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Abstract
Accurate estimation of on-device model training time is in-
creasingly required for emerging learning paradigms on mo-
bile edge devices, such as heterogeneous federated learning
(HFL). HFL usually customizes the model architecture ac-
cording to the different capabilities of mobile edge devices
to ensure efficient use of local data from all devices for train-
ing. However, due to oversimplification of latency modeling,
existingmethods rely on a single coefficient to represent com-
putational heterogeneity, resulting in sub-optimal HFL effi-
ciency. We find that existing methods ignore the important
impact of runtime optimization of deep learning frameworks,
which we call development-chain diversity. Specifically, lay-
ers of a model may have different algorithm implementations,
and deep learning frameworks often have different strategies
for selecting the algorithm they believe is the best based on
a range of runtime factors, resulting in different training
latencies and invalid predictions from existing methods. In
this paper, in addition to considering this diversity to ensure
synchronized completion time of model training, we also
study how to select the best algorithm each time to reduce
the latency of the per-round training, thereby further im-
proving the overall efficiency of federated training. To this
end, we propose LATTE, which consists of a novel selector
that identifies the best algorithm at runtime based on relative
runtime factors. By further integrating it into our training
latency model, LATTE provides accurate training time es-
timation. We develop LATTE as middleware, compatible
with different deep learning frameworks. Extensive results
show significantly improved training convergence speed and
model accuracy compared to state-of-the-art methods.
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1 Introduction
As mobile edge devices, such as NVIDIA Jetson series, be-
come increasingly powerful, in addition to efficiently per-
forming inference tasks [18, 63–65, 70], they can now also
perform certain model training tasks [24]. However, since the
computing capability of mobile edge devices is far less than
that of personal computers or servers, on-device training at
the mobile edge is not positioned to replace traditional model
training. It mainly focuses on updating the model according
to the requirements of many emerging learning paradigms,
such as federated learning (FL) [22, 35, 37, 51, 52, 59, 62].

Training time is a key factor in determining the efficiency
of federated learning on mobile edge devices as different
devices may have vastly different computing and commu-
nication capabilities, known as system heterogeneity [73].
Specifically, multiple edge devices (as clients) collaborate
to train a model under the coordination of the server [49].
In each round of training, the server assigns the current
model to the devices. Each device then trains the model us-
ing its own data and returns updates to the server, which
are aggregated into the next round of models. Primarily due
to the heterogeneity in computing capability [53], devices
usually cannot complete training of the same model at the
same time, and the server must wait for updates of the slow-
est device in each round [49], leading to significant overall
training latency measured in wall-clock time. This latency
can seriously harm the availability of federated learning sys-
tems, especially in time-sensitive scenarios such as personal
assistants, drone fleets, and robot swarms [21, 48, 68].
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When the number of federated devices is large (e.g., hun-
dreds or thousands), recent work has found that training
efficiency can be improved through client selection [34, 37,
40, 42] or asynchronous FL [59, 69], mitigating the impact
of weak devices on training. However, a more general so-
lution, known as heterogeneous federated learning (HFL),
is to allocate appropriate sub-models according to the com-
puting capability of the device [14, 22, 23, 43, 51, 56]. The
HFL literature shows that having each device complete each
round of model training simultaneously as much as possible
can lead to better performance [39, 71]. This not only uti-
lizes the training data on each participating device, but also
significantly improves the efficiency of the overall federated
training. It is particularly useful in most mobile edge applica-
tions in practice with medium-sized device networks, where
each device may contain a unique set of data.
Since training time is critical for federated learning, the

training time for each device needs to be accurately esti-
mated to allocate appropriate sub-models. To this end, exist-
ing work typically predicts the latency by performing linear
regression on the computational load of the model [22, 23],
such as the number of floating point operations (FLOPs).
They characterize computational heterogeneity across de-
vices by computing capability related coefficients (e.g., float
point per second (FLOPS)) determined offline. Some recent
studies have further proposed finer-grained layer-wise mod-
eling [14, 43], acknowledging that different layer types may
exhibit different execution times on the same platform but
follow the same estimation principle. In this paper, we find
that existing approaches ignore an important impact of differ-
ent deep learning frameworks (e.g., PyTorch and TensorFlow)
exhibit distinct behaviors in invoking acceleration libraries
(e.g., cuDNN) during runtime optimization [41, 44, 72], which
we refer to as development-chain diversity. It can cause signif-
icant deviations in training latency for the same model, even
on the same device. This can make the characterization based
on hardware parameters learned in advance inaccurate.
By delving into the runtime behaviors of deep learning

frameworks, we discover that the core reason is the diver-
sity of layer algorithms. For example, the convolutional lay-
ers, essential in many neural networks, can be implemented
through various algorithms, such as direct convolution, ma-
trix multiplication, and fast Fourier transform. However, dif-
ferent deep learning frameworks have different strategies to
select what they think is the best layer algorithm at runtime
based on hardware specifications, layer configuration, and
available runtime resources. This selection needs to be made
for both forward and backward propagation of layers before
training, so the choice of layer algorithm can significantly
affect the overall training latency. As shown in § 2.2, train-
ing the same model can have a 30.1% time difference and be
2.68× slower than the optimal for this reason.

If we deliberately measure the latency differences caused
by the diversity of algorithm choices at each layer and take
this into account when assigning sub-models, different de-
vices can achieve synchronized completion times of model
training. However, in addition to uncovering this key ques-
tion, we aim to go one step further: Can every device also
choose the best algorithm each time? If possible, training can
not only be completed synchronously across devices, but the
latency in each round can also be minimized (so that we can
allocate the largest sub-model), which will further improve
the overall training efficiency and performance [23].1

To this end, we propose LATTE, a Layer Algorithm-aware
Training Time Estimator for HFL, which adapts to the diver-
sity of layer algorithms in the development chain to achieve
accurate training time estimation. A key challenge in de-
signing LATTE is that layer algorithm selection is affected
by certain runtime parameters, such as resource availability
and model configuration, which results in the inability to
enumerate the consequences of choices in advance. To solve
this problem, LATTE provides a lightweight and accurate
layer algorithm selector. A main novelty in its design is the
generation of training data and ground truth for the selec-
tor. Specifically, we design a acquisition tool that can derive
a set of training data and leverage the functional modules
from existing deep learning frameworks to generate corre-
sponding ground truth for training the selector in a device-
independent manner so that the generation can be executed
just once offline before deployment. Trained on comprehen-
sive, high-quality data, the selector can accurately select
the best algorithm to match the model configurations and
runtime resources of the development chain. By further inte-
grating the selected algorithm into our fine-grained training
latency model, LATTE can accurately estimate the latency
for each single-pass (forward and backward) propagation.
With accurate training latency estimation, LATTE facil-

itates configuring sub-models across devices to complete
local training simultaneously. Due to our local training time
estimation capability, we can move from traditional server-
driven assignment to client-side sub-model allocation, which
enhances adaptability to resource dynamicswithin and across
training rounds. We develop LATTE as middleware using
Python 3.6, which is compatible with PyTorch and Tensor-
Flow. We further integrate LATTE into the advanced and
mainstream federated learning framework Flower [16], and
conduct experiments on edge devices with different comput-
ing capabilities and deep learning frameworks. We evaluate
LATTE on popular deep learning tasks by considering both

1For ease of description, we do not discuss communication latency here,
which is a relatively independent problem from training latency, but we do
incorporate communication latency into our sub-model allocation design
and experimental evaluations.
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IID and non-IID data distributions, including image classi-
fication on CIFAR-10/100 and OpenImage datasets, speech
recognition using the Google Speech dataset, and human
activity recognition using the HARBox dataset. We compare
LATTE with seven classical or state-of-the-art methods, such
as FedRolex [14] and TailorFL [22]. Extensive results show
that LATTE not only significantly speeds up convergence
across tasks by 1.17–2.76×, but also improves the accuracy of
the central model by 2.44–9.78%. Moreover, LATTE exhibits
unique orthogonal capabilities to personalized FL methods
such as Hermes [35], demonstrating versatility in non-IID
scenarios. Our main contributions are summarized below.

• We reveal the problem of development-chain diver-
sity in federated learning systems and identify diverse
layer algorithms as the key to explain the variability
in training time. Based on this, accurate estimation of
model training time can be achieved without complex
operator or kernel-level modeling.

• We devise LATTE, with a novel layer algorithm selec-
tor and training time estimator, to accurately estimate
the single-pass (forward/backward) propagation la-
tency of a model given its architecture, expected hard-
ware and runtime memory. We further showcase its
usability in a client-side sub-model selection for HFL.

• We conduct extensive experiments to evaluate LATTE
in five typical HFL scenarios. The results show signifi-
cant improvements in performance compared to seven
classical or state-of-the-art methods.

2 Background & Motivation
We first review how system heterogeneity affects FL (§ 2.1)
and the conventional training time modeling in FL (§ 2.2).

2.1 Primer of HFL
System Heterogeneity. Real-world FL deployments faces
system heterogeneity [53]. One main reason is the diverse
computing capabilities of participating devices. Such varia-
tions can lead to notable discrepancies in training latency of
the same model, which affects the overall efficiency of FL.
In a typical FL process, such as the widely-used FedAvg

[49], training occurs in rounds. Each device first downloads
the current model from the server, trains the model on its
local data for multiple epochs, and then uploads the updated
model back to the server. Then the server aggregates these
updates as the model for the next round. However, not all
devices can complete the same amount of computation in
each round. Slower devices can significantly delay the entire
training process, leading to long wall-clock training time.
HFL Strategies. HFL is proposed to handle the system
heterogeneity, and an effective approach studied in recent
work [14, 22, 23, 43, 51, 56] is to tailor the model architecture
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Figure 1: Allocating a sub-model with computational
load proportional to the capability 𝑟 (𝑑) of device 𝑑 .

to fit the capabilities of each device, i.e., larger models are
allocated to devices with higher capabilities, while smaller
models are designated for less powerful devices. The goal is
to synchronize the training completion time across all de-
vices. These model-level operations lead to a general solution
to cope with the system heterogeneity in FL systems, while
we find that a key issue in their training time modeling that
still limits the effectiveness of federation.2

2.2 Existing Training Time Modeling in FL
Most HFL studies [14, 22, 23, 43, 51, 56] focus on the alloca-
tion and aggregation of heterogeneous models for effective
training. They match the models with devices by assuming
a linear mapping between the network architecture and its
training latency, expecting that the computational loads of
the allocated models are within the devices’ capacities and
that all devices finish their training simultaneously. However,
this method can lead to inconsistent training time estimates
due to the development-chain diversity, as explained below.
Conventional Modeling. Assume local training uses stan-
dard mini-batch gradient descent. The training time 𝑇𝑡𝑟𝑎𝑖𝑛
of a model architecture𝑀 on a device 𝑑 can be estimated as:

𝑇𝑡𝑟𝑎𝑖𝑛 = 𝐸 × (𝑏 × 𝑛) ×𝑇, (1)

where 𝐸 is the number of epochs, 𝑏 is the batch size, 𝑛 is the
number of batches, and 𝑇 represents the latency of single-
pass backpropagation (forward and backward) during train-
ing. Although 𝐸,𝑏, and𝑛 are deterministic, latency𝑇 can vary
from device to device. Specifically, the latency of a single pass
of backpropagation is typically assumed to be proportional
to the computational load 𝐶𝑀 of the model𝑀 , i.e.,

𝑇 =
𝐶𝑀

𝑟 (𝑑) , (2)

where 𝑟 (𝑑) is a computing capability related coefficient, indi-
cating the average processing speed of device 𝑑 . For a fixed
model architecture 𝑀 , existing work assumes that 𝐶𝑀 re-
mains constant, suggesting that measuring the 𝑟 (𝑑) suffices
to accurately estimate the training latency [22, 23], which
2When the number of edge devices is quite large in FL systems, e.g., hundreds
or even thousands, some other orthogonal methods are also studied in the
literature such as client selection and asychronous/semi-asychronous FL,
which are detailed in related work (§5).
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(b) Different Memory Budgets
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Figure 2: Wall-clock training times of (a) using differ-
ent frameworks on same models, and (b) using same
framework on the samemodel but with different mem-
ory resources. Since absolute training times differ for
each setting, we normalize them for clarity.

can be performed offline as a one-time effort, given known
hardware specifications. We can then allocate sub-models to
devices based on Equation (2), as shown in Figure 1.
Specifically, to ensure roughly the same training latency

𝑇 (𝑀1) = 𝑇 (𝑀2), the server allocates sub-models𝑀1 and𝑀2
proportional to the capability of device 𝑑1 and 𝑑2, as follows:

𝐶𝑀1

𝐶𝑀2

=
𝑟 (𝑑1)
𝑟 (𝑑2)

, (3)

because the computational load 𝐶𝑀𝑖
in Equation (3) of a

model architecture𝑀𝑖 is constant given its topology.
Limitations. However, this modeling of training time is
oversimplified because computing capability is not the only
source of systemheterogeneity. Diversity in the development-
chain of neural networks also matters. To reveal this, we
conduct preliminary experiments on NVIDIA Jetson devices.

• We first run the same neural network on the same
device, but using different deep learning frameworks.
Figure 2(a) shows that across two popular models, the
wall-clock training time of a single round with Tensor-
Flow is only 72.3–76.0% compared to using PyTorch.

• Even if developed using the same deep learning frame-
work, models show different training times on the
same hardware due to varied runtime resources (e.g.,
memory). Figure 2(b) shows that the wall-clock train-
ing time of single epoch round with 6GB memory bud-
get is only 69.9–82.0% compared to a 3GB budget.

Implications. These experiments imply that training time is
also related to the runtime optimizations of the deep learning
framework. Furthermore, it links to runtime resources such
as memory. These observations challenge the conventional
training latency estimation and requires a new, more fine-
grained modeling beyond hardware specifications to achieve
more accurate training time estimation.

3 System Design
This section presents LATTE to solve the problems above.
Figure 3 illustrates the functional modules of LATTE.

Layer Algorithm 

Selector (§3.1)

Algorithm

Selecting 

MLP & Dataset  

Construction

Training Time 

Estimator (§3.2)

Training Time

Estimation

Training Time

Modeling

Training Time

Modeling

Sub-Model 

Allocator (§3.3)

Resource

Adaptation 

Sub-Model 

Allocation 

LATTE

Figure 3: Architecture of the LATTE design.

• Layer algorithm selector (§ 3.1). Based on the key
design insight to be described, this module first ranks
candidate algorithms by considering the layer configu-
ration, runtime memory, and hardware specifications.
The selector then selects the fastest algorithm that
satisfies the resource constraint as the output.

• Training time estimator (§ 3.2). This module further
estimates the training time by explicitly incorporat-
ing the algorithm selection. We integrate the selected
layer algorithm into our latency modeling and extend
it to the entire model training. To achieve this esti-
mation, we also propose effective ways to profile the
relationship between computation and latency.

• Sub-model allocator (§ 3.3). This module finally em-
ploys the accurate training time estimation to allo-
cate suitable sub-models for devices. It allows client-
side sub-model adaptation to dynamic resource with
a mechanism to ensure that all model parameters can
be equally trained despite the varying sub-model ar-
chitectures across different training rounds.

3.1 Layer Algorithm Selector
The same layer can have different implementations at run-
time. For example, NVIDIA’s cuDNN library include multiple
algorithms (see Table 1) to implement forward convolution
(cudnnConvolutionBwdFilterAlgo_t), e.g., direct method
(CUDNN_CONVOLUTION_FWD_ALGO_DIRECT ), matrix product
(CUDNN_CONVOLUTION_FWD_ALGO_GEMM ), to name a few. Dif-
ferent algorithms are also available for backward filter con-
volution (cudnnConvolutionBwdFilterAlgo_t ), backward
data convolution (cudnnConvolutionBwdDataAlgo_t), etc.3
Devices that primarily use CPUs (e.g., Raspberry Pi) also have
diverse layer algorithms provided by their vendors [1, 7].

3.1.1 Diversity of Layer Algorithms. The same layer imple-
mented by different algorithms results in different trade-offs.
Some algorithms are general, which are compatible with
most types of layer configurations, but their latency is al-
ways moderate, and their memory consumption is not small
3We use convolutions as an example to explain our insights and methods
because they are among the most of optimized operations by deep learning
frameworks and GPU vendors, which makes their latency estimation more
challenging than less optimized operations.
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Layer Algorithms Generality Memory Efficiency
GEMM ++ +
FFT + ++
FFT_TILING + +++
IMPLICIT_GEMM +++ ++
IMPLICIT_PRECOMP_GEMM ++ ++
DIRECT ++ +
WINOGRAD + +++
WINOGRAD_NONFUSED ++ ++

Table 1: Candidate forward convolution layer algo-
rithms and their characteristics. More ’+’ signs indicate
better values for this characteristic category.

(e.g., DIRECT in Table 1). In contrast, some algorithms are
tailored for certain layer configurations, with optimized per-
formance (e.g., WINOGRAD in Table 1 is optimized for small
kernels), but suffer substantial latency when applied to rela-
tively incompatible configurations. Due to this diversity, all
frameworks require algorithm selection before model train-
ing. Although strategies in different frameworks can vary
significantly, they generally follow two steps [10, 11]:

• 1) Ranking: rank candidate algorithms for a given
layer by the predicted latency based on their layer
estimation strategies, and

• 2) Selecting: estimate the correspondingmemory foot-
print and select the top-ranked (fastest) algorithm that
satisfies the predefined memory constraint.

Thus, the layer algorithm selection could affect the training
time estimation in two aspects. First, given enough mem-
ory for the same model, layer algorithm selection strategies
in different DL frameworks may produce different results,
primarily because these strategies obtain rankings of the can-
didate algorithms in different ways (e.g., heuristic strategy in
PyTorch may not return the best ranking). Second, given lim-
itedmemory budget, the same strategymay also return differ-
ent algorithm ranking results even in the same device, since
the selection must adhere to the memory limit. These two
reasons lead to the obervations of Figure 2(a) and (b) in §2.
Design Insight. The diversity of layer algorithms invali-
dates the conventional practice for sub-model allocation, i.e.,
Equation (3), because different layer algorithms also lead to
different latencies. Therefore, given a model architecture𝑀 ,
its computational load is a function of the layer algorithms
{𝑎𝑙𝑔𝑜} rather than a constant, i.e., 𝐶𝑀 = 𝐶𝑀 (𝑎𝑙𝑔𝑜). Hence,
to ensure 𝑇 (𝑀1) = 𝑇 (𝑀2) on two devices 𝑑1 and 𝑑2, the
sub-models𝑀1 and𝑀2 should satisfy:

𝐶𝑀1 (𝑎𝑙𝑔𝑜1)
𝐶𝑀2 (𝑎𝑙𝑔𝑜2)

=
𝑟 (𝑑1)
𝑟 (𝑑2)

, (4)

where 𝐶𝑀1 (𝑎𝑙𝑔𝑜1) and 𝐶𝑀2 (𝑎𝑙𝑔𝑜2) are the actual workloads
for𝑀1 and𝑀2 given layer algorithms 𝑎𝑙𝑔𝑜1 and 𝑎𝑙𝑔𝑜2. That is,
the sub-model architecture allocated to the device should be

Comp. Load C

Comp. Capability r(d)

Comp. Load C

Comp. Capability r(d)

algo1

algo2

Figure 4: The relationship between the model’s com-
putational load and the device’s computing capability
is essentially described by a series of lines due to the
diversity of layer algorithms. Accurate training time
estimation requires selecting the correct line first.

calibrated by layer algorithm, as illustrated in Figure 4. Oth-
erwise, training latency on devices with the same computing
capabilities may differ significantly.

If we profile all layer algorithms in advance and consider
their latency difference at each layer when allocating sub-
models, devices can still complete per-round training simulta-
neously evenwhen using different deep learning frameworks.
However, beyond revealing this key design insight, we aim
to go one step further in this paper: Can we pick the best
(fastest) algorithm every time? If possible, we can use this
strategy in different frameworks to ensure that each round of
federated training can not only be completed synchronously
across devices, but also the latency in each round can be
minimized (to allocate the largest sub-model), which will
further improve overall training efficiency and performance.
Design Challenge. However, it is difficult to achieve such
best selection strategy for HFL systems. To understand this,
we first analyze how layer algorithm selection is performed
in existing deep learning frameworks, which usually form
two categories: exhaustive testing (e.g., LaunchConv2DOp in
TensorFlow) and black-box heuristics (e.g., cudnnGetConvolu
tionForwardAlgorithm in PyTorch).

The former, which exhaustively tests all layer algorithms
on the target device and selects the fastest implementation,
can achieve the best selection, but is very costly. Since sub-
models could vary for each device and each training round
in HFL systems, such high testing overhead may overwhelm
the training latency. Figure 5 shows that even when all de-
vice memory is used, the latency of exhaustive testing (e.g.,
TensorFlow) in first round training still accounts for 18.8–
38.4% of the overall training latency. The latter uses heuristic
rules to predict the best algorithm without actual on-device
testing, which is fast but inaccurate, e.g., its prediction accu-
racy is only around 73% of the exhaustive testing (see § 4.3.2),
which can easily lead to inappropriate sub-model allocation.

Therefore, the main problem that challenges the design of
new layer algorithm selection strategy is how to avoid the
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Figure 5: In the first round of training, exhaustive test-
ing strategy (e.g., in TensorFlow) lead to much higher
latencies than heuristic-based strategy (e.g., in Pytorch)
on two models (a) MobileNet and (b) ResNet.

limitations of existing framework strategies and ensure the
accuracy and efficiency of layer algorithm selection.

3.1.2 Design of Layer Algorithm Selector. The above chal-
lenge motivates a new design of the layer algorithm selection
without runtime assessments, which can override and re-
place the corresponding module in commercial deep learning
frameworks to achieve a lightweight and accurate selection.
Idea and Design. Since all candidate algorithms have been
given in the optimization library of each layer [10, 11], our
main idea to achieve an accurate and practical design is to
treat this problem as a classification problem and propose
an efficient classifier for selection. One of the advantages of
this design is that we can shift unnecessary overhead from
runtime to offline before deployment. To further improve
the practicality of our approach, we also minimize the offline
overhead and make it as a one-time and device-independent
effort. Below, we first introduce our selector design.
1) Architecture of the selector. For lightweight selection,

we design a simple multi-layer perceptron (MLP) classifier.
It takes a layer configuration as input and outputs a score
for each layer algorithm, indicating its latency ranking. We
reuse the inputs of existing heuristic strategy’s API (e.g., I/O
dimension, convolution kernel size, padding, stride, dilation
etc. in cudnnGetConvolutionForwardAlgorithm as inputs
in our MLP, see Figure 6). The output of the softmax layer
represents the probability of the fastest layer algorithm (and
thus their rankings). We empirically design a 6-layer MLP
(13 × 256 × 128 × 64 × 32 × 16 × 8) with CrossEntropy loss.

2) Feature enhancement. Inspired by the recent trend of
explainable AI [28, 29], we further integrate SHAP [46], an
explainable feature selection method to pick important fea-
tures, into our design to improve performance. For example,
stride_height and stride_width tend to be more impor-
tant than input_h, input_w, and output_c for forward con-
volution. Thus, we add an attention layer after the input
layer to assign greater weights to these important features.
Training Dataset Construction. With the above classifier
design, we further propose a tool, responsible to acquire and
label diverse layer configurations to train the classifier.

 int perf_count;
 std::unique_ptr<perf_t[]> perf_results(new perf_t[num_algos]);
 if (!benchmark) {
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ForwardAlgorithm_v7(
       args.handle,
       args.idesc.desc(),
       args.wdesc.desc(),
       args.cdesc.desc(),
       args.odesc.desc(),
       num_algos,
       &perf_count,
       perf_results.get()), args);
 }
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Figure 6: Features of cuDNN’s official heuristic API.

1) Layer configuration generation. The acquisition tool first
samples and then derives a wide spectrum of layer config-
urations, including I/O size, filter size, stride, padding, etc.,
from a set of models widely used in HFL scenarios. In our
current development, the tool samples from 28 widely used
models (see Table 2), resulting in 30,000 configurations.

2) Ground-truth acquisition. After collecting sufficient con-
figuration samples, the main issue is to obtain the ground-
truth, i.e., which algorithm is the best choice for each con-
figuration that is difficult to analyze manually. To solve this
issue, we propose to reuse the functional APIs of the exhaus-
tive testing-based deep learning frameworks in our design.
Although these APIs in deep learning frameworks are im-
plemented as runtime processes, we re-engineering them
so that they can be invoked independently before training.
As discussed previously (§3.1), this type of strategy is very
slow during on-device tests. However, since the latency rank-
ing is based on the computational load of each algorithm
rather than the absolute latency value, the ground-truth
data is device-independent, and the overhead of collecting
it is acceptable when it occurs during a one-time offline
phase on a powerful server. Therefore, for ground-truth ac-
quisition, the acquisition tool inputs configuration features
into an exhaustive testing API, such as LaunchConv2DOp
or cudnnFindConvolutionForwardAlgorithm, to generate
ground truth for training the classifier.
After training with layer configurations and their corre-

sponding best choices collected by the tool, we can obtain
an accurate selector that is also lightweight and does not
require any runtime testing when selecting layer algorithms.

Model Family Model Instances

VGG VGG-11/13/16/19
MobileNet MobileNet-V1/V2
ShuffleNet ShuffleNet-V1/V2
ResNet ResNet-18/34/50/50-V2/101/101-V2/152/152-V2
EfficientNet EfficientNet-B0/B1/B2/B3/B4/B5/B6/B7
Others GoogLeNet/SqueezeNet/Xception/DenseNet-121

Table 2: Models used to collect layer configurations.

Incorporating Memory Constraint. Given the algorithm
rankings obtained by the classifier, the selector ultimately se-
lects the fastest algorithmwithinmemory budget𝑚𝑒𝑚 as out-
put (to be used by the training time estimator). We employ an
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Figure 7: (a) Construction of training time estimator.
(b) Training time estimation for a new model.

accurate estimator (cudnnGetConvolutionWorkspaceSize)
to retrieve the memory usage of each layer algorithm.

3.2 Training Time Estimator
The selector (§3.1) is designed to accommodate the diversity
of layer algorithms to achieve accurate training time esti-
mation. In this subsection, we describe how to integrate the
selection results into our training time estimator.

In general, given a model𝑀 , a memory budget𝑚𝑒𝑚, and
a target device 𝑑 , the training time estimator (see Figure 7(a))
predicts its single-pass propagation latency 𝑇 . We decom-
pose the model into key layers and non-key layers (§ 3.2.1),
integrate layer algorithms into the latency modeling of key
layers (§ 3.2.2), and profile the coefficients for both key and
non-key layers (§ 3.2.3). This approach can provide accurate
latency estimates with low profiling overhead.

3.2.1 Key Layer Identification. Given a model, its key layers
are the layers with more than one layer algorithms defined
in the deep learning framework, e.g., for CNNs, these mainly
refer to the convolutional layers, while those with a single
and same algorithm implementation are defined as non-key
layers, e.g., FC and activation layers. Therefore, we can easily
classify each layer as key or non-key based on layer type.

3.2.2 Layer Algorithm Aware Training Time Modeling. We
incorporate the layer algorithms by extending traditional
latency modeling i.e., Equation (2), as follows:

𝑇 =(
∑︁
𝑖

𝐶
𝑘𝑒𝑦

𝑓 𝑤𝑑
(𝑎𝑙𝑔𝑜𝑖 )

𝑟
𝑘𝑒𝑦

𝑓 𝑤𝑑
(𝑑)

+
∑︁
𝑖

𝐶
𝑘𝑒𝑦

𝑏𝑤𝑑
(𝑎𝑙𝑔𝑜𝑖 )

𝑟
𝑘𝑒𝑦

𝑏𝑤𝑑
(𝑑)

) (5)

+(
𝐶𝑛𝑜𝑛
𝑓 𝑤𝑑

𝑟𝑛𝑜𝑛
𝑓 𝑤𝑑

(𝑑) +
𝐶𝑛𝑜𝑛
𝑏𝑤𝑑

𝑟𝑛𝑜𝑛
𝑏𝑤𝑑

(𝑑) ),

where 𝐶𝑘𝑒𝑦

𝑓 𝑤𝑑
(𝑎𝑙𝑔𝑜𝑖 ) and 𝐶𝑘𝑒𝑦

𝑏𝑤𝑑
(𝑎𝑙𝑔𝑜𝑖 ) are the computational

loads of key layer 𝑖 of model 𝑀 in the forward and back-
ward pass, implemented by layer algorithm 𝑎𝑙𝑔𝑜𝑖 . Similar
to existing deep learning frameworks, LATTE also selects
the same algorithm for the same key layers of forward and

backward propagation. Similarly, 𝐶𝑛𝑜𝑛
𝑓 𝑤𝑑

and 𝐶𝑛𝑜𝑛
𝑏𝑤𝑑

are the to-
tal computation of all the non-key layers of model𝑀 in the
forward and backward pass. The latency is linear to the com-
putational load when the layer algorithm can be determined,
given coefficients 𝑟𝑘𝑒𝑦

𝑓 𝑤𝑑
(𝑑), 𝑟𝑘𝑒𝑦

𝑏𝑤𝑑
(𝑑), 𝑟𝑛𝑜𝑛

𝑓 𝑤𝑑
(𝑑), and 𝑟𝑛𝑜𝑛

𝑏𝑤𝑑
(𝑑).

The rationale of our training latency modeling is as follows:
• We decompose the model𝑀 into key and non-key lay-
ers to reduce the profiling overhead while maintaining
high latency estimation accuracy.

• As non-key layers have a single and same implemen-
tation, they are modeled the same as the traditional
approach, i.e., Equation (2), and can be profiled in ad-
vanced and applied in forward and backward passes.

• The modeling of key layers explicitly takes into ac-
count the diversity of layer algorithms.

For practical usage, we further rephrase Equation (5) as:

𝑇 =
∑︁
𝑖

(𝛽𝑘𝑒𝑦
𝑓 𝑤𝑑

(𝑎𝑙𝑔𝑜𝑖 , 𝑑) + 𝛽𝑘𝑒𝑦𝑏𝑤𝑑
(𝑎𝑙𝑔𝑜𝑖 , 𝑑)) ×𝐶 (𝐾𝑖 ) (6)

+(𝛽𝑛𝑜𝑛
𝑓 𝑤𝑑

(𝑑) + 𝛽𝑛𝑜𝑛
𝑏𝑤𝑑

(𝑑)) ×𝐶 (𝑁 ),

where𝐶 (𝐾𝑖 ) is the computational load of key layer𝐾𝑖 with di-
rect implementation (e.g., the direct method for convolution),
and 𝐶 (𝑁 ) is the total computations loads of all non-key lay-
ers. Both 𝐶 (𝐾𝑖 ) and 𝐶 (𝑁 ) are deterministic given the model
architecture 𝑀 . In contrast, 𝛽 (𝑎𝑙𝑔𝑜, 𝑑) = 𝐶 (𝑎𝑙𝑔𝑜)/𝑟 (𝑑) ab-
sorbs all algorithm- and device-dependent variations. This
formula makes it easy to estimate the single-pass training
latency for each layer from a table (see Figure 7(b)).

3.2.3 Profiling Coefficient 𝛽 . From Equation (6), we should
profile 𝛽𝑘𝑒𝑦

𝑓 𝑤𝑑
(𝑎𝑙𝑔𝑜, 𝑑), 𝛽𝑘𝑒𝑦

𝑏𝑤𝑑
(𝑎𝑙𝑔𝑜, 𝑑), 𝛽𝑛𝑜𝑛

𝑓 𝑤𝑑
(𝑑) and 𝛽𝑛𝑜𝑛

𝑏𝑤𝑑
(𝑑)

in advance for runtime training latency estimation. The
profiling is performed for all device types in the federa-
tion. Furthermore, we need to profile each layer algorithm
for each key layer 𝛽𝑘𝑒𝑦

𝑓 𝑤𝑑
(𝑎𝑙𝑔𝑜, 𝑑) and 𝛽𝑘𝑒𝑦

𝑏𝑤𝑑
(𝑎𝑙𝑔𝑜, 𝑑). Recall

that 𝛽 (𝑎𝑙𝑔𝑜, 𝑑) = 𝐶 (𝑎𝑙𝑔𝑜)/𝑟 (𝑑) without coupling between
𝑎𝑙𝑔𝑜 and 𝑑 . So, the profiling overhead scales linearly with
max{𝑎𝑙𝑔𝑜, 𝑑} rather than their product, which is more man-
ageable. We reuse the model family in Table 2 and extract
1, 000 layer configurations to profile the coefficients in the
current design of LATTE. We manage 𝛽 by periodically mon-
itoring processor utilization and updating 𝛽 by multiplying
the new utilization to avoid the overhead of re-estimating it.

3.3 Sub-Model Allocator
With accurate training latency estimation, we describe how
LATTE allocates sub-models to devices to ensure synchro-
nized local model training in each round for HFL systems.
Unlike the previous HFL schemes [14, 23], where clients

passively train server-assigned sub-models, clients in LATTE
can actively determine sub-models to better suit their own
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Figure 8: Overall HFL workflow with LATTE.

resource dynamics due to LATTE’s local training latency
estimation capabilities. In the following, we first describe the
entire client-server interaction in LATTE (§ 3.3.1) and then
detail our client-side sub-model allocation design (§ 3.3.2).

3.3.1 Overall Client-Server Interactions. Figure 8 shows the
overall HFL workflow with LATTE.

➀ On initialization, the server determines the round dura-
tion 𝑈 , the global model architecture𝑀 , its complete model
parameters 𝑃 , and the frequency table 𝐹 (introduced and used
in §3.3.2). The server then generates candidate sub-model
configurations (200 configurations in our case, which is a
trade-off between the granularity of sub-model assignment
and the estimation overhead, e.g., it takes about 40 seconds
to estimate 200 sub-models on a Jetson Nano device, and we
will automate the selection of this number in the future.) via
model scaling, storing them into the sub-model table 𝑆 . Note
that other methods of generating candidate architectures are
also applicable. Afterwards, the server sends the sub-model
configuration table 𝑆 for all clients. Each client profiles its
layer algorithm- and device-dependent coefficients 𝛽 , then
updates the sub-model table 𝑆 , estimates its training latency
and measures its memory usage. These estimation can be
performed quickly and are a one-time effort.

➁ In each round, the server sends the current complete
model parameters 𝑃 , round duration 𝑈 , and frequency table
𝐹 to all clients for local training.

➂ Each client polls the current memory budget𝑚𝑒𝑚 and
bandwidth 𝐵 via the bandwidth monitoring tool e.g., bmon
[2]. It then calculates the overall training time𝑇𝑡𝑟𝑎𝑖𝑛 using the
single-pass training latency 𝑇 stored in the sub-model 𝑆 and
the communication latency𝑇𝑐𝑜𝑚𝑚 based on the bandwidth 𝐵
and the model size [22]. Each client then selects the largest
sub-model configuration in 𝑆 such that 𝑇𝑡𝑟𝑎𝑖𝑛 +𝑇𝑐𝑜𝑚𝑚 ≤ 𝑈 ,
instantiates the sub-model from the full model parameters 𝑃
and updates the frequency table 𝐹 , following the scheme in
§ 3.3.2, and then starts training on its local dataset.

➃ The local parameters and frequency table 𝐹 are sent
back to the server for aggregation. We apply the standard
aggregation scheme as in FedAvg [49]. Since the client sub-
mits a sub-model to the server, only the updated parameters
are averaged [14, 22, 23, 74]. Due to accurate training time
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Figure 9: Parameter prioritizing via frequency table 𝐹 .

estimates, all devices are expected to return updated model
parameters within the deadline 𝑈 . Steps ➁-➃ are iterated
until the global model converges.

3.3.2 Sub-Model Allocation at Client. As mentioned above,
LATTE allows dynamic client-side sub-model allocation to
adapt to resource dynamics. However, such adaptation may
affect the effectiveness of federated training. This is because
if sub-model allocation takes resource dynamics into account,
parameters in the global model may not be equally trained.
In LATTE, we design a priority-aware sliding window scheme
for sub-model allocation, which facilitates efficient training
while maintaining adaptability to resource dynamics.

Our main idea is to train a subset of model parameters in
rounds on a rolling basis, so that all parameters are trained
evenly in the long run. Previous work [14] implemented this
idea, and it was also shown to converge [76]. This approach
uses a sliding window for each layer of fixed size and stride
length, assuming that the sub-model size is the same across
rounds, but this is invalid in our problem as the sub-model
size on the client may change due to available resources.
Method. Since LATTE selects a different sub-model archi-
tecture in each round based on current resource availability
to meet local training deadlines, the sub-model architecture
naturally translates into a set of windows per layer, the size
of which can vary from round to round. Therefore, the chal-
lenge is to ensure even training of all parameters under dif-
ferent window sizes over rounds. Our solution is to prioritize
rarely trained model parameters into a sliding window for
training. This is achieved by tracking how often the model
parameters are trained. Specifically, we maintain a parameter
trained frequency table 𝐹 on each device, recording the train-
ing frequency of each parameter. The server also maintains a
general table 𝐹𝑠𝑒𝑟𝑣𝑒𝑟 . Only when the sub-model architecture
changes due to resource dynamics, the client will upload its
parameter trained frequency table to the server for aggre-
gation and then distribute to each client. The size of each
table is small, e.g., only 2.3–24.5MB, and the communication
overhead of maintaining these tables is negligible. Figure 9
shows our parameter prioritizing process across rounds.

4 Evaluation
We implement LATTE using Python 3.6, C++ 14, CUDA 10.2
[4], PyTorch 1.6.0 [9] and TensorFlow 1.14.0. [13]. To train
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the selector, we generate large amount of key layer configu-
rations and then conduct benchmarking to obtain the ground
truth with our acquisition tool. The development of acquisi-
tion tool is supported by cuDNN [5] and is compiled using
NVCC [8]. Then LATTE overrides the layer algorithm selec-
tion module [10, 11] of deep learning frameworks with its
layer algorithm selector output. For practical HFL scenarios
and evaluation, LATTE is integrated into the advanced and
mainstream FL framework Flower [16].

4.1 Experimental Setups
4.1.1 Tasks, Datasets, andMLModels. We test on IID datasets
and real-world non-IID datasets. Each dataset corresponds
to a task, and we test different models for each task.
i) Tasks with IID Datasets.

• Image Classification.We use CIFAR-10 and CIFAR-
100 [3] and trainMobileNet-V2 [57] and ResNet-50 [25]
respectively for these tasks.

• Human Activity Recognition. We utilize the clas-
sical HAR [15] dataset, and train a simple customized
CNN with 3 convolutional layers and 2 dense layers.

ii) Tasks with non-IID Datasets.

• Image Classification.We utilize the OpenImage [33]
dataset, where we select 50 image classes, and train
MobileNet-V2 for this task.

• Speech Recognition.We choose the Google Speech
dataset [66], and train ResNet-50 for this task.

• Human Activity Recognition. We choose the HAR-
Box [52] dataset and adopt the same pre-processing
method as [37]. We train the same customized CNN
as in i) the IID scenario for this task.

4.1.2 Baselines. We compare LATTE with the following:
• HeteroFL [23]: a classic HFL method that assigns
different sub-models to devices according to their com-
puting capabilities.

• FedRolex [14]: a state-of-the-art HFL scheme with
a sliding window sub-model allocation mechanism to
improve the training accuracy.

• FedAvg [49]: the classic generic FL algorithm without
accounting for system heterogeneity.

• TailorFL [22]: the state-of-the-art FL method which
considers both data and system heterogeneity.

• Hermes [35]: a state-of-the-art personalized FLmethod
to handle data heterogeneity.

• FedSEA [59]: the state-of-the-art semi-asynchronous
FL method for edge devices.

• FedAsync [69]: a classical asynchronous FL method.

4.1.3 Test-bed. We evaluate on a client pool of 10 devices,
consisting of three tiers as shown in Table 3. We include 2

Category Type RAM CPU GPU
Higher-end Dell Inspiron 5577 8GB i5-7300HQ GTX 1050

Mid-tier Jetson Xavier NX 8GB ARMv8.2 Pascal
Jetson TX2 8GB ARM A57 Volta

Lower-end Jetson Nano 4GB ARM A57 Maxwell
Raspberry Pi 4B 8GB ARM A72 —

Table 3: Device configuration in the client pool.

devices per type, running different frameworks, i.e., Tensor-
Flow for one and PyTorch for the other. The central server is
a computer equipped with Intel i7-9700K CPU and NVIDIA
RTX 2080Ti GPU. Default bandwidth is 100Mbps and we use
Wondershaper [12] to control the bandwidth of each client.
Device processor frequency is fixed during evaluation.

4.1.4 Evaluation Metrics. We compare different methods
using the following metrics.

• Time-to-Convergence. It is the actual wall-clock
time for training amodel till convergence. Not all meth-
ods will converge within a specified time limit.

• Model Test Accuracy. It is the accuracy on the test
datasets obtained by the model trained through FL.

• Estimator Precision. It is the precision between the
estimated latency and the actual training time, i.e.,

𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 1 −
����𝑇𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 −𝑇𝑟𝑒𝑎𝑙

𝑇𝑟𝑒𝑎𝑙

���� , (7)

where 𝑇𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 is from the training time estimator
(§ 3.2) of LATTE, and 𝑇𝑟𝑒𝑎𝑙 is the real wall-clock train-
ing time. A high precision means an accurate estimator.

4.2 Overall Performance
4.2.1 Performance on IID Datasets. This experiment com-
pares LATTE with the-state-of-the-art HFL schemes to han-
dle system heterogeneity alone.
Setups. We compare LATTE with HeteroFL [23] and Fe-
dRolex [14], two representative HFL schemes that allocate
diverse sub-models to devices according to their capabilities.
To isolate the impact of system heterogeneity, we conduct
experiments on three IID datasets (CIFAR-10, CIFAR-100,
and HAR). We also include FedAvg [49] as the baseline that
does not explicitly address system heterogeneity.
Results. Figure 10 shows the results on the three IID datasets.
Time-to-Convergence. LATTE consistently achieves the

fastest convergence. When training MobileNet on CIFAR-10,
LATTE converges in 1.19 hours, 2.36× and 2.76× faster than
FedRolex and HeteroFL, respectively. FedAvg fails to con-
verge within the 20-hour limit, highlighting the necessity
to explicitly deal with system heterogeneity. When training
ResNet-50 on CIFAR-100, LATTE converges in 3.03 hours,
shortening the convergence by 2.03× and 2.2× than FedRolex
and HeteroFL, respectively. LATTE’s time-to-convergence is
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Figure 10: Overall performance on IID datasets.

2.27 hours when training Customized CNN on HAR, 2.52×
and 2.64× faster than FedRolex and HeteroFL, respectively.

Model Test Accuracy. LATTE also achieves the highest test
accuracy at convergence, reaching an accuracy of 85.72%,
60.94%, and 78.00% on MobileNet, ResNet, and Customized
CNN respectively, which is 2.44% to 3.33% higher than Fe-
dRolex, and 4.19% to 9.78% higher than HeteroFL.

Figure 10 shows that LATTE notably improves both the ef-
ficiency and effectiveness of federated learning under system
heterogeneity than the state-of-the-art HFL methods.

4.2.2 Performance on non-IID Datasets. This experiment
aims to further evaluate the effectiveness of LATTE under
both data and system heterogeneity. As a transparent design,
LATTE can be easily integrated with FL solutions that handle
data heterogeneity to improve their efficiency.
Setups. We integrate LATTE into Hermes [35] and Tai-
lorFL [22], two representative FL schemes that combat data
heterogeneity by training personalized models. We test their
performance on three non-IID datasets (OpenImage, Google
Speech, and HARBox) with heterogeneous edge devices with
and w/o the enhancement of LATTE.
Results. Figure 11 shows performance gains with LATTE.
Time-to-Convergence. The personalized FL methods con-

verges notably faster after adding LATTE.When trainingMo-
bileNet on OpenImage, the LATTE-enhanced TailorFL and
Hermes converge in 4.50 hours and 7.58 hours respectively,
which are 2.36× and 1.25× faster than the standalone ver-
sions. When training ResNet-50 on Google Speech, LATTE
+TailorFL converges 1.81× faster than TailorFL, and LATTE
+Hermes is 1.19× faster than Hermes. When training Cus-
tomized CNN on HARBox, TailorFL and Hermes are acceler-
ated by 2.1× and 1.17×, respectively.
Model Test Accuracy. Integration with LATTE also im-

proves the test accuracy. LATTE improves the accuracy of
TailorFL by up to 2.83%, reaching 48.34%, 52.78%, and 62.16%
on MobileNet, ResNet, and Customized CNN, respectively.
Similarly, LATTE improves the accuracy of Hermes by up
to 6.38%, reaching 41.96%, 46.68%, and 56.17% on MobileNet,
ResNet, and Customized CNN, respectively.

These results affirm that LATTE can complement existing
FL methods for data heterogeneity, achieving both accurate
and fast training under both data and system heterogeneity.
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Figure 11: Overall performance on non-IID Datasets.
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Figure 12: Contributions of individual modules.

4.3 Ablation Study
4.3.1 Performance Breakdown. This experiment evaluates
the contributions of each module to the overall performance.
Setups.We implement three variants of LATTE:
• LATTE w/o Selector: it replaces the layer algorithm se-
lector (§ 3.1) with the default APIs [10, 11] provided by
deep learning frameworks.

• LATTE w/o Estimator: it replaces the training time esti-
mator (§ 3.2) with the naive modeling in Equation (2).

• LATTEw/oAllocator: it replaces the sub-model allocator
(§ 3.3) with the sliding window scheme in [14].

Results. Figure 12 shows the results of different variants.
Time-to-Convergence. The variant w/o predictor suffers

from notable slowdown (0.5× to 0.57× that of LATTE). This
is because the default APIs may not recommend the fastest
layer algorithm, leading to inaccurate time estimates. The
variant w/o estimator also experiences significant slowdown
(0.36× to 0.57× that of LATTE). This is because the naive
latency modeling ignores the impact of layer algorithms,
which is the key to inconsistent training time estimates. The
variant w/o selector shows a mild slowdown (0.58× to 0.67×
that of LATTE), mainly due to the lack of adaptation to
resource dynamics. This can lead to sub-model mismatch
when resources on the device change frequently.

Model Test Accuracy. Overall, the degradation in test ac-
curacy is less severe than the degradation in convergence
speed. On the three datasets, for the variants w/o selector, es-
timator, and allocator, the accuracy drops by 2.67% to 4.66%,
2.97% to 5.32%, and 1.64% to 4.00%, respectively.
In summary, removing individual modules from LATTE

mainly affects the convergence speed. The convergence slow-
down is less drastic for the variants w/o selector and w/o
allocator than that w/o estimator. This is because the default



Layer Algorithm-aware Training Time Estimation ACM MobiCom ’24, November 18–22, 2024, Washington D.C., DC, USA

MobileNet-V2 ResNet-50 CustomCNN
40

70

100
Pr

ed
ic

tio
n

A
cc

ur
ac

y 
(%

) LATTE-Selector Heuristic API

Figure 13: Effectiveness of the layer algorithm selector.

APIs still provide about 73% layer algorithm prediction ac-
curacy, and system resources do not vary all the time. In
contrast, the variant w/o estimator falls back to the HFL
scheme ignoring the diversity of layer algorithms, which is
the primary motivation of our work.

4.3.2 Effectiveness of Layer Algorithm Selector. A key to
the convergence speedup of LATTE is the layer algorithm
selector (§ 3.1). This experiment zooms into its performance
against the default APIs in deep learning frameworks.
Setups. We compare the accuracy of our layer algorithm
selector with the heuristic API [10] provided by PyTorch
for the 200 sub-models listed in the sub-model table on the
three IID datasets, and use the results from the on-device
measurement API [11] of TensorFlow as ground truth (§ 3.1).
Results. In Figure 13, our layer algorithm selector achieves
95.11%, 94.37%, and 95.38% accuracy on MobileNet, ResNet
and Customized CNN, respectively. Heuristic method only
provides 73.54%, 72.98%, and 73.23% accuracy respectively,
which is not sufficient for subsequent training time estimates.
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Figure 14: Effectiveness of the training time estimator.

4.3.3 Effectiveness of Training Time Estimator. The training
time estimator (§ 3.2) is also essential for the convergence
speedup of LATTE. This experiment aims to show the appli-
cability of our training time estimator across diverse devices.
Setups. We measure the estimator precision of the training
latencies on ten different devices using the three IID datasets.
It covers three device types, with two devices per type.
Results. In Figure 14, our training latency estimator leads
to a precision of 92.80–97.98%, 92.10–96.88%, and 95.76–
98.36% on MobileNet, ResNet and Customized CNN, respec-
tively. The estimator precision of ResNet-50 on CIFAR-100
is slightly lower due to the more complex network architec-
tures. In contrast, the precision of Customized CNN on HAR
is higher, as there are fewer key layers. However, as shown
in § 4.2, the precision of our training time estimator already
significantly improves the overall training convergence.
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Figure 15: LATTE alleviates the variations in training
time across deep learning frameworks.

4.4 Micro-benchmarks
4.4.1 Impact of Deep Learning Frameworks. This experiment
validates that the layer algorithm is the key reason for varia-
tions in observed training times due to development-chain
diversity, which can be resolved by LATTE. Specifically, we
integrate LATTE with either TensorFlow or PyTorch (i.e., re-
placing their default APIs) and measure the training latency
of the same model on two identical devices, one developed
with TensorFlow and the other with PyTorch. As shown in
Figure 15, the wall-clock training times on the two devices
using different deep learning frameworks are similar to each
other. Recall that the wall-clock training time of a single
epoch round with TensorFlow is only 72.3–76% of that of
PyTorch without LATTE calibration (see § 2.2).
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Figure 16: Impact of the memory resource budget.

4.4.2 Impact of Dynamic Memory. This experiment tests
LATTE under various runtime memory budgets. We employ
memhog [6] to periodically change the available memory re-
sources on each device, cycling from 100% available memory
to 75% to 50%, and measure the precision of our training time
estimator. Figure 16 shows that when the memory budget
decreases, the estimation precision increases. This is because
a tighter memory budget means a simpler sub-model should
be selected. In Figure 18(a), the convergence time under dy-
namic memory is 2.18× that of the normal state, and the
model test accuracy decreases by 3.95%. This is because the
drastic change in available memory force clients to conser-
vatively select smaller sub-models, leading to a decrease in
convergence speed and model test accuracy.

4.4.3 Impact of Dynamic Bandwidth. This experiment tests
LATTE under different bandwidths. We use Wondershaper
[12] to periodically change the communication bandwidth
on each device, cycling from 100Mbps to 50Mbps to 10Mbps.
Figure 17 shows that the precision of training time estimator
increases when the bandwidth decreases. This is because,
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Figure 17: Impact of the communication bandwidth.

given a fixed deadline, as the communication latency in-
creases, the budget for model training is shorter, causing
LATTE to choose simpler sub-models and thus estimate the
training time more accurately. Figure 18(a) shows that under
dynamic bandwidth conditions, both the convergence speed
and model test accuracy are similar to the normal state. The
convergence time increases slightly to 1.09× of the stable
state, and the model test accuracy decreases by 1.32%.
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Figure 18: Time-to-accuracy (a) under dynamic re-
sources and (b) compared between different schemes.

4.4.4 Comparison with Semi- and Fully-Asynchronous FL.
This experiment compares the performance of LATTE with
FedAsync [69], a fully asynchronous FL method, and Fed-
SEA [59], a state-of-the-art semi-asynchronous FL method.
Figure 18(b) shows that both FedSEA and FedAsync converge
faster than LATTE, since they do not wait for slow devices.
However, their test accuracy is lower for aggregating slate
model updates. For example, the test accuracy of FedSEA de-
creases by 9.19%, while the test accuracy of FedAsync suffers
from a drastic drop by 28.96%.

4.4.5 Impact of Client Heterogeneity Distribution. To under-
stand this impact, we conduct a simulation-based evaluation.
We simulate 100 clients using a server with 24 Xeon-Gold-
6142 CPUs and 4 Tesla V100 32GB GPUs. All clients are
initialized by Flower’s VCE (Virtual Client Engine) function,
half of which have TensorFlow installed and the other half
have PyTorch installed. Clients are divided into three cate-
gories: low-end, mid-tier, and high-end, with a computational
power ratio of 1:2:5 respectively. In this experiment, we train
MobileNet on CIFAR-10 and perform the evaluation using
three common device distributions, as shown in Figure 19.
Results. Figure 20(a) shows that under the uniform distribu-
tion, LATTE converges 2.07x and 2.35x faster than FedRolex
and HetetoFL, respectively. Its test accuracy is also 2.3% and
9.36% higher than FedRolex and HetetoFL, respectively.
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Figure 19: Three distributions used in the simulation.

When the devices follow a positively skewed distribution,
Figure 20(b) shows that all three methods can accelerate
convergence and improve test accuracy. However, LATTE
still outperforms the two baselines, with 1.69–2.15x faster
convergence and 2.65–6.35% higher test accuracy. This is
because more clients have sufficient computational power,
allowing them to select larger and better sub-models, thus
contributing more to the overall system performance.
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Figure 20: Performance comparison under different
device distributions in the simulation.

When the devices follow a negatively skewed distribution,
LATTE still maintains its advantages. Compared with the
two baselines, LATTE converges 1.89–2.23x faster and im-
proves test accuracy by 5.09–10.1% in Figure 20(c). Under this
distribution, more clients have insufficient computational
power, forcing them to select smaller sub-models. However,
LATTE’s more accurate training time estimation enables it to
select larger sub-models, leading to better performance. Over-
all, LATTE achieves faster convergence and higher model
accuracy under different device heterogeneity distributions.

ResNet-50 MobileNetV2 Customized CNN

Selector 191KB 191KB 191KB
Sub-model Table 509.6KB 197.6KB 52KB
Frequency Table 24.5MB 3.4MB 2.3MB

Table 4: LATTEmemory overhead on different models.

4.5 System Overhead
Memory Overhead. LATTE introduces three types of mem-
ory overhead, including the parameters of selector, sub-model
table, and frequency table, as shown in Table 4. In particular,
each model used requires 191 KB memory of selector param-
eters. Sub-model tables take 52 KB – 509.6 KB, on ResNet,
MobileNet and Customized CNN, respectively. Frequency
tables are compressed with 8-bit, which occupy 2.3 MB – 24.5
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Figure 21: Power consumption of LATTE.

MB on the aforementioned models in the same order. Such
memory overhead is also considered within the memory
budget during sub-model selection.
Power Consumption. Low power consumption is impor-
tant to mobile edge devices, and we measure the power con-
sumption of LATTE on Jetson NX devices using the INA3221
power monitor [61]. As a baseline, we first measure the
power consumption of direct training. We then measure
LATTE for same duration of time. Figure 21 shows that the
idle state of device consumes about 3 W. Before training, the
power consumption of LATTE is slightly higher than the
baseline, reaching 4.28 W, which is due to the fast sub-model
allocation. During training, the power consumption is 5.84
W (by LATTE) and 5.6 W (by direct training), where LATTE
itself consumes about 0.24 W only during resource polling.

5 Related Work
Heterogeneous Federated Learning. Federated learning
with edge and IoT devices face the challenges of data and
system heterogeneity [73]. Compared to centralized learning,
data heterogeneity affects model accuracy [45, 77] and is of-
ten resolved by training personalized models [22, 36, 52, 60,
62, 75]. However, data heterogeneity is not the only factor
affecting the model performance, and system heterogeneity
also has a significant impact. System heterogeneity comes
from the diverse computation and communication capabili-
ties of devices, which can affect the training efficiency and
is the focus of heterogeneous federated learning (HFL) [53].
HFL roughly falls into model and system level solutions.

Model-level approaches [14, 22, 23, 27, 43, 51, 55, 58] assign
sub-models tailored to the computation power of each device
so that they can return the locally trained models almost si-
multaneously. The sub-models are extracted via masking [14,
22, 23, 51, 56], dropout [27, 55], knowledge distillation [38,
78], etc. Orthogonally, system-level strategies either perform
client selection [34, 37, 40, 50] or adopt semi-asynchronous
[47, 59, 67] and fully asynchronous [19, 30, 74] model aggre-
gation schemes to exclude or mitigate the impact of slow
devices. Our work targets at model-level HFL solutions be-
cause client selection might ignore valuable data on slow de-
vices whereas asynchronous model aggregation might affect
model convergence. We focus on masking-based sub-model

extraction for its widespread adoption and provide accurate
local training time estimates so that the allocated sub-models
match with the capabilities of devices. With the LATTE de-
sign, future methods to address data heterogeneity can be
directly integrated to further improve FL performance.
Model LatencyEstimation. Evaluating the latency ofmodel
execution on specific devices is crucial for the optimization of
model inference [20] and training [31]. Due to various model
architectures, device types, and deep learning development
chains, there is an increasing interest to predict the execu-
tion latency rather than measuring it exhaustively. These
predictors model latency at the network, layer, or operator
level [41]. For example, the number of FLOPs or MAC of the
entire network is a common proxy for its latency [26, 42].
Mainstream predictors [17, 32, 54] resort to the layer level,
where different layer features (e.g., FLOPs or layer types)
and hardware features are leveraged to train a regresssor to
predict layer-wise latencies, which are then summed up as
the overall model latency. Recent predictors [72] dive into
the operator level to explicitly account for runtime optimiza-
tions such as operator fusion. However, all these studies are
designed for latency prediction of model inference.

Our work is inspired by them yet aims at accurate latency
prediction of model training. ElasticTrainer[29] proposed
more fine-grained modeling of training time, but still over-
looked the diversity of layer algorithm. By identifying layer
algorithms as the previously overlooked feature, we devise a
lightweight training latency estimator at the layer level. Our
evaluations show such layer-level modeling matches with
the current runtime optimization for model training on edge
devices and delivers high accuracy despite its simplicity.

6 Conclusion
This paper presents LATTE, a new middleware design for
accurate estimation of on-device training of deep learning
models on mobile edge devices. Our core design insight is
that even for the same model on the same device, training
times can vary significantly due to runtime optimizations of
deep learning frameworks. We solve this problem by design-
ing a novel layer algorithm selector and incorporating it into
LATTE for accurate delay estimation. We further showcase
the usability of our design in heterogeneous federated learn-
ing. Extensive experiments demonstrate significant perfor-
mance improvements compared to state-of-the-art methods.
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