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ABSTRACT
Clustered Federated Learning (CFL) is an emerging paradigm to

extract insights from data on IoT devices. Through iterative client

clustering and model aggregation, CFL adeptly manages data het-

erogeneity, ensures privacy, and delivers personalized models to

heterogeneous devices. Traditional CFL approaches, which operate

synchronously, suffer from prolonged latency for waiting slow de-

vices during clustering and aggregation. This paper advocates a shift

to asynchronous CFL, allowing the server to process client updates

as they arrive. This shift enhances training efficiency yet introduces

complexities to the iterative training cycle. To this end, we present

CASA, a novel CFL scheme for Clustering-Aggregation Synergy un-

der Asynchrony. Built upon a holistic theoretical understanding of

asynchrony’s impact on CFL, CASA adopts a bi-level asynchronous

aggregation method and a buffer-aided dynamic clustering strat-

egy to harmonize between clustering and aggregation. Extensive

evaluations on standard benchmarks show that CASA outperforms

representative baselines in model accuracy and achieves 2.28-6.49×
higher convergence speed.
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Figure 1: Asynchrony can lead to mis-clustering, which may
further impair federated training of cluster-wise models.

1 INTRODUCTION
Clustered federated learning (CFL) is a promising solution to har-

ness the decentralized, heterogeneous data of IoT devices for collec-

tive intelligence. In CFL, devices (clients) with similar data distribu-

tions are grouped to train cluster-wise models under server coor-
dination, while keeping their datasets localized [13, 23, 26, 28, 36].

This strategy is particularly effective in IoT applications, where

the data is often heterogeneous yet exhibits natural clusterability
[18, 26]. For instance, human activities vary across users but may

share notable spatiotemporal similarities [29]. By leveraging the

inherent clusterability of heterogeneous data, CFL not only simpli-

fies operations but also creates accurate, personalized models, with

widespread applicability in smart homes [43], mobile healthcare

[26], and intelligent transportation [34].

Despite CFL’s efficacy in handling data heterogeneity, it strug-
gles when confronting system heterogeneity inherent in the diverse

computation and communication capabilities of IoT devices [44].

This problem stems from the synchronous operations, where the
server awaits simultaneous updates from all clients for clustering

and training [13, 23, 26, 28, 36]. Consequently, slow devices, often

termed stragglers, force the server into waiting states, leading to

extended training latency. For example, synchronous aggregation

may take 3-12× longer to reach the target accuracy in presence of

stragglers that are 5× slower than others [19].

A promising solution is to integrate asynchrony into CFL, where

the server processes client updates as they arrive, which have been

adopted in federated training of a single model [5, 6, 12, 19, 41].

https://doi.org/10.1145/3637528.3671979
https://doi.org/10.1145/3637528.3671979
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Although such asynchronous mode eliminates long waiting time, it

may severely undermine the effectiveness of CFL. As illustrated in

Fig. 1, integrating asynchrony means clustering clients with partial

and outdated information, which not only induces clustering errors,

but also deteriorate the training of cluster-wise models. Specifically,

asynchronous CFL faces the following challenges.

• How to guarantee effective CFLwith asynchronous clients? CFL
iteratively optimizes client clustering and model aggregation

[13, 23, 26, 28, 36], which converges in the synchronous

setting [23]. Yet it is unknown whether such convergence
still holds in asynchronous environments.

• How to adapt client clustering and model aggregation for asyn-
chronous CFL? Asynchrony necessitates staleness manage-

ment in both clustering and aggregation. Although staleness

control has been studied in federated learning without clus-

tering, e.g., by decaying outdated updates [7, 19, 27, 41], these
designs are inapplicable to CFL due to the extra interplay

between clustering and aggregation.

In this paper, we present CASA (Clustering-Aggregation Synergy
under Asynchrony), a new CFL scheme for asynchronous clients.

We analyze the impact of asynchrony on client clustering andmodel

aggregation separately, as well as on their interplay, via a unified an-

alytical framework. We further derive the conditions for convergent

CFL in asynchronous environments. On this basis, we develop a

buffer-aided dynamic clustering algorithm and a bi-level asynchro-

nous aggregation scheme for effective and efficient asynchronous

CFL. In addition, we also harness sparse training to actively mitigate

the impact of stragglers. Evaluations on standard benchmarks show

that our methods achieve comparable accuracies to synchronous

CFL methods but converge faster by 2.28-6.49×. Compared with

prior asynchronous schemes, we improve the accuracy by up to

30.34% and are up to 39.11× faster to reach the target accuracy.

Our main contributions are as follows:

• To our knowledge, this is one of the first work on clustered

federated learning in a fully asynchronous context, promot-

ing the CFL deployment to heterogeneous IoT devices.

• We present CASA, which features both theoretical analysis

and practical server-side designs for fast and accurate CFL

in asynchronous environments.

• Evaluations show that CASA is bothmore accurate and faster

than the state-of-arts, which holds promise to simultaneously

address data and system heterogeneity in federated learning.

2 RELATEDWORK
Clustered Federated Learning. CFL alleviates data heterogeneity
in FL by grouping clients with similar data distributions, thereby

enhancing homogeneous learning within clusters [13, 23, 26, 28, 36].

Due to its simplicity and efficacy, this tactic prevails in personaliza-

tion in federated learning [4, 35], among other strategies [11, 33, 46].

Research on CFL explores client similarity measures [22, 26, 28] and

clustering algorithms [2, 18, 22, 36, 42] to improve clustering accu-

racy and enhance its interplay withmodel training [13, 23, 42]. Com-

mon client similarity metrics include cosine similarity [28, 36, 42],

Euclidean distance [2, 22], KL divergence [26], etc. The clustering

algorithms span from naive k-means [10, 22, 26] to hierarchical

clustering [2, 18, 20, 28, 42]. For instance, CFL [28] bi-partitions

clients into clusters until the training stabilizes. IFCA [13] itera-

tively refines the clusters via training loss minimization. ICFL [42]

adopts both incremental clustering and spectral clustering to dy-

namically discover the clustering structure. These studies operate

in synchronous settings, leaving the coherence between clustering

and training in the asynchronous context unexplored.
Our work adopts the standard cosine distance of model weights

to measure client similarity [28, 36, 42], and focus on the clustering
algorithms that function under asynchrony. A few proposals ex-

plored the semi-asynchronous case [49]. However, a comprehensive

analysis on the interactions between clustering and training in fully

asynchronous environments is missing.

Asynchronous Federated Learning. AFL enhances the efficiency

of FL in face of system heterogeneity. While classic FL relies on syn-

chronous model aggregation, introducing considerable latency due

to delays from stragglers, AFL activates model aggregation upon

receiving client updates, effectively minimizing idle wait times

[5, 6, 12, 19, 41]. Semi-asynchronous variants have also been pro-

posed to further reduce the client-server communication overhead

[31, 40, 49]. However, asynchronous aggregation introduces stale

gradients, which can destabilize learning or even cause model di-

vergence [5, 19, 40, 41]. Accordingly, AFL algorithms often decay
stale updates during model aggregation [7, 19, 27, 41] to mitigate

their impacts on convergence. For example, FedAsync [41] first

introduces the decay function to combat stale updates. FedBuff

[25] buffers recent updates and aggregates the averaged gradients

into global model. PORT [30] considers both divergence of model

updates and staleness when updating model parameters. TimelyFL

[47] adjusts the partial training rate to boost slow devices and re-

duce staleness. FedASMU [19] distributes the fresh global model

to clients during training to control staleness, accompanied with a

time-aware decay function to ensure convergence.

Our work also focuses on managing staleness, but for CFL rather

than the generic FL that merely trains a single global model. Due

to the unique interplay between clustering and training, we design

a new decay function that benefits clustering and training and

ensures their synergy. We also hitchhike the decay function for

sparse training, which actively controls the impact of stragglers.

3 PROBLEM STATEMENT
Clustered federated learning [13, 23, 26, 28, 36]is a pivotal solution

to handle non-IID data in federated learning. It groups clients based

on the similarity of their data distribution. Within each cluster,

clients collaboratively learn a shared model while the raw data

remains locally on device.

CFL Workflow. In a typical CFL framework, clients learn cluster-

wise models via bi-level optimization, iteratively minimizing the

clustering error and training loss till model convergence [22, 23, 42].

This process operates in three steps per round (see Fig. 2): (i) Local
Training (L-phase), in which clients perform local model training

and upload the local updates to the server; (ii) Client Clustering
(C-phase), where the server groups clients into clusters according

to their uploaded model weights; (iii) Model Aggregation (A-phase),

wherein client model weights are aggregated within each cluster,

followed by sending the updated global (cluster-wise) model to
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Figure 2: A typical CFL framework, which consists of lo-
cal update (L-phase), client clustering (C-phase), and model
aggregation (A-phase). Asynchrony induces outdated local
updates to both the C- and A-phases.

clients. Importantly, the workflow is synchronous, where the server
waits updates from all clients for clustering and aggregation.

Formally, assume 𝑛 clients {𝑐1, 𝑐2, · · · , 𝑐𝑛} with local dataset

{𝐷1, 𝐷2, · · · , 𝐷𝑛} are grouped into 𝐾 clusters {𝑢1, 𝑢2, · · · , 𝑢𝐾 }. All
clients in cluster 𝑢𝑘 share and collaboratively train a global model

𝑤𝑔,𝑘 to minimize the following training objective P:

min

𝑤𝑔,1,...,𝑤𝑔,𝐾
P =

𝐾∑︁
𝑘=1

∑︁
𝑐𝑖 ∈C𝑘

|𝐷𝑖 |
|𝐷 | E[L(𝑤𝑔,𝑘 ;𝐷𝑐 )] (1)

where C𝑘 denotes the clients in cluster 𝑢𝑘 . Meanwhile, CFL also

minimizes the following clustering error H :

min

𝑤𝑔,1,...,𝑤𝑔,𝐾 ,𝑤1,...,𝑤𝑛
H =

𝐾∑︁
𝑘=1

∑︁
𝑐𝑖 ∈C𝑘

|𝐷𝑖 |
|𝐷 | ∥𝑤𝑖 −𝑤𝑔,𝑘 ∥

2

2
(2)

where 𝑤𝑔,𝑘 is the global model of cluster 𝑢𝑘 , and 𝑤𝑖 is the local

parameters hold by client 𝑐𝑖 .

CFL under Asynchrony. As mentioned in Sec. 1, we address

asynchronous CFL to enhance training efficiency amidst stragglers.

Adapting to asynchrony calls for significant modifications to both

clustering and aggregation.

• Client Clustering (C-phase): Prior CFL methods [13, 23, 26,

28, 36] base clustering decisions on full client availability.

The asynchronous clients invalidate this assumption, neces-

sitating new strategies for accurate and timely clustering.

• Model Aggregation (A-phase): Stale updates from slower clients

hinders the training convergence and accuracy [5, 19, 40, 41].

Asynchronous aggregation can manage staleness via weight

decay [7, 19, 27, 41]. Yet its effectiveness remains unexplored

when an extra clustering stage is involved.

Assumptions and Scope. We focus on server-side solutions to
minimize interventions to clients. We use FedAvg [24] as the basic

optimizer given its pervasive adoption, but our strategies should

also apply to other optimizers e.g., FedProx [17]. While privacy is

vital in CFL, our primary goal is to improve training efficiency and

accuracy, keeping privacy at levels akin to FedAvg. Explorations

on specific attacks and defenses are beyond our scope.

4 METHOD
This section presents CASA (Clustering-Aggregation Synergy un-

der Asynchrony), an asynchronous CFL scheme. We analyze the

A-phase
decay coefficient α

C-phase
dynamic cluster size |𝒞!|

high mis-clustering rate

extra decay coefficient bound

Figure 3: Impact of asynchrony on CFL.

impact of asynchrony on the generic CFL framework (Sec. 4.1), and

propose new designs on model aggregation (Sec. 4.2) and client clus-

tering (Sec. 4.3) to retain their synergy. Finally, we further enhance

CASA by incorporating sparse training (Sec. 4.4).

4.1 Understanding Asynchronous CFL
Although the bi-level optimization for CFL (Sec. 3) converges in the

synchronous setting [23], it is unknown whether such clustering-

aggregation synergy holds in asynchronous environments. As de-

picted in Fig. 3, asynchrony affects both the A- and C-phases as well

as their interplay. This necessitates the exploration of new require-

ments on clustering and aggregation to preserve their coherence.

Direct Impact. Asynchrony in CFL brings critical modifications

to both client clustering and model aggregation:

• C-phase: Measuring client similarity becomes complex with

partial client information. In synchronous settings, similar-

ity between clients 𝑐𝑖 and 𝑐 𝑗 in round 𝑡 might be computed

as 𝐴𝑖 𝑗 = cos(𝑤 (𝑡 )
𝑖
,𝑤
(𝑡 )
𝑗
). However, with asynchronous up-

dates, this measure shifts to 𝐴′
𝑖 𝑗

= cos(𝑤 (𝑡−𝜏𝑖 )
𝑖

,𝑤
(𝑡−𝜏 𝑗 )
𝑗

),
based on model parameters received in different rounds, i.e.,
𝑡 − 𝜏𝑖 ≠ 𝑡 − 𝜏 𝑗 . This leads to a deviation from the actual

similarity of local data distributions between 𝑐𝑖 and 𝑐 𝑗 due

to misaligned global model𝑤
(𝑡−𝜏𝑖 )
𝑔,𝑘

and𝑤
(𝑡−𝜏 𝑗 )
𝑔,𝑘

.

• A-phase: In asynchronous aggregation, a decay coefficient 𝛼

is introduced to manage staleness [7, 19, 27, 41]. The aggre-

gation process becomes:

𝑤
(𝑡+1)
𝑔,𝑘

= (1 − 𝛼)𝑤 (𝑡 )
𝑔,𝑘
+ 𝛼𝑤 (𝑡−𝜏 )

𝑖
(3)

where the decay coefficient 𝛼 is crucial for the convergence

of model training.

Compound Impact. The changes in individual steps also affect the
bi-level framework’s ability to optimize the training and clustering

objectives i.e., Eq. (1) and Eq. (2), as our analysis shows.

Theorem 1. (Clustering Error under Asynchrony). When cluster-
ing relies on a similarity matrix 𝐴′ derived with asynchronous model
parameters, the mis-clustering rate 𝑝 is bounded by:

𝑝 = O(𝜆𝛼

√√√ 𝑛∑︁
𝑖=1

(
𝑛∑︁
𝑗=1

∥𝜏𝑖 − 𝜏 𝑗 ∥2)) (4)

where 𝜆 = 𝜂𝑄𝜃𝑈 , and 𝜂 is the learning rate, 𝑄 is the local training
steps, 𝑈 is the upper bound of gradient, 𝜃 is the upper bound of
staleness (details in Appendix A.1.1).

Theorem 1 depicts the impact of asynchronous aggregation on

clustering accuracy. In the synchronous case, ∥𝜏𝑖 − 𝜏 𝑗 ∥ is close to
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zero, resulting in negligible clustering error. Conversely, in asyn-

chronous settings, ∥𝜏𝑖−𝜏 𝑗 ∥ may be large due to client heterogeneity,

thus impacting clustering accuracy. Also, the mis-clustering rate 𝑝

is upper-bounded by the decay coefficient 𝛼 .

Theorem 2. (Convergence of Training Objective). The training
objective P decreases monotonically, and thus the CFL framework
converges under asynchrony, if the following condition is met:

𝛼 ≤ Ω(𝑡)ℎ𝑖
|C𝑘 |

(5)

where |C𝑘 | is the size of cluster𝑢𝑘 , ℎ𝑖 is the computational capacity of
𝑐𝑖 , and Ω(𝑡) is a time-decreasing function (details in Appendix A.1.2).

Theorem 2 implies that clustering affects the design of model

aggregation. Specifically, the decay coefficient 𝛼 should adapt to

the cluster size |C𝑘 |. This adjustment is reasonable because larger

clusters often exhibit greater staleness [9]. Moreover, Theorem 2

suggests that 𝛼 should be dynamic and client-specific, given that

both Ω(𝑡) and |C𝑘 | varies over time, and ℎ𝑖 differs across clients.

Summary. We make the following observations.

• The CFL framework remains effective under asynchrony

with new requirements on clustering and aggregation.

• Clustering must be adaptable to asynchronous data arrival

and manage mis-clustering effectively.

• Aggregation should account for both global information e.g.,
cluster scale and round, and individual client characteristics

when managing stale weights.

Algorithm 1 illustrates our CASA framework, which follows the

standard L-C-A workflow. Next, we introduce practical designs to

fulfill the new requirements on clustering and aggregation. We start

with aggregation since the clustering algorithm is built upon the

decay coefficient. All the proofs are in Appendix A.1.

4.2 Bi-Level Asynchronous Aggregation
Principles. Stale model updates are often decayed by 𝛼 (see Eq. (3))

during asynchronous aggregation for convergent training of generic

FL [5, 19, 40, 41]. Prior research [27, 41] mainly sets 𝛼 based on

staleness alone, which is oversimplified for CFL. As highlighted in

Sec. 4.1, the decay coefficient should be configured considering

various cluster- and client-specific factors to enhance clustering ac-

curacy and training convergence. To this end, we suggest a bi-level

decay coefficient design that strategically separates and manages

the complex dependencies on these factors.

Cluster-Level Decay. Following Theorem 2 but ignoring the client-

specific factors, we set the cluster-wise decay for cluster 𝑢𝑘 as:

𝛼
(𝑡 )
𝑐,𝑘

=
𝛼0Ω(𝑡)
log( |C𝑘 |)

(6)

where 𝛼0 is the initial value of 𝛼 . The rationales are three-fold.

• We expect the cluster-level decay to penalize the average
staleness within the cluster, whereas the stragglers would

receive extra penalty by the client-level decay. The cluster-

level decay also facilitates clustering decisions (see Sec. 4.3).

• From Theorem 2, 𝛼 should be bounded by a time-decreasing

function Ω(𝑡). This is because 𝛼 is bounded by the expecta-

tion of local gradients (details in Appendix A.1.2). The local

Algorithm 1: CASA
Input: Clients’ model parameters𝑤1, ...,𝑤𝑛 , the single

global model parameters𝑤𝑔,1
Output: Clients’ model parameters𝑤1, ...,𝑤𝑛 , global model

parameters after clustering𝑤𝑔,1, ...,𝑤𝑔,𝐾

1 Server Process:
2 for asynchronous round 𝑡 do
3 Receive update𝑤

(𝑡−𝜏𝑖 )
𝑖

from client 𝑐𝑖

4 if 𝑐𝑖 is new client then
5 𝑘 ← argmax (𝑟𝑒𝑝𝑘 ,𝑤

(𝑡−𝜏𝑖 )
𝑖

) as Eq. (15)
6 Assign 𝑐𝑖 to cluster 𝐶𝑘

7 // C-phase
8 Update similarity matrix 𝐴 and cluster based on

Algorithm 3

9 Update buffer space based on Algorithm 2

10 // A-phase
11 Asynchronous aggregation as Eq. (9)

12 Client Process:
13 while True do
14 Receive global model𝑤

(𝑡 )
𝑔,𝑘

15 // L-phase

16 Local training𝑤
(𝑡 )
𝑖
← 𝑤

(𝑡 )
𝑔,𝑘
− ∇L(𝑤 (𝑡 )

𝑔,𝑘
, 𝐷𝑖 )

17 Upload weight𝑤
(𝑡 )
𝑖

to server asynchronously

gradients are expected to diminish in convergent training,

which is characterized by the round-decaying function Ω(𝑡).
Motivated by learning rate scheduling [45], we instantiate

Ω(𝑡) as an exponential decay. Uniquely, we show that the

decay coefficient 𝛼 should depend on not only the relative
staleness, but also the absolute rounds in CFL.

• From Theorem 2, 𝛼 should decrease as the cluster size |C𝑘 |
increases. We set 𝛼 as inversely proportional to log( |C𝑘 |)
because directly applying |C𝑘 | may make 𝛼 susceptible to

dynamic clustering, which affects training stability.

Client-Level Decay. The client-level decay handles the client-

specific staleness on top of the cluster-level decay. From Theorem 2,

the client-specific staleness is captured by ℎ𝑖 , which is the propor-

tion of local updates completed by a client per round. However, it

is difficult for the server to monitor the resources of clients and

accurately estimate ℎ𝑖 [31]. Alternatively, we only impose extra

decay when the client staleness 𝜏𝑖 exceeds a threshold 𝑟
(𝑡 )
𝑐 :

𝛼
(𝑡 )
𝑖

=

{
𝛼
(𝑡 )
𝑐,𝑘
, if 𝜏𝑖 ≤ 𝑟 (𝑡 )𝑐

𝛼
(𝑡 )
𝑐,𝑘
/√𝜏𝑖 , if 𝜏𝑖 > 𝑟

(𝑡 )
𝑐

(7)

Such binary classification of staleness is feasible since our proof

on convergent training only assumes bounded staleness (details in

Appendix A.1.2). Unlike previous work [41] that pre-defines the

maximal tolerable staleness, we heuristically set 𝑟
(𝑡 )
𝑐,𝑘

as

𝑟
(𝑡 )
𝑐,𝑘

= |C𝑘 | (2 − Ω(𝑡)) . (8)
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Figure 4: Buffer-aided similarity calculation.

This is because the staleness tends to increase with cluster scale

[9], while its impact on training decreases over rounds [38]. Finally,

the traditional asynchronous aggregation, i.e., Eq. (3) becomes:

𝑤
(𝑡+1)
𝑔,𝑘

= 𝛼
(𝑡 )
𝑖
𝑤
(𝑡−𝜏𝑖 )
𝑖

+ (1 − 𝛼 (𝑡 )
𝑖
)𝑤 (𝑡 )
𝑔,𝑘
. (9)

4.3 Buffer-Aided Dynamic Clustering
Principles. Clustering in CFL aims to group clients with similar

local data distributions for effective training of cluster-wise models.

We measure client similarity via the cosine distance of their model

weights, as common in CFL literature [2, 28, 36, 42], and focus

on the clustering algorithms suited for the asynchronous environ-

ments. As pointed out in Sec. 4.1, asynchrony leads to misaligned

model weights for similarity calculation, necessitates incremental

clustering with partial information, and enlarges clustering error

due to asynchronous aggregation. To address these challenges, we

propose a buffer-aided similarity calculation scheme, and utilize a

multi-partitioning iterative clustering approach, where the partition-
ing criterion is staleness-dependent. These designs enable timely

and accurate clustering (see case studies in Appendix 5.2.3).

Buffer-Aided Similarity Calculation. From Theorem 1, the clus-

tering error is bounded by the overallmisalignment between model

weights in time, i.e.,
∑𝑛
𝑖=1

∑𝑛
𝑗=1 ∥𝜏𝑖 − 𝜏 𝑗 ∥2. An intuitive solution is

to buffer the model weights for each client and calculate the client

similarity using the most aligned model versions rather than the

most recent ones. Specifically, on receiving an update 𝑤
(𝑡 )
𝑖

from

client 𝑐𝑖 , we select clients 𝑐 𝑗 , ..., 𝑐𝑘 whose start time is close to that

of 𝑐𝑖 , and insert𝑤
(𝑡 )
𝑖

into their buffer space 𝑏𝑢𝑓𝑗 , ..., 𝑏𝑢𝑓𝑘 . Then we

use model parameters inside buffer 𝑏𝑢𝑓𝑖 for similarity calculation:

𝐴𝑖, 𝑗 = cos(𝑤 (𝑡 )
𝑖
,𝑤
𝑏𝑢𝑓𝑖
𝑗
) . (10)

Finally, we clear the buffer space of 𝑐𝑖 , and wait for new updates.

To support the buffer-aided similarity calculation, one needs to

store all historical client updates, which is unscalable in practice.

Accordingly, we optimize the buffer storage below (see Fig. 4).

• Redundant Update Pruning. The server directly discards re-

dundant updates without buffering them. Client 𝑐𝑖 ’s model

parameters𝑤
(𝑡−𝜏𝑖 )
𝑖

are considered redundant to client 𝑐 𝑗 in

two cases: (i) large gap: 𝑡 − 𝜏𝑖 is within the range 𝑟𝑐 of client

𝑐 𝑗 ’s starting round, i.e., 𝜏 𝑗 − 𝜏𝑖 ≥ 𝑟𝑐 , since large gap leads to

high clustering error (see Theorem 1). (ii) recurring: buffer

Algorithm 2: Prioritized buffer allocation.

Input: Received client update𝑤
(𝑡−𝜏𝑖 )
𝑖

Output: New buffer for clients 𝑏𝑢𝑓1, ..., 𝑏𝑢𝑓𝑛
1 for client 𝑐 𝑗 ∈ 𝐶𝑘 do
2 if 𝑤 (𝑡−𝜏𝑖 )

𝑖
not redundant then

3 Add𝑤
(𝑡−𝜏𝑖 )
𝑖

to 𝑏𝑢𝑓𝑗

4 if
∑𝑛
𝑖=1 |𝑏𝑢𝑓𝑖 | > 𝑀 then

5 Sort all buffers based on

6 uncomputed or not as the primary key,
7 decay function 𝛼𝑖 as the secondary key,
8 Delete last

∑𝑛
𝑖=1 |𝑏𝑢𝑓𝑖 | −𝑀 items

𝑏𝑢𝑓𝑗 already contains client 𝑐𝑖 ’s model parameters from a

previous instance.

• Prioritized Buffer Allocation. Given a buffer budget 𝑀 , we

optimize buffer allocation as follows:

max

𝑛∑︁
𝑖=1

∑︁
𝑗∈𝑏𝑢𝑓𝑖

1{𝑐𝑎𝑙𝑖,𝑗=1}

𝛼
(𝑡 )
𝑖

, s.t.

𝑛∑︁
𝑖=1

|𝑏𝑢𝑓𝑖 | ≤ 𝑀 (11)

where 1{𝑐𝑎𝑙𝑖,𝑗=1} indicates whether the similarity between

𝑐𝑖 and 𝑐 𝑗 has already been computed, and 𝛼
(𝑡 )
𝑖

is the client-

level decay defined in Eq. (7). This is because (i) we need all

the pairwise similarities to make clustering decisions, and

(ii) slower clients are more outdated and have less chances

to update the similarity matrix, thus of higher priority for

updating. Eq. (11) is an online knapsack problem and can

be solved in two steps: (i) Sort clients’ buffers following the

order of two keywords, i.e., # of similarities not computed,

and 𝛼
(𝑡 )
𝑖

. (ii) Greedily select the first𝑀 buffers. Algorithm 2

illustrates our buffer allocation scheme.

Multi-Partitioning Iterative Clustering. Most CFL methods as-

sume a fixed number of clusters [13, 22], which is unfit for dynamics

in the asynchronous environments. One solution is to incrementally

adjust the number of clusters via iterative bi-partitioning [28, 42].

Yet the bi-partitioning can be slow to converge. To boost the clus-

tering efficiency, we apply a multi-partitioning-based approach.

Specifically, we consider clients in a cluster as a graph 𝐺 (𝑉 , 𝐸),
with clients as vertex set 𝑉 and their pairwise similarities as edges

set 𝐸. Our goal is to decidewhether there is an appropriate gap in the

current graph 𝐺 for partitioning into 𝑅 subgraphs {𝐺1,𝐺2, ...,𝐺𝑅}.
To estimate the number of subgraphs, we calculate the maximum

eigengap of 𝐺 with the Laplacian matrix of its similarity matrix 𝐴:

𝐿 = 𝐼 − 𝐷−1/2𝐴𝐷−1/2 (12)

Let {𝜆1, 𝜆2, ..., 𝜆𝑛} be the eigenvalue of 𝐿. We select the maximum

eigengap to retrieve the best 𝑅 partitions [37].

𝑅 = argmax

𝑘

𝜆𝑘+1 − 𝜆𝑘 , s.t.{𝜆1, 𝜆2, ..., 𝜆𝑛} ← 𝑆𝑉𝐷 (𝐿) (13)

From Theorem 1, we should only perform clustering when the

(cluster-level) decay 𝛼𝑐,𝑘 is not too large. Accordingly, we partition

clients into 𝑅 clusters only when:

𝛼𝑐,𝑘 < (𝜆𝑅+1 − 𝜆𝑅)𝛾 (14)



KDD ’24, August 25–29, 2024, Barcelona, Spain Boyi Liu, Yiming Ma, Zimu Zhou, Yexuan Shi, Shuyuan Li, and Yongxin Tong

Algorithm 3:Multi-partitioning iterative clustering.

Input: Similarity matrix 𝐴, cluster-level aggregation

parameter 𝛼
(𝑡 )
𝑐,𝑘

, received client update𝑤
(𝑡−𝜏𝑖 )
𝑖

Output: New cluster list 𝑢1, ..., 𝑢𝐾
1 for client 𝑐 𝑗 ∈ 𝑏𝑢𝑓𝑖 do
2 Update similarity matrix 𝐴𝑖, 𝑗 ← cos(𝑤 (𝑡−𝜏𝑖 )

𝑖
,𝑤
𝑏𝑢𝑓𝑖
𝑗
)

3 Laplacian matrix 𝐿 ← 𝐼 − 𝐷−1/2𝐴𝐷−1/2
4 𝜆1, 𝜆2, ...𝜆𝑛 ← 𝑆𝑉𝐷 (𝐿)
5 𝑅 ← argmax𝑘 𝜆𝑘+1 − 𝜆𝑘
6 if 𝛼 (𝑡 )

𝑐,𝑘
< (𝜆𝑅+1 − 𝜆𝑅)𝛾 then

7 𝑢𝑘1, 𝑢𝑘2, ..., 𝑢𝑘𝑅 ← 𝑆𝑝𝑒𝑐𝑡𝑟𝑎𝑙𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖𝑛𝑔(𝑢𝑘 , 𝑅)
8 Replace 𝑢𝑘 with 𝑢𝑘1, 𝑢𝑘2, ..., 𝑢𝑘𝑅

where 𝜆𝑅+1 − 𝜆𝑅 is the maximum eigengap of similarity matrix 𝐴,

and 𝛾 is a hyperparameter to scale the eigengap comparable to 𝛼𝑐,𝑘 .

Algorithm 3 shows the overall clustering workflow.

Newcomer Assignment. Correctly clustering new clients in the

context of asynchronous clustered federated learning presents a

challenging problem. The reasons include:

• Weight gap: The inconsistent update frequency among clients

means that, rather than being assigned to a cluster more

similar in terms of data, a new client might be more easily

assigned to a cluster that has been updated less frequently.

• Center shift: In asynchronous cases, the global model does

not effectively represent the information of all clients within

a cluster, as it is dominated by fast clients.

To address these issues, we leverage historical information to assist

the clustering of newcomers. For each cluster 𝑢𝑘 , we filter out the

historical information of clients in the newcomer’s sampled buffer

𝑏𝑢𝑓𝑖 . We aggregate historical information in 𝑏𝑢𝑓𝑖 ∩𝑢𝑘 as Eq. (15) to

obtain a representative information of the cluster, and then select an

appropriate cluster for the newcomer based on this representation.

𝑟𝑒𝑝𝑘 =
∑︁

𝑐 𝑗 ∈𝑏𝑢𝑓𝑖∩𝑢𝑘

|𝐷 𝑗 |
|𝐷𝑏𝑢𝑓𝑖∩𝑢𝑘 |

𝑤
𝑏𝑢𝑓𝑖
𝑗

(15)

Discussions. We make the following notes on our buffer-aided

dynamic clustering scheme.

• Buffers have been utilized for stable training of a single

model (without clustering) in asynchronous FL [25, 31, 40].

Our work is orthogonal as we apply buffers in clustering.

Our clustering scheme could be integrated with buffer-based

model aggregation for better training.

• Although our clustering algorithm is built upon prior multi-

partitioning methods, the key novelty is to trigger clustering

via Eq. (14). It allows high clustering accuracy guarantee

with Theorem 1, and is noise-resilient since the maximum

eigengap is typically large [37].

4.4 Mitigating Staleness via Sparse Training
Principles.We further improve CASA by actively mitigating stale-

ness, i.e., allocating lower training workload to slower clients. The

basic idea is to incorporate sparse training [1, 48], where person-

alized masks are assigned to clients to reduce their local training

workload, thus enhancing the stability of the model convergence.

Designs.We implement the idea as CASA+, which has two designs:

Firstly, during asynchronous aggregation, we onlymix themasked

weights into the global model:

𝑤
(𝑡+1)
𝑔,𝑘

⊙𝑚 (𝑡−𝜏𝑖 )
𝑖

= ((1−𝛼 (𝑡 )
𝑖
)𝑤 (𝑡 )
𝑔,𝑘
+𝛼 (𝑡 )

𝑖
𝑤
(𝑡−𝜏𝑖 )
𝑖

) ⊙𝑚 (𝑡−𝜏𝑖 )
𝑖

(16)

where 𝑚
(𝑡−𝜏𝑖 )
𝑖

is the mask for client 𝑐𝑖 . 𝑚
(𝑡−𝜏𝑖 )
𝑖

is obtained by

masking the smallest S
(𝑡 )
𝑖

-proportion of local parameters 𝑤
(𝑡 )
𝑖

.

Eq. (16) limits the influence of stale updates on global model with

aggregating partial parameters, which also boosts convergence.

Secondly, we configure the sparsity rate S
(𝑡 )
𝑖

as:

S
(𝑡 )
𝑖

=
S0
2

(𝛼 (𝑡 )
𝑐,𝑘
− 𝛼 (𝑡 )

𝑖
) (1 + cos(( (𝑡 − 1)𝜋

𝑅𝑒𝑛𝑑
))) (17)

which applies a cosine annealing function [21] to the divergence

of cluster- and client-level decay coefficient, where 𝑅𝑒𝑛𝑑 is prede-

fined total rounds. This ensures that fast clients are unlikely to be

masked, because local 𝛼
(𝑡 )
𝑖

equals to cluster-level decay. The reason

to control the sparsity rate via the decay coefficient is as follows. (i)
Clients with higher staleness will receive a higher degree of sparsity.

(ii) Sparsification impairs similarity calculation, and sparsity rate

before clustering should be less than that after clustering.

5 EXPERIMENTS
5.1 Experimental Setup
Compared Methods. We compare CASA with representative CFL

and AFL methods. We also extend the CFL baselines to the asyn-

chronous setting. Specifically, we apply decay function in model

aggregation of these CFL baselines, and buffer the recent model

parameters from each client for similarity calculation. The server

clusters or check clustering condition per asynchronous round.

• Standalone: Each client trains itsmodel with its local dataset

only without federated training.

• FedAvg [24]: generic FL that trains a globalmodel viaweighted

averaging of local model parameters.

• FedProx [17]: generic FL that applies a proximal to boost

the convergence.

• FedAsync [41]: classic AFL that aggregates model with

staleness-based weight decay.

• FedBuff [25]: AFL that applies buffer to aggregate the most

recent 𝐾 gradients.

• CFL [28]: synchronous CFL that adopts bi-partitioning clus-

tering based on mean and maximum norm of gradients.

• CFL-Async: asynchronous extension of CFL [28].

• ICFL [42]: synchronous CFL that adopts bi-partitioning and

incremental clustering.

• ICFL-Async: asynchronous extension of ICFL [42].

• IFCA [13]: synchronous CFL that iteratively clusters clients

based on minimizing loss.

• IFCA-Async: asynchronous extension of IFCA [13].
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Table 1: Overall performance. Acc is the overall accuracy at convergence, Time is the time to reach the target accuracy. “/”
means that the method fails to reach the target accuracy. For IFCA, the item in parentheses means its pre-set cluster number 𝑘 .

Type Method

MNIST CIFAR-10 FEMNIST IMU HARBox

Acc Time Acc Time Acc Time Acc Time Acc Time

N/A Standalone 98.26 4.9 82.6 35.2 93.95 / 90.00 41.9 69.48 /

Sync

FedAvg 97.92 80.24 69.49 / 98.34 85.01 85.71 89.08 82.90 251.42

FedProx 97.31 104.68 65.83 / 98.14 114.34 87.57 96.05 81.80 390.96

CFL 99.42 30.63 90.50 209.55 98.75 75.14 86.29 94.93 85.06 170.99

IFCA(k)

99.40(3) 11.21 89.10(3) 209.62 97.77(2) 145.34 94.28(2) 80.73 83.73(2) 334.34

99.50(4) 12.8 90.88(4) 77.88 96.59(5) 237.46 92.67(3) 73.28 85.06(4) 226.53

99.48(5) 5.61 91.14(5) 80.39 95.37(8) 279.85 91.81(4) 148.6 87.09(6) 220.98

ICFL 98.68 12.18 84.19 36.49 95.35 121.65 93.23 30.45 82.58 126.43

Async

FedAsync 97.46 109.53 67.66 / 96.97 183.57 86.86 64.9 78.72 158.97

FedBuff 99.25 53.31 61.11 / 98.21 82.63 80.00 282.9 81.62 55.7

CFL-Async 99.23 9.54 89.97 145.8 98.68 36.67 87.71 69.3 82.43 59.8

IFCA-Async(k)

99.28(3) 9.53 83.41(3) 195.30 98.39(2) 81.07 89.61(2) 143.1 77.58(2) 252.60

98.88(4) 8.83 88.99(4) 80.70 97.78(5) 118.27 85.62(3) 143.1 78.13(4) 215.20

99.32(5) 8.57 87.98(5) 83.20 97.62(8) 126.77 89.14(4) 87.77 76.81(6) 236.30

ICFL-Async 98.82 5 83.30 25.3 94.66 / 91.52 81.83 79.65 92.00

Ours

CASA 99.52 2.80 91.45 23.4 98.97 36.2 95.33 37.47 87.38 54.8

CASA+ 99.34 4.80 90.64 20.3 98.53 35.03 94.57 22.71 87.21 53.6
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Figure 5: Model accuracy vs. normalized time cost.

Datasets. We test two tasks. (i) image classification (IC): MNIST

[16], CIFAR10 [15], and FEMNIST [3]; (ii) human activity recogni-

tion (HAR): IMU [26], and HARBox [26].

Metrics.We assess the methods with three metrics: (i) Accuracy:
the accuracy on local datasets when converged; (ii) Time to Target
Accuracy: the latency to reach a given accuracy i.e., 95% for MNIST,

80% for CIFAR-10, 95% for FEMNIST, 80% for IMU, 75% for HARBox;

(iii) Time to Convergence: the time required to convergence.

Other details on experimental setups are in Appendix A.2.

5.2 Main Results
5.2.1 Time-to-Accuracy. Table. 1 summarizes the time to reach a

target accuracy and the accuracy at convergence. Fig. 5 highlights

the trade-off between model accuracy and normalized latency (w.r.t.

FedAvg) at convergence. We make the following observations.

• Gains over Synchronous FL & CFL. Synchronous CFL outper-

forms the generic counterpart in both accuracy and latency

in most cases, particularly with label-skew, e.g., on MNIST

and CIFAR-10. We achieve higher accuracy than generic FL,

e.g. FedAvg (0.63% to 21.96%), and FedProx (0.83% to 30.34%),

and comparable accuracy to the CFL baselines, even though

we rely on partial information for clustering. However, our

methods are significantly faster, reducing the time to reach

the target accuracy by 2.00-37.39× onMNIST, 1.79-10.33× on
CIFAR-10, 2.15-7.99× on FEMNIST, 1.34-4.23× on IMU, and

2.36-7.29× on HARBox. From Fig. 5, our CASA reduces up

to 3.12×, 3.40×, 2.28×, 2.41×, 6.49× convergence time while

maintaining a comparable and even higher accuracy than

the synchronous CFL baselines.

• Gains over Asynchronous FL & CFL. AFL methods (without

clustering) suffer from low accuracy and long latency on

highly non-IID data. Concretely, the accuracy of our methods

is 2.00-23.79% higher than FedAsync, and 0.27-30.34% higher

than FedBuff. They also take more time to reach the target

accuracy, e.g. up to 39.11× on MNIST, 5.25× on FEMNIST,

12, 76× on IMU, and 2.97× on HARBox, and they fail to

reach the target accuracy on CIFAR-10. Our methods are also

faster than the asynchronous CFL baselines, and improves

the accuracy by up to 2.68%, 27.53%, 2.56%, 7.72%, 6.83% at

convergence on the five datasets.

5.2.2 Training Curves. This experiment tracks the training dynam-

ics of asynchronous CFL methods. From Fig. 6, CASA converges

faster and achieves a higher test accuracy than other methods.

IFCA-Async managed to capture the correct clustering structures

on label-skewed datasets like MNIST and CIFAR-10, but fails on
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(a) MNIST
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(b) CIFAR-10
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(c) FEMNIST
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(d) IMU
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Figure 6: Training time and test accuracy of asynchronous CFL methods.
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Figure 7: Analysis of effectiveness of clustering.

feature-skewed datasets like FEMNIST, IMU and HARBox. This is

because IFCA-Async determines cluster identity based on training

loss, yet the difference in loss is small in feature-skewed datasets.

Furthermore, the global model in IFCA-Async can be biased due

to asynchrony (see Fig. 10b). CFL-Async performs well in part of

datasets. This is because 𝛼 affects clustering in the asynchronous

scenarios, and such impact differs across datasets (see Fig. 10a).

5.2.3 Effectiveness of Clustering. This experiment assesses the ef-

fectiveness of CASA’s clustering. We test on CIFAR-10 and ob-

serve the similarity matrix of clients’ model parameters clients at

different times. The data partitioning strategy is the same as in

Appendix A.2.4, with 4 clusters, each holding a few unique labels.

As shown in Fig. 7a, at 𝑡 = 100, a fairly clear clustering structure

has emerged, but the inner relationship within a cluster has not

been discovered yet. As shown in Fig. 7b, by 𝑡 = 300, we further

capture the data distributions within each cluster, resulting in finer-

grained and more accurate clusters.

Fig. 7c further illustrates the accuracy during training. At 𝑡 = 100

when there is clear but not fine-grained clustering relationship, the

overall accuracy reaches 86.5%. With training and mining of clients’

similarity, the large clusters are partitioned into sub-clusters with

higher cluster similarities. The partitioning boosts the accuracy,

with a final accuracy of 91.6%.

5.2.4 Impact of System Heterogeneity. This experiment tests an-

other two system heterogeneity setups on HARBox. Scenario A: It is
a general case where the maximum speed gap is 5, and the clients’

local training latencies are randomly sampled from this range [19].

Scenario B: It is the case with severe system heterogeneity, with

30% clients taking 10× the training time of fast clients.

Table. 2 summarizes the convergence accuracy and training la-

tency. CASA still outperforms the baselines. Compared with the

general case, CASA achieves a comparable accuracy with merely

1.08× higher latency, when facing severe system heterogeneity.

Table 2: Impact of system heterogeneity on HARBox.

Method

Scenario A (General) Scenario B (Severe)

Acc Time Acc Time

Standalone 70.47 498.9 70.43 531.2

FedAvg 83.18 1115.93 81.15 2015.19

FedProx 81.32 1190.16 80.19 2056.94

CFL 83.27 977.43 84.17 1614.84

IFCA 84.45 707.24 85.85 1687.42

ICFL 82.09 1019.7 82.12 2095.65

FedAsync 80.23 419.1 79.32 489.3

FedBuff 82.14 400.1 80.32 528.8

Ours 87.61 346.6 87.81 374.6
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Figure 8: Contributions of individual components.

Conversely, other baselines (except standalone, which only trains

locally) are 1.17× to 2.39× shower in Scenario B. Thus the results

show that CASA is robust to severe system heterogeneity.

5.3 Ablation Study
5.3.1 Contributions of Individual Components. In addition to CASA
and CASA+, we test the following variants to understand the ef-

fective of different designs: (i) CASA-C, which is CASA without

clustering; and (ii) CASA-D, which is CASA without bi-level 𝛼 .

As shown in Fig. 8, both CASA and CASA+ outperform CASA-C

and CASA-D. Due to lack of clustering, CASA-C fails to generate

personalized models adapted to local data distributions, leading to

lower model accuracy. Without the dynamical decay coefficient,

CASA-D not only induces erroneous clustering but also suffers

from slow convergence, hence exhibiting the poorest performance.

Both CASA and CASA+ outperforms CASA-D in accuracy, e.g. up
to 34.23% in CIFAR-10, up to 12.37% in HARBox. CASA-C performs

better than CASA-D, but still worse than CASA and CASA+, with

23.62% and 7.74% lower accuracy, respectively.
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Figure 9: Hyperparameter tests: impact of (a) buffer size on
accuracy; impact of sparsity rate on (b) latency to target ac-
curacy and (c) accuracy at convergence.

5.3.2 Impact of Buffer Size. This experiment shows the effective-

ness of prioritized buffer allocation scheme (Sec. 4.3) by recording

accuracy with 100 clients on CIFAR-10 given different buffer sizes.

From Fig. 9a, the accuracy rises to 91.21% with a buffer size of

75. Recall from Table. 1, the highest accuracy of asynchronous CFL

baselines is 89.97%. That is, CASA surpasses other asynchronous

CFL methods even when the buffer size is 75. Note that methods

such as CFL-Async and ICFL-Async need a buffer at least equal

to the client scale i.e., 𝑛 = 100 to store the most recent model pa-

rameters of each client and calculate the pair-wise client similarity.

Therefore, our prioritized buffer allocationmechanism yields higher

accuracy at lower storage overhead.

5.3.3 Impact of Sparsity Rate. This experiment shows the impact

of sparsity rate on CASA+ (Sec. 4.4), which mitigates staleness with

sparse training. We measure the latency to the target accuracy and

the accuracy at convergence at various sparsity rate. Note that

S0 = 0 means no sparse training, i.e., CASA.
From Fig. 9b, introducing sparse training with a initial sparse

rate S0 = 0.3 results in 1.09× shorter latency to target accuracy

compared with CASA (the first bar). As we increase the sparsity rate

S0, the reduction in latency of CASA+ is 1.19-1.32×. However, when
the sparsity rate increases, the time required to reach the target

accuracy does not always decrease. This is because an over-sparse

model may not effectively contribute to the global model. With

faster convergence, the accuracy of CASA+ only drops 0.29-1.28%

as shown in Fig. 9c, which is acceptable.

5.3.4 Impact of Asynchronous Aggregation on CFL. This experi-
ment tests the impact of asynchronous aggregation on CFL schemes

to highlight the challenges when shifting to asynchronous CFL. We

select CFL [28] and IFCA [13], two representative synchronous CFL

methods that adopt a hierarchical and a dynamic clustering strategy,
respectively.

• Impact on Hierarchical Clustering. From Theorem 1, a larger

𝛼 leads to a higher mis-clustering probability, particularly for

naive methods such as hierarchical clustering. We validate

this by testing CFL-Async on CIFAR-10 under various 𝛼 val-

ues. We measure the clustering performance its purity [42]

which stands for the accuracy of clustering and the training

performance by the test accuracy. Fig. 10a shows the results.

As 𝛼 increases, the clustering error occurs. The mis-clustered

clients will then introduce unwanted data heterogeneity into

the cluster, which impairs training accuracy. For example,
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Figure 10: Impact of asynchrony on clustering.

when 𝛼 = 0.7, CFL-Async suffers high mis-clustering rate,

with an accuracy drop of 10.09% on CIFAR-10, respectively.

Note that CASA avoid these problems because (i) clustering
is only activated when 𝛼 is small, which explicitly controls

clustering errors, (ii) with buffer limiting 𝜏𝑖 − 𝜏 𝑗 , according
to Theorem 1, CASA is more robust with respect to 𝛼 .

• Impact on Dynamic Clustering. Asynchrony makes dynamic

clustering e.g., IFCA sensitive to client arrival orders. This is

because the global model is biased towards the most recent

local updates due to weight decay. This would exert chal-

lenges to assign clients to the correct clusters. To validate

this, we compare IFCA and IFCA-Async on CIFAR-10 with

cluster number set to 𝑘 = 3 and 𝑘 = 4. As shown in Fig. 10b,

IFCA-Async experiences more unstable convergence than

IFCA. IFCA-Async reaches the target accuracy only 1.09×
faster than IFCA when 𝑘 = 4, and IFCA is even faster than

IFCA-Async when 𝑘 = 3. Therefore, the shift to asynchro-

nous CFL does not necessarily improve the convergence

speed, which motivates our designs.

6 CONCLUSION
This paper presents CASA, a new CFL scheme for asynchronous

clients to boost training efficiency under both data and system het-

erogeneity. We systematically analyze the impact of asynchrony

on CFL. We further propose a bi-level asynchronous aggregation

method and a buffer-aided dynamic clustering strategy to per-

tain the synergy between client clustering and model aggregation

in asynchronous environments. Extensive evaluations show that

CASA outperforms existing CFL and AFL baselines in accuracy and

achieves 2.28-6.49× faster convergence speed. We envision CASA

as a practical solution for swift and personalized federated learning

with heterogeneous IoT devices.
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A APPENDIX
A.1 Proofs
A.1.1 Proof of Theorem 1. We make the following assumptions as

in [13, 19, 23, 39, 41].

Assumption 1. (Unbiased gradient estimator and Bounded gradi-
ents). The expectation of stochastic gradient ∇𝑙 (𝑤𝑖 , 𝜉𝑖 ) is an unbiased
estimator of the local gradient for each client, and expectation of L2
norm of ∇𝑙 (𝑤𝑖 , 𝜉𝑖 ) is bounded by a constant U:

E𝜉𝑖∼𝐷𝑖 [∥∇𝑙 (𝑤𝑖 , 𝜉)∥2] ≤ 𝑈 (18)

Then we prove Theorem 1, which provides an upper-bound for

the mis-clustering rate 𝑝 .

Proof. In the synchronous setting, the similarity between two

clients is calculated as 𝐴𝑖 𝑗 = cos(𝑤 (𝑡 )
𝑖
,𝑤
(𝑡 )
𝑗
) in round 𝑡 . In asyn-

chronous setting, for client 𝑐𝑖 starting at round 𝑡 − 𝜏𝑖 and client

𝑐 𝑗 starting at round 𝑡 − 𝜏 𝑗 , the similarity calculation becomes

𝐴′
𝑖 𝑗

= cos(𝑤 (𝑡−𝜏𝑖 )
𝑖

,𝑤
(𝑡−𝜏 𝑗 )
𝑗

). The divergence between 𝐴𝑖 𝑗 and 𝐴′𝑖 𝑗
is:

𝐴′𝑖 𝑗 −𝐴𝑖 𝑗 =≤ cos(𝑤 (𝑡−𝜏𝑖 )
𝑗

,𝑤
(𝑡−𝜏 𝑗 )
𝑗

) = O(∥𝑤 (𝑡−𝜏𝑖 )𝑔 −𝑤 (𝑡−𝜏 𝑗 )𝑔 ∥)
(19)

From [41], the gap of global model parameters is bounded as

∥𝑤 (𝑡 )𝑔 −𝑤 (𝑡−𝜏 )𝑔 ∥ ≤ 𝛼𝛾𝐾𝐻𝑚𝑎𝑥O(𝑉2) (20)

where 𝐾 is upper bound of staleness, 𝛾 is learning rate, 𝐻𝑚𝑎𝑥 is

maximum of local steps, 𝑉2 is upper bound of gradients’ norm.

Take Eq. (20) into our problem, we have:

𝐴′𝑖 𝑗 −𝐴𝑖 𝑗 = O((𝜏𝑖 − 𝜏 𝑗 )𝛼𝜂𝑄𝜃𝑈 ) = O(𝜆𝛼 (𝜏𝑖 − 𝜏 𝑗 )) (21)

where𝑄 refers to the maximum of local steps, 𝜂 is the learning rate,

and 𝜃 is the upper bound of staleness. For simplicity, we use 𝜆 to

represent 𝜆 = 𝜂𝑄𝜃𝑈 .

The Frobenius-norm of 𝐴′ −𝐴 can be bounded by Eq. (21):

∥𝐴′ −𝐴∥𝐹 =

√√√ 𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

∥𝐴′
𝑖 𝑗
−𝐴𝑖 𝑗 ∥2 = O(𝜆𝛼

√√√ 𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

∥𝜏𝑖 − 𝜏 𝑗 ∥2)

(22)

Given degree matrix 𝐷′ as 𝐷′
𝑖𝑖

=
∑𝑛
𝑗=1 cos(𝑤

(𝑡−𝜏𝑖 )
𝑖

,𝑤
(𝑡−𝜏 𝑗 )
𝑗

),
the divergence of Forbenius-norm is

∥𝐷′ − 𝐷 ∥𝐹 =

√√
𝑛∑︁
𝑖=1

(𝐷′
𝑖𝑖
− 𝐷𝑖𝑖 )2 = O(𝜆𝛼

√√√ 𝑛∑︁
𝑖=1

(
𝑛∑︁
𝑗=1

∥𝜏𝑖 − 𝜏 𝑗 ∥2))

(23)

The Frobenius-norm of matrix 𝐿′−𝐿 can be rewritten as ∥𝐴′−𝐴−
(𝐷′ −𝐷)∥𝐹 . For item that meets 𝑖 ≠ 𝑗 , there is𝐴′

𝑖 𝑗
−𝐴𝑖 𝑗 = 𝐿′𝑖 𝑗 −𝐿𝑖 𝑗 .

The only difference lies in the elements on the diagonal. For an

arbitrary 𝑖 , as 𝐴′
𝑖𝑖
−𝐴𝑖𝑖 = 1 − 1 = 0, there exists:

∥𝐿′−𝐿∥𝐹 =

√︃
∥𝐴′ −𝐴∥2

𝐹
+ ∥𝐷′ − 𝐷 ∥2

𝐹
= O(𝜆𝛼

√√√ 𝑛∑︁
𝑖=1

(
𝑛∑︁
𝑗=1

∥𝜏𝑖 − 𝜏 𝑗 ∥2))

(24)

As proved in [14], the mis-clustering rate 𝑝 of the spectral parti-

tioning algorithm satisfies

𝑝 ≤ 𝛿2 = ∥ṽ2 − v2∥2 ≤
4∥L′ − L∥F

v −
√
2∥L′ − L∥F

(25)

where v2 is the unit-length second eignvectors of matrix 𝐿.

Theorem 1 is proved by telescoping all equations above. □

A.1.2 Proof of Theorem 2. For simplicity, we use 𝜆𝑖 to represent

client 𝑐𝑖 ’s weight
|𝐷𝑖 |
|𝐷 | , and P

𝑡,𝐶 ,P𝑡,𝐴,P𝑡,𝐿 denote the training

objective P of C-, A-, L-phase in round 𝑡 , respectively. To prove the

convergence of CASA, we firstly make assumptions below.

Assumption 2. (Convex). Each loss function 𝑙 or L is convex.

𝑙 (𝑦) ≥ 𝑙 (𝑥) + ⟨∇𝑙 (𝑥), 𝑦 − 𝑥⟩ (26)

Assumption 3. (Lipschitz Smooth). Each loss function 𝑙 or L is
𝛽-smooth.

𝑙 (𝑦) ≤ 𝑙 (𝑥) + ⟨∇𝑙 (𝑥), 𝑦 − 𝑥⟩ + 𝛽
2

∥𝑦 − 𝑥 ∥2
2

(27)

Assumption 4. (Bounded gradient variance). The variance of
stochastic gradient ∇𝑙 (𝑤𝑖 , 𝜉𝑖 ) is bounded by 𝜎2,

E𝜉𝑖∼𝐷𝑖 [∥∇𝑙 (𝑤𝑖 , 𝜉𝑖 ) − ∇𝑙 (𝑤𝑖 )∥
2

2
] = E[∥∇𝑙 (𝑤𝑖 , 𝜉𝑖 )∥22] − ∥∇𝑙 (𝑤𝑖 )∥

2

2
≤ 𝜎2

(28)

Assumption 5. (Bounded staleness). At asynchronous training
round t, the server received an update 𝑤 (𝑡−𝜏𝑖 )

𝑖
from client 𝑐𝑖 . The

update staleness is bounded, meeting 𝜏𝑖 ≤ 𝜃 .

Lemma 1. From C-phase to A-phase in an arbitrary round 𝑡 , we
have

P𝑡,𝐴 ≤ P𝑡,𝐶 +
𝐾∑︁
𝑘=1

∑︁
𝑐𝑖 ∈𝑢𝑘

𝜆𝑖𝜂
(𝑡−𝜏𝑖 )
𝑖

𝑄𝑈 (𝛼 (𝑡−𝜏𝑖 )
𝑖

𝜃O(𝑈 ) +𝑈 ) (29)

Proof. The distance between cluster 𝑢𝑘 ’s global model and re-

ceived parameters from client 𝑐𝑖 should be:

∥𝑤 (𝑡 )
𝑔,𝑘
−𝑤 (𝑡−𝜏𝑖 )

𝑖
∥2 ≤ ∥𝑤 (𝑡 )𝑔,𝑘 −𝑤

(𝑡−𝜏𝑖 )
𝑔,𝑘

∥2 + ∥𝑤 (𝑡−𝜏𝑖 )𝑔,𝑘
−𝑤 (𝑡−𝜏𝑖 )

𝑖
∥2

≤ 𝛼 (𝑡−𝜏𝑖 )
𝑖

𝜂
(𝑡−𝜏𝑖 )
𝑖

𝜃𝑄O(𝑈 ) + 𝜂 (𝑡−𝜏𝑖 )
𝑖

𝑄𝑈

(30)

For an arbitrary cluster 𝑢𝑘 , we have:∑︁
𝑐𝑖 ∈𝑢𝑘

I(𝑞𝑒𝑛𝑑𝑖 = 𝑄)𝜆𝑖 (L(𝑤 (𝑡+1)𝑔,𝑘
, 𝐷𝑖 ) − L(𝑤 (𝑡−𝜏𝑖 )𝑖

, 𝐷𝑖 ))

≤
∑︁
𝑐𝑖 ∈𝑢𝑘

I(𝑞𝑒𝑛𝑑𝑖 = 𝑄)𝜆𝑖 (⟨∇L(𝑤 (𝑡+1)𝑔,𝑘
, 𝐷𝑖 ),𝑤 (𝑡+1)𝑔,𝑘

−𝑤 (𝑡−𝜏𝑖 )
𝑖

⟩)

≤
∑︁
𝑐𝑖 ∈𝑢𝑘

𝜆𝑖𝜂
(𝑡−𝜏𝑖 )
𝑖

𝑄𝑈 (𝛼 (𝑡−𝜏𝑖 )
𝑖

𝜃O(𝑈 ) +𝑈 )

(31)

Lemma 1 is satisfied with

P𝑡,𝐴 − P𝑡,𝐶 =

𝐾∑︁
𝑘=1

∑︁
𝑐𝑖 ∈𝑢𝑘

I(𝑞𝑒𝑛𝑑𝑖 = 𝑄)𝜆𝑖 (L(𝑤 (𝑡+1)𝑔,𝑘
, 𝐷𝑖 ) − L(𝑤 (𝑡−𝜏𝑖 )𝑖

, 𝐷𝑖 ))

(32)

□
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Lemma 2. From the A-phase to L-phase in arbitrary communica-
tion round, we have:

E[P𝑡,𝐿] − P𝑡,𝐴

≤
𝐾∑︁
𝑘=1

∑︁
𝑐𝑖 ∈𝑢𝑘

𝜆𝑖

𝑄−1∑︁
𝑞=0

((
𝛽 (𝜂 (𝑡 )

𝑖
)2

2

− 𝜂 (𝑡 )
𝑖
)E[∥∇L(𝑤𝑞

𝑖
)∥2

2
] +

𝛽 (𝜂 (𝑡 )
𝑖
)2

2

𝜎2)

(33)

Proof. For client 𝑐𝑖 in local training, from step 𝑞 to step 𝑞 + 1:

L(𝑤𝑞+1
𝑖
) − L(𝑤𝑞

𝑖
) ≤ ⟨∇L(𝑤𝑞

𝑖
),𝑤𝑞+1

𝑖
−𝑤𝑞

𝑖
⟩ + 𝛽

2

∥𝑤𝑞+1
𝑖
−𝑤𝑞

𝑖
∥2
2

= − 𝜂 (𝑡 )
𝑖
⟨∇L(𝑤𝑞

𝑖
),∇L(𝑤𝑞

𝑖
, 𝜉
𝑞

𝑖
)⟩ +

𝛽 (𝜂 (𝑡 )
𝑖
)2

2

∥∇L(𝑤𝑞
𝑖
, 𝜉
𝑞

𝑖
)∥2

2

(34)

Take expectation on both sides for a random batch 𝜉
𝑞

𝑖
at step 𝑞,

E[L(𝑤𝑞+1
𝑖
)] − L(𝑤𝑞

𝑖
) ≤ (

𝛽 (𝜂 (𝑡 )
𝑖
)2

2

− 𝜂 (𝑡 )
𝑖
)∥∇L(𝑤𝑞

𝑖
)∥2

2
+
𝛽 (𝜂 (𝑡 )

𝑖
)2

2

𝜎2

(35)

For an arbitrary client 𝑐𝑖 starting L-phase at step 𝑞𝑖 , and ends at

step 𝑞′
𝑖
this round, we telescope them and get:

E[L(𝑤𝑞
′
𝑖

𝑖
)] − L(𝑤𝑞𝑖

𝑖
) ≤

𝑞′𝑖∑︁
𝑞=𝑞𝑖

((
𝛽 (𝜂 (𝑡 )

𝑖
)2

2

− 𝜂 (𝑡 )
𝑖
)∥∇L(𝑤𝑞

𝑖
)∥2

2
+
𝛽 (𝜂 (𝑡 )

𝑖
)2

2

𝜎2)

(36)

Lemma 2 is satisfied telescoping all clients. □

Now we start to prove Theorem 2.

Proof. From L-phase in asynchronous round 𝑡 − 1 to C-phase

in asynchronous round 𝑡 − 1, the overall loss does not change, for
the model parameters does not change, so:

P𝑡−1,𝐿 = P𝑡,𝐶 (37)

According to Lemma 1 and Lemma 2 we can get:

E[P𝑡,𝐿] − P𝑡−1,𝐿 ≤
𝐾∑︁
𝑘=1

∑︁
𝑐𝑖 ∈𝑢𝑘

𝜆𝑖

𝑞′𝑖∑︁
𝑞=𝑞𝑖

(
𝜂
(𝑡−𝜏𝑖 )
𝑖

𝑄𝑈 (𝛼 (𝑡−𝜏𝑖 )
𝑖

𝜃O(𝑈 ) +𝑈 )
ℎ𝑛
𝑖

+ (
𝛽 (𝜂 (𝑡 )

𝑖
)2

2

− 𝜂𝑖 )E[∥∇L(𝑤𝑞𝑖 )∥
2

2
] +

𝛽 (𝜂 (𝑡 )
𝑖
)2

2

𝜎2)
(38)

Given ℎ𝑖 =
𝑞′𝑖−𝑞𝑖
𝑄

, the right side of Eq. (38) is always negative

when

𝛼
(𝑡 )
𝑡 ≤

(2 − 𝛽𝜂 (𝑡 )
𝑖
)E[∥∇L(𝑤𝑞

𝑖
)∥2

2
] − 𝛽𝜂 (𝑡 )

𝑖
𝜎2

2𝜃𝑄𝑈O(𝑈 ) · ℎ𝑖 −
𝑈

𝜃O(𝑈 ) (39)

In the ideal case, the expectation of local gradientE[∥∇L(𝑤𝑞
𝑖
)∥2

2
]

gradually decreases with time, which can be represented by a time-

decay function. As the upper bound of staleness 𝜃 is related to the

cluster size in an asynchronous scenario [9], for simplicity, we can

rewrite Eq. (39) as follows:

𝛼
(𝑡 )
𝑖
≤ Ω(𝑡)ℎ𝑖
|C𝑘 |

(40)

where |C𝑘 | refers to the scale cluster 𝑢𝑘 , ℎ𝑖 indicates the system

resource of device 𝑖 , and Ω(𝑡) is a function that monotonically

decreases over time. □

A.2 Additional Experimental Settings
A.2.1 Experimental Environment. We conduct experiments on a

machine with AMD Ryzen 9 5950X 16-Core Processor CPU, and a

NVIDIA GeForce RTX 3090 GPU. The code are implemented with

Python 3.9.13 and PyTorch 1.13.1.

A.2.2 Configuration of Federation. We set client number 𝑛 = 100

for MNIST, CIFAR-10, FEMNIST, HARBox, and 𝑛 = 7 for IMU. For

FEMNIST, we select the top 100 clients with the largest size of local

data. For HARBox, we select the first 100 clients from the 120 clients.

We apply a CNN to MNIST, CIFAR-10 and FEMNIST as [8]; and a

two-layer fully connected network for IMU and HARBox as [26].

The wall-clock time is simulated following [30]. By default, we

set the local training latency of slow devices as 5× that of normal

devices, with 30% slow devices among all clients. This is because

the speed of mainstream IoT platforms may differ by 5×, e.g., be-
tween Raspberry Pi and NVIDIA Nano [32]. Since the concept of

round differs in synchronous and asynchronous settings, we train

for 500 rounds in synchronous settings, and for 50, 000 rounds in

asynchronous settings.

A.2.3 Hyperparameters. For all the datasets, we set the batch size

to 10, and the learning rate 𝜂 to 0.01.

For all asynchronous methods, the basic decay coefficient is set

as 𝛼 = 0.3. Other method-specific hyperparameters are set as below.

• FedProx [17]: proximal regularization term 𝜇 = 0.05.

• FedAsync [41]: hinge version, with 𝑎 = 1 and 𝑏 = 4.

• FedBuff [25]: buffer size 𝐾 = 10.

• CFL [28]: mean gradient bound 𝜀1 = 0.4; max gradient bound

𝜀2 = 0.7.

• ICFL [42]: start value 𝛼∗ (0) = 0.85, increasing factor 𝜀 = 4.0.

• CFL-Async: the max gradient bound is set higher than the

synchronous version to avoid frequent triggering of the clus-

tering condition. We set 𝜀2 = 1.

• ICFL-Async: same as ICFL, except that the time decay rate

becomes ×0.01 due to the asynchrony nature.

For our CASA, the basic decay coefficient is set 𝛼0 = 2, and the

time function is set as Ω(𝑡) = ( 𝑒
2.8 )

𝑘𝑡
, with 𝑘 set to 0.001 for most

cases, 𝛾 = 0.15. To ensure 𝛼
(𝑡 )
𝑖

is strictly less than 1, |C𝑘 | is actually
set to |C𝑘 | + 3. And to ensure clustering quality, we select the first

𝑛 = 10 eigenvalues, and calculate eigengap from them.

A.2.4 Configuration of Datasets. We experiment with two types

of clustering relationships:

• Feature-skew based. We select one IC dataset FEMNIST [3]

and two HAR datasets IMU and HARBox [26] as the feature-

skew case. These datasets possess realistic feature correla-

tions, such as thewriting habits in FEMNIST and the different

activity postures in HAR.

• Label-skew based. We partition two IC datasets MNIST [16]

and CIFAR-10 [15] with labels manually.We separate𝑛 = 100

clients into 4 groups, with a proportion of {0.2, 0.2, 0.3, 0.3}
following [42]. The labels are split following the same pro-

portion. For instance, label 0 and label 1 are only held by

group 0. To simulate the non-IID setting, we set Dirichlet

distribution with 𝛼 = 1 inside each cluster.
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