the conditions in Theorem 1 such that the merged multitask

network can be effectively pruned for efficient multitask inference.

5.1 PAMWorkflow
Given two single-task networks 𝐺𝐴 and 𝐺𝐵 pre-trained for task 𝐴

and 𝐵 (𝑁𝐴 ≤ 𝑁𝐵), PAM constructs a multitask network 𝐺𝐴,𝐵 with

the steps below (see Fig. 3).

(1) Assign L𝐴,𝐵
0

= X, as 𝐺𝐴,𝐵 , 𝐺𝐴 and 𝐺𝐵 use the same inputs.

(2) For 𝑖 = 1, · · · , 𝑁𝐴 , regroup the neurons from L𝐴
𝑖
and L𝐵

𝑖
into

L′𝐴
𝑖
, L′𝐵
𝑖

and L′𝐴,𝐵
𝑖

by the regrouping algorithm in Sec. 5.2.

(3) Take over the output layer for task 𝐴: L̃𝐴
𝑁𝐴+1 = L𝐴

𝑁𝐴+1. For
𝑖 = 𝑁𝐴 + 1, · · · , 𝑁𝐵 + 1, take over the remaining layers from

𝐺𝐵 : L̃𝐵𝑖 = L𝐵
𝑖
.

(4) Reconnect the neurons as in Fig. 3. If a connection exist

before merging, it preserves its original weight. Otherwise

it is initialised with a zero.

(5) Finetune 𝐺𝐴,𝐵 on 𝐴 and 𝐵 to learn the newly added con-

nections. For the shared connections, L′𝐴,𝐵
𝑖−1 → L′𝐴,𝐵

𝑖
. The

gradients are first calculated separately on𝐴 and 𝐵, and then

averaged before weight updating.

Now the multitask network 𝐺𝐴,𝐵 is ready to be pruned. From The-

orem 1, we can apply network pruning on the two subgraphs 𝐺𝐴

and 𝐺𝐵 independently and achieve a minimal computation cost for

all combinations of tasks. However, since we only approximate the

conditions in (3), pruning 𝐺𝐴 and 𝐺𝐵 is not perfectly independent

in practice. Hence we prune 𝐺𝐴 and 𝐺𝐵 in an alternating manner
to balance between task 𝐴 and 𝐵.

5.2 Regrouping Algorithm
The core of PAM is the regrouping algorithm in the second step

in Sec. 5.1. It regroups the neurons from L𝐴
𝑖
and L𝐵

𝑖
into three sets:

L′𝐴
𝑖
, L′𝐵
𝑖

and L′𝐴,𝐵
𝑖

, such that the conditions (3) in Theorem 1 are

satisfied. However, it is computation-intensive to estimate the co-

information and conditional mutual information in (3) precisely.

We rely on the following theorem to approximate the conditions.

Theorem 2. The conditions in (3) can be achieved by minimising

𝐼 (L′𝐴
𝑖
;Y𝐵), 𝐼 (L′𝐵

𝑖
;Y𝐴), and maximising 𝐼 (L′𝐴

𝑖
;Y𝐴), 𝐼 (L′𝐵

𝑖
;Y𝐵).

Remarks. 𝐼 (L′𝐴
𝑖
;Y𝐵) and 𝐼 (L′𝐵

𝑖
;Y𝐴) describe the “misplaced” in-

formation, i.e., the information that is useful for one task, but con-

tained in neurons that are not connected to the outputs of this task.

Therefore such information is redundant and needs to be minimised.

𝐼 (L′𝐴
𝑖
;Y𝐴) and 𝐼 (L′𝐵

𝑖
;Y𝐵) measure the “relevant” information, i.e.,

the information useful for one task and contained in neurons con-

nected to this task. Note that this information may not be simply

maximised, because it includes the information that is useful for

Step 1

ˆ BY

ˆ AY

XX X

Step 2

ˆ BY

X

Step 3

X

ˆ AY

Step 4, 5

ˆ BY

X

ˆ AY

'
1
AL ' ,

1
A BL '

1
BL

AG BG ,A BG

Figure 3: PAM workflow to construct a multitask network (𝐺𝐴,𝐵) from two single-task networks (𝐺𝐴 and 𝐺𝐵).

Algorithm 2: Regroup algorithm.

Input: L𝐴
𝑖
, L𝐵
𝑖
, X, Y𝐴 , Y𝐵 , 𝛼

Output: L′𝐴
𝑖
, L′𝐵
𝑖
, L′𝐴,𝐵
𝑖

1 𝑁 = min{𝑁𝐴, 𝑁𝐵};
2 for 𝑖 ← 1 to 𝑁 do
3 F𝐴 ← F𝐵 ← L𝐴

𝑖
∪ L𝐵

𝑖
;

4 L′𝐴
𝑖
← ∅;

5 while 𝐼 (L′𝐴
𝑖
;Y𝐵) ≤ 𝛼 do

6 𝐿𝑖, · ← argmin𝐿𝑖,𝑗 ∈F𝐴𝑖
𝐼 ({𝐿𝑖, 𝑗 } ∪ L′𝐴𝑖 ;Y𝐵);

7 move the neuron 𝐿𝑖, · from F𝐴 to L′𝐴
𝑖

8 end
9 L′𝐵

𝑖
← ∅ ;

10 while 𝐼 (L′𝐵
𝑖
;Y𝐴) ≤ 𝛼 do

11 𝐿𝑖, · ← argmin𝐿𝑖,𝑗 ∈F𝐵𝑖
𝐼 ({𝐿𝑖, 𝑗 } ∪ L′𝐵𝑖 ;Y𝐴);

12 move the neuron 𝐿𝑖, · from F𝐵 to L′𝐵
𝑖

13 end
14 The remaining neurons join L′𝐴,𝐵

𝑖
:

L′𝐴,𝐵
𝑖
← L𝐴

𝑖
∪ L𝐵

𝑖
\
(
L′𝐴
𝑖
∪ L′𝐵

𝑖

)
;

15 If a neuron exists in both L′𝐴
𝑖

and L′𝐵
𝑖
, remove the

neuron from them both.

16 end

both tasks. It requires simultaneously minimising the “misplaced”

information and maximising the “correct” information to achieve

the conditions in (3). The proof of Theorem 2 is in Sec. A.3.

Based on Theorem 2, we propose an algorithm to regroup the

neurons such that conditions (3) are approximately met. It con-

structs the largest possible set L′𝐴
𝑖

and L′𝐵
𝑖

from all the neurons

in L𝐴
𝑖
and L𝐵

𝑖
while 𝐼 (L′𝐴

𝑖
;Y𝐵) and 𝐼 (L′𝐵

𝑖
;Y𝐴) remain close to zero,

such that 𝐼 (L′𝐴
𝑖
;Y𝐴) and 𝐼 (L′𝐵

𝑖
;Y𝐵) are approximately maximised.

To estimate 𝐼 (L′𝐴
𝑖
;Y𝐵) and 𝐼 (L′𝐵

𝑖
;Y𝐴), we use a Kullback–Leibler-

based mutual information upper bound estimator from [15].

Algorithm 2 illustrates the pseudocode to regroup the neurons

such that the conditions in Theorem 1 are approximated met. Cen-

tral in Algorithm 2 is a greedy search in Lines 5-8 and 10-13. In

Lines 5-8, we search for the largest possible set of neuron L′𝐴
𝑖

while

𝐼 (L′𝐴
𝑖
;Y𝐵) remains approximately zero (smaller than a pre-defined

threshold 𝛼), such that 𝐼 (L′𝐴
𝑖
;Y𝐴) is approximately maximised. Sim-

ilarly, in Lines 10-13, we approximately maximise 𝐼 (L′𝐵
𝑖
;Y𝐵) while

keeping 𝐼 (L′𝐵
𝑖
;Y𝐴) close to zero. According to Theorem 2, the con-

ditions in Theorem 1 are approximately met.

Practical Issue: How to EstimateMutual Information.We use

a Kullback–Leibler-based mutual information upper bound esti-

mator from [15] to estimate the upper bounds of 𝐼 (L′𝐴
𝑖
;Y𝐵) and

𝐼 (L′𝐵
𝑖
;Y𝐴). Since the upper bounds are approximate, it is impossi-

ble to request them to be exactly zero. Hence, we use a threshold

parameter 𝛼 to keep 𝐼 (L′𝐴
𝑖
;Y𝐵) and 𝐼 (L′𝐵

𝑖
;Y𝐴) close to zero.

Practical Issue: How to Tune Threshold 𝛼 . The parameter 𝛼

affects the performance of “PAM&prune”. A larger𝛼 results inmore

neurons in L′𝐴
𝑖

and L′𝐵
𝑖

and fewer shared neurons in L′𝐴,𝐵
𝑖

. In this

case, the multitask network after “PAM & prune” performs worse

in terms of efficiency when both tasks are executed concurrently,

but better when only one task is executed (similar to “baseline 1

& prune”). Conversely, a smaller 𝛼 results in more shared neurons.

In this case, the multitask network after “PAM & prune” performs

worse when only one task is executed, but better when both tasks

are executed concurrently, (similar to “baseline 2 & prune”).

The parameter 𝛼 can be empirically tuned as follows:

(1) Execute Algorithm 2 with a small 𝛼 .

(2) Increase the value of 𝛼 slightly and rerun Algorithm 2. Since

Lines 5-8 and 10-13 are greedy search, the results for the

smaller 𝛼 in Step 1 (i.e., the already constructed neuron sets

L′𝐴
𝑖

and L′𝐵
𝑖

) can be reused, instead of starting with empty

sets as in Line 4 and 9.

(3) Iterate Step 2 till a satisfying balance among task combina-

tions. In each iteration of Step 2, we can reuse the neuron

sets L′𝐴
𝑖

and L′𝐵
𝑖

from the last iteration.

The impact of 𝛼 is shown in Appendix C.

5.3 Extensions to ResNets
In order to support merging Residual Networks [11], PAM needs

to be slightly modified. As illustrated in Fig. 4, the regrouping of

the last layer in each residual block happens not directly after the

weighted summation, but after the superposition with the shortcut

connection and just before the vector is passed as inputs to the first

layer in the next block. This input vector of the first layer in each

block is also regrouped using Algorithm 2 and then pruned at a

later stage. This special treatment for the last layer in each residual

block is consistent with ResNet compatible pruning methods such

as [21], which can also prune the block outputs just before it is fed

into the first layer in the next block.

Last Block

Current Block

Next Block

 , ,X X X  , ,X X X

 ,X X  ,X X  ,X X

 , ,X X X  , ,X X X

AG

 , ,X X X  , ,X X X

 , ,X X X  , ,X X X

BG

Figure 4: Applying PAM on residual blocks. Vectors are de-
noted as (𝑋, · · · , 𝑋). Dotted lines are identical connections,
and firm lines represent weighted connections for neurons.

5.4 Extension to Three or More Tasks
When there are 𝐾 ≥ 3 tasks, we define the set of all the task as

𝜐 = {𝑡1, · · · , 𝑡𝐾 }. The merged multitask network can be divided

into subgraphs 𝐺𝜏 , where 𝜏 ⊆ 𝜐 and 𝜏 ≠ ∅ is a nonempty subset of

tasks. Each vertex in 𝐺𝜏 has paths to all the outputs Ŷ𝑡 with 𝑡 ∈ 𝜏 .
When a task combination (i.e., a subset of tasks) 𝜏 is executed, only
subgraph𝐺𝜏 is activated. Layers in𝐺𝜏 is denoted as L̃𝜏𝑖 . The output
layer for task combination 𝜏 is denoted as Ŷ𝜏 =

⋃
𝑡 ∈𝜏 Ŷ𝑡 , which is

the prediction of ground-truth labels Y𝜏 =
⋃
𝑡 ∈𝜏 Y𝑡 .

Extension ofTheorem1. For any pair of non-overlapped nonempty

subsets of task 𝜏𝐴 and 𝜏𝐵 (𝜏𝐴 ∩ 𝜏𝐵 = ∅), define:
A𝑖 = L̃𝜏𝐴

𝑖
\ L̃𝜏𝐵

𝑖
(5)

B𝑖 = L̃𝜏𝐵
𝑖
\ L̃𝜏𝐴

𝑖
(6)

M𝑖 = L̃𝜏𝐴
𝑖
∩ L̃𝜏𝐵

𝑖
(7)

Then Theorem 1 is extended into:

Theorem 3. If for all 𝑖 = 1, · · · , 𝑁 with 𝑁 = min𝑡 ∈𝜐 𝑁𝑡 , and for

any pair of non-overlapped nonempty subsets of task 𝜏𝐴 and 𝜏𝐵 ,

the following conditions are satisfied:

𝐼 (A𝑖 ;B𝑖 ;Y𝜏𝐴 ;Y𝜏𝐵) = 0

𝐼 (M𝑖 ;Y𝜏𝐴 |A𝑖 ,Y𝜏𝐵) = 0

𝐼 (M𝑖 ;Y𝜏𝐵 |B𝑖 ,Y𝜏𝐴) = 0

(8)

then the computation cost of executing all task combinations can

be minimised by the following𝐾 non-conflicting optimisation prob-

lems that can be solved independently:

For every 𝑡 ∈ 𝜐: minimise

𝑁 +1∑
𝑖=1

R𝑡 (L̃𝑡𝑖) − ˜𝜉𝑡𝑖 · 𝐼 (L̃
𝑡
𝑖 ;Y

𝑡) (9)

Theorem 3 can be proven by recursively applying Theorem 1.

Extension of PAM. The neuron sets L′𝐴
𝑖
, L′𝐵
𝑖

and L′𝐴,𝐵
𝑖

are ex-

tended to:

L′𝜏𝑖 =
⋂
𝑡 ∈𝜏

L̃𝑡𝑖 \
⋃
𝑡∉𝜏

L̃𝑡𝑖 (10)

Note that neurons in L′𝜏
𝑖

are activated iff any task 𝑡 ∈ 𝜏 is exe-
cuted. Now Algorithm 2 is extended to Algorithm 3. And at step 5 of

the PAM workflow in Sec. 5.1, we connect L′𝜏1
𝑖−1 → L′𝜏2

𝑖
iff 𝜏2 ⊆ 𝜏1.

It is worth mentioning that when tasks are highly related, the

numbers of neurons in L𝜏
𝑖
with 1 < |𝜏 | < 𝐾 can be extremely

small (as in our experiment on the LFW dataset in Appendix B).

Algorithm 3: Extending Algorithm 2 to over two tasks

Input: X, 𝛼 , L𝑡
𝑖
, and Y𝑡 for all 𝑡 ∈ 𝜐

Output: L′𝜏
𝑖

for all 𝜏 ⊆ 𝜐 and 𝜏 ≠ ∅

1 𝑁 ← min𝑡 ∈𝜐 𝑁𝑡 ;
2 𝐾 ← |𝜐 |;
3 for 𝑖 ← 1 to 𝑁 do
4 S← ⋃

𝑡 ∈𝜐 L𝑡𝑖 ;
5 for 𝑛 ← 1 to 𝐾 − 1 do
6 for any 𝜏 with |𝜏 | = 𝑛 do
7 F← S;
8 L′𝜏

𝑖
← ∅;

9 Y∉𝜏 ← ⋃
𝑡∉𝜏 Y𝑡

10 while 𝐼 (L′𝜏
𝑖
;Y∉𝜏) ≤ 𝛼 do

11 𝐿𝑖, · ← argmin𝐿𝑖,𝑗 ∈F 𝐼 ({𝐿𝑖, 𝑗 } ∪ L
′𝜏
𝑖
;Y∉𝜏)

12 move the neuron 𝐿𝑖, · from F to L′𝜏
𝑖

13 end
14 end
15 Remove all selected neurons from S:

S← S \⋃ |𝜏 |=𝑛 L′𝜏𝑖
16 Among all L′𝜏

𝑖
, if a neuron exists in more than one

set, remove the neuron from them all

17 end
18 L′𝜐

𝑖
← S

19 end

Therefore we can simplify Algorithm 3 by fixing 𝑛 = 1 and skip the

remaining loops. Every layer in the multitask network merged by

the simplified PAM contains only neuron sets L𝑡
𝑖
with 𝑡 ∈ 𝜐 and one

shared neuron set L𝜐
𝑖
. Shared neurons in L𝜐

𝑖
are always activated,

while non-shared neurons in L𝑡
𝑖
are activated iff task 𝑡 is executed.

6 EXPERIMENTS
We compare different network merging schemes on whether lower

computation is achieved when performing any subset of tasks.

6.1 Experiment Settings
Baselines for Network Merging. We compare PAM with two

merging schemes.

• Baseline 1. It simply skips network merging in the “merge

& prune” framework. Therefore, no multitask network is

constructed. As mentioned in Sec. 1, this scheme optimises

the pruning of single-task networks.

• Baseline 2. Pre-trained single-task networks are merged as

a multitask network by MTZ [13], a state-of-the-art network

merging scheme. Applying MTZ in “merge & prune” can

minimise the computation cost of a multitask network when

all tasks are executed.

Methods for Network Pruning. Since we aim to compare dif-

ferent network merging schemes in the “merge & prune” frame-

work, we apply the same network pruning method on the neural

network(s) constructed by different merging schemes. To show

that PAM works with different pruning methods, we choose two

state-of-the-art structured network pruning methods: one [3] uses

information theory based metrics (denoted as P1), and the other

[21] uses sensitivity based metrics (denoted as P2).

The pruning methods are applied to the neural network(s) con-

structed by different merging schemes as follows. For Baseline 1,

each single-task network is pruned independently. For the multi-

task network constructed with Baseline 2 and PAM, we prune every

subgraph for each individual task in an alternating manner (e.g.,
task 𝐴 → 𝐵 → 𝐶 → 𝐴 → 𝐵 → · · ·) in order to balance between

tasks. However, only P2 is originally designed to prune a ResNet.

Hence we only experiment ResNets with P2.

Datasets and Single-Task Networks.We define tasks from three

datasets: Fashion-MNIST [28], CelebA [20], and LFW [14]. Fashion-

MNIST and CelebA each contains two tasks. LFW contains five
tasks. We use LeNet-5 [17] as pre-trained single-task networks for

tasks derived from Fashion-MNIST, and VGG-16 [24] for tasks from

CelebA and LFW. We also use ResNet-18 and ResNet-34 [11] as

pre-trained single-task networks for CelebA. See Appendix B for

more details of dataset setup and the inference accuracy and FLOPs

of the pre-trained single-task networks.

Evaluation Metrics. For a given set of tasks, we aim to minimise

the computation cost of all task combinations. To assess computa-

tion cost independent of hardware, we use the number of floating

point operations (FLOP) as the metric. For fair comparison, the

network(s) constructed by different merging schemes are pruned

while preserving almost the same inference accuracy. To quantify

the performance advantage of PAM over baselines over all task
combinations, we adopt the following two single-valued criteria:

• Average Gain. This metric measures the averaged compu-

tation cost reduction of “PAM & prune” over “baseline &

prune” across all task combinations. For example, given two

tasks 𝐴 and 𝐵, there are three task combinations: 𝐴, 𝐵 and

𝐴&𝐵. When executing these task combinations, the FLOPs

of the network after “PAM & prune” are 𝑐𝑃
𝐴
, 𝑐𝑃
𝐵
and 𝑐𝑃

𝐴,𝐵
,

respectively. After “baseline 1 & prune”, the FLOPs are 𝑐𝐵1
𝐴
,

𝑐𝐵1
𝐵

and 𝑐𝐵1
𝐴,𝐵

, respectively. The average gain over baseline 1

is calculated as
1

3
(𝑐𝐵1
𝐴
/𝑐𝑃
𝐴
+ 𝑐𝐵1

𝐵
/𝑐𝑃
𝐵
+ 𝑐𝐵1

𝐴,𝐵
/𝑐𝑃
𝐴,𝐵
).

• Peak Gain. This metric measures the maximal computation

cost reduction across all task combinations. Using the same

example and notations as above, the peak gain over baseline

1 is calculated as max{𝑐𝐵1
𝐴
/𝑐𝑃
𝐴
, 𝑐𝐵1
𝐵
/𝑐𝑃
𝐵
, 𝑐𝐵1
𝐴,𝐵
/𝑐𝑃
𝐴,𝐵
}.

All experiments are implemented with TensorFlow and con-

ducted on a workstation with Nvidia RTX 2080 Ti GPU.

6.2 Main Experiment Results
Overall Performance Gain. Fig. 5 shows the average and peak

gains of PAM over the two baselines with different models (LeNet-5,

VGG-16, ResNet-18, RestNet-34), datasets (Fashion-MNIST, CelebA,

LFW), and pruning methods (P1, P2). The detailed FLOPs and infer-

ence accuracy on two-task merging (Fashion-MNIST and CelebA)

are listed in Table 1, Table 2 and Table 3. Due to limited space, the

results of five-task merging (LFW) are in our technical report [12].

Compared with baseline 1, PAM achieves 1.07× to 1.64× average
gain and 1.16× to 4.87× peak gain. Compared with baseline 2, PAM

achieves 1.51× to 1.69× average gain and 1.56× to 2.01× peak gain.

In general, PAM has significant performance advantage over both

baselines across datasets and network architectures.

Table 1: Test accuracy and computation cost of all tasks com-
binations with LeNet-5 on Fashion-MNIST pruned by P1/P2.

Pruning Tasks

Accuracy FLOPs (×106)
B1 B2 PAM B1 B2 PAM

P1

A 95.42% 95.30% 94.67% 28.34 52.58 28.49

B 96.30% 96.40% 95.70% 28.34 52.58 26.16

A&B 95.86% 95.85% 95.19% 56.69 52.58 48.68

P2

A 95.82% 95.73% 95.70% 18.64 31.19 18.65

B 96.46% 96.72% 96.38% 18.64 31.19 18.65

A&B 96.14% 96.22% 96.04% 37.27 31.19 26.48

Table 2: Test accuracy and computation cost of all tasks com-
binations with VGG-16 on CelebA pruned by P1/P2.

Pruning Tasks

Accuracy FLOPs (×106)
B1 B2 PAM B1 B2 PAM

P1

A 89.45% 89.09% 89.60% 4.52 7.3 4.48

B 87.81% 87.69% 88.00% 4.32 7.3 4.49

A&B 88.63% 88.39% 88.80% 8.85 7.3 4.70

P2

A 90.34% 90.27% 90.36% 153.13 243.20 155.82

B 88.84% 88.74% 88.76% 152.65 243.20 155.84

A&B 89.59% 89.51% 89.56% 305.78 243.20 156.74

Table 3: Test accuracy and computation cost with ResNet-
18/ResNet-34 on CelebA pruned by P1.

Model Tasks

Accuracy FLOPs (×106)
B1 B2 PAM B1 B2 PAM

ResNet-18

A 89.83% 89.30% 89.93% 5.72 8.84 4.78

B 88.25% 88.20% 88.36% 5.72 8.84 4.83

A&B 89.04% 88.75% 89.15% 11.44 8.84 6.40

ResNet-34

A 89.99% 89.70% 90.05% 8.43 12.11 6.94

B 88.44% 88.98% 88.42% 8.43 12.11 6.94

A&B 89.22% 89.34% 89.24% 16.86 12.11 10.29

Effectiveness of PAM. From Fig. 5, the performance gain of PAM

varies across baselines and datasets. Such variations in average and

peak gains are influenced by how many neurons are shared and

how many networks are merged. Fig. 6 shows how many neurons

(kernels) are shared after “PAM & prune” on LeNet-5 and VGG-16.

• The more neurons shared, the higher gain PAM has
over baseline 1. “Baseline 1 & prune” can effectively re-

duce the computation cost when only one task is performed.

However, when many neurons can be shared (see Fig. 6(b),

(c), (e), and (f)), baseline 1 is sub-optimal when multiple tasks

are executed simultaneously, as it is unable to reduce com-

putation by sharing neurons. This is why PAM outperforms

baseline 1 more on CelebA and LFW.

• The fewer neurons shared, the higher gain PAM has
over baseline 2. “Baseline 2 & prune” can effectively reduce

the computation cost via neuron sharing when all tasks are
performed simultaneously. However, when only few neurons

P1 P20

0.5

1

1.5

2

2.5

G
ai

n
ov

er
 B

as
el

in
e

1

Baseline 1
Average

Peak

(a) LeNet/Fashion-MNIST
P1 P20

0.5

1

1.5

2

2.5

G
ai

n
ov

er
 B

as
el

in
e

1

Baseline 1
Average

Peak

(b) VGG/CelebA
P1 P20

1
2
3
4
5
6

G
ai

n
ov

er
 B

as
el

in
e

1

Baseline 1
Average

Peak

(c) VGG/LFW
ResNet-18 ResNet-340

0.5

1

1.5

2

2.5

G
ai

n
ov

er
 B

as
el

in
e

1

Baseline 1
Average

Peak

(d) ResNet/CelebA

P1 P20

0.5

1

1.5

2

2.5

G
ai

n
ov

er
 B

as
el

in
e

2

Baseline 2
Average

Peak

(e) LeNet/Fashion-MNIST
P1 P20

0.5

1

1.5

2

2.5

G
ai

n
ov

er
 B

as
el

in
e

2
Baseline 2
Average

Peak

(f) VGG/CelebA
P1 P20

0.5

1

1.5

2

2.5

G
ai

n
ov

er
 B

as
el

in
e

2

Baseline 2
Average

Peak

(g) VGG/LFW
ResNet-18 ResNet-340

0.5

1

1.5

2

2.5

G
ai

n
ov

er
 B

as
el

in
e

2

Baseline 2
Average

Peak

(h) ResNet/CelebA

Figure 5: Average and peak gain of PAM over baselines in different combinations of models, datasets, and pruning methods.
The upper row (a)-(d) shows the gain of PAM over baseline 1. The lower row (e)-(h) shows the gain of PAM over baseline 2.
Note that the average and peak gain of each baseline is 1 by definition.

can be shared (see Fig. 6(a) and (d)), the multitask network

merged by baseline 2 cannot shut down the unnecessary

neurons when not all tasks are executed, and hence yields

sub-optimal computation cost. This is why PAM outperforms

baseline 2 more on Fashion-MNIST.

• The more networks merged, the higher gain PAM has
over both baselines. As the number of single-task net-

works (tasks) increases, “PAM & prune” can either share

more neurons and yield lower computation than “baseline 1

& prune”, or shut down more unnecessary neurons and yield

lower computation than “baseline 2 & prune”. Therefore the

performance gain of PAM over baseline 1 on LFW is such

significantly higher than on CelebA. This is also the reason

why the performance gain of PAM over baseline 2 on LFW is

not much lower than on CelebA, although on LFW we have

the highest degree of sharing.

Takeaways. Although the performance of PAM varies across tasks,

it achieves consistently solid advantages over both baselines. We

may conclude that it is always preferable to use PAM for efficient

multitask inference, regardless of the amount of shareable neu-

rons, of the probability of executing each task combination, of the

network architecture, or of the pruning method used after merging.

6.3 Ablation Study
This subsection presents experiments to further understand the

effectiveness of PAM.

6.3.1 Impact of Task Relatedness. This study aims to show the im-

pact of task relatedness on the performance gain PAM can achieve.

The number of neurons that can be shared among pre-trained

networks is related to the relatedness among tasks. An effective

network merging scheme should enforce increasing numbers of

shared neurons between tasks with the increase of task relatedness.

Settings. We consider the 73 labels in LFW as 73 binary classifica-

tion tasks, and measure the relatedness between each task pair by

1 2 3 4
Layer Index i

0
20
40
60
80

100
Sh

ar
in

g
R

at
io

(%
)

(a)

1 3 5 7 9 11 13 15
Layer Index i

0
20
40
60
80

100

Sh
ar

in
g

R
at

io
(%

)

(b)

1 3 5 7 9 11 13 15
Layer Index i

0
20
40
60
80

100

Sh
ar

in
g

R
at

io
(%

)

(c)

1 2 3 4
Layer Index i

0
20
40
60
80

100

Sh
ar

in
g

R
at

io
(%

)

(d)

1 3 5 7 9 11 13 15
Layer Index i

0
20
40
60
80

100

Sh
ar

in
g

R
at

io
(%

)

(e)

1 3 5 7 9 11 13 15
Layer Index i

0
20
40
60
80

100

Sh
ar

in
g

R
at

io
(%

)

(f)

Figure 6: Sharing ratio of each layer after “PAM &
prune (P1 or P2)” on (a) LeNet/Fashion-MNIST with
P1, (b) VGG/CelebA with P1, (c) VGG/LFW with P1, (d)
LeNet/Fashion-MNISTwith P2, (e) VGG/CelebAwith P2, and
(f) VGG/LFW with P2. In each layer, the sharing ratio is cal-
culated as the number of shared neurons in L′𝐴,𝐵

𝑖
, divided by

all neurons in L𝐴,𝐵
𝑖

. It ranges from 0% to 100%.

𝐼 (Y𝐴;Y𝐵). We then pick four pairs of tasks with 𝐼 (Y𝐴;Y𝐵) ≈ 0, 0.1,

0.2 and 0.5 bits, train four pairs of single-task VGG-16’s on them,

and construct four multitask networks using PAM.

Results. Fig. 7a plots the number of shared neurons in layer f7
of these four multitask networks with different tuning threshold

𝛼 . The multitask networks for tasks pairs with higher correlation

always share neurons. Hence, PAM can share an increasing number

of neurons between tasks with the increase of task relatedness.

6.3.2 Case Study: Task Inclusion. This study aims to validate the

effectiveness of PAM in an extreme yet common case of task re-

latedness where task 𝐵 is a sub-task of task 𝐴. Ideally, when the

mutual information is precisely estimated and true largest sets of

task-exclusive neurons are selected, PAM should effectively pick

out only task-𝐴-exclusive neurons.

0.00 0.05 0.10 0.15 0.20
α (bits)

50
75

100
125
150
175
200
225

Sh

ar
ed

 1
eu

ro
ns

0.00 0.05 0.10 0.15 0.20
α (bits)

50

75

100

125

150

175

200

225

Sh
ar
ed
 n
eu
ro
ns

I(YA;YB) 0
I(YA;YB) 0.1
I(YA;YB) 0.2
I(YA;YB) 0.5

0.00 0.05 0.10 0.15 0.20
α (bits)

50

75

100

125

150

175

200

225

Sh
ar
ed
 n
eu
ro
ns

I(YA;YB) 0
I(YA;YB) 0.1
I(YA;YB) 0.2
I(YA;YB) 0.5

(a)

60 50 40 30 20 10 0 10
Filters/Neurons

f7
f6

c5_3
c5_2
c5_1
c4_3
c4_2
c4_1

L
ay

er
s o

f V
G

G
16

Task A
Task B

(b)

Figure 7: Ablation studies: (a) Number of shared neurons in
layer f7 of the four multitask networks constructed with
PAM for different task pairs on LFW dataset, with different
tuning parameter 𝛼 . (b) The number of non-shared neurons
in L′𝐴

𝑖
and L′𝐵

𝑖
in the last eight layers when task 𝐵 is a sub-

task of task𝐴. Thenetworks are trained andmerged onLFW.

Settings.We pick 30 labels in LFW as task𝐴 and 15 of them as task

𝐵. Hence task𝐴 includes task 𝐵. We train two single-task VGG-16’s

on these two tasks separately and then merge them by PAM.

Results. Fig. 7b shows the number of non-shared neurons in L′𝐴
𝑖

and L′𝐵
𝑖

in the last eight layers of the merged network (the previous

layers have exclusively shared neurons). Almost no neurons are

selected for L′𝐵
𝑖

by Algorithm 2, validating its effectiveness.

7 CONCLUSION
In this paper, we investigate network merging schemes for efficient

multitask inference. Given a set of single-task networks pre-trained

for individual tasks, we aim to construct a multitask network such

that applying existing network pruning methods on it can minimise

the computation cost when performing any subset of tasks. We

theoretically identify the conditions on the multitask network, and

design Pruning-Aware Merging (PAM), a heuristic network merg-

ing scheme to construct such a multitask network. The merged

multitask network can then be effectively pruned by existing net-

work pruning methods. Extensive evaluations show that pruning a

multitask network constructed by PAM achieves low computation

cost when performing any subset of tasks in the network.

ACKNOWLEDGEMENT
Part of Xiaoxi He and Lothar Thiele’s work was supported by the

Swiss National Science Foundation in the context of the NCCR

Automation. Dawei Gao and Yongxin Tong’s work is partially

supported by the National Key Research and Development Pro-

gram of China under Grant No. 2018AAA0101100, the National

Science Foundation of China (NSFC) under Grant Nos. 61822201 and

62076017, the CAAIHuaweiMindSporeOpen FundNo. CAAIXSJLJJ-

2020-020-A. Zimu Zhou’s research was supported by the Singapore

Ministry of Education (MOE) Academic Research Fund (AcRF) Tier

1 grant. Zimu Zhou is the corresponding author.

REFERENCES
[1] Anthony J Bell. 2003. The co-information lattice. In International Workshop on

Independent Component Analysis and Blind Signal Separation: ICA. IEEE Press,

Piscataway, NJ, USA, 921–926.

[2] Yi-Min Chou, Yi-Ming Chan, Jia-Hong Lee, Chih-Yi Chiu, and Chu-Song Chen.

2018. Unifying and merging well-trained deep neural networks for inference

stage. In IJCAI. Morgan Kaufmann, Burlington, MA, USA, 2049–2056.

[3] Bin Dai, Chen Zhu, Baining Guo, and David Wipf. 2018. Compressing neural

networks using the variational information bottleneck. In ICML. ACM, New York,

NY, USA, 1143–1152.

[4] Lei Deng, Guoqi Li, SongHan, Luping Shi, and Yuan Xie. 2020. Model compression

and hardware acceleration for neural networks: a comprehensive survey. Proc.
IEEE 108, 4 (2020), 485–532.

[5] Misha Denil, Babak Shakibi, Laurent Dinh, Nando De Freitas, et al. 2013. Predict-

ing parameters in deep learning. In NeurIPS. Curran Associates Inc., Red Hook,

NY, USA, 2148–2156.

[6] Xin Dong, Shangyu Chen, and Sinno Pan. 2017. Learning to prune deep neural

networks via layer-wise optimal brain surgeon. In NeurIPS. Curran Associates

Inc., Red Hook, NY, USA, 4860–4874.

[7] Biyi Fang, Xiao Zeng, and Mi Zhang. 2018. NestDNN: resource-aware multi-

tenant on-device deep learning for continuous mobile vision. In MobiCom. ACM,

New York, NY, USA, 115–127.

[8] Dawei Gao, Xiaoxi He, Zimu Zhou, Yongxin Tong, Ke Xu, and Lothar Thiele.

2020. Rethinking Pruning for Accelerating Deep Inference At the Edge. In KDD.
ACM, New York, NY, USA, 155—-164.

[9] Yiwen Guo, Anbang Yao, and Yurong Chen. 2016. Dynamic network surgery for

efficient dnns. InNeurIPS. Curran Associates Inc., Red Hook, NY, USA, 1379–1387.
[10] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz,

and William J Dally. 2016. EIE: efficient inference engine on compressed deep

neural network. In ISCA. ACM, New York, NY, USA, 243–254.

[11] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual

Learning for Image Recognition. In CVPR. IEEE Press, Piscataway, NJ, USA,

770–778.

[12] Xiaoxi He, Dawei Gao, Zimu Zhou, Yongxin Tong, and Lothar Thiele. 2019.

Pruning-aware xxx merging for efficient multitask inference. arXiv:1905.09676

[13] Xiaoxi He, Zimu Zhou, and Lothar Thiele. 2018. Multi-task zipping via layer-

wise neuron sharing. In NeurIPS. Curran Associates Inc., Red Hook, NY, USA,

6016–6026.

[14] Gary Huang, Marwan Mattar, Honglak Lee, and Erik G Learned-Miller. 2012.

Learning to align from scratch. In NeurIPS. Curran Associates Inc., Red Hook,

NY, USA, 764–772.

[15] Artemy Kolchinsky and Brendan Tracey. 2017. Estimating mixture entropy with

pairwise distances. Entropy 19, 7 (2017), 361.

[16] Neeraj Kumar, Alexander C Berg, Peter N Belhumeur, and Shree K Nayar. 2009.

Attribute and simile classifiers for face verification. In ICCV. IEEE Press, Piscat-

away, NJ, USA, 365–372.

[17] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. 1998. Gradient-

based learning applied to document recognition. Proc. IEEE 86, 11 (1998), 2278–

2324.

[18] Seulki Lee and Shahriar Nirjon. 2020. Fast and scalable in-memory deep multitask

learning via neural weight virtualization. In MobiSys. ACM, New York, NY, USA,

175–190.

[19] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. 2017.

Pruning filters for efficient convnets. In ICLR.
[20] Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. 2015. Deep learning face

attributes in the wild. In ICCV. IEEE Press, Piscataway, NJ, USA, 3730–3738.

[21] Pavlo Molchanov, Arun Mallya, Stephen Tyree, Iuri Frosio, and Jan Kautz. 2019.

Importance estimation for neural network pruning. In CVPR. IEEE Press, Piscat-

away, NJ, USA, 11264–11272.

[22] Rasmus Rothe, Radu Timofte, and Luc Van Gool. 2018. Deep expectation of real

and apparent age from a single image without facial landmarks. International
Journal of Computer Vision 126, 2-4 (2018), 144–157.

[23] Andrew Michael Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy

Kolchinsky, Brendan Daniel Tracey, and David Daniel Cox. 2018. On the infor-

mation bottleneck theory of deep learning. In ICLR.
[24] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks

for large-scale image recognition. arXiv:1409.1556

[25] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. 2017. Efficient

processing of deep neural networks: A tutorial and survey. Proc. IEEE 105, 12

(2017), 2295–2329.

[26] Naftali Tishby and Noga Zaslavsky. 2015. Deep learning and the information

bottleneck principle. In Information Theory Workshop. IEEE Press, Piscataway,

NJ, USA, 1–5.

[27] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. 2016. Learning

structured sparsity in deep neural networks. In NeurIPS. Curran Associates Inc.,

Red Hook, NY, USA, 2074–2082.

[28] Han Xiao, Kashif Rasul, and Roland Vollgraf. 2017. Fashion-mnist: a novel image

dataset for benchmarking machine learning algorithms. arXiv:1708.07747

[29] Yu Zhang and Qiang Yang. 2017. An overview of multi-task learning. National
Science Review 5, 1 (2017), 30–43.

https://arxiv.org/abs/1905.09676
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1708.07747

APPENDIX
A PROOFS
A.1 Proof of Problem 1 in Sec. 4.2
Problem 1 occurs because of the lemma below.

Lemma 1. Reducing R𝐵 (L̃𝐵𝑖) may decrease 𝐼 (L̃𝐴
𝑖
;Y𝐴).

Proof. We decompose 𝐼 (L̃𝐴
𝑖
;Y𝐴):

𝐼 (L̃𝐴𝑖 ;Y
𝐴) = 𝐼 (L′𝐴𝑖 ;Y𝐴)+

𝐼 (L′𝐴,𝐵
𝑖

;Y𝐴 |L′𝐴𝑖 ,Y
𝐵) + 𝐼 (L′𝐴,𝐵

𝑖
;Y𝐴;Y𝐵 |L′𝐴𝑖)

(11)

where 𝐼 (𝐴;𝐵;𝐶) = 𝐼 (𝐴;𝐵) − 𝐼 (𝐴;𝐵 |𝐶) is the co-information [1].

From Definition 1, we have:

R𝐵 (L̃𝐵𝑖) =
∑

𝐿𝐵
𝑖,𝑗
∈L̃𝐵

𝑖

𝐻 (�̃�𝐵𝑖,𝑗) − 𝐼 (L̃
𝐵
𝑖 ;Y

𝐵)

=
∑

𝐿𝐵
𝑖,𝑗
∈L̃𝐵

𝑖

𝐻 (�̃�𝐵𝑖,𝑗) − 𝐻 (L̃
𝐵
𝑖) + 𝐻 (L̃

𝐵
𝑖 |Y

𝐵) (12)

For the last term, we have:

𝐻 (L̃𝐵𝑖 |Y
𝐵)

=𝐻 (L′𝐵𝑖 , L
′𝐴,𝐵
𝑖
|Y𝐵) (13)

=𝐻 (L′𝐴,𝐵
𝑖
|Y𝐵) + 𝐻 (L′𝐵𝑖 |L

′𝐴,𝐵
𝑖

,Y𝐵) (14)

=𝐼 (L′𝐴,𝐵
𝑖

;Y𝐴 |Y𝐵) + 𝐻 (L′𝐴,𝐵
𝑖
|Y𝐴,Y𝐵) + 𝐻 (L′𝐵𝑖 |L

′𝐴,𝐵
𝑖

,Y𝐵) (15)

=𝐼 (L′𝐴,𝐵
𝑖

;Y𝐴 |L′𝐴𝑖 ,Y
𝐵) + 𝐼 (L′𝐴,𝐵

𝑖
;Y𝐴; L′𝐴𝑖 |Y

𝐵)+

𝐻 (L′𝐴,𝐵
𝑖
|Y𝐴,Y𝐵) + 𝐻 (L′𝐵𝑖 |L

′𝐴,𝐵
𝑖

,Y𝐵) (16)

Hence, 𝐻 (L̃𝐵
𝑖
|Y𝐵) includes 𝐼 (L′𝐴,𝐵

𝑖
;Y𝐴 |L′𝐴

𝑖
,Y𝐵). Reducing R𝐵 (L̃𝐵𝑖)

may decrease 𝐼 (L̃𝐴
𝑖
;Y𝐴). □

A.2 Proof of Theorem 1
Proof. The proof shows the conditions in Theorem 1 solve (i)

Problem 1 in Sec. 4.2 and (ii) Problem 2 in Sec. 4.2.

Solving Problem 1 in Sec. 4.2. From (11) we have the following

if 𝐼 (L′𝐴,𝐵
𝑖

;Y𝐴 |L′𝐴
𝑖
,Y𝐵) = 0:

𝐼 (L̃𝐴𝑖 ;Y
𝐴) = 𝐼 (L′𝐴𝑖 ;Y𝐴) + 𝐼 (L′𝐴,𝐵

𝑖
;Y𝐴;Y𝐵 |L′𝐴𝑖) (17)

L′𝐴
𝑖

is not in L̃𝐵
𝑖
. Hence 𝐼 (L′𝐴

𝑖
;Y𝐴) is unaffected when R𝐵 (L̃𝐵𝑖)

is reduced. 𝐼 (L′𝐴,𝐵
𝑖

;Y𝐴;Y𝐵 |L′𝐴
𝑖
) is included in 𝐼 (L̃𝐵

𝑖
;Y𝐵). Thus min-

imisingR𝐵 (L̃𝐵𝑖)− ˜𝜉
𝐵
𝑖
·𝐼 (L̃𝐵

𝑖
;Y𝐵) will not reduce 𝐼 (L′𝐴,𝐵

𝑖
;Y𝐴;Y𝐵 |L′𝐴

𝑖
)

with a proper
˜𝜉𝐵
𝑖
. All still hold if we swap𝐴 and 𝐵 in the above equa-

tions. Consequently, if 𝐼 (L′𝐴,𝐵
𝑖

;Y𝐴 |L′𝐴
𝑖
,Y𝐵) = 𝐼 (L′𝐴,𝐵

𝑖
;Y𝐵 |L′𝐵

𝑖
,Y𝐴)

= 0, the first two objectives in optimisation problem (2) become

non-conflicting.

Table 4: Decomposition of R𝐴,𝐵 (L𝐴,𝐵𝑖).

R𝐴,𝐵 (L𝐴,𝐵
𝑖
)

=
∑

𝐿
𝐴,𝐵
𝑖,𝑗
∈L𝐴,𝐵

𝑖

𝐻 (𝐿𝐴,𝐵
𝑖,𝑗
) −𝐻 (L̃𝐴𝑖 , L̃𝐵𝑖) +𝐻 (L̃𝐴𝑖 , L̃𝐵𝑖 |Y𝐴,Y𝐵) (27)

=
∑

𝐿𝐴
𝑖,𝑗
∈L̃𝐴

𝑖

𝐻 (𝐿𝐴𝑖,𝑗) − 𝐼 (L̃𝐴𝑖 ;Y𝐴,Y𝐵) +
∑

𝐿𝐵
𝑖,𝑗
∈L̃𝐵

𝑖

𝐻 (𝐿𝐵𝑖,𝑗) − 𝐼 (L̃𝐵𝑖 ;Y𝐴,Y𝐵)

+𝐼 (L̃𝐴𝑖 ; L̃𝐵𝑖 ;Y𝐴,Y𝐵) −
∑

𝐿𝑖,𝑗 ∈L′𝑖𝐴,𝐵

𝐻 (𝐿𝑖,𝑗) (28)

=
∑

𝐿𝐴
𝑖,𝑗
∈L̃𝐴

𝑖

𝐻 (𝐿𝐴𝑖,𝑗) − 𝐼 (L̃𝐴𝑖 ;Y𝐴) − 𝐼 (L̃𝐴𝑖 ;Y𝐵 |Y𝐴) +
∑

𝐿𝐵
𝑖,𝑗
∈L̃𝐵

𝑖

𝐻 (𝐿𝐵𝑖,𝑗) − 𝐼 (L̃𝐵𝑖 ;Y𝐵)

−𝐼 (L̃𝐵𝑖 ;Y𝐴 |Y𝐵) + 𝐼 (L̃𝐴𝑖 ; L̃𝐵𝑖 ;Y𝐴,Y𝐵) −
∑

𝐿𝑖,𝑗 ∈L′𝑖𝐴,𝐵

𝐻 (𝐿𝑖,𝑗) (29)

=R𝐴 (L̃𝐴𝑖) + R𝐵 (L̃𝐵𝑖) − 𝐼 (L̃𝐴𝑖 ;Y𝐵 |Y𝐴)

−𝐼 (L̃𝐵𝑖 ;Y𝐴 |Y𝐵) + 𝐼 (L̃𝐴𝑖 ; L̃𝐵𝑖 ; {Y𝐴,Y𝐵 }) −
∑

𝐿𝑖,𝑗 ∈L′𝑖𝐴,𝐵

𝐻 (𝐿𝑖,𝑗) (30)

Solving Problem 2 in Sec. 4.2. We first decompose R𝐴,𝐵 (L𝐴,𝐵𝑖)
as in Table 4. Then from (30), we have

R𝐴,𝐵 (L𝐴,𝐵) −
(
R𝐴 (L̃𝐴𝑖) + R𝐵 (L̃

𝐵
𝑖)

)
≤𝐼 (L̃𝐴𝑖 ; L̃

𝐵
𝑖 ; {Y

𝐴,Y𝐵}) −
∑

𝐿𝑖,𝑗 ∈L
′𝐴,𝐵
𝑖

𝐻 (𝐿𝑖, 𝑗) (18)

≤𝐼 (L̃𝐴𝑖 ; L̃
𝐵
𝑖) −

∑
𝐿𝑖,𝑗 ∈L

′𝐴,𝐵
𝑖

𝐻 (𝐿𝑖, 𝑗) (19)

=𝐼 (L′𝐴𝑖 , L
′𝐴,𝐵
𝑖

; L′𝐵𝑖 , L
′𝐴,𝐵
𝑖
) −

∑
𝐿𝑖,𝑗 ∈L

′𝐴,𝐵
𝑖

𝐻 (𝐿𝑖, 𝑗) (20)

≤𝐼 (L′𝐴𝑖 ; L′𝐵𝑖) + 𝐻 (L
′𝐴,𝐵
𝑖
) −

∑
𝐿𝑖,𝑗 ∈L

′𝐴,𝐵
𝑖

𝐻 (𝐿𝑖, 𝑗) (21)

≤𝐼 (L′𝐴𝑖 ; L′𝐵𝑖) (22)

Further,

𝐼 (L′𝐴𝑖 ; L′𝐵𝑖)

=𝐼 (L′𝐴𝑖 ; L′𝐵𝑖 ;Y𝐴;Y𝐵) + 𝐼 (L′𝐴𝑖 ; L′𝐵𝑖 ;Y𝐴 |Y𝐵) + 𝐼 (L′𝐴𝑖 ; L′𝐵𝑖 |Y
𝐴) (23)

≤𝐼 (L′𝐴𝑖 ; L′𝐵𝑖 ;Y𝐴;Y𝐵) + 𝐻 (L′𝐴𝑖 |Y
𝐴) + 𝐻 (L′𝐵𝑖 |Y

𝐵) (24)

≤𝐼 (L′𝐴𝑖 ; L′𝐵𝑖 ;Y𝐴;Y𝐵) + R𝐴 (L̃𝐴𝑖) + R𝐵 (L̃
𝐵
𝑖) (25)

This is a loose upper bound. However, since R𝐴,𝐵 (L𝐴,𝐵), R𝐴 (L̃𝐴𝑖)
and R𝐵 (L̃𝐵𝑖) are lower bounded by 0, it suffices to show that when

𝐼 (L′𝐴
𝑖
; L′𝐵
𝑖
;Y𝐴;Y𝐵) = 0, minimising R𝐴 (L̃𝐴𝑖) and R𝐵 (L̃

𝐵
𝑖
) will min-

imise R𝐴,𝐵 (L𝐴,𝐵).
In summary, when

𝐼 (L′𝐴𝑖 ; L′𝐵𝑖 ;Y𝐴;Y𝐵) = 0

𝐼 (L′𝐴,𝐵
𝑖

;Y𝐴 |L′𝐴𝑖 ,Y
𝐵) = 0

𝐼 (L′𝐴,𝐵
𝑖

;Y𝐵 |L′𝐵𝑖 ,Y
𝐴) = 0

(26)

the optimisation problem (2) is reduced to two non-conflicting

optimisation problems (4). □

A.3 Proof of Theorem 2
Proof. First, for co-information between four random variables,

we have from [1]:

0 ≤ 𝐼 (L′𝐴𝑖 ; L′𝐵𝑖 ;Y𝐴;Y𝐵) ≤ min{𝐼 (L′𝐴𝑖 ;Y𝐵), 𝐼 (L′𝐵𝑖 ;Y𝐴)} (31)

Therefore, the first condition in Theorem 1, i.e., 𝐼 (L′𝐴
𝑖
; L′𝐵
𝑖
;Y𝐴;Y𝐵)

= 0, is achieved by minimising 𝐼 (L′𝐴
𝑖
;Y𝐵) and 𝐼 (L′𝐵

𝑖
;Y𝐴) to 0.

For the second condition in Theorem 1, i.e., 𝐼 (L′𝐴,𝐵
𝑖

;Y𝐴 |L′𝐴
𝑖
,Y𝐵) =

0, we have:

𝐼 (L′𝐴,𝐵
𝑖

;Y𝐴 |L′𝐴𝑖 ,Y
𝐵)

≤𝐻 (Y𝐴 |L′𝐴𝑖 ,Y
𝐵) (32)

=𝐻 (Y𝐴 |Y𝐵) − 𝐼 (Y𝐴; L′𝐴𝑖) + 𝐼 (Y
𝐴
; L′𝐴𝑖 ;Y𝐵) (33)

≤𝐻 (Y𝐴 |Y𝐵) − 𝐼 (Y𝐴; L′𝐴𝑖) + 𝐼 (L
′𝐴
𝑖 ;Y𝐵) (34)

Given𝐴 and 𝐵,𝐻 (Y𝐴 |Y𝐵) is constant. The second condition in The-

orem 1 is achieved by minimising 𝐼 (L′𝐴
𝑖
;Y𝐵) to 0 and maximising

𝐼 (Y𝐴; L′𝐴
𝑖
) to 𝐻 (Y𝐴 |Y𝐵).

The same holds if we swap 𝐴 and 𝐵. The third condition in

Theorem 1, i.e., 𝐼 (L′𝐴,𝐵
𝑖

;Y𝐵 |L′𝐵
𝑖
,Y𝐴) = 0, is achieved by minimising

𝐼 (L′𝐵
𝑖
;Y𝐴) and maximising 𝐼 (Y𝐵 ; L′𝐵

𝑖
). □

B DETAILED DATASET SETUP
Fashion-MNIST. The Fashion-MNIST dataset

1
contains 8000 train-

ing images and 2000 test images with a resolution of 496×124. Each
image has four fashion product images randomly selected from

Fashion-MNIST [28]. The 10 categories of fashion products is con-

sidered as 10 binary classification problem, and we divide them

into two groups (5/5) to form task 𝐴 and 𝐵. On each task we train a

LeNet-5, a commonly used architecture for Fashion-MNIST.

CelebA. The CelebA dataset
2
contains over 200 thousand celebrity

face images labelled with 40 attributes. The 40 attributes is divided

into two groups (20/20) to form task 𝐴 and 𝐵. The dataset is di-

vided into training and test sets containing 80% and 20% of the

samples. The input picture resolution is resized to 72 × 72. On each

task we train slightly modified VGG-16 models, a commonly used

single-task network architecture on CelebA. The width of the fully

connected layers in VGG-16 is changed to 512. The convolutional

layers are initialised with weights pre-trained for imdb-wiki [22],

and use the same pre-processing steps.

LFW. The Labeled Faces in the Wild (LFW) dataset
3
contains over

13,000 face photographs collected from the web. Each face photo is

associated with 73 attributes [16]. We randomly split the 73 labels in

the LFW dataset into four groups with 15 labels each and one group

with 13 labels. Each group of labels forms a single task. The dataset

is divided into training and test sets containing 80% and 20% of the

samples. Same as in CelebA, the input picture resolution is resized

to 72 × 72. On each task we train slightly modified VGG-16 models,

a commonly used single-task network architecture on LFW. The

width of the fully connected layers in VGG-16 is changed to 128.

The convolutional layers are initialised with weights pre-trained

for imdb-wiki [22], and use the same pre-processing steps.

1
https://github.com/f-rumblefish/Multi-Label-Fashion-MNIST

2
http://mmlab.ie.cuhk.edu.hk/projects/CelebA.html

3
http://vis-www.cs.umass.edu/lfw/

Table 5: Test accuracy and computation cost of pre-trained
single-task networks.

Model/Dataset Task Accuracy FLOPs (×106)

LeNet-5/Fashion-MNIST

A 96.05% 106.42

B 96.37% 106.42

VGG-16/CelebA

A 90.28% 3112.20

B 89.03% 3112.20

VGG-16/LFW

A 90.23% 3110.12

B 84.15% 3110.12

C 85.03% 3110.12

D 86.62% 3110.12

E 87.44% 3110.12

ResNet-18/CelebA

A 90.56% 994.00

B 88.91% 994.00

ResNet-34/CelebA

A 90.42% 1115.06

B 88.70% 1115.06

0 200 400 600 800 1000
Nr. of iterations

0

2

4

6

8

M
ut

ua
l I

nf
or

m
at

io
n

(b
its

)

I(L0Ai;YB)
I(L0Bi ;YA)

Figure 8: Iterations of Line 19-22 and 24-27 in Algorithm 2.
The shown example is on the f7 layer of the VGG-16 net-
works trained and merged on CelebA.

Table 5 summarises the inference accuracy and FLOPs of the

pre-trained single-task networks.

C VISUALISATION OF ALGORITHM 2
Fig. 8 illustrates two iterations of Line 19-22 and 24-27 in Algo-

rithm 2 by showing 𝐼 (L′𝐴
𝑖
;Y𝐵) and 𝐼 (L′𝐵

𝑖
;Y𝐴) against the number

of iterations. Here we use the f7 layer of VGG-16 trained and

merged for CelebA dataset as an example. The tuning parameter 𝛼

is set to infinitely large in order to show all the possible cases of

the iterations. From Fig. 8, we can observe three phases:

(1) In the first phase, 𝐼 (L′𝐴
𝑖
;Y𝐵) and 𝐼 (L′𝐵

𝑖
;Y𝐴) remains small,

indicating that the selected L′𝐴
𝑖

and L′𝐵
𝑖

provides little infor-

mation about the other task.

(2) In the second phase, 𝐼 (L′𝐴
𝑖
;Y𝐵) and 𝐼 (L′𝐵

𝑖
;Y𝐴) start to in-

crease as it is impossible to add more neurons to L′𝐴
𝑖

and

L′𝐵
𝑖

while keeping 𝐼 (L′𝐴
𝑖
;Y𝐵) and 𝐼 (L′𝐵

𝑖
;Y𝐴) close to zero.

(3) In the third phase, 𝐼 (L′𝐴
𝑖
;Y𝐵) and 𝐼 (L′𝐵

𝑖
;Y𝐴) start to saturate

as the newly joined neurons contain mostly information

already included in existing L′𝐴
𝑖

and L′𝐵
𝑖
.

In practice, the parameter 𝛼 tuned as remains small, and the

iterations in Algorithm 2 as well as Algorithm 3 usually stop at the

end of the first phase or the beginning of the second phase.

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Statement
	3.1 Graph Representation of Neural Networks
	3.2 Problem Definition

	4 Theoretical Understanding
	4.1 Why Pruning a Single-task Network Work
	4.2 Why Pruning a Multitask Network Fail
	4.3 When Pruning a Multitask Network Work

	5 Pruning-Aware Merging
	5.1 PAM Workflow
	5.2 Regrouping Algorithm
	5.3 Extensions to ResNets
	5.4 Extension to Three or More Tasks

	6 Experiments
	6.1 Experiment Settings
	6.2 Main Experiment Results
	6.3 Ablation Study

	7 Conclusion
	References
	A Proofs
	A.1 Proof of Problem 1 in Sec. 4.2
	A.2 Proof of Theorem 1
	A.3 Proof of Theorem 2

	B Detailed Dataset Setup
	C Visualisation of Algorithm 2

