
Localised Adaptive Spatial-Temporal Graph Neural Network
Wenying Duan

School of Mathematics and Computer
Science

Nanchang University
Nanchang, China

wenyingduan@ncu.edu.cn

Xiaoxi He∗
Faculty of Science and Technology

University of Macau
Macau, China

hexiaoxi@um.edu.mo

Zimu Zhou
School of Data Science

City University of Hong Kong
Hong Kong, China

zimuzhou@cityu.edu.hk

Lothar Thiele
D-ITET

ETH Zurich
Zurich, Switzerland

thiele@ethz.ch

Hong Rao
School of Software

Nanchang University
Nanchang, China

raohong@ncu.edu.cn

ABSTRACT
Spatial-temporal graph models are prevailing for abstracting and
modelling spatial and temporal dependencies. In this work, we
ask the following question: whether and to what extent can we lo-
calise spatial-temporal graph models? We limit our scope to adaptive
spatial-temporal graph neural networks (ASTGNNs), the state-of-
the-art model architecture. Our approach to localisation involves
sparsifying the spatial graph adjacency matrices. To this end, we
propose Adaptive Graph Sparsification (AGS), a graph sparsification
algorithm which successfully enables the localisation of ASTGNNs
to an extreme extent (fully localisation). We apply AGS to two dis-
tinct ASTGNN architectures and nine spatial-temporal datasets.
Intriguingly, we observe that spatial graphs in ASTGNNs can be
sparsified by over 99.5% without any decline in test accuracy. Fur-
thermore, evenwhenASTGNNs are fully localised, becoming graph-
less and purely temporal, we record no drop in accuracy for the
majority of tested datasets, with only minor accuracy deterioration
observed in the remaining datasets. However, when the partially
or fully localised ASTGNNs are reinitialised and retrained on the
same data, there is a considerable and consistent drop in accuracy.
Based on these observations, we reckon that (i) in the tested data,
the information provided by the spatial dependencies is primarily
included in the information provided by the temporal dependencies
and, thus, can be essentially ignored for inference; and (ii) although
the spatial dependencies provide redundant information, it is vital
for the effective training of ASTGNNs and thus cannot be ignored
during training. Furthermore, the localisation of ASTGNNs holds
the potential to reduce the heavy computation overhead required on
large-scale spatial-temporal data and further enable the distributed
deployment of ASTGNNs.

∗corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
KDD ’23, August 6–10, 2023, Long Beach, CA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0103-0/23/08…$15.00
https://doi.org/10.1145/3580305.3599418

CCS CONCEPTS
• Computing methodologies → Neural networks.

KEYWORDS
graph sparsification, spatial-temporal graph neural network, spatial-
temporal data

ACM Reference Format:
Wenying Duan, Xiaoxi He, Zimu Zhou, Lothar Thiele, and Hong Rao. 2023.
Localised Adaptive Spatial-Temporal Graph Neural Network. In Proceedings
of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD ’23), August 6–10, 2023, Long Beach, CA, USA. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3580305.3599418

1 INTRODUCTION
An increasing number of modern intelligent applications [3, 6, 24]
rely on spatial-temporal data, i.e., data collected across both space
and time. Spatial-temporal data often contain spatial and temporal
dependencies, i.e., the current measurement at a particular location
has causal dependencies on the historical status at the same and
other locations. Learning these spatial and temporal dependencies
is usually the essence of spatial-temporal data mining and plays a
vital role in spatial-temporal inference [1].

Spatial-temporal data can be effectively represented by spatial-
temporal graph models, which can depict complex relationships
and interdependencies between objects in non-Euclidean domains
[2, 11, 12, 19, 21, 24, 24, 26, 28]. Of our particular interest are adap-
tive spatial-temporal graph neural networks (ASTGNNs), a popular
class of spatial-temporal graph models which have demonstrated
outstanding performance in applications involving spatial-temporal
data such as traffic forecasting, blockchain price prediction, and
biosurveillance forecasting [3, 6–8, 24, 25].

In this work, we ask the following question: whether and to
what extent can we localise spatial-temporal graph models?
We limit our investigations to ASTGNNs, as they represent the state-
of-the-art spatial-temporal graph model architecture. ASTGNNs
usually model spatial dependencies with adaptive graph convolu-
tional layers. The spatial dependencies are captured by learning the
graph adjacency matrices. Therefore, the localisation of an AST-
GNN is achieved via sparsifying the adjacency matrices, which can
also be understood as pruning edges in the spatial graph. Note that

https://doi.org/10.1145/3580305.3599418
https://doi.org/10.1145/3580305.3599418

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Wenying Duan, Xiaoxi He, Zimu Zhou, Lothar Thiele, and Hong Rao

Figure 1: Histogram of edge weights of the spatial graph from
an ASTGNN trained on the PeMSD8 dataset.

the localisation of an ASTGNN refers to the sparsification of only
the adjacency matrices capturing the spatial dependencies. It is
crucial not to be confused with sparsifying other weight matrices,
such as those used in the temporal modules, often seen in GNN
sparsification with pre-defined graph architectures [5, 16, 27, 29].
An initial clue which indicates that the localisation of ASTGNNs
could be feasible, probably even to an extreme extent, is shown in
Figure. 1). Here we show the distribution of the elements in the
spatial graph’s adjacency matrix from an ASTGNN trained on the
PeMSD8 dataset [4]. It is obvious that most edges in the spatial
graph have weights close to zero.

We are interested in the localisation of spatial-temporal graph
models for the following reasons:

• A deeper understanding of the spatial and temporal dependen-
cies in the data. Although it is commonly accepted that both
spatial and temporal dependencies are vital for inference,
it is unclear whether and to what extent the information
provided by these dependencies overlaps. If the localisation
induces a marginal accuracy drop, then the information pro-
vided by the spatial dependencies is already largely included
in the information contained in the temporal dependencies
and, thus, unnecessary for inference.

• Resoruce-efficient ASTGNN designs. ASTGNNs are notori-
ously computation heavy as the size of the spatial graph
grows quadratically with the number of vertices, thus lim-
iting their usage on large-scale data and applications. The
localisation of ASTGNNs may significantly reduce the re-
source requirement of these spatial-temporal graph models
and enable new spatial-temporal applications.

• Distributed deployment of spatial-temporal graph models. In
many cases, the data to construct the spatial-temporal graph
models are collected via distributed sensing systems e.g., sen-
sor networks. However, making predictions of each vertex
using these models requires the history of other vertices,
thereby involving data exchange between sensor nodes. Lo-
calisation of spatial-temporal graph models may enable in-
dividual sensor nodes to make predictions autonomously
without communicating with each other, which saves band-
width and protects privacy in a distributed system.

We explore the localisation of ASTGNNs via Adaptive Graph
Sparsification (AGS), a novel algorithm dedicated to the sparsifi-
cation of adjacency matrices in ASTGNNs. The core of AGS is a
differentiable approximation of the !0-regularization of a mask
matrix, which allows the back-propagation to go past the regular-
izer and thus enables a progressive sparsification while training.
We apply AGS to two representative ASTGNN architectures and
nine different spatial-temporal datasets. The experiment results are
surprising. (i) The spatial adjacency matrices can be sparsified to
over 99.5% without deterioration in test accuracy on all datasets.
(ii) Even fully localised ASTGNNs, which effectively degenerate
to purely temporal models, can still provide decent test accuracy
(no deterioration on most tested datasets while only minor accu-
racy drops on the rest). (iii) When we reinitialise the weights of
the localised ASTGNNs and retrain them on the spatial-temporal
datasets, we cannot reinstate the same inference accuracy. Figure. 2
summarises our experiments and observations.

Our empirical study implies two hypotheses. (i) In the tested
spatial-temporal datasets, the information provided by the spatial
dependencies is primarily included in the information provided by
the temporal dependencies. Therefore, the spatial dependencies
can be safely ignored for inference without a noteworthy loss
of accuracy. (ii) Although the information contained in the spatial
and temporal dependencies overlaps, such overlapping provides the
vital redundancy necessary for properly training a spatial-temporal
graph model. Thus, the spatial dependencies cannot be ignored
during training.

Our main contributions are summarised as follows:

• To the best of our knowledge, this is the first study on the
localisation of spatial-temporal graph models. We surpris-
ingly observed that spatial dependencies could be largely
ignored during inference without losing accuracy. Extensive
experiments on common spatial-temporal datasets and rep-
resentative ASTGNN architectures demonstrated that only a
few edges (less than 0.5% on all tested datasets) are required
to maintain the inference accuracy. More surprisingly, when
the spatial dependencies are completely ignored, i.e., the
ASTGNNs are fully localised, they can still maintain a de-
cent inference accuracy (no deterioration on most tested
datasets, minor drops on the rest).

• With further investigations, we suggest the hypothesis that,
although spatial dependencies can be primarily ignored dur-
ing inference, they can drastically improve training effec-
tiveness. This is supported by the observation that, if we
reinitialise all parameters in the sparsified ASTGNNs and
retrain them with the same data, the retrained networks
yield considerably and consistently worse accuracy.

• To enable the localisation of ASTGNNs, we propose Adap-
tive Graph Sparsification (AGS), a novel graph sparsification
algorithm dedicated to ASTGNNs. The core of AGS is a dif-
ferentiable approximation of the !0-regularization of a mask
matrix, which allows the back-propagation to go past the reg-
ularizer and thus enables a progressive sparsification while
training.

Localised Adaptive Spatial-Temporal Graph Neural Network KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Figure 2: An overview of our experiments and observations. We train ASTGNNs on spatial-temporal datasets, achieving baseline
accuracies. Then we localise the ASTGNNs with the proposed algorithm AGS, achieving accuracies comparable to the dense
graph baselines. Finally, we reinitialise the localised ASTGNNs and retrain them on the same datasets, resulting in considerably
and consistently deteriorated accuracies.

2 RELATED WORK
Our work is relevant to the following threads of research.

2.1 Spatial-Temporal Graph Neural Networks
Spatial-temporal graph neural networks (STGNNs) play an essen-
tial role in spatial-temporal data analysis for their ability to learn
hidden patterns of spatial irregular signals varying across time
[24]. These models often combine graph convolutional networks
and recurrent neural networks. For example, Graph Convolutional
Recurrent Network (GCRN) [21] combines an LSTM with ChebNet.
Diffusion Convolutional Recurrent Neural Network [19] incorpo-
rates a proposed diffusion graph convolutional layer into GRU in
an encoder-decoder manner to make multi-step predictions. Alter-
natively, CNN-based models can represent the temporal relations
in spatial-temporal data in a non-recursive manner. For instance,
CGCN [28] combines 1D convolutional layers with GCN layers. ST-
GCN [26] composes a spatial-temporal model for skeleton-based
action recognition using a 1D convolutional layer and a Partition
Graph Convolution (PGC) layer. More recent proposals such as
ASTGCN [11], STG2Seq [2], and LSGCN [12] further employ at-
tention mechanisms to model dynamic spatial dependencies and
temporal dependencies. In addition, some researchers consider the
out-of-distribution generalisation of STGNN, and propose a do-
main generalisation framework based on hypernetworks to solve
this problem[10]. However, these models adopt a predefined graph
structure, which may not reflect the complete spatial dependency.

To capture the dynamics in graph structures of spatial-temporal
data, an emerging trend is to utilize adaptive spatial-temporal graph
neural networks (ASTGNNs). Graph WaveNet [25] proposes an
AGCN layer to learn a normalized adaptive adjacency matrix with-
out a pre-defined graph. ASTGAT introduces a network generator
model that generates an adaptive discrete graph with the Gumbel-
Softmax technique[15]. The network generator can adaptively infer

the hidden correlations from data. AGCRN [3] designs a Node
Adaptive Parameter Learning enhanced AGCN (NAPL-AGCN) to
learn node-specific patterns. Due to its start-of-the-art performance,
NAPL-AGCN has been integrated into various recent models such
as Z-GCNETs [7], STG-NCDE [8], and TAMP-S2GCNets [6].

Despite the superior performance of ASTGNNs, they incur tremen-
dous computation overhead, mainly because (i) learning an adap-
tive adjacency matrix involves calculating the edge weight between
each pair of nodes, and (ii) the aggregation phase is computation-
ally intensive. We aim at efficient ASTGNN inference, particularly
for large graphs.

2.2 Graph Sparsification for GNNs
With graphs rapidly growing, the training and inference cost of
GNNs has become increasingly expensive. The prohibitive cost has
motivated growing interest in graph sparsification. The purpose
of graph sparsification is to extract a small sub-graph from the
original large one. SGCN [16] is the first to investigate graph spar-
sification for GNNs, i.e., pruning input graph edges, and learned
an extra DNN surrogate. NeuralSparse [29] prunes task-irrelevant
edges from downstream supervision signals to learn robust graph
representation. More recent works such as UGS [5] and GBET [27]
explore graph sparsification from the perspective of the winning
tickets hypothesis.

The aforementioned works only explore graph sparsification for
vanilla GNNs and non-temporal data with pre-defined graphs. Our
work differs by focusing on spatial-temporal GNNs with adaptive
graph architectures.

3 PRELIMINARIES
This section provides a quick review of the representative architec-
tures of ASTGNNs.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Wenying Duan, Xiaoxi He, Zimu Zhou, Lothar Thiele, and Hong Rao

3.1 Spatial-Temporal Data as Graph Structure
Following the conventions in spatial-temporal graph neural net-
work research [2, 3, 6–8, 11, 12, 19, 21, 24–26, 28], we represent the
spatial-temporal data as a sequence of discrete frames X with G =
{V, E}, where X = {^1,^2, . . . ,^) }. The graph G is also known
as the spatial network, which consists of a set of nodes V and a
set of edges E. Let |V| = # . Then the edges are presented with
an adjacency matrix �C ∈ R#×# , where ^C ∈ R#×� is the node
feature matrix with dimension � at timestep C , for C = 1, . . . ,) .

Given graphs G and T historical observations XT={^C−T , . . .,
^C−1} ∈ RT×#×� , we aim to learn a function F which maps the
historical observations into the future observations in the next H
timesteps:

{^C , . . . ,^C+H} = F (^C−T , . . . ,^C−1;\,G) (1)

where \ denotes all the learnable parameters.

3.2 Modeling the Spatial Network G
Since we focus on the role of spatial dependencies, we explain the
state-of-the-art modelling of the spatial network in spatial-temporal
graph neural networks (STGNNs).

The basic method to model the spatial network G at timestep C
with its node feature matrix^C in representative STGNNs [2, 12, 25]
is Graph Convolution Networks (GCNs). A one-layer GCN can be
defined as:

/C = f

(
�̃− 1

2 �̃C �̃
− 1

2^C,

)
(2)

where �̃ = � + �# is the adjacency matrix of the graph with added
self-connections. �# is the identity matrix. �̃ is the degree matrix.
, ∈ R�×� is a trainable parameter matrix. f (·) is the activation
function. /C ∈ R#×� is the output. All information regarding the
input ^C at timestep C is aggregated in /C .

A key improvement to model the spatial network is to adopt
Adaptive Graph Convolution Networks (AGCNs) to capture the dy-
namics in the graph G, which leads to the adaptive spatial-temporal
graph neural networks (ASTGNNs) [3, 6–8, 25]. In the following,
we briefly explain Adaptive Graph Convolutional Recurrent Net-
work (AGCRN) [3] and the extension with transformers, denoted
as AGFormer, two representative ASTGNN models.

• AGCRN. It enhances the GCN layer by combining the nor-
malized self-adaptive adjacency matrix with a Node Adap-
tive Parameter Learning (NAPL), which is known as NAPL-
AGCN.

A03? = (> 5 C"0G

(
'4!*

(
EE)

))
/C = f

(
A03?^CE,G

) (3)

where,G ∈ R3×�×� and E,G ∈ R#×�×� . A03? ∈ R#×#

is the normalized self-adaptive adjacencymatrix [25].3 is the
embedding dimension for3 � # . Each row of E presents the
embedding of the node. During training, E is updated to learn
the spatial dependencies among all nodes. Instead of directly
learning, in (2) shared by all nodes, NAPL-AGCN uses
E,G to learn node-specific parameters. From the view of one
node (e.g., node 8), E8,G are the corresponding node-specific
parameters according to its node embedding E8 . Finally, to
capture both spatial and temporal dependencies, AGCRN

integrates NAPL-AGCN and Gated Recurrent Units (GRU)
by replacing the MLP layers in GRU with NAPL-AGCN.

• AGFormer. It extends AGCRN by modelling the temporal
dependencies with transformers [17, 22]. A Transformer is
a stack of transformer blocks. One block contains a multi-
head self-attention mechanism and a fully connected feed-
forward network. We replace the MLP layers in the multi-
head self-attention mechanism with NAPL-AGCN to con-
struct a transformer-based ASTGNN model, which we call
AGFormer.

Modelling the spatial network with NAPL-AGCN achieves state-
of-the-art performances on multiple benchmarks, and it has been
widely adopted in diverse ASTGNN variants [3, 6–8]. However,
NAPL-AGCN is much more inefficient than GCNs, since A03? is a
matrix without zeros, while the adjacency matrix of a pre-defined
graph in GCNs is far more sparse than A03? . This motivates us to
explore the localisation of spatial-temporal graph models taking
ASTGNNs as examples.

4 ADAPTIVE GRAPH SPARSIFICATION
This section presents Adaptive Graph Sparsification (AGS), a new
algorithm dedicated to the sparsification of adjacency matrics in
ASTGNNs.
Formulation. The NAPL-AGCN-based ASTGNNs with normal-
ized self-adaptive adjacency matrix A03? can be trained using the
following objective:

L(\,A03?) =

∑
g ∈T

∑
E∈V

~ (g,E) − ~̂ (g,E)

1

|V| × |T| (4)

where T is a training set, g is a train sample, and~ (g,E) is the ground-
truth of node E in g .

Given a pre-trained model F (·;\,A03?), we introduce a mask
MA to prune the adjacency matrix A03? . The shape of MA is iden-
tical to A03? . Specifically, given F (·;\,A03?), we obtain MA by
optimizing the following objective:

L��(= L(\,A03? � MA) + _ ‖MA‖0 ,

‖MA‖0 =
#∑
8=1

#∑
9=1

< (8, 9) ,< (8, 9) ∈ {0, 1}
(5)

where � is the element-wise product,< (8, 9) corresponds to binary
“gate” that indicates whether an edge is pruned, and _ is a weighting
factor for !0-regularization of MA.
Sparsification Algorithm. An intuitive way to get MA is to ini-
tialize a trainable weight matrix U ∈ R#×# and map the en-
try D (8, 9) ∈ U into binary “gates” using a Bernoulli distribution:

< (8, 9) = B
(
D (8, 9)

)
, where B is a Bernoulli distribution. However,

directly introducing U to model F (·;\,A03?) has two problems.
• It may be unscalable for large-scale graphs.
• The !0 sparsity penalty is non-differentiable.

For the scalability issue, we adopt a node adaptive weight learn-
ing technique to reduce the computation cost by simply generating
U with the node embedding E:

U = E,E (6)

Localised Adaptive Spatial-Temporal Graph Neural Network KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Algorithm 1: Adaptive Graph Sparsification (AGS)

Input: X: input data, F
(
·;\,A03?

)
: Spatial-temporal GNN

with initialization self-adaptive adjacency matrix A03? ,
N1: number of pre-training iterations, N2: number of
sparsification iterations, B6 : pre-defined sparsity level for
graph.

Output: F
(
·;\,A03? � MA

)
1: while iteration 8 < N1 do
2: Forward to compute the loss in Eq.(4).
3: Back-propagate to update \ and A03? .
4: end while
5: Obtain pre-trained F

(
·;\,A03?

)
.

6: Sort entries in A03? by magnitude in an ascending order
then obtain list = {:8 }#×#

8=1 .
7: while iteration 8 < N2 and 1 − ‖MA ‖0A03?

0
< B6 do

8: set M(8, 9)
A = 1 if A(8, 9)

03?
∉ :# 2B6

.
9: Forward to compute the loss in Eq.(5).

10: Back-propagate to update \ and A03? � MA .
11: end while

where,E ∈ R3×# is a trainable matrix.
For the non-differentiable issue, we introduce the hard concrete

distribution instead of the Bernoulli distribution [9], which is a
contiguous relaxation of a discrete distribution and can approximate
binary values.

Accordingly, the computation of binary “gates”< (8, 9) can be
formulated as:

I ∼ U(0, 1), B (8, 9) = (86
(
log I − log(1 − I) + log

(
D (8, 9)

))
/V

B̄ (8, 9) = B (8, 9) (Z − W) + W,< (8, 9) = min
(
1,max

(
0, B̄ (8, 9)

)) (7)

where I is a uniform distribution, (86 is a sigmoid function, V is
a temperature value and (Z − W) is the interval with Z < 0 and
W > 1. We set Z = −0.1 and W = 1.1 in practice. Then, MA is applied
to prune the lowest-magnitude entries in A03? , w.r.t. pre-defined
ratios ?6 .

Alg. 1 outlines the procedure of AGS. The pruning begins after
the network is pre-trained (Line 5). First, we sort edges in the
adjacency matrix by magnitude in ascending order (Line 6). Then
we perform pruning iteratively (Line 7). The top ?6 of the edges
are removed, and the rest are retained. We identify the remaining
edge by setting its corresponding entry inMA to 1 in each iteration
(Line 8). The edges to be pruned are removed using Eq.(5) (Line 9).
Discussions. We make two notes on our AGS algorithm.

• AGS differs from prior magnitude-based pruning methods
designed for graphs [5, 27] in that (i) it sparsifies adaptive
graphs in spatial-temporal GNNs rather than vanilla GNNs
and non-temporal data with pre-defined graphs; and (ii) it
does not require iterative retraining on the pruned graphs
to restore model accuracy.

• Pruning the adjacency matrix with AGS notably reduces the
complexity of ASTGNNs for inference. The inference time

Table 1: Summary of datasets used in experiments.

Datasets #Nodes Range

PeMSD3 358 09/01/2018 - 30/11/2018
PeMSD4 307 01/01/2018 - 28/02/2018
PeMSD7 883 01/07/2017 - 31/08/2017
PeMSD8 170 01/07/2016 - 31/08/2016

Bytom 100 27/07/2017 - 07/05/2018
Decentral 100 14/10/2017 - 07/05/2018
Golem 100 18/02/2017 - 07/05/2018

CA 55 01/02/2020 - 31/12/2020
TX 251 01/02/2020 - 31/12/2020

complexity of unpruned NAPL-AGCN layers is O(# 23 +
!#T � 2 + !T

A03?

0
� + #3�). After sparsification, the

inference time complexity of NAPL-AGCN layers is O(# 23+
!#T � 2 + !T

A03? � MA

0
� + #3�), where # 23 is the

time complexity of computing adaptive adjacency matrix,
3 is the embedding dimension,# is the number of nodes,�03? � "�

0
is the number of remaining edges, � is the

representation dimension of node features, T is the length
of input, ! is the number of layers.

5 EXPERIMENTS
To answer the question of whether and to what extent we can
localise a spatial-temporal graph model, we conducted extensive
experiments explained in this section.

5.1 Neural Network Architecture
We evaluate the performance of AGS over two representative NAPL-
AGCN-based ASTGNN architectures:AGCRN [3] and its extension
AGFormer. AGCRN is a state-of-the-art ASTGNN architecture
combining AGCN and RNN layers. AGCN layers are used to capture
the spatial dependencies, while RNN layers are there to model
the temporal dependencies. AGFormer, on the other hand, can be
regarded as an alternative version of the AGCRN, in which the
RNN layers are substituted by Transformer layers. We intentionally
chose these two ASTGNN architectures sharing the same spatial
module but using different temporal modules, to show that both the
effectiveness of AGS and our observations on the learned spatial
dependencies are orthogonal to the temporal modules involved.

5.2 Datasets and Configurations
The localisation of ASTGNNs is evaluated on nine real-world spatial-
temporal datasets from three application domains: transportation,
blockchain and biosurveillance. Table 1 summarizes the specifica-
tions of the datasets used in our experiments. The detailed datasets
and configurations are provided in Appendix A.1. The details on
tuning hyperparameters are provided in Appendix A.2.

5.3 Main Experimental Results
Our major experiments are illustrated in Figure. 2. We first train
AGCRNs and AGFormers on the nine spatial-temporal datasets,

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Wenying Duan, Xiaoxi He, Zimu Zhou, Lothar Thiele, and Hong Rao

Figure 3: Test accuracies of original and localised (up to 99%) AGCRNs andAGFormers, tested on transportation datasets (PeMSD3,
PeMSD4, PeMSD7 and PeMSD8). Horizontal dash lines represent the baselines of non-localised AGCRNs and AGFormers.

achieving baseline accuracies.Thenwe conduct localisation of these
well-trained AGCRNs and AGFormers using AGS. Finally, we reini-
tialise all weights in the localised AGCRNs and retrain them on the
original datasets with the same training settings.

The experiment results are organised as follows:

• The test accuracies of the non-localised AGCRNs and AG-
Formers and those with localisation degrees until 99% are col-
lected in Figure. 3 (on transportation datasets), Figure. 4 (on
biosurveillance datasets) and Figure. 5 (blockchain datasets).
These figures contain the test accuracies at graph sparsity of
0%, 30%, 50%, 80% and 99%.

• The test accuracies of AGCRNs with localisation degrees
between 99.1% and 100% are illustrated in Figure. 6, shown
in dotted green curves.

• The test accuracies of localised AGCRNs that are reinitialised
and retrained are also collected in Figure. 6, shown in solid
purple curves.

Error bars in these figures show the standard deviation of five runs.
We made the following observations from these results:

• The localisation of AGCRNs andAGFormers is possible.
Applying AGS on AGCRNs and AGFormers and localising
them to a localisation degree of 99% incurs no performance
degradation across all datasets. On the contrary, in many
experiments, the test accuracy keeps improving until 99%-
localisation. Further localisation of AGCRNs up to 99.5% still
induces no accuracy drop against the non-localised baselines.

• Full localisation of AGCRNs is still practical. Even when
we fully localise the AGCRNs, which in effect turn them into
independent RNNs ignoring all spatial dependencies, they
can still provide decent test accuracies. As shown in Figure. 6,
on transportation datasets (PeMSD3, PeMSD4, PeMSD7 and
PeMSD8), only minor drops are observed. On blockchain
datasets (Bytom, Decentraland and Golem) and biosurveil-
lance datasets (CA&TX), we can observe that the test accu-
racy is no worse at 100% sparsity compared with the non-
localised baselines.

• Localised AGCRNs cannot be relearned without the
dense spatial graphs. As shown in Figure. 6, when we
reinitialise the partially or fully localised AGCRNs and then

Localised Adaptive Spatial-Temporal Graph Neural Network KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Figure 4: Test accuracies of original and localised (up to 99%)
AGCRNs and AGFormers, tested on biosurveillance datasets
(CA and TX). Horizontal dash lines represent the baselines
of non-localised AGCRNs and AGFormers.

retrain them on the nine datasets, we can observe a consis-
tent and considerable drop in inference accuracy.

Upon these observations, we suggest the following hypotheses:
• In many spatial-temporal datasets, the information provided

by the spatial dependencies is primarily included in the infor-
mation provided by the temporal dependencies. Therefore,
the spatial dependencies can be safely ignored for inference
without a noteworthy loss of accuracy.

• Although the information contained in the spatial and tem-
poral dependencies overlaps, such overlapping provides the
vital redundancy necessary for properly training a spatial-
temporal graphmodel.Thus, the spatial dependencies cannot
be ignored during training.

6 ABLATION STUDIES
6.1 Impact on Resource Efficiency
As mentioned in Sec. 1, one of the reasons that we are particularly
interested in the localisation of ASTGNNs is its resource efficiency.
Non-localised ASTGNNs usually learn spatial graphs that are com-
plete. Therefore, the number of edges and consequently the compu-
tation overhead grows quadratically with the number of vertices.

Localisation of ASTGNNs is equivalent to pruning edges in the
learned spatial graph, which could dramatically reduce the compu-
tation overhead associated with the spatial dependencies and thus
improve resource efficiency. To this end, we calculated the amount
of computation during inference of 99%-localised AGCRNs and AG-
Formers, measured in FLOPs, and summarised the results in Table 2.
We can see that the localisation of AGCRNs and AGFormers effec-
tively reduces the amount of computation required for inference.
The acceleration is more prominent on AGCRNs against AGForm-
ers because a larger portion of the total computation required by
AGFormers is used on their temporal module (transformer layers),
whereas AGCRNs use much lighter temporal modules (RNN layers).

6.2 Localised AGCRNs vs. Other Non-Localised
ASTGNNs

In Figure. 3, Figure. 4 and Figure. 5, we can clearly see that the locali-
sation up to 99% is able to improve the test accuracy slightly. For ex-
ample, 99%-localised AGCRNs outperform non-localised AGCRNs
by decreasing the RMSE/MAE/MAPE by 3.6%/3.7%/2.0% on PeMSD3.
Such improvement is consistently observed across both AGCRNs
and AGFormers and all tested datasets. We reckon that this im-
provement is caused by the regularisation effect of sparsifying the
spatial graph, which may suggest that the non-localised AGCRNs
and AGFormers all suffer from overfitting to a certain degree.

Recent works on ASTGNNs proposed improved architectures
of AGCRN, including Z-GCNETs [7], STG-NCDE [8], and TAMP-
S2GCNets [6] for different applications. We are therefore curious
about how our localised AGCRNs compare to these variations.
Hence we compare the test accuracy of 99%-localised AGCRNs with
these architectures. Results are shown in Table 3, Table 4 and Ta-
ble 5. We can see that our localised AGCRNs can generally provide
competitive inference performance even against those delivered by
state-of-the-art architectures. This observation also agrees with our
first hypothesis mentioned in Sec. 5.3: in many spatial-temporal
datasets, the information provided by the spatial dependencies are
primarily included in the information provided by the temporal
dependencies. Therefore, different spatial modules, given that the
temporal modules are properly trained, may not make a significant
difference in inference performance.

6.3 Localisation of Non-temporal Graphs
To further investigate spatial dependencies and indirectly test our
hypotheses, we conduct additional experiments and extend AGS
to non-temporal graphs. We attempt to sparsify the spatial graph
pre-given by non-temporal datasets, including Cora, CiteSeer, and
Pubmed [20]. On these datasets, we train two non-temporal graph
neural network architectures, GCN[14] and GAT[23]. On GCN
and GAT, as they don’t own node embeddings E, we can use the
representation H learned by pre-trained GCN and GAT to replace E
in (6), then prune the edges as in Alg. 1, where the weighting factor
_ takes control of graph sparsity.

Table 6 shows the accuracy of localised GCN and GAT non-
temporal datasets. The pre-defined graphs of Cora, Citeseer, and
PubMed are sparsified to 30%, 50%, 80% and 100%, respectively.
We can observe a significant drop in the test accuracy among all
localised non-temporal graph models. This indicates that, in the

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Wenying Duan, Xiaoxi He, Zimu Zhou, Lothar Thiele, and Hong Rao

Figure 5: Test accuracies of original and localised (up to 99%) AGCRNs and AGFormers, tested on blockchain datasets (Bytom,
Decentraland and Golem). Horizontal dash lines represent the baselines of non-localised AGCRNs and AGFormers.

Figure 6: Test accuracies of localised (99.1% to 100%) AGCRNs and their reinitialised&retrained counterparts, tested on all
datasets. Horizontal dash lines represent the baselines of non-localised AGCRNs.

absence of temporal dependencies, the information provided by
spatial dependencies plays a major role during inference and thus
can not be ignored via localisation.

7 CONCLUSION
In this paper, we ask the following question: whether and to what
extent can we localise spatial-temporal graph models? To facilitate

Localised Adaptive Spatial-Temporal Graph Neural Network KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Table 2: Computation cost during inference on original and 99%-localised AGCRNs and AGformsers.The amount of computation
is measured in MFLOPs, and acceleration factors are calculated in the round brackets.

Methods Computation Cost for Inference (MFLOPs)
PeMSD3 PeMSD4 PeMSD7 PeMSD8 Decentraland Bytom Golem CA TX

Original AGCRN 400.26 188.59 1131.41 153.06 8.58 8.58 8.58 161.42 850.29
Original AGFormer 122.01 99.45 453.89 47.39 15.02 15.02 15.02 21.50 266.97
Localised AGCRN 253.33(↑1.6×) 80.55(↑2.3×) 237.56(↑4.8×) 119.93(↑1.3×) 2.82(↑3.0×) 2.82(↑3.0×) 2.82(↑3.0×) 145.50(↑1.1×) 706.21(↑1.2×)
Localised AGFormer 80.13(↑1.5×) 68.64(↑1.4×) 199.17(↑2.3×) 37.95(↑1.3×) 11.75(↑1.3×) 1.75(↑1.3×) 11.75(↑1.3×) 19.56(↑1.1×) 226.43(↑1.1×)

Table 3: Performance of 99%-localised AGCRNs compared with other non-localised ASTGNN architectures on transportation
datasets.

Methods Datasets PeMSD3 PeMSD4 PeMSD7 PeMSD8 Average
Metrics MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

AGCRN 15.98 28.25 15.23% 19.83 32.30 12.97% 22.37 36.55 9.12% 15.95 25.22 10.09% 18.53 30.58 11.85%
Z-GCNETs 16.64 28.15 16.39% 19.50 31.61 12.78% 21.77 35.17 9.25% 15.76 25.11 10.01% 18.42 30.01 12.11%
STG-NCDE 15.57 27.09 15.06% 19.21 31.09 12.76% 20.53 33.84 8.80% 15.45 24.81 9.92% 17.69 29.21 11.64%
TAMP-S2GCNets 16.03 28.28 15.37% 19.58 31.64 13.22% 22.16 36.24 9.20% 16.17 25.75 10.18% 18.49 30.48 11.99%
Localised AGCRN 15.41 27.21 14.93% 19.55 31.88 12.70% 21.03 34.56 8.53% 15.63 24.78 9.78% 17.91 29.61 11.49%

Table 4: Performance of 99%-localised AGCRNs compared with other non-localised ASTGNN architectures on biosurveillance
datasets.

Methods Datasets CA TX
Metrics MAE RMSE MAPE MAE RMSE MAPE

AGCRN 91.23±1.69 448.27±2.78 53.67±0.42 13.36±0.58 52.96±3.92 47.89% ±2.22
TAMP-S2GCNets 76.53±0.87 371.60±2.68 92.90±1.57 11.29±1.05 48.21±3.17 52.34% ±3.87
Localised AGCRN 86.22±1.43 423.91±3.01 44.12±0.35 12.31±0.59 52.88 ±3.73 42.47%±1.41

Table 5: Performance of 99%-localised AGCRNs com-
pared with other non-localised ASTGNN architectures on
blockchain datasets.

Model MAPE in %
Bytom Decentraland Golem

AGCRN 34.46±1.37 26.75±1.51 22.83±1.91
Z-GCNETs 31.04±0.78 23.81±2.43 22.32±1.42
STG-NCDE 29.65±0.63 24.13±1.07 22.24±1.53
TAMP-S2GCNets 29.26±1.06 19.89±1.49 20.10±2.30
Localised AGCRN 28.17±0.93 13.33±0.31 21.71±0.49

Table 6: Classification accuracy (%) of localised GCN and GAT
on citation graph datasets.

Sparsity(%) Cora Citeseer PubMed
GCN GAT GCN GAT GCN GAT

0% 80.20 82.10 69.40 72.52 78.90 79.00
30% 80.35 83.17 69.23 72.31 79.14 79.23
50% 72.73 75.40 69.37 72.70 78.82 79.31
80% 65.19 70.81 58.47 63.18 68.37 77.03
100% 56.22 63.29 53.13 57.50 61.02 64.25

our investigation, we propose AGS, a novel algorithm dedicated to
the sparsification of adjacency matrices in ASTGNNs. We use AGS
to localise two ASTGNN architectures: AGCRN and AGFormer, and
conduct extensive experiments on nine different spatial-temporal

datasets. Primary experiment results showed that The spatial ad-
jacency matrices could be sparsified to over 99.5% without dete-
rioration in test accuracy on all datasets. Furthermore, when the
ASTGNNs are fully localised, we still observe no accuracy drop
on the majority of the tested datasets, while only minor accuracy
deterioration happened on the rest datasets. Based on these obser-
vations, we suggest two hypotheses regarding spatial and temporal
dependencies: (i) in the tested data, the information provided by
the spatial dependencies is primarily included in the information
provided by the temporal dependencies and, thus, can be essentially
ignored for inference; and (ii) although the spatial dependencies
provide redundant information, it is vital for effective training of
ASTGNNs and thus cannot be ignored during training. Last but
not least, we conduct additional ablation studies to show the prac-
tical impact of ASTGNN’s localisation on resource efficiency and
to verify our hypotheses from different angles further.

8 ACKNOWLEDGEMENT
The authors are grateful to the KDD anonymous reviewers for many
insightful suggestions and engaging discussion which improved
the quality of the manuscript.

KDD ’23, August 6–10, 2023, Long Beach, CA, USA Wenying Duan, Xiaoxi He, Zimu Zhou, Lothar Thiele, and Hong Rao

REFERENCES
[1] Gowtham Atluri, Anuj Karpatne, and Vipin Kumar. 2018. Spatio-temporal data

mining: A survey of problems and methods. Comput. Surveys 51, 4 (2018), 1–41.
[2] Lei Bai, Lina Yao, Salil S. Kanhere, Xianzhi Wang, and Quan Z. Sheng. 2019.

STG2Seq: Spatial-Temporal Graph to Sequence Model for Multi-step Passenger
Demand Forecasting. In Proceedings of the Twenty-Eighth International Joint
Conference on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019,
Sarit Kraus (Ed.). ijcai.org, 1981–1987.

[3] Lei Bai, Lina Yao, Can Li, Xianzhi Wang, and Can Wang. 2020. Adaptive graph
convolutional recurrent network for traffic forecasting. In Advances in Neural
Information Processing Systems. 17804–17815.

[4] Chao Chen, Karl Petty, Alexander Skabardonis, Pravin Varaiya, and Zhanfeng Jia.
2001. Freeway Performance Measurement System: Mining Loop Detector Data.
Transportation Research Record 1748, 1 (2001), 96–102. https://doi.org/10.3141/
1748-12

[5] Tianlong Chen, Yongduo Sui, Xuxi Chen, Aston Zhang, and Zhangyang Wang.
2021. A Unified Lottery Ticket Hypothesis for Graph Neural Networks. In
Proceedings of the 38th International Conference on Machine Learning, ICML 2021,
18-24 July 2021, Virtual Event (Proceedings of Machine Learning Research, Vol. 139),
Marina Meila and Tong Zhang (Eds.). PMLR, 1695–1706.

[6] Yuzhou Chen, Ignacio Segovia-Dominguez, Baris Coskunuzer, and Yulia R. Gel.
2022. TAMP-S2GCNets: Coupling Time-Aware Multipersistence Knowledge
Representationwith Spatio-Supra GraphConvolutional Networks for Time-Series
Forecasting. In The Tenth International Conference on Learning Representations,
ICLR 2022, Virtual Event, April 25-29, 2022.

[7] Yuzhou Chen, Ignacio Segovia-Dominguez, and Yulia R. Gel. 2021. Z-GCNETs:
Time Zigzags at Graph Convolutional Networks for Time Series Forecasting. In
Proceedings of the 38th International Conference on Machine Learning, ICML 2021,
18-24 July 2021, Virtual Event (Proceedings of Machine Learning Research, Vol. 139),
Marina Meila and Tong Zhang (Eds.). PMLR, 1684–1694.

[8] Jeongwhan Choi, Hwangyong Choi, Jeehyun Hwang, and Noseong Park. 2022.
Graph Neural Controlled Differential Equations for Traffic Forecasting. In Thirty-
Sixth AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Confer-
ence on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twelveth
Symposium on Educational Advances in Artificial Intelligence, EAAI 2022 Virtual
Event, February 22 - March 1, 2022. AAAI Press, 6367–6374.

[9] Andriy Mnih Chris J. Maddison and Yee Whye Teh. 2018. Learning Sparse Neural
Networks through L0 Regularization. In The Tenth International Conference on
Learning Representations, ICLR 2018.

[10] Wenying Duan, Xiaoxi He, Lu Zhou, Lothar Thiele, and Hong Rao. 2022. Combat-
ing Distribution Shift for Accurate Time Series Forecasting via Hypernetworks.
In 28th IEEE International Conference on Parallel and Distributed Systems, ICPADS
2022, Nanjing, China, January 10-12, 2023. IEEE, 900–907.

[11] Shengnan Guo, Youfang Lin, Ning Feng, and Chao Song. 2019. Attention Based
Spatial-Temporal Graph Convolutional Networks for Traffic Flow Forecasting.
In Thirty-third AAAI Conference on Artificial Intelligence, AAAI. AAAI Press,
922–929.

[12] Rongzhou Huang, Chuyin Huang, Yubao Liu, Genan Dai, and Weiyang Kong.
2020. LSGCN: Long Short-Term Traffic Prediction with Graph Convolutional
Networks. In Proceedings of the Twenty-Ninth International Joint Conference on
Artificial Intelligence, IJCAI 2020, Christian Bessiere (Ed.). ijcai.org, 2355–2361.

[13] Diederik Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Optimiza-
tion. International Conference on Learning Representations (12 2015).

[14] Thomas N. Kipf and Max Welling. 2017. Semi-Supervised Classification with
Graph Convolutional Networks. In 5th International Conference on Learning
Representations, ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track
Proceedings. OpenReview.net.

[15] Xiangyuan Kong, Jian Zhang, Xiang Wei, Weiwei Xing, and Wei Lu. 2022. Adap-
tive spatial-temporal graph attention networks for traffic flow forecasting. Applied
Intelligence (2022), 1–17.

[16] Jiayu Li, Tianyun Zhang, Hao Tian, Shengmin Jin, Makan Fardad, and Reza
Zafarani. 2020. SGCN: A Graph Sparsifier Based on Graph Convolutional Net-
works. In Advances in Knowledge Discovery and Data Mining - 24th Pacific-Asia
Conference, PAKDD 2020, Singapore, May 11-14, 2020, Proceedings, Part I (Lecture
Notes in Computer Science, Vol. 12084), Hady W. Lauw, Raymond Chi-Wing Wong,
Alexandros Ntoulas, Ee-Peng Lim, See-Kiong Ng, and Sinno Jialin Pan (Eds.).
Springer, 275–287. https://doi.org/10.1007/978-3-030-47426-3_22

[17] Shiyang Li, Xiaoyong Jin, Yao Xuan, Xiyou Zhou, Wenhu Chen, Yu-Xiang Wang,
and Xifeng Yan. 2019. Enhancing the locality and breaking thememory bottleneck
of transformer on time series forecasting. In Advances in Neural Information
Processing Systems. Curran Associates Inc., Red Hook, NY, USA, 5243–5253.

[18] Yitao Li, Umar Islambekov, Cuneyt Gurcan Akcora, Ekaterina Smirnova, Yulia R.
Gel, and Murat Kantarcioglu. 2020. Dissecting Ethereum Blockchain Analytics:
What We Learn from Topology and Geometry of the Ethereum Graph?. In Pro-
ceedings of the 2020 SIAM International Conference on Data Mining, SDM 2020,
Cincinnati, Ohio, USA, May 7-9, 2020, Carlotta Demeniconi and Nitesh V. Chawla
(Eds.). SIAM, 523–531. https://doi.org/10.1137/1.9781611976236.59

[19] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. Diffusion convolu-
tional recurrent neural network: Data-driven traffic forecasting. In Proceedings of
International Conference on Learning Representations.

[20] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and
Tina Eliassi-Rad. 2008. Collective Classification in Network Data. AI Mag. 29, 3
(2008), 93–106.

[21] Youngjoo Seo, Michaël Defferrard, Pierre Vandergheynst, and Xavier Bresson.
2018. Structured Sequence Modeling with Graph Convolutional Recurrent Net-
works. In Neural Information Processing - 25th International Conference, ICONIP
2018, Siem Reap, Cambodia, December 13-16, 2018, Proceedings, Part I (Lecture Notes
in Computer Science, Vol. 11301), Long Cheng, Andrew Chi-Sing Leung, and Seiichi
Ozawa (Eds.). Springer, 362–373. https://doi.org/10.1007/978-3-030-04167-0_33

[22] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all you
need. In Advances in Neural Information Processing Systems. Curran Associates
Inc., Red Hook, NY, USA, 6000–6010.

[23] Petar Velickovic, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. In 6th International
Conference on Learning Representations, ICLR 2018, Vancouver, BC, Canada, April
30 - May 3, 2018, Conference Track Proceedings. OpenReview.net.

[24] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
Transactions on Neural Networks and Learning Systems 32, 1 (2020), 4–24.

[25] Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. 2019.
Graph Wavenet for Deep Spatial-Temporal Graph Modeling. In Proceedings of
the 28th International Joint Conference on Artificial Intelligence (Macao, China)
(IJCAI’19). AAAI Press, 1907–1913.

[26] Sijie Yan, Yuanjun Xiong, and Dahua Lin. 2018. Spatial Temporal Graph Con-
volutional Networks for Skeleton-Based Action Recognition. In Proceedings of
the Thirty-Second AAAI Conference on Artificial Intelligence, (AAAI-18), the 30th
innovative Applications of Artificial Intelligence (IAAI-18), and the 8th AAAI Sym-
posium on Educational Advances in Artificial Intelligence (EAAI-18), New Orleans,
Louisiana, USA, February 2-7, 2018, Sheila A. McIlraith and Kilian Q. Weinberger
(Eds.). AAAI Press, 7444–7452.

[27] Haoran You, Zhihan Lu, Zijian Zhou, Yonggan Fu, and Yingyan Lin. 2022.
Early-Bird GCNs: Graph-Network Co-optimization towards More Efficient GCN
Training and Inference via Drawing Early-Bird Lottery Tickets. In Thirty-Sixth
AAAI Conference on Artificial Intelligence, AAAI 2022, Thirty-Fourth Confer-
ence on Innovative Applications of Artificial Intelligence, IAAI 2022, The Twel-
veth Symposium on Educational Advances in Artificial Intelligence, EAAI 2022
Virtual Event, February 22 - March 1, 2022. AAAI Press, 8910–8918. https:
//ojs.aaai.org/index.php/AAAI/article/view/20873

[28] Bing Yu, Haoteng Yin, and Zhanxing Zhu. 2018. Spatio-Temporal Graph Con-
volutional Networks: A Deep Learning Framework for Traffic Forecasting. In
Proceedings of the Twenty-Seventh International Joint Conference on Artificial In-
telligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden, Jérôme Lang (Ed.).
ijcai.org, 3634–3640.

[29] Cheng Zheng, Bo Zong, Wei Cheng, Dongjin Song, Jingchao Ni, Wenchao Yu,
Haifeng Chen, and Wei Wang. 2020. Robust Graph Representation Learning
via Neural Sparsification. In Proceedings of the 37th International Conference
on Machine Learning, ICML 2020, 13-18 July 2020, Virtual Event (Proceedings of
Machine Learning Research, Vol. 119). PMLR, 11458–11468.

A APPENDIX
A.1 Additional Dataset Details
The detailed datasets and configurations are as follows:

• Transporation: We use four widely-studied traffic forecast-
ing datasets from Caltrans Performance Measure System
(PeMS): PeMSD3, PeMSD4, PeMSD7 and PeMSD8 [4]. Fol-
lowing [3], PeMSD3, PeMSD4, PeMSD7, and PeMSD8 are
split with a ratio of 6:2:2 for training, validation and testing.
The traffic flows are aggregated into 5-minute intervals. We
conduct 12-sequence-to-12-sequence forecasting, the stan-
dard setting in this domain. The accuracy is measured in
MeanAbsolute Error (MAE), RootMean Square Error (RMSE)
and Mean Absolute Percentage Error (MAPE).

• Blockchain: We use three Ethereum price prediction data-
sets: Bytom, Decentral and Golem[18]. These data are
represented in graphs, with nodes and edges being the ad-
dresses of users and digital transactions, respectively. The

https://doi.org/10.3141/1748-12
https://doi.org/10.3141/1748-12
https://doi.org/10.1007/978-3-030-47426-3_22
https://doi.org/10.1137/1.9781611976236.59
https://doi.org/10.1007/978-3-030-04167-0_33
https://ojs.aaai.org/index.php/AAAI/article/view/20873
https://ojs.aaai.org/index.php/AAAI/article/view/20873

Localised Adaptive Spatial-Temporal Graph Neural Network KDD ’23, August 6–10, 2023, Long Beach, CA, USA

Table 7: Dataset-specific hyperparameter setup for AGCRN and AGFormer.

Task type Datasets hidden dimension embedding dimension batch size learning rate
AGCRN AGFormer AGCRN AGFormer AGCRN AGFormer AGCRN AGFormer

Traffic PeMSD3 64 32 5 2 64 128 3e-3 5e-4
Traffic PeMSD4 64 32 2 5 64 128 3e-3 5e-4
Traffic PeMSD7 64 32 2 2 64 128 3e-3 5e-4
Traffic PeMSD8 64 32 5 5 64 128 3e-3 5e-4
Ethereum Decentraland 32 32 1 2 8 32 1e-2 1e-3
Ethereum Bytom 32 32 1 2 8 32 1e-2 1e-3
Ethereum Golem 32 32 1 2 8 32 1e-2 1e-3
COVID-19 CA 128 64 5 2 16 64 6e-3 2e-3
COVID-19 TX 128 64 5 5 16 64 6e-3 2e-3

interval between two consecutive time points is one day.
Following [6], Bytom, Decentraland, and Golem token net-
works are split with a ratio of 8:2 for training and testing.
We use 7 days of historical data to predict a future of 7 days.
MAE, RMSE, and MAPE are also used as accuracy metrics.

• Biosurveillance: We use California (CA) and Texas (TX),
COVID-19 biosurveillance datasets[6] used to forecast the
number of hospitalized patients. The time interval of these
datasets is one day. Following [6], CA and TX are split with
a ratio of 8:2 for training and testing. Three days of historical
data are used to predict a future of fifteen days. With these
two datasets, MAE and RMSE are not used for measuring
the inference accuracy, as their values are extremely small
and, thus, difficult to reflect the performances realistically.
Following [6], we only use MAPE.

A.2 Experiment Details
The dataset-specific hyperparameters chosen for AGCRNs and AG-
Formers are summarised in Table 7. All experiments are imple-
mented in Python with Pytorch 1.8.2 and executed on a server with
one NVIDIA RTX3090 GPU. We optimize all the models using the
Adam optimizer[13]. For transportation data, we set the number
of pre-training iterations N1 = 150, and the number of sparsifi-
cation iterations N2 = 400. We use an early stop strategy with
a patience of 15 for pre-training. Parameters are chosen through
a parameter-tuning process on the validation set. For blockchain
data, we set the number of pre-training iterations N1 = 100, and
the number of sparsifcation iterations N2 = 200. We use an early
stop strategy with a patience of 30 for pre-training. Parameters are
chosen through a parameter-tuning process on the training set. For
biosurveillance data, we set the number of pre-training iterations
N1 = 100, and the number of sparsifcation iterations N2 = 200. We
use an early stop strategy with a patience of 15 for pre-training.
Parameters are chosen through a parameter-tuning process on the
training set.

A.3 Notation
Frequently used notations are summarized in Table 8.

Table 8: The main symbols and definitions in this paper.

Notation Definition
G the spatial network
the number of nodes
X a sequence of discrete frames
T length of historical observations
H length of future observations
^C node feature matrix at timestep C
E the learnable node embedding
3 the node embedding dimension
� the node feature dimension
� the feature dimension
A03? the normalized adaptive adjacency matrix
MA mask to prune A03?

B the Bernoulli distribution
F (·) the ASTGNN model
N1 number of pre-training iterations
N2 number of sparsifcation iterations

	Abstract
	1 Introduction
	2 Related Work
	2.1 Spatial-Temporal Graph Neural Networks
	2.2 Graph Sparsification for GNNs

	3 Preliminaries
	3.1 Spatial-Temporal Data as Graph Structure
	3.2 Modeling the Spatial Network G

	4 Adaptive Graph Sparsification
	5 Experiments
	5.1 Neural Network Architecture
	5.2 Datasets and Configurations
	5.3 Main Experimental Results

	6 Ablation Studies
	6.1 Impact on Resource Efficiency
	6.2 Localised AGCRNs vs. Other Non-Localised ASTGNNs
	6.3 Localisation of Non-temporal Graphs

	7 Conclusion
	8 Acknowledgement
	References
	A Appendix
	A.1 Additional Dataset Details
	A.2 Experiment Details
	A.3 Notation

