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ABSTRACT
Metro has become the first choice of traveling for tourists and cit-
izens in metropolis due to its efficiency and convenience. Yet pas-
sengers have to rely on metro broadcasts to know their locations
because popular localization services (e.g. GPS and wireless local-
ization technologies) are often inaccessible underground. To this
end, we propose MetroEye, an intelligent smartphone-based track-
ing system for metro passengers underground. MetroEye leverages
low-power sensors embedded in modern smartphones to record am-
bient contextual features, and infers the state of passengers (Stop,
Running, and Interchange) during an entire metro trip using a Con-
ditional Random Field (CRF) model. MetroEye further provides
arrival alarm services based on individual passenger state, and ag-
gregates crowdsourced interchange durations to guide passengers
for intelligent metro trip planning. Experimental results within 6
months across over 14 subway trains in 3 major cities demonstrate
that MetroEye yields an overall accuracy of 80.5% outperforming
the state-of-the-art.

CCS Concepts
•Human-centered computing → Ubiquitous and mobile com-
puting systems and tools;

Keywords
underground public transport; location-based service; smartphone;
crowdsourcing

1. INTRODUCTION
With the speed up of urbanization, an increasing number of c-

itizens and tourists choose to commute by metro for its efficiency
and convenience [26]. However, metro trips can also bring frustrat-
ing experience to passengers due to its semi-closed environment.
As GPS and WiFi are usually inaccessible underground, first-time
travellers usually have to rely on broadcasts to keep track of their
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trips. Even for citizens who have spent years in the city, it is not
uncommon to miss the station to get off, especially when they are
absorbed in reading, calling, chatting, listening to music or playing
games. Furthermore, passengers may miss a metro and have to re-
plan their routes if the interchange time is unexpected long during
rush hours. A location-aware service to track passengers’ status
during an entire metro trip, therefore, is urgently needed.

While metro offices often distribute metro timetables to the pub-
lic, the actually arrival and departure time are subject to random
factors, e.g., over-crowdedness, and the timetable can be simply
unavailable in some cities [24, 6, 27]. Thus it is unreliable to in-
fer the locations of passengers based on metro timetables. Some
mobile applications retrieve the actual metro position from the dis-
patching system of metro centers. While this approach is accurate,
it may incur latency when wireless communication is weak or when
the number of users sharply increases.

The rich built-in sensor on modern smartphones offers a promis-
ing alternative. Pioneer works exploited various phone-embedded
sensors such as accelerations [29] and magnetic field [16] to iden-
tify metro stops. The key idea is to detect the jolts and magnetic
changes during a metro’s motion [14]. By counting the numbers of
stops at stations, they hold potential to track passengers without the
need of GPS or wireless-based localization techniques. However,
they only consider the spatial states of metros yet ignore the inner
temporal relations, and fail to distinguish stops between stations
and at stations, which may lead to false reminders for passenger-
s. Other works [28, 25] combine both inertial sensors and a metro
timetable into a Hidden Markov Model (HMM) [28], and filter in-
between stops based on the timetable. While these works take the
temporal status of metros into account using a timetable and tem-
poral sequential models, a fixed timetable is not always available
in those areas with large passenger flow (e.g. China, India), thus
limiting the applicability of these schemes to certain countries (e.g.
Japan, Switzerland). More importantly, previous works [29, 16, 14,
28, 25] focuses on the Stop and Running states of a single metro.
None of them has considered a joint trip of multiple metros, and the
Interchange state between metros, which is an important yet miss-
ing factor in metro passenger tracking and metro trip optimization.
For instance, it can be annoying and inconvenient for passengers to
retype the destination of another metro when hurrying to the plat-
form of the next metro during interchange. And interchange time
statistics can facilitate metro officials optimize metro schedules and
help passengers plan further trips to avoid crowded interchange s-
tations.

In this paper, we propose MetroEye, an intelligent smartphone-
based metro passenger tracker. Unlike previous works [29, 16, 14,
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Figure 1: The diagram of a metro trip process

28, 25] that track the Stop and Running of a single metro, Metro-
Eye is the first-of-its-kind that jointly tracks the Stop, Running, and
Interchange of passengers during a whole metro trip. As shown
in Figure 1, a metro trip consists of a series of Stop (passenger
on a metro halting at a station), Running (passenger on a running
metro), and Interchange (passenger waiting or transferring at an in-
terchange station) states. MetroEye seamlessly tracks the change
of these three states by invoking the low-power sensors to monitor
ambient magnetic field, acceleration, and cell tower signal strength.
It also carefully extracts representative features from raw sensory
measurements to robustly detect the change of states even in noisy
and crowded underground environments. To eliminate the need of
a timetable [28, 25] while capturing the temporal characteristic-
s of metro trips, MetroEye feeds the statistics of metro running,
stopping and individual interchange time, along with the extract-
ed sensor features, into a Conditional Random Field (CRF) model.
Compared with the Maximum Entropy Models or HMM adopted
in previous works [29, 28], CRF better interprets the temporal con-
nections between the extracted features and passenger’s states, as
well as the sequential relationships within the three states, which
yields more accurate and robust state inference.

We implement MetroEye as an Android application, and conduct
extensive field evaluations by 32 volunteers in 6 months, cover-
ing 14 metro lines of 3 major cities in China (Beijing, Shanghai
and Shenzhen). Experimental results demonstrate an overall state
identification accuracy of 80.5% at low system overhead, outper-
forming previous works. In addition to accurately detect passenger
states during a metro trip, MetroEye further provides two services:
(1) an arrival alarm service based on passengers’ preset schedule,
and (2) aggregating interchange durations from crowdsourced pas-
sengers to help passengers plan future routes and guide metro offi-
cials for traffic management.

We summarize the key contributions of this paper as follows:

• To the best of our knowledge, MetroEye is the first-of-its-
kind smartphone-based metro passenger tracking system that
continuously and comprehensively monitors the three states
(running, stop and interchange) of passengers across multi-
ple metros during an entire trip, which eliminates the need
for retyping the next destination when transferring to anoth-
er metro hastily. MetroEye also provides arrival alarms and
interchange time statistics to passengers to improve user ex-
perience and ease trip planning.

• MetroEye combines low power sensors and time statistics of
metros into a time sequential model for passenger state in-
ference, which is robust to complex underground noise. The
GSM RSSI and time statistic are able to filter in-between
stops and eliminate the need of a timetable.

• We evaluate MetroEye in a 6-month field study covering 14
major metro lines in 3 cities. Experiment results show Metro-
Eye yields competitive performance against previous works
and is robust to environmental dynamics.

In the rest of the paper, we review related works in Section 2,
followed by an overview and detailed design of MetroEye in Sec-

tion 3 and Section 4. Section 5 presents the system evaluation and
we conclude in Section 6.

2. RELATED WORK
MetroEye is related to the following categories of research.
Transportation Mode Estimation. There has been active re-

search on transportation mode detection using smartphones to un-
derstand user mobility. Reddy et al. [22] utilized GPS and ac-
celerometer to differentiate stationary, walk, biking, and motorized
transport. Hemminki et al. [13] leveraged accelerometer only to
identify more transportation modes including stationary, walk, bus,
tram, metro and train. Sankaran et al. [23] further harnessed the
more power efficient barometer to achieve similar detection accu-
racies. MetroEye is complementary, and focuses on tracking the
states of passengers during a metro trip.

Public Transportation Tracking. As public transportation may
not strictly accord with a static timetable, researchers have explored
smartphones to track public transportation in realtime. EasyTrack-
er [2] aggregated GPS traces to track cars and buses and provided
arrival time inference services. Zhou et al. [30] leveraged cell tow-
er signals, inertial measurements and audio recordings to track bus-
es and predict arrival time for each bus stop. Transitlabel [8] use
mobile phone sensors to recognize the passenger’s activities and
then labels the interchange semantics. While they can be adopted
to metros in principle, the unavailability of GPS as [2] and specific
sounds of buses as [30] requires an alternative approach specific to
metros. MetroEye is inspired by this line of research, and integrates
low-power accelerometer, magnetic sensors, cell tower signals, as
well as temporal statistics of metros, to track metros and passengers
underground.

Metro State Tracking. Yu et al. [29] employed acceleration
and cell tower signals to estimate the stop and go states of metros.
However, the acceleration patterns might be significantly reduced
in modern metros [14]. Lee et al. [16] exploited ambient magnetic
fields in metros to differ their motion states. StationSense [14] fur-
ther improved the estimation robustness by fusion acceleration and
magnetic measurements. However, they cannot well distinguish
stops between stations from those at stations, which trigger false
arrival reminders. Thiagarajan et al. [28] fed acceleration and a
fixed timetable into an HMM model to locate metros and is robust
to in-between stops. SubwayPS [25] added gyroscope to further
track metros between stations. Conversely, MetroEye does not rely
on a fixed timetable, which can be unavailable in certain countries
(e.g. China, India). MetroEye inputs the statistics of running, stop
and interchange time of metros, and the GSM RSSI into a CR-
F model to get rid of the limitation of static timetable, as well as
to deal with in-between stops. By further combining various low-
power sensors, MetroEye offers more comprehensive metro passen-
ger state tracking (not only stop and go, but also interchange), and
implements two services of arrival reminder and interchange time
analysis.

3. SYSTEM OVERVIEW
Figure 2 shows the system architecture of MetroEye, which con-

sists of two modules, user tracker and service provider.
User Tracker. This module records data from smartphone sen-

sors including magnetism sensor, accelerometer, GSM and timer.
It then extracts distinctive features from each type of sensor da-
ta during a metro trip. These retrieved features are integrated by
a CRF model. We choose CRF because it interprets the temporal
connections between the extracted features and the travelling states,
as well as the sequential relationship within the three states. Metro-
Eye infers a state by CRF every 20s. The inference interval roughly
corresponds to the shortest possible state in the metro trip.



Table 1: Summary of sensory measurements, extracted features, and usage in MetroEye.
Sensory Data Features Usage

Magnetic Field Variance Infer Start of Running State

Acceleration
Energy and period
of acceleration difference

Infer States of Running (acceleration, smooth running
and deceleration), Stop and Interchange (walking and waiting)

GSM RSSI
Energy, standard deviation, and ratio of energy
between first and second halves of time

Filter in-between stops
Infer States of Running (launching, smooth running
and pulling-in), Stop and Interchange.

Time Statistics
Distributions of running,
stop and interchange time

Filter in-between stops
Bound sequential state changes during a metro trip
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Figure 2: Work flow of MetroEye.

Service Provider. MetroEye provides two services for passen-
gers. (1) Offline service. MetroEye delivers intelligent arrival alarm-
s based on the user’s preset schedule. Once MetroEye detects the
next stop is the destination, it vibrates and rings to remind the user.
(2) Online service. MetroEye crowdsources interchange durations
of multiple passengers for interchange time analysis. It helps users
to plan routes and guides metro officials for traffic management.

4. SYSTEM DESIGN
This section elaborates on how MetroEye extracts robust features

from multiple sensory measurements, before feeding into a sequen-
tial model for accurate passenger state inference. To robustly infer
the three states (Running, Stop and Interchange), MetroEye careful-
ly selected sensors to identify different sub-states. Table 1 summa-
rizes the sensory measurements used in MetroEye and their usage
to infer passenger states during a metro trip.

4.1 Magnetic Intensity Sensing
Principle: The contemporary metro operation systems are gen-

eral driven by the electric engine. This engines, which distribute
among each cart, rely on the interaction between winding currents
and the magnetic field to generate force. At the acceleration phase,
significant alteration of the current triggers notable magnetic field,
which generate a considerable torque to push the metro forward
[16]. When the metro moves smoothly, the current of motors be-
comes stable, leading to reduction of magnetic intensity. Thus the
magnetic intensity at the beginning of running is normally greater
compared to other phases [12].

Measurements: To verify the above phenomenon, we conduct-
ed 21 groups of measurements on 5 metro lines in 3 cities. In each
experiment, we record magnetic readings in embedded magnetic
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Figure 3: Magnetic field trace of a metro trip.

sensor at a sampling rate of 50Hz. We calculate the magnetic in-
tensity M(t) at time t as:

M(t) =
√

(M2
x(t) +M2

y (t) +M2
z (t)) (1)

where Mx(t), My(t) and Mz(t) represent the magnetic intensity
on the X-, Y- and Z-axis at time t, respectively. To filter measure-
ment noise in the raw data, we adopt a moving average window of
size 500, which corresponds to a duration of 10s.

Figure 3 depicts the magnetic field trace of a metro trip. The time
series marked blue denotes the variance of magnetic intensity, and
the colored bar at the bottom represents the ground truth of three
states during the entire trip. As is shown, the magnetic field in-
creases abruptly at the beginning of a running state (marked by the
red dashed lines), and keeps at a relatively stable level or descends
in other states. Thus an abrupt variance of magnetic intensity can
indicate the beginning of the Running state.

Magnetic Feature Extraction Fmag: We extract magnetic re-
lated feature Fmag as follows. Given a magnetic intensity time se-
quence M = {M(1, t1), ...,M(i, ti), ...,M(N, tN )}, MetroEye
first filters the raw data using a moving average of size K. Then
it searches for the minimal M(i, ti) and maximal M(j, tj) within
the sequence. If tj > ti and the difference Diff(t) = M(j, tj)
- M(i, ti) exceeds a preset threshold δmag , it implies a sudden
growth of magnetic intensity, and possibly as a result of a metro
starts to launch. Conversely, if Diff(t) < δmag , there might be
three possibilities: (1) The metro the passenger takes stops, and the
power of the metro’s engine approaches zero, which hardly arous-
es prominent change of magnetic field. (2) The metro is running
steadily. In case of little tractive force occurrence, the electric cur-
rent rarely alters remarkably, and thus the magnetic intensity ex-
hibits stationary. (3) The passenger is walking at an interchange s-
tation. In this case, the magnetic field is rarely affected, and remain-
s almost stable. In the work, we extract the magnetic intensity fea-
tures every 20s, a general launching time of metros, i.e.,N = 1000
under the sampling rate of 50Hz. We empirically set the window
size K = 500 and the threshold δmag = 85µT to optimize lo-
cal experiment performance. MetroEye denotes Diff(t) ≥ δmag
as an uprush of magnetic intensity, and regards it as a feature of a
metro launching, indicating a Running state.

Nevertheless, the above feature has a limitation. As stated above,
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Figure 5: Acceleration trace of a train during a metro trip.

the magnetic intensity is closely relevant to the variance of the elec-
tric current. Sometimes, a subway accelerates in a slow pace at the
launching phase. The current flow generated by an engine alters
mildly, causing moderate variance of the magnetic intensity. Such
cases cannot be well realized, which may lead to an inference error.
Thus MetroEye leverages the variance of the magnetic intensity as
only one dimension of features for further inference.

4.2 Acceleration Variance Sensing
Principle: Intuitively, the acceleration variance of a metro keeps

rising at the Running phase and drops off when the train is stop-
ping. Such properties have been exploited in previous works for
metro tracking [28, 25, 29]. In MetroEye, we further extend the use
of acceleration to recognize passengers during interchanges, where
a passenger either walks towards a platform or waits for a coming
metro. Our observation is to detect the periodic walking patterns as
well as the relatively stationary state during waiting from accelera-
tion traces for Interchange inference.

Measurements. We asked 20 volunteers to record acceleration
during their metro trips. The sampling rate is set to 50Hz and the
volunteer is free to put the smartphone in hand, in pocket or in
bags. Given an acceleration trace A = {a1, ..., ai, ..., an}, we first
calculate the acceleration difference samples as

ai =
√
a2xi + a2yi + a2zi (2)

where axi, ayi and azi represent the acceleration difference of two
successive acceleration amplitudes at each axis as [10]. The dif-
ference can well show the variance of acceleration amplitude. We
then smooth the acceleration with a window of 50 sample, which
approximates the time for a walking step.

Figure 4 displays the acceleration profiles over 20s of four states
(passenger walking, passenger waiting, metro running and metro
stopping). We define as energy En =

∑n
i=1 a

2
i and period as the

bin corresponding to the strongest peak by performing Fast Fouri-
er Transformation (FFT) on {ai}ni=1. As shown in Figure 4, the
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Figure 6: Work flow of acceleration feature extraction.

repetitive pattern of walking exhibits a shortest period within the
range of [0.8s, 1.2s], which accords with the walk frequency of hu-
man being spans from 0.5Hz to 2Hz [20]. Such a period (accord
with walking frequency) is hardly observed in acceleration traces
for non-walking states. We also observe that the energy of the ac-
celeration is relatively low when a passenger is waiting for a metro,
while slightly larger (10 ∼ 80) when the passenger is on a halted
metro. Such a difference in energy even if the passenger is station-
ary comes from the vibration of the metro’s running engine, which
cannot be smoothed by a window of 50 samples. The energy for a
walking passenger and a running metro is often dramatically larg-
er, due to the larger acceleration amplitudes. Inspired by the above
observations, we choose energy and period to identify Interchange
states (passenger walking towards or waiting at platforms).

To further investigate the acceleration characteristics of metro,
we increase the observation interval to 8 minutes, which can cover
an entire process of metro acceleration, steadily running, decelera-
tion and stopping. We also increase the rolling average window to
1000 samples accordingly. Figure 5 plots the acceleration traces of
a train during a metro trip. The blue curve indicates the acceleration
difference, and the bar at the bottom denotes the ground truth of t-
wo marked states. As expected, the acceleration difference climbs
up remarkably until the subway runs smoothly. When the train
approaches the next station, the acceleration difference decreases
gradually to a low level. Therefore we include both short-term and
long-term features from acceleration for state inference.

Acceleration Feature Extraction Facc: As shown in Figure 6,
the work flow of acceleration feature extraction consists of two lay-
ers. The first layer analyzes the short-time acceleration patterns of
Interchange, including individual walking and waiting. The second
layer learns long-term acceleration profiles of Running and Stop,
which are further split into acceleration, smooth running, deceler-
ation and stop.

In the first layer, after collecting a 1000-sample acceleration se-
quence within an Inference interval, MetroEye first computes its
difference, and smooths it with a micro rolling average window
of 50 samples. Then MetroEye calculates trace period and judges
whether it lies in the range [0.5s, 2s]. If yes, MetroEye confirms it
as walking. Otherwise, MetroEye further calculates its energy. If
the energy is lower than a predefined threshold ε = 5, MetroEye
announces it as waiting. If not, MetroEye considers it as a metro
trace, and leaves the difference trace to the second layer.

In the second layer, MetroEye adopts a Dynamic Time Warping
(DTW) [1] algorithm to recognize the metro’s acceleration profiles
(acceleration, smooth running, deceleration and stop). We choose
DTW because the acceleration measured on a metro is susceptible
to environmental dynamics e.g. the passenger’s body movement,
which makes simple peak detection [4] or threshold crossing count-
ing [3] erroneous. Conversely, DTW is suitable to measure simi-
larity between two temporal sequences that vary in time or speed.
Given an acceleration difference trace from the first layer, Metro-
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Eye computes 1000-sample windowed means (macro smoothing
window), corresponding to the length of acceleration trace. After-
wards, MetroEye compares the smooth acceleration sequence with
the pre-stored templates listed in Figure 7, which are generated by
the training set, and then calculates their DTW distances. Finally,
the testing trace is classified as the one with the minimal distance.
MetroEye takes the corresponding result as a feature to infer the
passenger’s state. Note, however, that it is difficult to differentiate
stops at stations and those between station [28]. Therefore Metro-
Eye incorporates with cell tower signal strength (i.e. GSM RSSI)
and time statistics to filter out in-between stops, which will be dis-
cussed later.

4.3 GSM Signal Sensing
Principle: GSM is the main communication medium for a metro.

As GSM signals can be attenuated during a metro trip, the variance
of GSM received signal strength index (RSSI) may indicate differ-
ent states during a metro trip. Generally, a metro station is installed
with several child cell-sites to guarantee the communication quality
underground, while few cell-sites are installed in the metro tunnels,
leading to the weaker signal strength. Thus RSSI holds potential to
filter in-between metro stops in the tunnels.

Measurements: Figure 8 illustrates a trace of GSM RSSI during
a metro trip. The blue bar plots the raw RSSI, and the red line illus-
trates the RSSI after smoothing. As is shown, the RSSI descends
gradually as the metro departs from the station, and keeps at a low
level in the middle of tunnel. When the train approaches the next
station, the RSSI climbs up and arrives at a peak while the metro
halts at a station. In addition, when passengers are transferring in
an interchange station, the RSSI retains high. In our experimen-
t, we parse the RSSI trace every 20s, and classify it as one of the
five RSSI diagrams in Figure 9. The first three diagrams denote the
distinct RSSI trends of Running state when passengers are on met-
ros at launching, smooth running and pulling-in phases. We define
launching as the 20s after a metro departs from a station, pulling-
in as the 20s before a metro halts at a station, and smooth running
as the rest during metro Running. The fourth and fifth diagrams
plot the RSSI profiles of Stop and Interchange, respectively. As is
shown, the RSSI profiles for each class exhibit a unique pattern.
In this measurement, we have collected 270 segments of RSSIs for
each class, lasting around 1.5 hours.

RSSI Feature Extraction Frss: Given an RSSI sequence R =
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Figure 9: Diagram of GSM RSSI profiles.
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{r1, r2, ...rn} smoothed by a rolling window, we adopt three effi-
cient criteria to capture the distinctive trends as shown in Figure 9.
The first is energy En = Σni=1ri, where ri denotes the strength of
ith sample in the sequence. The second is the ratio of RSSI ener-
gies in the first half of time to the last half of time. It is calculated
as rfl = En(f)

En(l)
, whereEn(f) = Σ

n/2
i=1ri and En(l) = Σni=n/2ri.

It indicates the transition of RSSI energy of the sequence. For in-
stance, rfl at launching is larger than that at pulling-in in Figure 9.
The last is the standard derivation std. The RSSI of Interchange
usually exhibits small std.

The left of Figure 10 illustrates the distribution of the three crite-
ria. As is shown, the five RSSI profile classes are divided into five
clusters by the three criteria, and hence can be classified by a deci-
sion tree model as on the right of Figure 10. Specifically, the paths
from root to leaf represent classification rules, and the splitting fea-
tures and thresholds are determined depending on the information
gain calculated by entropy. MetroEye adopts the above decision
tree to recognize each phase of metro from the GSM RSSI profiles,
and leverages it to infer the passenger’s trip status.

4.4 Time Statistics
Principle: Even though metro timetables are naturally modified

based on the actual requirement such as the boarding crowd size,
the running time between two successive stations, the stop time at
a station and the time cost at an interchange usually alter within a
certain region. MetroEye leverages the statistics of running, stop,
and interchange times to filter in-between stops and bound the se-
quential state changes during a metro trip.

Temporal Feature Extraction Ftim: To acknowledge the tem-
poral characteristics of the travelling process comprehensively, we
conducted 27 groups of motivating experiments across 9 metro
lines in 3 cities during both peak and off-peak hours and for both
weekdays and weekends. Three criteria are considered: the metro’s
running time between two consecutive stations, the halt time at
a station, and the individual time cost in the interchanges, whose
distributions are illustrated in Figure11. According to our mea-
surements, more than 90% of the running time aggregates within
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Figure 12: Diagram of the linear-chain CRF.

[60s, 180s]. Around 80% of the stop time lies within [25s, 60s].
And 95% of the interchange time is less than 10min. According-
ly, the three criteria enable to depict the temporal relationships of
the inference stages. For example, the predicted running time is
supposed to corroborate the distribution of the actual running time,
and the inferred train’s halt interval also should be in accord with
the range of the actual stop time. Therefore, MetroEye records the
three time parameters by the smartphone timer to model the inner
temporal connections of the predicted states.

4.5 Inference Model
We adopt a classic graphical model, conditional random field

(CRF) [15], to depict the temporal relations between the observ-
able features as well as the connections in the hidden stages. CRFs
are discriminative probabilistic graphical models for analyzing the
sequential data, which have been applied to numerous real sequen-
tial issues such as natural language processing [15], biological gene
sequencing [7] and stage tracking [11, 9]. It calculates a single
log-linear distribution over label sequences

−→
Y based on particular

observation features
−→
X by maximizing the conditional probability

p(
−→
Y |
−→
X ).

Compared to HMMs, CRFs allow features to depend on several
states to account for long-term effects. Moreover, it also outper-
forms the maximum entropy markov models [19] by resolving the
label bias issue [15]. These advantages enable CRF to character-
ize the relations between the observable contextual features and the
hidden states in more depth, making it more suitable for passenger
tracking underground.

Figure 12 shows the diagram of a linear-chain CRF employed in
MetroEye. Specifically,

−→
Y = {Y1, Y2, . . . , Yt} indicates the hid-

den variable sequence, where Yt ∈ {Interchange, Running, Stop}
represents the predicted state of inference interval t. Given that the
state might change during an inference interval, the state is labeled
as the one with the longest period. For instance, if a metro runs
into a station in the first 5s , and halts at the station for the last 15s,
the state is labeled as Stop. The observation sequence is given by
−→
X = {X1, X2, . . . , Xt}, where Xt ∈ {Fmag, Facc, Frss, Ftim}
are the corresponding features extracted by MetroEye at Inference
interval t. For a label sequence

−→
Y with N + 1 variables, its condi-

Stop state Interchange state Running state 

Arrival alarm 

(M-1)th station Mth station Nth station (N-1)th station 

Arrival alarm 

Figure 13: A diagram of an arrival alarm.

tional probability p(
−→
Y |
−→
X ) on the entire observation sequence

−→
X

is given by the normalized form of potential functions,

p(
−→
Y |
−→
X ) =

1

Z−→
λ

(
−→
X )

exp

( N∑
t=1

M∑
i=1

λifi(Yt−1, Yt,
−→
X, t)

)
, (3)

where Z−→
λ

(
−→
X ) is the normalization factor, f(Yt−1, Yt,

−→
X, t) is a

real-valued feature function to express the empirical distribution of
the training data, and λ is the weight of each feature function [15].
Specifically, the M feature functions consist of two parts,

M∑
i=1

λifi(Yt−1, Yt,
−→
X )

=

m∑
k=1

νkfsk(Yt,
−→
X, t) +

n∑
j=1

µjftj(Yt−1, Yt,
−→
X, t) (4)

The first part is the state feature function fs(Yt,
−→
X, t), which de-

scribes the correlations between the observation feature sequence
−→
X and the label at the current phase t. The second part is the
transition state function ft(Yt−1, Yt,

−→
X, t), establishing the tran-

sition relations of the observation sequence
−→
X with the previous

and current hidden states at the intervals t− 1 and t. This function
can well characterize the temporal associations of the contextual
features such as the acceleration and RSSI with their former and
current states. The weights ν and µ of these feature functions are
calculated by maximizing the conditional log-likelihood of the la-
belled sequences.

We adopt the L-BFGS [17] for an efficient training, and apply
the Viterbi Algorithm [18] to infer the hidden states based on the
potential functions.

4.6 Service Provider
MetroEye provides two services based on the inferred Stop, Run-

ning, and Interchange states. (1) Arrival Alarm, an off-line service
to remind users to get off the metro in time. (2) Interchange Time
Analysis, which calculates the statistics of per-station interchange
time to suggest passengers of a more efficient trip and guide metro
officials to devise reasonable construction / retrofitting plans. This
subsection presents the work flows of the two services, and we de-
fer the detailed performance evaluation to Section 5.5.

4.6.1 Arrival Alarm
For arrival alarms, MetroEye merely requires the user to log

how many stops to the terminal and interchanges from his/her o-
rigin, releasing the burden of reloading maps once the subway line
changed. Unlike previous works [29, 14] which require a user to in-
put trip information for each metro, MetroEye avoids retyping such
information when hastily transferring to another metro and signif-
icantly improves user experience. Based on the trip information,
MetroEye infers whether the metro has reached a station by detect-
ing the Stop states (note MetroEye is able to filter stops between
stations), and counts the number of stations the metro has passed.
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Figure 14: Illustration of experiment cases.

Table 2: Summary of experimental dataset.

State

Number City
Beijing Shanghai Shenzhen

In an interchange 23500 38513 30487
On a stop train 25445 48800 33255
On a running train 44403 63055 44503

In the default setting, MetroEye reminds the user one station ahead
of the destination. For instance, if a user indicates that the N th s-
tation is the terminal and the M th station is an interchange, then
MetroEye reminds the user at the (M−1)th and (N−1)th station.
Figure 13 shows a diagram of the arrival alarm service.

4.6.2 Interchange Time Analysis
Unique in MetroEye, the Interchange states of passengers are ex-

plicitly inferred during a metro trip. For interchange time analysis,
a user is asked to input the name of the interchange station. Then
MetroEye automatically records the time after detecting an Inter-
change state. By collecting individual interchange durations from
multiple users and calculating the average time spent at each in-
terchange station at the server end, MetroEye provides suggestions
for passengers to plan future trips. Such statistics of interchange
time can also benefit metro designers to optimize metro schedules
during rush hours.

5. EVALUATION
This section presents the evaluation methodologies and detailed

performance of MetroEye.

5.1 Experimental Setup
We implement MetroEye as an Android application. Each partic-

ipant installs MetroEye on their smartphone and launches it at the
beginning of each metro trip. Afterwards, MetroEye invokes the
corresponding sensors to collect measurements. The participant
manually labels the states of the sensory measurements for each in-
ference interval based on his/her route. If more than one state occur
in the inference interval, we label the interval as the majority state.
This case represents less than 3% of our dataset. We use these la-
bels as ground truth in our evaluations. In total, 3840 sets of metro
trips have been conducted by 32 volunteers within 6 months, cover-
ing 14 metro lines of Beijing, Shanghai and Shenzhen, where each
metro trip lasts for 30 minutes on average. During the measure-
ments, the volunteers are free to stand or sit in a cart, or exchange
at interchanges, and put their smartphone in hand, in pockets or in
bags (Figure 14). Table 2 summarizes our dataset of labelled states.
We randomly retrieve 80% of the dataset for training, and the rest
20% for testing.

We also implement two representative metro tracking schemes
[29, 14] as baselines. Participants are asked to record the states
inferred by these two approaches as well during the data collection.

5.2 Micro-benchmarks
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Figure 15: 10-fold cross validation of CRF.

Figure 16: Comparison of inference model.

Table 3: Effectiveness of features.
On a running train On a stop train In an interchange

Feature Precision Recall Precision Recall Precision Recall
Fmag 14.1% 21.8% 9.3% 8.1% 3.7% 5.2%
Fmag + Facc 31.7% 39.7% 27.3% 33.5% 59.9% 51.7%
Fmag + Facc + Frss 70.3% 69.4% 62.9% 64.3% 72.1% 88.6%
Fmag + Facc + Frss +
Ftim

89.6% 76.2% 77.2% 78.3% 73.4% 90.2%

5.2.1 Effectiveness of CRF model
We first conduct a 10-fold cross validation to evaluate the per-

formance of CRF model. As shown in Figure 15, the F1-measures
of Running and Interchange states surpass 80%. Although the F1-
measure of Stop state is slightly lower, it still maintains at a reason-
able value of 78.7%. Furthermore, the standard deviation of each
state illustrated by error bars is less than 10%, which demonstrates
the competitive and robust inference performance of CRF model.

We then compare the inference performance of CRF with oth-
er two classic models: (1) HMM, a statistical model known for
its applications in temporal pattern recognition; (2) SVM, which
can efficiently perform non-linear classification by using the kernel
trick, implicitly mapping their inputs into high-dimensional feature
spaces. Figure 16 shows the comparison of model performances.
CRF outperforms HMM and SVM in terms of the average precision
and recall, which verifies the advantages of adopting CRF model.

5.2.2 Effectiveness of Features
To show the effectiveness of the selected features, we observe

the variance of inference performance of the CRF model by adding
features when training it. The results are shown in Table 3. As can
be seen, the precision and recall of each state are improved with the
growth of features, indicating that the selected features are helpful
for prediction.

5.3 System Accuracy

5.3.1 Inference Accuracy
The confusion matrix in Figure 17 shows the confusion matrix

of MetroEye to infer the three states. Each column is the ground
truth, and each row denotes the corresponding inference of Metro-
Eye. The data listed in the middle is the number of inference inter-
val of each state. We can see that the recalls of three states are all
above 75%, with a peak value at 90.2%. Likewise, the precisions of
Running and Stop are also over 75%. The precision of Interchange
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Based on the experimental dataset, we conduct a 10-fold cross validation to evaluate the 

inference performance of \appname{}. The results of the 10-fold cross validation are displayed in 

Fig.~\ref{fig:10-fold cross validation}, we can see the F1-measures of \emph{Running} and 

\emph{Interchange} states surpass 80\%.  The F1-measure of \emph{Stop}  state is slightly 

lower, with the value of 77.5\%.  This can be explained by the data of the confusion matrix in 

Fig.~\ref{fig:confusion_matix_performance}. The data listed in the matrix indicates the 

\emph{inference interval} number of each state collected in the experiments.  From the matrix,  

we can learn about 12\% \emph{Stop} states are mistakenly classified as the \emph{Interchange}. 

This stems from the fact that the environment when the passenger waits for a train on a platform 

is similar to that of \emph{Stop} states, which reduces the prediction accuracy therefore. 

Generally, most testing states are predicted to the right classes, and the system accuracy overall 

arrives at 80.5\%. 

The results demonstrate the excellent and robust inference performance of \appname{}. 

 

Figure 17: Inference accuracy of MetroEye.
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State 

System 

Running Stop 

Precision Recall Precision Recall 

MetroEye(2 states) 91.0% 84.5% 83.7% 87.2% 

MetroEye(3 states) 89.6% 76.2% 77.2% 78.3% 

Baseline1 74.2% 71.3% 68.1% 74.6% 

Baseline2 75.3% 74.1% 65.6% 70.2% 

State Feature Extraction Inference Model Total 

Figure 19: Performance comparison with baselines.

state is lower. This is mainly due to the relatively short interchange
time during a metro trip, and the limited number of samples for
Interchange states. However, the precision of Interchange still re-
mains at an acceptable level of 73.4%, and its F1-measurement is
over 80%. Figure 18 further examines the timing error during each
metro trip. 97% of the timing errors for Interchange, Stop and Run-
ning are about 2 minutes, 2.3 minutes, and 2.7 minutes, respec-
tively. The accumulate time error of overall metro trip, therefore,
is under 7 minutes. Although the inference performance of Inter-
change state is not as good as that of Running state, its timing error
is much shorter, due to its limited proportion of a metro trip.

By comparing the confusion matrix (Figure 17), we find the in-
ference errors are mainly caused by two reasons: (1) The Inter-
change state that a passenger is waiting for the next metro tends to
be easily mistaken as a Stop state, and vice versa due to the some-
times similar ambient characteristics of the two states. (2) Most
errors occur in the transition periods of two states. This is because
the contextual features may not immediately change when a new
state starts, and MetroEye may fail to detect such transitions. How-
ever, MetroEye still achieves an overall accuracy of 80.5%. We
plan to enhance the detection of state changes to improve the over-
all accuracy in the future work.

5.3.2 Comparison with Baselines
We compare the inference accuracy of MetroEye with two rep-

resentative metro tracking schemes in [14] (Baseline 1) and [29]
(Baseline 2). The two baselines are able to detect Running and
Stop states of a metro independent on the fixed timetable, which
have the similar working principles of MetroEye. We compare the
inference accuracy of MetroEye with the two baselines in two ways.
(1) We modify MetroEye to detect two states only and ignore the

Brand   CPU RAM   ROM Power Capacity   Operation System 

Galaxy  S6 8-cores 2.1GHz  3GB 32GB 2550mAh Android 5.0 

HTC  Desire A6 8-cores 1.7GHz  2GB 16GB 2600m Ah Android 5.0 

HUAWEI 4C 8-cores 1.2GHz 2GB 8GB 3100mAh Android 4.4 

LenovoK80M 4-cores 1.8GHz 4GB 64GB 4000mAh Android 4.4 

Figure 20: Configurations for system overhead evaluation.

Figure 21: Power consumption.

Interchange state. In this case, metro trips with interchanges are
divided into several trips by the interchanges. And we re-train the
CRF model to restrain to two states. (2) Directly compare Metro-
Eye with the two baselines. Figure 19 illustrates the performance
comparison of MetroEye and the baselines. We can see the modi-
fied MetroEye that detects two states performs the best. Moreover,
even though the unmodified MetroEye detects one more state, its
inference accuracy still outperforms the two baselines.

By carefully checking the inference errors, we find that most er-
rors of Baseine 1 come from mistaking the spurious stops in the
tunnel as stops at stations. This is because Baseline 1 only adopts
magnetic field and acceleration for state inference, which can hard-
ly filter in-between stops by analyzing the magnetic variance and
acceleration pattern. For the approaches of Baseline2, its main er-
rors come from the noisy acceleration measurements. The user’s
body movement or the dynamic jolts of trains makes the simple
threshold-based methods erroneous [14]. Differently, MetroEye in-
tegrates multiple effective sensory data by a representative sequen-
tial model to describe the user’s trip, thus dramatically improving
the robustness of passenger state inference even in noisy and dy-
namic environments without the assistance of fixed timetable.

5.4 System Overhead
Since MetroEye targets at continuous metro passenger tracking,

it is important to evaluate its overhead on the energy-constrained
smartphones. This subsection presents the power consumption,
CPU utilization and system delay of MetroEye using four popular
commercial smartphones. Figure 20 summarizes the configurations
of the smartphones used for system overhead evaluation.

5.4.1 Power consumption
We install MetroEye on the above smartphones and download a

logger [21] to monitor the battery usage in 5 metro trips. Each trip
lasts more than one hour. Figure 21 illustrates the average battery
level as a function of the execution time of MetroEye. As is shown,
MetroEye consumes negligible power (less than 2%) every 10 min-
utes. The battery level follows a gradual downward trend as time
goes by, and ends in 89.5% for Galaxy S6, 92.4% for HUAWEI 4C,
90.8% for HTC Desire, and 93.2% for Lenovo after 1 hour. The re-
sults indicate that MetroEye is power efficient and is feasible for
continuous metro trip tracking.

5.4.2 CPU utilization
To measure the CPU usage of MetroEye, we install an applica-

tion [5] on each smartphone to monitor the CPU occupation during
5 metro trips. The results are shown in Figure 22, which indicates
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Galaxy 0.04s 0.19s 0.11s 0.01s 0.31s 0.5s 

HTC 0.05s 0.19s 0.14s 0.01s 0.32s 0.51s 

HUAWEI 0.08s 0.20s 0.14s 0.01s 0.31s 0.51s 

Lenovo 0.08s 0.22s 0.13s 0.01s 0.32s 0.54s 

Figure 23: System delay.
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Figure 24: Performance of arrival alarm.

that the average CPU utilizations of the four smartphones are kept
at a relatively low and stable level, with a little fluctuation centered
around 20%. Compared with the CPU usage of around 15% to 22%
for a phone call with the 8-cores CPU, which is marked by the cyan
colored line, the occupation of MetroEye is acceptable in daily use.

5.4.3 System delay
The delay of MetroEye comes from two tasks, namely, feature

extraction and model inference. We launch a time logger to record
the durations of each component. The results are shown in Fig-
ure 23. As MetroEye invokes multi-treads to process sensory data
in parallel, the total time is the sum of the maximum processing
time among the sensors for feature extraction and the time of mod-
el inference. As illustrated in Figure 23, the longest processing time
among the feature extraction is due to the acceleration module, fluc-
tuating around 0.2s, which is mainly caused by the multiple index
calculation and Dynamic Time Warping algorithm. Additionally,
the inference time of CRF varies around 0.3s. Therefore, the final
system delay adds up to around 0.5s. Compared to the inference
interval of 20s, this delay has negligible effect on system perfor-
mance.

5.5 Case Studies
In this section, we show two case studies to demonstrate the ser-

vices MetroEye can provide.

5.5.1 Arrival Alarm
In the first, we investigate the relationship between the accuracy

of arrival alarms and the trip length. The trip length is measured by
the number of stations the metro has passed.

The blue curve in Figure 24 indicates the accuracy of arrival alar-
m initiated at one station ahead. As is shown, the accuracy of arrival
alarm keeps increasing for the first 4 to 5 stations, and descend-
s gradually as the trip becomes longer, finally reaching at around

70%. This is because MetroEye has not collected sufficient contex-
tual data at the beginning. After 3 or 4 stations, MetroEye gradually
collects enough measurements to build the temporal relationships
of observable features and hidden travelling states. Thus the accu-
racy improves. With time passing by, the inference error contin-
uously accumulates, and eventually deteriorates the alarm perfor-
mance. Nevertheless, the alarm performance still maintains about
70% for a 20-station trip.

We also take an analysis of the errors of arrival alarms. The
red and green curves in Figure 24 demonstrate the errors of early
and late arrival alarms, respectively. As is shown, the percentages
of both kinds of errors remain low during the first 10 stops. As
the number of stops increases, the occurrence of late arrival alarms
still keeps low, while that of early arrival alarms steadily grows.
However, about 80% of the early arrival alarms are at most two
stops earlier than the expected destination. Based on the above
error analysis, we may conclude that MetroEye accurately reminds
the passengers to get off with a high accuracy. It tends to remind
the passengers ahead of his/her destination for long metro trips, but
seldom misses the right destination (i.e., late alarms) for both short
and long metro trips.

5.5.2 Interchange Time Analysis
We evaluate the service of interchange time analysis by figur-

ing out the stations with long-term interchange time in three major
cities in China.

According to the experimental results in Section 4.4, more than
95% interchange durations are shorter than 600s. Hence, we sep-
arate short interchange time from long interchange by 600s. Since
MetroEye predicts a state every 20s, we calculate the interchange
time by merging the durations of the consecutive Interchange s-
tates. For example, if Interchange states are detected in three con-
tinuous inference intervals, the interchange time is recorded as 60s.
We use the above method to count the long and short interchange
time inferred by MetroEye in the testing dataset. Figure 25 illus-
trates the ratio of interchange times in two categories. We can see
7% of interchange times are over 600s. Based on the interchange
names provided by users, we also mark their corresponding loca-
tions with red nodes in Figure 26. As is shown, the problem of
long-term transfer exists in 11 interchange stations. The main rea-
sons for a long interchange time include overcrowded passage and
improper station structure, e.g., limited stairs and elevators. Ac-
cordingly, metro officers can control the crowd timely, or recom-
mend the metro designer to improve the infrastructure.

6. CONCLUSION
Designing metro trip tracking systems for the passenger is crit-

ical yet challenging. Existing solutions focus on the mobility of
a single metro rather than the passenger’s state during an entire
trip (may consist of multiple subway lines). In this paper, we pro-
pose MetroEye, a passenger’s metro trip tracking system based on
smartphones, which integrates underground context signals with a
CRF model to infer the three states defined as Running, Stop, Inter-
change in a metro trip. MetroEye carefully characterizes the time
sequence of the three states, and continuously monitors passenger
states even during metro exchanges, which waives the requirement
of user’s multiple inputs during the trip. The performance of Metro-
Eye, evaluated on a dataset covering 14 metro lines in 3 major cities
within 6 months, is promising. Its overall system accuracy is up to
80.5%, outperforming the state-of-the-arts.
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