
Finding Meta Winning Ticket to Train Your MAML
Dawei Gao
Alibaba Group

gaodawei.gdw@alibaba-inc.com

Yuexiang Xie
Alibaba Group

yuexiang.xyx@alibaba-inc.com

Zimu Zhou
Singapore Management University

zimuzhou@smu.edu.sg

Zhen Wang
Alibaba Group

jones.wz@alibaba-inc.com

Yaliang Li
Alibaba Group

yaliang.li@alibaba-inc.com

Bolin Ding
Alibaba Group

bolin.ding@alibaba-inc.com

ABSTRACT
The lottery ticket hypothesis (LTH) states that a randomly initial-
ized dense network contains sub-networks that can be trained in
isolation to the performance of the dense network. In this paper,
to achieve rapid learning with less computational cost, we explore
LTH in the context of meta learning. First, we experimentally show
that there are sparse sub-networks, known as meta winning tickets,
which can be meta-trained to few-shot classification accuracy to
the original backbone. The application of LTH in meta learning
enables the adaptation of meta-trained networks on various IoT
devices with fewer computation. However, the status quo to iden-
tify winning tickets requires iterative training and pruning, which
is particularly expensive for finding meta winning tickets. To this
end, then we investigate the inter- and intra-layer patterns among
different meta winning tickets, and propose a scheme for early
detection of a meta winning ticket. The proposed scheme enables
efficient training in resource-limited devices. Besides, it also designs
a lightweight solution to search the meta winning ticket. Evalua-
tions on standard few-shot classification benchmarks show that
we can find competitive meta winning tickets with 20% weights of
the original backbone, while incurring only 8%-14% (Conv-4) and
19%-29% (ResNet-12) computation overhead (measured by FLOPs)
of the standard winning ticket finding scheme.

CCS CONCEPTS
• Computing methodologies→ Machine learning approaches.

KEYWORDS
Meta Learning; Network Pruning; Lottery Ticket Hypothesis

ACM Reference Format:
Dawei Gao, Yuexiang Xie, Zimu Zhou, Zhen Wang, Yaliang Li, and Bolin
Ding. 2022. Finding Meta Winning Ticket to Train Your MAML. In Proceed-
ings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD ’22), August 14–18, 2022, Washington, DC, USA. ACM, New
York, NY, USA, 10 pages. https://doi.org/10.1145/3534678.3539467

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’22, August 14–18, 2022, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9385-0/22/08. . . $15.00
https://doi.org/10.1145/3534678.3539467

1 INTRODUCTION
Meta learning is a prevailing paradigm for rapid learning of new
tasks from limited data [17, 34]. Specifically, a backbone is meta-
trained to generate a weight initialization that can be adapted to
unseen tasks in few shots [9]. Such capability of fast adaptation has
become increasingly important in Internet-of-Things (IoT) applica-
tions such as autonomous cars, personal robots, and smart home
appliances to deliver adaptive and personalized services.

However, it is non-trivial to bring fast model adaptation to IoT
platforms, since the backbones widely adopted in meta learning
[9, 16] easily overwhelm the memory system of modern IoT devices,
which is typically several 𝐾𝐵 to𝑀𝐵 [3]. The existing meta learning
schemes do not alter the backbone architecture [8].

To tackle such issue, in this study, we explore pruning the back-
bones for meta learning via the lens of the Lottery Ticket Hy-
pothesis (LTH) [10]. In particular, we focus on the existence and
fast identification of sparse sub-networks within a dense
backbone, known as meta winning tickets, that can be meta-
trained in isolation by prior gradient-based meta learning
methods to comparable few-shot learning accuracy as the
original backbone.

The motivation of our problem scope can be summarized as: (1)
Gradient-based meta learning algorithms such as model-agnostic
meta learning (MAML) [9] and its variants [22, 24] are fit for fast
adaptation in IoT applications since they support diverse learning
tasks and recent studies have shown the feasibility of gradient-
based training on memory-constrained platforms [13]. (2) LTH
[10], which was first revealed in vanilla supervised learning, has
been extended to multiple other learning paradigms [4, 5, 37]. It
wide applicability implies that it may also hold for meta learning. (3)
The status quo to identify the sparse sub-network, i.e., the winning
ticket, involves pre-training, pruning, and re-training [10]. Such
a process can be expensive for detecting a meta winning ticket,
due to massive meta updates and the calculation of second-order
derivatives in MAML and its variants. Early detection of meta win-
ning tickets may notably reduce the workload to obtain a compact,
meta-trained network.

We take an empirical approach to investigating the existence
and early detection of meta winning tickets, and experiment with
diverse backbones [9, 16], meta learning algorithms [9, 22, 24], and
few-shot learning benchmarks [26, 28]. Our main contributions and
results are summarized as follows:

• Meta winning tickets, i.e., sparse sub-networks within the
original backbone with competitive few-shot classification
performance, empirically exist, and they can be extracted

https://doi.org/10.1145/3534678.3539467
https://doi.org/10.1145/3534678.3539467

20 60 80 90 98
Pruning Ratio (%)

41

42

43

44

45

46

Ac
cu

ra
cy

 (%
)

MWT(One-shot)
MWT(Iterative)

(a) Conv-4

20 60 80 90 98
Pruning Ratio (%)

40

43

46

49

52

55

Ac
cu

ra
cy

 (%
)

MWT(One-shot)
MWT(Iterative)

(b) ResNet-12

Figure 1: Comparison of iterative and one-shot pruning
for finding meta winning tickets. Results obtained with
MAML, miniImageNet, 5-way-1-shot.

20 60 80 90 98
Pruning Ratio (%)

40

42

44

46

Ac
cu

ra
cy

 (%
)

MWT(Global)
MWT(Layer-wise)

(a) Conv-4

20 60 80 90 98
Pruning Ratio (%)

40

43

46

49

52

55

Ac
cu

ra
cy

 (%
)

MWT(Global)
MWT(Layer-wise)

(b) ResNet-12

Figure 2: Comparison of layer-wise and global pruning
for finding meta winning tickets. Results obtained with
MAML, miniImageNet, 5-way-1-shot.

via the standard winning ticket finding method as in the
original LTH [10].

• Meta winning tickets exhibit distinctive characteristics from
the winning tickets in vanilla supervised learning. Specifi-
cally, multiple meta winning tickets derived from the same
backbone share similar per-layer pruning ratios, and have
large overlaps in their mask locations in the first layer, which
we call as primary masks.

• Noticing that the primary masks of a meta winning ticket
emerge early during meta training, we propose PMT (pri-
mary masked ticket), a simple algorithm that approximately
identifies a meta winning ticket once the masks in the first
layer stabilize.

• Evaluations show that PMT accelerates meta winning ticket
finding by 7.02 to 16.67× on Conv-4, and 3.51 to 6.15× on
ResNet-12. It also reduces the computation overhead of meta-
training a sparse network by 2.07 to 2.78× on Conv-4 and
1.77 to 1.94× on ResNet-12.

2 PROBLEM STATEMENT
The lottery ticket hypothesis (LTH) [10] is first uncovered for vanilla
supervised learning in image classification tasks and has recently
been investigated in different learning paradigms and tasks [4, 5,
12, 37]. In this section, we state our hypothesis in the context of
meta learning.

2.1 Meta Learning Primer
Meta learning proves effective for few-shot learning [34]. We focus
on gradient-based meta learning [9, 22, 24] for its applicability in
diverse tasks [17]. For ease of discussion, we first briefly review
model-agnostic meta-learning (MAML) [9], a prevailing gradient-
based meta-learning algorithm in the context of few-shot classifica-
tion.

MAML enables fast adaptation to unseen classes, i.e., few-shot
classification by learning from abundant few-shot classification
episodes. It meta-trains a backbone 𝑓 (𝜽0) with initial parameters 𝜽0
to generate a model 𝑓 (𝜽𝑀) such that the meta-trained parameters
𝜽𝑀 can adapt to novel classes with few training samples. Meta-
training is formulated as a two-tier optimization process upon
large amounts of tasks {T𝑛} sampled from a distribution 𝑝 (T) via
stochastic gradient descent. For each sampled task within {T𝑛},
there exists a dataset D𝑛 = {S𝑛,Q𝑛} with S𝑛 (support set) for
training and Q𝑛 (query set) for testing.

During the k-𝑡ℎ iteration of meta-training, also known as meta
epoch, MAML samples 𝑁 tasks from 𝑝 (T) and updates the parame-
ters 𝜽𝑘 as:

inner loop: 𝜽𝑛
𝑘
= 𝜽𝑘 − 𝛼∇𝜽𝑘L (𝜽𝑘 ;S𝑛), (1)

outer loop: 𝜽𝑘+1 = 𝜽𝑘 − 𝛽

𝑁

∑︁
𝑛

∇𝜽𝑘L
(
𝜽𝑛
𝑘
;Q𝑛

)
, (2)

where 𝛼 and 𝛽 represent the inner and outer loop learning rates
respectively, and L denotes the loss function. In the inner loop, the
task-specific parameters 𝜽𝑛

𝑘
are optimized from the meta initializa-

tion 𝜽𝑘 on the support set for a few update steps. In the outer loop,
𝜽𝑘 is updated according to the averaged loss across the sampled
tasks on the query set. It is worth pointing out that meta-training
demands massive meta updates due to the training instability [2],
and involves computation-intensive calculations of the second or-
der derivatives 𝜽𝑘 [2, 24], which makes meta training rather costly.
Recent studies such as ANIL [24] and BOIL [22] show the viabil-
ity to omit the inner loop for the body or head of the backbone
without degrading few-shot accuracy, which in effect reduces the
meta-training overhead.

2.2 Meta Winning Ticket Hypothesis
According to LTH [10], a dense network 𝑓 (𝜽0) with proper ini-
tialization 𝜽0 contains a sparse sub-network 𝑓 (𝜽0 ⊙ 𝒎), where 𝒎
is a binary mask and ⊙ denotes element-wise product, such that
training 𝑓 (𝜽0 ⊙ 𝒎) in isolation can match the performance with
training 𝑓 (𝜽0). For complex networks, LTH holds by rewinding the
parameters to those after 𝑘 training iterations i.e., 𝜽𝑘 , rather than
the initial 𝜽0 [11]. 𝜽𝑘 ⊙ 𝒎 that yields comparable performance to
the dense network is called a winning ticket [10, 11].

We explore LTH in gradient-based meta learning [9, 22, 24].
Specifically, we hypothesize that there exists meta winning ticket
𝜽𝑘 ⊙𝒎 in the dense backbone 𝑓 (𝜽0) such that meta-training 𝑓 (𝜽𝑘 ⊙
𝒎) as in Eq. (1) and Eq. (2) achieves similar few-shot classification
accuracy as meta-training 𝑓 (𝜽0). We focus on (i) the empirical
existence of meta winning tickets (Sec. 3) and (ii) their efficient
detection algorithms (Sec. 4).

3 EXISTENCE OF METAWINNING TICKETS
In this section, we empirically show meta winning tickets by ap-
plying magnitude based weight pruning, the status quo to identify
winning tickets in vanilla supervised training [10]. The magnitude

Table 1: Hyper-parameters setups for MAML, ANIL and BOIL.

Method Dataset Backbone Outer Loop Inner Loop
LR Optimizer Iterations LR Optimizer Update Steps

MAML
miniImageNet Conv-4 0.001 Adam 80, 000 0.01 SGD 5

ResNet-12 0.001 Adam 80, 000 0.01 SGD 5

tieredImageNet Conv-4 0.001 Adam 80, 000 0.01 SGD 5
ResNet-12 0.001 Adam 80, 000 0.01 SGD 5

ANIL miniImageNet Conv-4 0.001 Adam 200, 000 0.01 SGD 5
ResNet-12 0.001 Adam 200, 000 0.01 SGD 5

BOIL miniImageNet Conv-4 0.001 Adam 200, 000 1 SGD 1
ResNet-12 0.001 Adam 200, 000 1 SGD 1

basedweight pruningmethod has also been adopted to findwinning
tickets in other domains [4, 5, 12, 37].

3.1 Measurement Settings
Previous studies [10] propose to find a winning ticket 𝜽𝑘 ⊙ 𝒎
in a dense network 𝑓 (𝜽0) with initialization 𝜽0 via magnitude
based pruning [14]. We adapt the procedure to gradient-based meta-
learning and evaluate the performance of tickets on widely-used
few-shot classification benchmarks. The learning rates adopted in
the inner and outer loop follow the settings in [9, 22, 24].

Note that there are different pruning settings in the original LTH,
including one-shot or iterative, global or layer-wise, and choices
of learning rate. We first conduct experiments to compare differ-
ent pruning settings. Specifically, Fig. 1 shows the comparison
between one-shot pruning and iterative pruning with MAML on
miniImageNet (5-way-1-shot setting). For both Conv-4 and ResNet-
12, iterative pruning and one-shot pruning yield similar perfor-
mances. However, the computation cost of iterative pruning is
nearly 7 times that of one-shot pruning. We choose one-shot prun-
ing since one application of our solution is to reduce the workload
of sparse meta training. Fig. 2 shows the comparison between global
pruning and layer-wise pruning with MAML on miniImageNet (5-
way-1-shot setting). For both Conv-4 and ResNet-12, the global
pruning outperforms layer-wise pruning with all pruning ratios by
about 1%. The possible reason is the global pruning can adjust the
pruning ratios for different layers adaptively, and the layer-wise
pruning is just a special case of the global pruning. Based on the
above observations, in this study we conduct experiments with
one-shot global pruning.
Meta Learning Setups. We evaluate three gradient-based meta
learning algorithms, whose different datasets and backbones are
summarized in Table 1, includingMAML [9]: the two-tier optimiza-
tion as Eq. (1) and Eq. (2); ANIL [24]: omitting MAML’s inner loop
for backbone head; and BOIL [22]: omitting MAML’s inner loop
for backbone body.

We adopt two two widely-used backbone architectures 𝑓 (·) for
meta learning, including: Conv-4 [9]: It is a 4-layer convolutional
network with 3 × 3 convolutions followed by batch normalisation,
ReLU, and 2 × 2 max-pooling; and ResNet-12 [16]: It contains 4
residual blocks, each containing three 3× 3 convolutional layers. In
each residual block, the first two convolution layers are followed
by batch normalisation and ReLu, and the last convolution layer
is followed by batch normalisation and a skip connection. A 2 × 2

Algorithm 1:MWT: find a meta winning ticket
Input: 𝜽0: initial weights; 𝑝 (T): task distribution;M: meta

training algorithm; 𝑝%: pruning ratio; 𝑠: random
seed;

Output: A winning ticket 𝜽𝑘 ⊙ 𝒎

1 Initialize 𝜽 with 𝜽0
2 while 𝜽 not converge do
3 Sample batch of tasks {T𝑖 } ∼ 𝑝 (T) by random seed 𝑠
4 Meta train 𝜽 on tasks {T𝑖 } by M
5 end
6 Prune 𝑝% weights of 𝜽 with small magnitude, and obtain the

mask 𝒎
7 Rewind weight back to 𝜽𝑘
8 Return the ticket 𝜽𝑘 ⊙ 𝒎

max-pooling is used after each residual block. The number of filters
in each residual block is 64, 128, 256, and 512. The backbones are
initialized as 𝑓 (𝜽0) by the Kaiming Normal [15], a widely-used
initialization for deep neural networks [16, 19, 25, 27].
Pruning Setups. Following previous studies [10], the standard
method (MWT) to find a meta winning ticket 𝜽𝑘 ⊙ 𝒎 given 𝑓 (𝜽0)
and a pruning ratio 𝑝% (percentage of weights to be pruned) con-
tains three steps: (i) Train 𝑓 (𝜽0) by a meta-learning algorithm for
𝑀 meta epochs to obtain 𝜽𝑀 ; (ii) Prune 𝑝% weights based on their
magnitude to get a mask 𝒎; (iii) Rewind the weights back to 𝜽𝒌 ,
which yields a ticket 𝜽𝑘 ⊙ 𝒎; (iv) Retrain the ticket by the meta-
learning algorithm to resume performance. We provide the pseudo
code of MWT in Algorithm 1.

In order to confirm the tickets found by MWT are competitive,
we compare MWT with other pruning schemes including (1) Ran-
dom Re-initialization (RR), which is the same asMWT except
that it re-initializes the weights with a new random Kaiming Nor-
mal when retaining (i.e., step (iv)); and (2) RandomMask (RM),
which generates a random mask across different layers rather than
pruning based on the magnitude of the meta-trained weights.
Benchmarks. We evaluate meta winning tickets on two few-shot
classification benchmarks: miniImageNet and tieredImageNet:

• miniImageNet: It is a subset of ImageNet for image classifi-
cation. It consists of 60, 000 colour images with 100 classes,
each having 600 images of size 84 × 84 [26]. We follow the

20 60 80 90 98
Pruning Ratio (%)

36

38

40

42

44

46

Ac
cu

ra
cy

 (%
)

MWT
RR
RM

(a) MAML/mini/1-shot

20 60 80 9095
Pruning Ratio (%)

41

43

45

47

49

Ac
cu

ra
cy

 (%
)

MWT
RR
RM

(b) ANIL/mini/1-shot

20 60 80 90 98
Pruning Ratio (%)

30

33

36

39

42

45

48

Ac
cu

ra
cy

 (%
)

MWT
RR
RM

(c) BOIL/mini/1-shot

20 60 80 90 98
Pruning Ratio (%)

38
40
42
44
46
48
50

Ac
cu

ra
cy

 (%
)

MWT
RR
RM

(d) MAML/tiered/1-shot

20 60 80 90 98
Pruning Ratio (%)

51

54

57

60

63

66

Ac
cu

ra
cy

 (%
)

MWT
RR
RM

(e) MAML/mini/5-shot

Figure 3: Few-shot accuracy of tickets extracted from Conv-4 backbone architecture via different methods.

20 60 80 90 98
Pruning Ratio (%)

44

46

48

50

52

54

Ac
cu

ra
cy

 (%
)

MWT
RR
RM

(a) MAML/mini/1-shot

20 60 80 90 98
Pruning Ratio (%)

48

50

52

54

Ac
cu

ra
cy

 (%
)

MWT
RR
RM

(b) ANIL/mini/1-shot

20 60 80 90 98
Pruning Ratio (%)

46

48

50

52

54

Ac
cu

ra
cy

 (%
)

MWT
RR
RM

(c) BOIL/mini/1-shot

20 60 80 90 98
Pruning Ratio (%)

40

43

46

49

52

55

Ac
cu

ra
cy

 (%
)

MWT
RR
RM

(d) MAML/tiered/1-shot

20 60 80 90 98
Pruning Ratio (%)

50

54

58

62

66

Ac
cu

ra
cy

 (%
)

MWT
RR
RM

(e) MAML/mini/5-shot

Figure 4: Few-shot accuracy of tickets extracted from ResNet-12 backbone architecture via different methods.

original data partition, where the dataset is divided into 64
training classes, 12 validation classes and 24 test classes.

• tieredImageNet: It is a larger image classification dataset with
608 classes and 779, 165 images [28]. This dataset first clusters
similar classes into the same category. Then it is divided
into 20 categories (351 classes) for training, 6 categories
(97 classes) for validation and 8 categories (160 classes) for
testing.

In our experiments, we adopt the 5-way 1-shot setting by default
and also test 5-way 5-shot for comparison.

3.2 Observations
Since a winning ticket consists of the rewind weight 𝜽𝑘 and the
mask matrix𝒎, we are interested in their impact on a meta winning
ticket.
Impact of Mask 𝑚. As shown in Fig. 3 and Fig. 4, we plot the
few-shot classification accuracy of the network with various combi-
nations of meta-training methods (MAML, ANIL, BOIL), and prun-
ing methods (MWT, RR, RM) on different backbones (Conv-4 and
ResNet-12), datasets (miniImageNet and tieredImageNet) and few-
shot settings (5-way-1-shot and 5-way-5-shot). The bold dotted line
in the figures denotes the accuracy of the originally meta-trained
backbone without pruning. Overall, MWT is able to identify tickets
with 80% of weights pruned, while incurring a few-shot accuracy
drop within 3% across backbones, datasets, and few-shot settings.

At the same pruning ratios, the tickets found by RR incur an
accuracy drop of 4%, and those found by RM introduce an accu-
racy drop of 5%. For example, at pruning ratio 80% with Conv-4,
miniImageNet and 5-way 1-shot settings, MWT only incurs 1% drop
in accuracy, while the accuracies of RR and RM decrease by over 3%.
From the experimental results we can conclude that MWT identifies
competitive tickets in meta learning, so-called meta winning tickets.
Another important observation is that RM performs notably worse
than RR, which highlights the contribution of mask𝑚 to a meta
winning ticket.

Impact of Rewind 𝑘 . Previous studies [11] show that the optimal
rewind 𝑘 may differ for small and large networks in vanilla super-
vised training. To evaluate the impact of rewind in meta learning,
we conduct experiments on miniImageNet with MAML for meta-
training and MWT for identifying the tickets, with pruning ratios
from 20% and 98%. The experimental results, including the few-shot
accuracy with different rewind 𝑘 for Conv-4 and ResNet-12, are
illustrated in Fig. 5. It can be observed that an overly large rewind 𝑘
tends to induce notable accuracy drop at all pruning ratios. With a
small rewind 𝑘 (greater than zero), the accuracy at certain pruning
ratios might increase, and the increments become marginal at high
pruning ratios, e.g., 95%.
Takeaways. The experiments show that (1) Winning tickets empir-
ically exist in meta learning in few-shot learning benchmarks, and
they can be identified by the standard methods for finding winning
tickets in vanilla supervised training; (2) The mask𝑚 is essential in
a meta winning ticket 𝜽𝑘 ⊙𝒎, yet the rewind 𝑘 is less important. We
can set 𝑘 to zero without significantly damaging the performance
of meta winning tickets, particularly at high pruning ratios.

4 FINDING METAWINING TICKET EARLY
We further explore methods to identify meta winning tickets earlier
than applying the standard MWT (i.e., Algorithm 1). Such meth-
ods hold promise to notably reduce the workload of sparse meta-
training (see Sec. 5). Inspired by the observation that there exist
multiple winning tickets in a backbone [7], we propose to identify
a meta winning ticket early via exploiting the commonality among
meta winning tickets.

4.1 Obtaining Multiple Meta Winning Tickets
We first conduct experiments to find multiple meta winning tickets
from the same backbone, and then analyze the commonality among
them. Specifically, we repeat the meta training steps in Algorithm 1
(i.e., lines 2-4) using the same initialization 𝜽0 but different random
seeds, and obtain a series of well-trained networks {𝜽 1

𝑇
, · · · , 𝜽𝑔

𝑇
}.

0 5k 10k 15k 20k
Rewind K

32

35

38

41

44

47

Ac
cu

ra
cy

 (%
)

PR=20%
PR=60%
PR=80%
PR=90%
PR=95%
PR=98%

(a) Conv-4

0 5k 10k 15k 20k
Rewind K

42

44

46

48

50

52

54

Ac
cu

ra
cy

 (%
)

PR=20%
PR=60%
PR=80%
PR=90%
PR=95%
PR=98%

(b) ResNet-12

Figure 5: Impact of rewind 𝑘 .

1 2 3 4
Layer index

20

40

60

80

100

Pr
un

in
g

ra
tio

 (%
)

PR=20%
PR=60%
PR=80%
PR=90%
PR=95%
PR=98%

(a) Conv-4

2 4 6 8 10 12
Layer index

20

40

60

80

100

Pr
un

in
g

ra
tio

 (%
)

PR=20%
PR=60%
PR=80%
PR=90%
PR=95%
PR=98%

(b) ResNet-12

Figure 6: Distributions of per-layer pruning ratios of dif-
ferent meta winning tickets.

1 3 5 7 9
The number of winning tickets (g)

0

20

40

60

80

100


g (

%
)

0
1
2
3

(a) 𝑃𝑅 = 20%

1 3 5 7 9
The number of winning tickets (g)

0

20

40

60

80

100


g (

%
)

0
1
2
3

(b) 𝑃𝑅 = 60%

1 3 5 7 9
The number of winning tickets (g)

0

20

40

60

80

100


g (

%
)

0
1
2
3

(c) 𝑃𝑅 = 80%

1 3 5 7 9
The number of winning tickets (g)

0

20

40

60

80

100


g (

%
)

0
1
2
3

(d) 𝑃𝑅 = 90%

1 3 5 7 9
The number of winning tickets (g)

0

20

40

60

80

100


g (

%
)

0
1
2
3

(e) 𝑃𝑅 = 98%

Figure 7: Overlap of per-layer mask locations among different meta winning tickets for Conv-4 backbone.

Then we perform magnitude-based pruning on them to generate
different winning tickets, denoted as {𝜽0 ⊙ 𝒎1, · · · , 𝜽0 ⊙ 𝒎𝑔}. We
generate 10 meta winning tickets for the Conv-4 and ResNet-12
backbone respectively, and report the detailed performance of them
in Appendix A.1. The results show that the behaviors of these meta
winning tickets are similarly as the those shown in Fig. 3(a) and
Fig. 4(a).

4.2 Mask Patterns among Meta Winning Tickets
Further, we analyze the commonality among the meta winning
tickets. Since these tickets shares the same 𝜽0, we focus on the
patterns of their masks {𝒎1, · · · ,𝒎𝑔}.
Inter-LayerMask Patterns. Following previous study [31], which
shows the importance of layer-wise pruning ratios [31], we investi-
gate the per-layer pruning ratios of different meta winning tickets.
Specifically, for a preset global pruning ratio 𝑝% in Algorithm 1, we
plot the pruning ratios at each layer for the 10meta winning tickets
obtained from the Conv-4 and ResNet-12 backbones, as in Fig. 6.
It can be observed that given a global pruning ratio, the per-layer
pruning ratios of meta winning tickets are almost the same. Similar
phenomena can be observed in the conducted experiments using
different global pruning ratios.

The observations above imply the feasibility to configure the per-
layer pruning ratios of a meta winning ticket via a data-independent
scheme [31]. However, the per-layer pruning ratios alone fail to
identify a meta winning ticket (see empirical evidence and discus-
sion in Sec. 5), which motivates us to further investigate intra-layer
mask patterns.
Intra-Layer Mask Patterns. Among the meta winning tickets,
we are interested in their mask locations at each layer i.e., where
𝒎𝑖 = 1. We define O𝑔 as the percent of overlapped mask locations
within the first 𝑔 meta winning tickets {𝜽0 ⊙ 𝒎1, · · · , 𝜽0 ⊙ 𝒎𝑔} as

O𝑔 :=

���{𝑖 |𝒎 𝑗

𝑖
=1,∀1≤ 𝑗≤𝑔}

���
| |𝒎 | |0 × 100%.We show the values of O𝑔 at each

layer with different pruning ratios for 10 meta winning tickets for
the Conv-4 backbone in Fig. 7. Similar results for ResNet-12 are in
Appendix A.2. From the results of O𝑔 we can conclude: (1) Given a
global pruning ratio, the overlapped mask locations among tickets
deceases at deeper layers. (2) With high global pruning ratios, the
overlapped mask locations almost only exist in the first layer. For
example, when 𝑃𝑅 ≥ 60%, the overlapped mask locations drop to
zero in the layers other than the first. When 𝑃𝑅 = 98%, the overlap
is still 40% in the first layer.

Observing such distinction between the first and the other layers,
we hypothesize that the shared mask locations in the first layer,
named as primary masks, are crucial for a meta winning ticket.
To confirm our hypothesis, we empirically show the difference
between the shared masks in the first layer (called primary masks)
and the other layers (called secondary masks). For a given global
pruning ratio, we first obtain the per-layer pruning ratios (see
Sec. 4.3), and then create the following tickets:

• MWT: it is the meta winning tickets, which contains both
the primary and secondary masks.

• SR: the mask locations in all layers are randomly picked.
• OMT: it randomly picks mask locations in the first layer and
uses the secondary masks for other layers.

• PM: it adopts the primary masks in the first layer while the
other mask locations are randomly picked.

As shown in Fig. 8, we plot the few-shot accuracy of these tickets
under the settings of MAML, miniImageNet, and 5-way-1-shot.
MWT outperforms all other tickets when pruning more than 60%
weights. We observe that PM outperforms SR, which implies the
importance of primary masks. We also notice that OMT achieves
similar performance with the random ticket SR, which implies the
secondary masks are replaceable for a meta winning ticket. Based

20 60 80 90 98
Pruning Ratio (%)

40

42

44

46
Ac

cu
ra

cy
 (%

)

MWT
SR
OMT
PMT

Figure 8: Ablation study of primary masks.

0 5k 10k 15k 20k
Training iteration

50

60

70

80

90

100

Oc
cu

rre
nc

e
ra

te
 (%

)

PR=20%
PR=60%
PR=80%
PR=90%
PR=95%
PR=98%

(a) Conv-4

0 5k 10k 15k 20k
Training iteration

40

60

80

100

Oc
cu

rre
nc

e
ra

te
 (%

)

PR=20%
PR=60%
PR=80%
PR=90%
PR=95%
PR=98%

(b) ResNet-12

Figure 9: Emergence of primary masks during meta training.

on the above observation, we attach importance to the primary
masks within meta winning tickets.

4.3 Fast Meta Winning Ticket Finding
Algorithm

The inter- and intra-layer mask patterns among meta winning
tickets discussed above motivate us to identify a meta winning
ticket early by exploiting the commonality among meta winning
tickets.
Idea. EBTrain [36] shows that the masks of a winning ticket for
vanilla supervised training tend to stabilize early in the training
stage. Inspired by EBTrain, we demonstrate that the primary masks
of a meta winning ticket emerge early during meta training.

We investigate the emergence of meta winning tickets by plot-
ting the occurrence rate of primary masks during meta training.
The occurrence rate is the percent of primary masks that occur in
the current mask of the first layer. Specifically, Fig. 9 shows the
occurrence rate after every 500 training iterations for the Conv-4
and ResNet-12 backbones, where the primary masks are extracted
as in Sec. 4.2. We observe that most mask locations in the primary
masks appear at the beginning. Over 90% mask locations of the
primary masks are fixed within 3, 000 iterations for Conv-4, and
7, 500 training iterations for ResNet-12. For comparison, the com-
plete meta training process of both Conv-4 and ResNet-12 contains
80,000 training iterations, which shows that the mask locations of
the primary masks are nearly fixed when running only 4%-9% of
total iterations.
Algorithm Sketch.Motivated by the observation above, we pro-
pose a simple yet effective method named Primary Masked Ticket
(PMT), which identifies meta winning tickets once the mask loca-
tions in the first layer of the backbone become stable. Note that it
is intractable to directly monitor the emergence of primary masks,
since the emergence of primary masks is obtained via comparing
different meta winning tickets, which are unknown beforehand.
Instead, we monitor all the mask locations in the first layer of the
backbone to recognize the primary masks when it stabilizes. The
intuition is that, when the masks in the first layer are fixed, the
primary masks must have emerged.

The detailed procedure is illustrated in Algorithm 2. We first
initialize the backbone and a queue with length 𝑙 . Then we repeat
sampling a batch of tasks from 𝑝 (T), and training the backbone
for 𝛾 iterations. After that, we obtain the mask of the first layer
by magnitude-based pruning, and push the overlap of the last two
masks of the first layer into Q. The training will be terminated

Algorithm 2: PMT: find a meta winning ticket early ex-
ploiting primary masks
Input: CR: compression ratio; 𝜽0: initial weights; 𝑝 (T):

distribution over tasks; M: meta training algorithm;
𝛾 : training interval; 𝑙 : length of queue; 𝛿 : threshold

Output: A winning ticket 𝜽0 ·𝒎
1 Initialize 𝜽 with 𝜽0
2 Initialize a queue Q with length 𝑙
3 Get keep ratio for the 1𝑠𝑡 layer as in [31]
4 while MAX(Q) ≤ 𝛿 do
5 for 𝛾 training iterations do
6 Sample batch of tasks T𝑖 ∼ 𝑝 (T)
7 Meta train 𝜽 on tasks T𝑖
8 end
9 Prune the first layer in 𝜽 and obtain the mask 𝒎

10 Compute the overlap 𝑐 between 𝒎 and the last masks,
and push it into Q

11 end
12 Return the ticket 𝜽0 ·𝒎

when the maximum value within Q is larger than 𝛿 . Note that the
pruning ratio of the first layer is obtained based on the smart ratios
proposed by [31]. Specifically, for a 𝐿-layer backbone, the keep ratio
(i.e., 1 minus the pruning ratio) of the 𝑙-th layer is proportional to
(𝐿 − 𝑙 + 1)2 + (𝐿 − 𝑙 + 1).
Discussion. Although both the proposed PMT and EBTrain [36]
identify a winning ticket at the early stage of training, they differ in
two aspects. Firstly, EBTrain [36] relies on the observation that the
mask locations of all layers stabilize in the early stage of training.

However, this observation does not hold in meta training. To
show the differences between the proposed PMT and EBTrain, we
conduct the same observation inmeta learning scenario for EBTrain.
Specifically, we record the meta training produce for both Conv-4
and ResNet-12. Then we calculate and plot the hamming distance
among these checkpoints with different pruning ratios. The results
on Conv-4 and ResNet-12 are shown in Fig. 10 and Fig. 11. For
Conv-4, the mask matrix gets stable fast with low pruning ratio,
but much slower with high pruning ratio, which is similar with
observation in [36]. However, the mask matrix of larger backbone
(ResNet-12) keeps changing during meta training, which implies
the infeasibility of EBTrain to find meta winning ticket.

Secondly, our experiments demonstrate the importance of the
masks in the first layer in a meta winning ticket, which motivates

0

20

40

60

80

100

%
 of difference

(a) 𝑃𝑅 = 20%

0

20

40

60

80

100

%
 of difference

(b) 𝑃𝑅 = 60%

0

20

40

60

80

100

%
 of difference

(c) 𝑃𝑅 = 80%

0

20

40

60

80

100

%
 of difference

(d) 𝑃𝑅 = 90%

0

20

40

60

80

100

%
 of difference

(e) 𝑃𝑅 = 98%

Figure 10: The distance of mask matrix for Conv-4 in meta learning.

0

20

40

60

80

100

%
 of difference

(a) 𝑃𝑅 = 20%

0

20

40

60

80

100

%
 of difference

(b) 𝑃𝑅 = 60%

0

20

40

60

80

100

%
 of difference

(c) 𝑃𝑅 = 80%

0

20

40

60

80

100

%
 of difference

(d) 𝑃𝑅 = 90%

0

20

40

60

80

100

%
 of difference

(e) 𝑃𝑅 = 98%

Figure 11: The distance of mask matrix for ResNet-12 in meta learning.

20 60 80 90 98
Pruning Ratio (%)

36

38

40

42

44

46

Ac
cu

ra
cy

 (%
)

MWT
SNIP
RM
SR
PMT

(a) MAML/mini/1-shot

20 60 80 90 98
Pruning Ratio (%)

38

40

42

44

46

48

Ac
cu

ra
cy

 (%
)

MWT
SNIP
RM
SR
PMT

(b) ANIL/mini/1-shot

20 60 80 90 98
Pruning Ratio (%)

30

35

40

45

Ac
cu

ra
cy

 (%
)

MWT
SNIP
RM
SR
PMT

(c) BOIL/mini/1-shot

20 60 80 90 98
Pruning Ratio (%)

36

39

42

45

48

Ac
cu

ra
cy

 (%
)

MWT
SNIP
RM
SR
PMT

(d) MAML/tiered/1-shot

20 60 80 90 98
Pruning Ratio (%)

51

54

57

60

63

66

Ac
cu

ra
cy

 (%
)

MWT
SNIP
RM
SR
PMT

(e) MAML/mini/5-shot

Figure 12: Evaluation of tickets extract from Conv-4 backbone architecture via different methods.

20 60 80 90 98
Pruning Ratio (%)

44

46

48

50

52

54

Ac
cu

ra
cy

 (%
)

MWT
SNIP
RM
SR
PMT

(a) MAML/mini/1-shot

20 60 80 90 98
Pruning Ratio (%)

46

48

50

52

54

Ac
cu

ra
cy

 (%
)

MWT
SNIP
RM
SR
PMT

(b) ANIL/mini/1-shot

20 60 80 90 98
Pruning Ratio (%)

46

48

50

52

54

Ac
cu

ra
cy

 (%
)

MWT
SNIP
RM
SR
PMT

(c) BOIL/mini/1-shot

20 60 80 90 98
Pruning Ratio (%)

40

43

46

49

52

55

Ac
cu

ra
cy

 (%
)

MWT
SNIP
RM
SR
PMT

(d) MAML/tiered/1-shot

20 60 80 90 98
Pruning Ratio (%)

46

48

50

52

54

Ac
cu

ra
cy

 (%
)

MWT
SNIP
RM
SR
PMT

(e) MAML/mini/5-shot

Figure 13: Evaluation of tickets extract from ResNet-12 backbone architecture via different methods.

us to propose PMT for finding meta winning tickets at the early
stage of meta-training.

5 EXPERIMENT
In this section, we experimentwith various combinations of datasets
(miniImageNet and tieredImageNet), backbones (Conv-4 and ResNet-
12), meta training algorithms (MAML, ANIL and BOIL), and training
manner (5-way-1-shot and 5-way-5-shot). The details of the experi-
mental settings can be found in Sec. 3.1. All the neural networks
are trained and tested on NVIDIA RTX 2080Ti with 12GB memory.

5.1 Baselines
We compare PMT with the following baselines:

• Random Mask (RM). It randomly prunes weights across
layers, and rewinds the remaining weights to the initializa-
tion. It serves as the baseline of a random ticket.

• Smart Ratio (SR). It follows the per-layer pruning ratios
of the meta winning ticket, yet randomly prunes weights
within each layer. It is the baseline that only accounts for
the inter-layer mask patterns of meta winning tickets.

• SNIP. It is a “pruning at initialization” scheme [18], which
calculates the gradients of weights and obtains mask matrix
by removing weights with gradient in small magnitude.

• MWT. It is the standard method to find a winning ticket
[10] and used in Algorithm 1. It serves as the upper bound
of a meta winning ticket in terms of accuracy.

5.2 Performance on Few-Shot Accuracy
We show the few-shot classification accuracy of the tickets ob-
tained by various combinations of different meta-training methods
(MAML, ANIL, BOIL) and different pruning algorithms (PMT, RM,
SR, SNIP, MWT) in Fig. 12 and Fig. 13. For Conv-4, when pruning
20% weights, different pruning methods have similar performances.

Table 2: Computational cost for meta winning ticket finding and sparse meta training with Conv-4 backbone.

Setup
Ticket Finding FLOPS (×1015) Sparse Meta Training FLOPS (×1015)

MWT PMT PMT PMT PR=60% PR=80% PR=90%
PR=60% PR=80% PR=90% MWT PMT MWT PMT MWT PMT

MAML/mini/1-shot 0.78 0.05×16.67 0.06×13.33 0.06×13.3 1.14 0.41×2.78 1.24 0.52×2.37 1.24 0.52×2.39
ANIL/mini/1-shot 1.94 0.20×9.52 0.28×7.02 0.28×7.02 2.93 1.20×2.46 3.23 1.56×2.07 3.23 1.57×2.06
BOIL/mini/1-shot 0.39 0.04×10.00 0.05×7.69 0.05×7.69 0.58 0.23×2.55 0.63 0.29×2.16 0.62 0.28×2.19

MAML/tiered/1-shot 0.78 0.06×13.33 0.08×9.41 0.08×9.41 1.13 0.41×2.76 1.23 0.53×2.30 1.20 0.51×2.36
MAML/mini/5-shot 3.89 0.27×14.29 0.32×12.31 0.32×12.31 5.71 2.09×2.73 6.22 2.65×2.35 6.20 2.65×2.34

Table 3: Computational cost for meta winning ticket finding and sparse meta training with ResNet-12 backbone.

Setup
Ticket Finding FLOPS (×1015) Sparse Meta Training FLOPS (×1015)

MWT PMT PMT PMT PR=60% PR=80% PR=90%
PR=60% PR=80% PR=90% MWT PMT MWT PMT MWT PMT

MAML/mini/1-shot 20.08 3.26×6.15 3.76×5.33 4.14×4.85 30.62 13.80×2.22 33.73 17.42×1.94 34.13 18.19×1.88
ANIL/mini/1-shot 50.19 13.80×3.64 14.43×3.48 15.18×3.31 78.05 41.66×1.87 79.30 43.54×1.82 78.30 43.29×1.81
BOIL/mini/1-shot 10.04 2.51×4.00 2.66×3.78 2.86×3.51 15.46 7.93×1.95 16.06 8.88×1.81 16.46 9.29×1.77

MAML/tiered/1-shot 20.08 3.51×5.71 3.89×5.16 4.64×4.32 31.37 14.81×2.12 33.53 14.34×1.93 33.13 17.69×1.87
MAML/mini/5-shot 100.38 21.33×4.71 22.59×4.44 26.98×3.72 154.21 75.16×2.05 165.13 88.34×1.87 162.12 88.71×1.82

However, when the pruning ratio is increased from 60% to 98%,
PMT outperforms RM, SR, and SNIP in few-shot classification ac-
curacy. Compared with MWT (the upper bound), PMT incurs at
most 1% drop in accuracy at the same pruning ratios. For ResNet-12,
PMT also outperforms the baselines by a noticeable margin. The
accuracy drop of PMT compared to MWT is within 2%, while other
baselines incur an accuracy drop of at most 12%. The experimen-
tal results demonstrate the effectiveness of the proposed PMT. To
balance few-shot accuracy and computational cost, PMT identifies
meta winning tickets at the early stage of meta training based on
primary masks. These experimental results show that the meta win-
ing tickets found by PMT achieve competitive few-shot accuracy
compared to MWT.

5.3 Performance on Sparse Meta-Training
In this section, we show the computation overhead for meta win-
ning ticket finding and end-to-end meta-training of a sparse back-
bone. Note that we only report the results of PMT and MWT, since
we empirically find that othermethods, i.e., RM, SR and SNIP, induce
notable few-shot accuracy drop and fail to identify a competitive
meta winning ticket.

To be more specific, we first identify a meta winning ticket and
meta-train it till the loss on the validation dataset is minimized.
Then we measure the FLOPS (including the forward and back prop-
agation) [20] of both meta ticket finding and the meta training
process of the sparse network. Note that sparse matrix multiplica-
tion can be supported by different libraries [1, 23].

The experimental results are shown in Table 2 and Table 3. From
the results we can observe that the computational cost for find-
ing meta winning tickets increases marginally with larger prun-
ing ratios, since more weights are removed with large pruning
ratios. For MAML, PMT accelerates ticket finding by at least 12.31×
(MAML/mini/5-shot) on Conv-4 and 3.72× (MAML/mini/5-shot)

on ResNet-12. For ANIL, PMT achieves at least 7.02× acceleration
on Conv-4 and 3.31× on ResNet-12. For BOIL, PMT achieves at
least 7.69× acceleration on Conv-4 and 3.51× on ResNet-12. The
acceleration with ANIL is the lowest because ANIL only updates
the weights of the output layer, making it converge slower than
MAML and BOIL.

Compared with meta ticket finding, the acceleration of PMT on
end-to-end sparse meta training decreases, because our method
does not alter the meta-training process after meta ticket finding.
However, PMT still achieves 2.06 − 2.39× acceleration on Conv-4
and 1.77− 1.94× acceleration on ResNet-12 than using the standard
MWT for ticket finding. The experimental results demonstrate the
advantages of PMT in terms of computational cost.

6 RELATEDWORK
We present the related works in following categories.
Meta Learning. Meta learning is a promising solution to few-
shot learning [17, 34]. Meta learning methods include optimization-
based [2, 9, 35], black-box/model-based [21, 29], and metric-based
[30, 32] methods, and we focus on optimization-based schemes
that learns an initialization by gradients [9, 22, 24, 38]. Gradient-
based optimization such as MAML [9] is advantageous, since it
can be applied to not only classification, but also regression and
reinforcement learning. It can be fit for on-device adaptation given
the advances inmemory-efficient gradient descent implementations
[13]. MAML and its variants [9, 22, 24, 38] only meta-trains the
weights of the given backbone without optimizing its architecture.
Recent study [33] proposes to perform magnitude-based pruning
on the backbone to mitigate meta-overfitting. However, the authors
follow the computation-intensive procedure, which consists of pre-
training, pruning, and re-training. Different from previous studies,
we optimize the backbone architecture in the lens of the lottery

ticket hypothesis and propose a novel method to identify meta
winning tickets early.
Lottery Ticket Hypothesis. The original LTH is studied in vanilla
supervised learning with applications on network pruning [10].
LTH has been extended to sparsify the backbones in more sophis-
ticated learning tasks including natural language processing [37],
object detection [12], self-supervised pre-training [4], lifelong learn-
ing [5], etc. Our study is aligned with this emerging trend, yet
focuses on meta learning, which is promising for fast model adap-
tation on low-resource platforms. Some pioneer studies apply LTH
for efficient training. For example, EBTrain [36] uncovers winning
tickets that appear early in vanilla supervised learning, whereas
EarlyBERT [6] explores early winning ticket finding in pre-training
language models. However, these methods cannot be applied in
meta learning, since the observation on early-bird tickets for vanilla
supervised learning does not hold in meta learning. We empirical
confirm the existence of winning tickets in meta learning, and fur-
ther propose to identify them early to balance few-shot accuracy
and computational cost.

7 CONCLUSION
In this paper, we study the existence and fast finding of winning
tickets for gradient-based meta learning. We empirically show that
there exist meta winning tickets, which can be meta-trained in iso-
lation to achieve comparable few-shot classification accuracy to the
original backbone. Further, we propose Primary Mask Ticket (PMT)
for fast ticket detection via exploiting the commonality among meta
winning tickets, which balances few-shot accuracy and computa-
tional cost for finding meta winning tickets. Experiments show
that the meta wining tickets found by PMT can achieve better per-
formance than baselines. In addition, compared with the standard
winning ticket detection methods, PMT significantly reduces the
computational overhead in both meta ticket detection and end-to-
end sparse meta-training.

8 ACKNOWLEDGMENTS
We thank the reviewers for their valuable comments and sugges-
tions. Zimu Zhou’s research was supported by the Lee Kong Chian
Fellowship awarded by Singapore Management University.

REFERENCES
[1] Martín Abadi, Paul Barham, Jianmin Chen, and et al. 2016. TensorFlow: A System

for Large-Scale Machine Learning. In OSDI.
[2] Antreas Antoniou, Harrison Edwards, and Amos J. Storkey. 2019. How to train

your MAML. In ICLR.
[3] Colby Banbury, Chuteng Zhou, Igor Fedorov, and et al. 2021. Micronets: Neural

network architectures for deploying tinyml applications on commodity micro-
controllers. Proceedings of Machine Learning and Systems 3 (2021).

[4] Tianlong Chen, Jonathan Frankle, Shiyu Chang, and et al. 2021. The lottery
tickets hypothesis for supervised and self-supervised pre-training in computer
vision models. In CVPR.

[5] Tianlong Chen, Zhenyu Zhang, Sijia Liu, and et al. 2021. Long live the lottery:
The existence of winning tickets in lifelong learning. In ICLR.

[6] Xiaohan Chen, Yu Cheng, Shuohang Wang, and et al. 2021. Earlybert: Efficient
bert training via early-bird lottery tickets. In ACL.

[7] James Diffenderfer and Bhavya Kailkhura. 2021. Multi-prize lottery ticket hypoth-
esis: Finding accurate binary neural networks by pruning a randomly weighted
network. In ICLR.

[8] Thomas Elsken, Benedikt Staffler, Jan Hendrik Metzen, and et al. 2020. Meta-
learning of neural architectures for few-shot learning. In CVPR.

[9] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-agnostic meta-
learning for fast adaptation of deep networks. In ICML.

[10] Jonathan Frankle andMichael Carbin. 2019. The lottery ticket hypothesis: Finding
sparse, trainable neural networks. In ICLR.

[11] Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M. Roy, and et al. 2020.
Linear mode connectivity and the lottery ticket hypothesis. In ICML.

[12] Sharath Girish, Shishira R. Maiya, Kamal Gupta, and et al. 2021. The lottery
ticket hypothesis for object recognition. In CVPR.

[13] Mary Gooneratne, Khe Chai Sim, Petr Zadrazil, and et al. 2020. Low-rank gradient
approximation for memory-efficient on-device training of deep neural network.
In ICASSP.

[14] SongHan, Huizi Mao, andWilliam J. Dally. 2016. Deep compression: Compressing
deep neural network with pruning, trained quantization and huffman coding. In
ICLR.

[15] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and et al. 2015. Delving deep into
rectifiers: surpassing human-Level performance on imageNet classification. In
ICCV.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and et al. 2016. Deep residual
learning for image recognition. In CVPR.

[17] Timothy M. Hospedales, Antreas Antoniou, Paul Micaelli, and et al. 2020. Meta-
learning in neural networks: A survey. arXiv:2004.05439

[18] Namhoon Lee, Thalaiyasingam Ajanthan, and Philip H. S. Torr. 2019. Snip:
Single-shot network pruning based on connection sensitivity. In ICLR.

[19] Xuezhe Ma and Eduard H. Hovy. 2016. End-to-end sequence labeling via bi-
directional lstm-cnns-crf. In ACL.

[20] Pavlo Molchanov, Stephen Tyree, Tero Karras, and et al. 2017. Pruning Convolu-
tional Neural Networks for Resource Efficient Inference. In ICLR.

[21] Tsendsuren Munkhdalai and Hong Yu. 2017. Meta networks. In ICML.
[22] Jaehoon Oh, Hyungjun Yoo, ChangHwan Kim, and et al. 2021. Boil: Towards

representation change for few-shot learning. In ICLR.
[23] Adam Paszke, Sam Gross, Francisco Massa, and et al. 2019. PyTorch: An Impera-

tive Style, High-Performance Deep Learning Library. In NeurIPS.
[24] Aniruddh Raghu, Maithra Raghu, Samy Bengio, and et al. 2020. Rapid learning

or feature reuse? Towards understanding the effectiveness of MAML. In ICLR.
[25] Vivek Ramanujan, Mitchell Wortsman, Aniruddha Kembhavi, and et al. 2020.

What’s hidden in a randomly weighted neural network?. In CVPR.
[26] Sachin Ravi and Hugo Larochelle. 2017. Optimization as a model for few-Shot

learning. In ICLR.
[27] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and et al. 2016. You

only look once: Unified, real-time object detection. In CVPR.
[28] Mengye Ren, Eleni Triantafillou, Sachin Ravi, and et al. 2018. Meta-learning for

semi-supervised few-shot classification. In ICLR.
[29] Adam Santoro, Sergey Bartunov, Matthew Botvinick, and et al. 2016. Meta-

learning with memory-augmented neural networks. In ICML.
[30] Jake Snell, Kevin Swersky, and Richard Zemel. 2017. Prototypical networks for

few-shot learning. In NeurIPS.
[31] Jingtong Su, Yihang Chen, Tianle Cai, and et al. 2020. Sanity-checking pruning

methods: Random tickets can win the jackpot. In NeurIPS.
[32] Flood Sung, Yongxin Yang, Li Zhang, and et al. 2018. Learning to compare:

Relation network for few-shot learning. In CVPR.
[33] Hongduan Tian, Bo Liu, Xiao-Tong Yuan, and et al. 2020. Meta-learning with

network pruning. In ECCV.
[34] Yaqing Wang, Quanming Yao, James T. Kwok, and et al. 2020. Generalizing from

a few examples: A survey on few-shot learning. Comput. Surveys 53, 3 (2020),
63:1–63:34.

[35] Huaxiu Yao, Xian Wu, Zhiqiang Tao, and et al. 2020. Automated relational
meta-learning. In ICLR.

[36] Haoran You, Chaojian Li, Pengfei Xu, and et al. 2020. Drawing early-bird tickets:
Towards more efficient training of deep networks. In ICLR.

[37] Haonan Yu, Sergey Edunov, Yuandong Tian, and et al. 2020. Playing the lottery
with rewards and multiple languages: lottery tickets in RL and NLP. In ICLR.

[38] Luisa M. Zintgraf, Kyriacos Shiarlis, Vitaly Kurin, and et al. 2019. Fast context
adaptation via meta-learning. In ICML.

https://arxiv.org/abs/2004.05439

A ADDITIONAL RESULTS FOR FAST FINDING
METAWINNING TICKETS

A.1 Details of 10 Meta Winning Tickets
As shown in Fig. 14(a) and Fig. 14(b), we plot 10 meta winning
tickets for the Conv-4 and ResNet-12 backbone, respectively, un-
der the settings of MAML, miniImageNet, and 5-way-1-shot. We
can observe that the behaviors of these meta winning tickets are
similarly as the those shown in Fig. 3(a) and Fig. 4(a).

20 60 80 90 98
Pruning Ratio (%)

34
36
38
40
42
44
46
48

Ac
cu

ra
cy

 (%
)

(a) Conv-4

20 60 80 90 98
Pruning Ratio (%)

42

44

46

48

50

52

54

Ac
cu

ra
cy

 (%
)

(b) ResNet-12

Figure 14: Performance of 10 different meta winning tickets.

A.2 Intra-Layer Mask Patterns for ResNet-12
We plot the values of O𝑔 at each layer at different pruning ratios
for the 10 meta winning tickets using the ResNet-12 backbone in
Fig. 15. The results are similar to those using the Conv-4 backbone
(shown in Fig. 7). There is a clear distinction between the overlap
of mask locations at the first layer and the remaining layers.

1 3 5 7 9
(g)

0
20
40
60
80

100


g (

%
)

(a) PR=20%

1 3 5 7 9
(g)

0

25

50

75

100

(b) PR=60%

1 3 5 7 9
(g)

0

25

50

75

100

(c) PR=80%

1 3 5 7 9
(g)

0
20
40
60
80

100


g (

%
)

(d) PR=90%

1 3 5 7 9
(g)

0

25

50

75

100

(e) PR=95%

1 3 5 7 9
(g)

0

25

50

75

100

(f) PR=98%

0
1
2
3
4
5
6
7
8
9
10
11

Figure 15: Overlap of per-layer mask locations among differ-
ent meta winning tickets for ResNet-12 backbone.

	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Meta Learning Primer
	2.2 Meta Winning Ticket Hypothesis

	3 Existence of Meta Winning Tickets
	3.1 Measurement Settings
	3.2 Observations

	4 Finding Meta Wining Ticket Early
	4.1 Obtaining Multiple Meta Winning Tickets
	4.2 Mask Patterns among Meta Winning Tickets
	4.3 Fast Meta Winning Ticket Finding Algorithm

	5 Experiment
	5.1 Baselines
	5.2 Performance on Few-Shot Accuracy
	5.3 Performance on Sparse Meta-Training

	6 Related Work
	7 Conclusion
	8 Acknowledgments
	References
	A Additional Results for Fast Finding Meta Winning Tickets
	A.1 Details of 10 Meta Winning Tickets
	A.2 Intra-Layer Mask Patterns for ResNet-12

