
Pantheon: Preemptible Multi-DNN Inference on Mobile Edge
GPUs

Lixiang Han
Department of Computer Science
City University of Hong Kong

Hong Kong SAR, China

Zimu Zhou
School of Data Science

City University of Hong Kong
Hong Kong SAR, China

Zhenjiang Li
Department of Computer Science
City University of Hong Kong

Hong Kong SAR, China

ABSTRACT
GPUs are increasingly utilized for running DNN tasks on emerging
mobile edge devices. Beyond accelerating single task inference, their
value is also particularly apparent in efficiently executing multiple
DNN tasks, which often have strict latency requirements in appli-
cations. Preemption is the main technology to ensure multitasking
timeliness, but mobile edges primarily offer two priorities for task
queues, and existing methods thus achieve only coarse-grained
preemption by categorizing DNNs into real-time and best-effort,
permitting a real-time task to preempt best-effort ones. However,
the efficacy diminishes significantly when other real-time tasks
run concurrently, but this is already common in mobile edge appli-
cations. Due to different hardware characteristics, solutions from
other platforms are unsuitable. For instance, GPUs on traditional
mobile devices primarily assist CPU processing and lack special
preemption support, mainly following FIFO in GPU scheduling.
Clouds handle concurrent task execution, but focus on allocating
one or more GPUs per complex model, whereas on mobile edges,
DNNs mainly vie for one GPU. This paper introduces Pantheon,
designed to offer fine-grained preemption, enabling real-time tasks
to preempt each other and best-effort tasks. Our key observation is
that the two-tier GPU stream priorities, while underexplored, are
sufficient. Efficient preemption can be realized through software de-
sign by innovative scheduling and novel exploitation of the nested
redundancy principle for DNN models. Evaluation on a diverse set
of DNNs shows substantial improvements in deadline miss rate and
accuracy of Pantheon over state-of-the-art methods.

CCS CONCEPTS
•Computer systems organization→Real-time system archi-
tecture; • Computing methodologies→ Neural networks.

KEYWORDS
Mobile Edge Systems, GPU Scheduling, Preemption, Deep Learning

ACM Reference Format:
Lixiang Han, Zimu Zhou, and Zhenjiang Li. 2024. Pantheon: Preemptible
Multi-DNN Inference on Mobile Edge GPUs. In The 22nd Annual Interna-
tional Conference on Mobile Systems, Applications and Services (MOBISYS

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0581-6/24/06
https://doi.org/10.1145/3643832.3661878

’24), June 3–7, 2024, Minato-ku, Tokyo, Japan. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3643832.3661878

1 INTRODUCTION
Mobile edge (mEdge) devices, such as the NVIDIA Jetson series
and other systems-on-chips, are increasingly vital for running deep
neural network (DNN) tasks in various autonomous machines and
applications [31, 44, 53]. The GPU has become the primary executor
and accelerator for running DNNs on these devices [50]. Beyond
accelerating the inference of a single task, the significance of GPU
also begins to be reflected more in its ability to efficiently run mul-
tiple DNN tasks in recent applications [39, 68, 69] like autonomous
driving, roadside units, virtual reality, etc., where many DNN tasks
often have strict latency requirements [6, 69].

Preemption [65] is a main technique to ensure the timeliness of
running multiple concurrent tasks, by allowing urgent tasks to in-
terrupt ongoing ones. This technology ensures that a processor can
fully exploit its inherent computing capability, since its hardware
spends huge investment ($41.82 billion on GPUs per year [26]) to
manufacture and improve, but the achieved task timeliness can be
easily compromised due to inefficient scheduling, thereby wasting
computing power. Violating latency requirements of DNN tasks can
further lead to system failures (e.g., incorrect system decisions due
to outdated results [39]) and even safety issues (e.g., danger alerts
in autonomous driving or roadside units [13]). Therefore, effective
preemption is also crucial to enhance the reliability of mobile edge
systems and applications.

However, existing mobile edge GPUs lack efficient preemption
support [16, 66], and commercial deep learning frameworks (such
as PyTorch [54] and TensorFlow [1]) usually provide only two pri-
orities (high and low) for task processing queues (GPU streams) [2].
This results in recent methods achieving merely simple, two-tier
preemption [16] by classifying DNN tasks into two types: real-time
(high-priority) and best-effort (low-priority), and allowing a real-
time task to preempt best-effort tasks [16]. However, the efficacy
drops significantly when other real-time tasks run concurrently (as
additional high-priority contenders), but this is already common in
applications, such as the concurrent real-time DNN tasks for object
detection, lane detection, road segmentation and depth estimation
on autonomous vehicles [39], simultaneous sensing [67] and recog-
nition [63] in augmented reality [69], concurrent computer vision
and emotion recognition in robots [9], and more.

Can we apply solutions developed for other platforms to mobile
edge GPUs? Traditional mobile devices primarily rely on CPUs [38].
Even for DNN tasks, GPUs mainly serve as supportive processors,
providing at most comparable performance to CPUs [62]. These
devices typically lack specialized preemption support and adhere

https://doi.org/10.1145/3643832.3661878
https://doi.org/10.1145/3643832.3661878

MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan Lixiang Han, Zimu Zhou, and Zhenjiang Li

to a first-in-first-out (FIFO) policy for GPU scheduling, though they
can expedite DNN inference through cross-processor scheduling
[29, 30, 69]. In contrast, mobile edge GPUs are explicitly designed
for deep learning, capable of managing DNN tasks independently.
High-performance platforms such as clouds or data centers do
manage concurrent tasks, often with multiple GPUs dedicated to
complex DNN tasks and focusing on allocating one or more GPUs
per model [37]. However, the scenario is distinct for mEdge de-
vices, where multiple DNNs compete for a single powerful GPU.
This unique setting requires fine-grained and timely preemption to
efficiently manage these competing tasks.

Hence, mEdge GPUs need their own preemption support, which
would allow real-time DNN tasks to preempt not only best-effort
tasks (considered the lowest priority), but also each other, depending
on their respective priorities (such as the remaining time to their
deadlines [43]). To achieve this, we encounter two challenges:

1) Limited backend support.The existing two-tier preemption
seems to be caused by insufficient task queue (GPU stream) priori-
ties. However, current mobile edge GPU backends, including their
hardware and corresponding software processing in drivers and
deep learning frameworks, typically adopt a one-DNN-per-stream
execution strategy [64, 66]. That is, a DNN task, once dispatched
into a GPU stream, enters a standard GPU routine, and the GPU
stream priority is tied to this task. However, the priority of real-
time tasks may change due to the arrival of other new real-time
tasks, while the priority of the tied stream is not reconfigurable
(§2). Hence, simply increasing the number of GPU stream priori-
ties cannot directly resolve the issue. A new suitable preemption
logic, compatible with the limited preemptive support from the
underlying GPU backend, is needed.

2) DNN-oriented context switch. Even if we had such a pre-
emption solution, frequent pausing and resuming of DNN inference
due to preemption would further introduce two unique issues. First,
the context switching overhead, including checkpoint saving and
resumption, can nullify the benefits of preemption if the overhead is
high. Second, a preempted DNN task may not complete the remain-
ing part before the deadline upon resumption. Any real-time task
output that misses the deadline becomes invalid [66]. Therefore, to
effectively support preemption, DNN should further have flexible
online model adjustment capabilities after context switching back
to ensure its timeliness.

In this paper, we address these challenges by designing a system,
called Pantheon, that works with commodity mobile edge GPUs to
provide a general and fine-grained preemption for running concur-
rent DNN tasks. We discover that the two-tier stream priority is
already sufficient, which can still be used for real-time tasks to pre-
empt best-effort ones. Our main observation is that we can enable
preemption logic for real-time tasks on top of high-priority streams
via novel scheduling in software. In this way, when the tasks that
need to be executed are determined, high-priority streams only
serve as a pipeline to convey them to the GPU for execution. Mean-
while, we also leverage the structured nature of DNN inference
to slice DNN models into appropriate chunks so that Pantheon
can preempt tasks at the chunk level, thereby achieving timely
(microsecond level) preemption scheduling.

In addition to preemption logic, another unique challenge in de-
signing preemptive DNN inference is that if the DNN is preempted,
its remaining part may not be completed before the deadline after
resuming. The redundancy in DNNs allows for skipping certain
operations with minimal impact on model accuracy [45, 59]. How-
ever, previous studies [42] exploring compressed model variants
(with varying complexity and accuracy) for fixed-deadline infer-
ence are not suitable for us, because then we would need to run a
new variant from scratch each time. In this way, even if we run a
very small variant, it may still fail to complete when deadlines are
tight or model accuracy is low. Therefore, for efficient preemption,
each model variant should be able to utilize the intermediate re-
sults generated by its larger counterpart and continue the inference
process seamlessly, which is called nested redundancy. In Pantheon,
we exploit nest redundancy under a new optimization framework
with early exits [24, 34]. This enables the DNN to reuse the results
prior to preemption and adjust the remaining sliced model chunks
to meet deadline while maintaining good accuracy.
Experiment. We develop a prototype of Pantheon and evaluate
its performance on NVIDIA Jetson NX and Nano across a broad
range of applications. These include nine DNN tasks for smart
traffic, service robot and UAV ground station three applications.
Experiments show that Pantheon outperforms the classical task
scheduling methods in real-time system areas [4, 20, 36] and the
state-of-the-art DNN-oriented scheduling RTm-DL [42] on mEdge
devices, improving task deadline miss rates by up to 99.4% and
97.5%, respectively. Meanwhile, Pantheon can enhance the accuracy
performance by 315.5% and 46.0%, respectively. We also deploy
Pantheon on an autonomous car for field evaluation, achieving
consistently good performance, with a 3.59% deadline miss rate
and 95.96% accuracy. Finally, Pantheon is lightweight, with each
preemption taking about 46.2–218.9 𝜇s to complete. In summary,
this paper makes the following contributions:

• We propose a novel and general preemption design for multi-
DNN inferences on mobile edge GPUs, accommodating the
growing trend of more concurrent DNNs in emerging mobile
edge applications.

• We address unique challenges in Pantheon. Our design can
work on top of the deep learning framework without modi-
fying the framework and GPU driver, making it easy (as a
plug-in) to upgrade massive mEdge devices to possess pre-
emption capabilities.

• We develop a prototype system and extensive evaluations
show significant performance gains compared to the latest
GPU task scheduling in real-time systems and the state-of-
the-art mobile edge design.

2 BACKGROUND AND MOTIVATION
The commodity mEdge GPU backend, including its hardware and
corresponding software processing in the driver and deep learning
framework, offers limited support for preemptive scheduling of
multi-DNN tasks, as explained below.
1) Limited preemption support. The main goal of existing DNN
scheduling on GPU is to strategically distribute computation among
multiple GPU computing units. It promotes parallel processing and
aims to maximize throughput.

Pantheon: Preemptible Multi-DNN Inference on Mobile Edge GPUs MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan

Thread Block
(Block)

Deep Learning
Framework

High-priority
Streams

Low-priority
Streams

SMs

SM-2

SM-1

Kernel

GPU

Figure 1: DNN processing in mobile edge GPUs.

Scheduler

Memory
manager

Worker

ⅰ Preemption Runtime

Runtime Queue

ⅲ DNN Preparation

Slice

Merge

Early Exits
Position

Placement Plan

P
o

o
l o

f
V

ar
ia

n
ts

Offline Online

B
es

t-
ef

fo
rt

 R
u

n
ti

m
e

DL Framework & GPU Hardware

High-priority
streams

Low-priority
streams

Plug-in
Real-time DNN

Tasks

ⅱ Scheduling Algorithm

⑤

①

⓪ ⑥

②
③

④

Figure 2: Overview of the Pantheon design.

Single DNN. We start with the single DNN case. For GPU exe-
cution, each DNN is decomposed into kernels [2]. These kernels
will be executed in parallel by multiple GPU threads, which are
further organized into thread blocks and assigned to computing
units, stream multiprocessors (SMs), to run.

Multi-DNNs. By default, multiple DNNs are handled separately [64,
66]. Each DNN is pushed into a GPU stream, i.e., a logical task queue
in GPU programming. A GPU usually provides dozens of GPU
streams. All the kernels pushed into the same GPU stream are exe-
cuted following a FIFO policy. To provide flexibility in scheduling
tasks across different GPU streams, the existing mobile edge GPU
backend provides a simple two-tier preemption mechanism (see
Figure 1), i.e., lower-priority streams can dispatch blocks to SMs
only when higher-priority streams are empty [2].1 Therefore, in
recent methods, real-time tasks (in high-priority streams) can only
preempt best-effort tasks (in low-priority streams).

In short, DNN execution on mobile edge GPUs opts for through-
put, with fine-grained (thread-block-wise) intra-stream schedul-
ing to fully utilize SMs but coarse-grained inter-stream scheduling.
Given such a backend design, problems faced with fine-grained
scheduling across GPU streams appear to stem from a lack of ad-
equate GPU stream priorities, but we find that directly providing
more levels of stream priority does not fundamentally solve the
problem, for the following reason. Because for real-time DNN tasks,
their priorities may change over time due to other newly incoming
real-time tasks. However, once a DNN task is dispatched to a stream,
the task’s priority is tied to the GPU stream to which it is assigned.
Stream priority is not reconfigurable [49], which would otherwise
greatly increase hardware and driver complexity, preventing us
from adjusting the priority of real-time tasks.

Targeted preemption design. Hence, we need a new preemption
solution, compatible with the limited preemption support from the
underlying backend. To this end, we lean to a software solution on
top of the mobile edge GPU backend for fine-grained preemption.
It should allow real-time tasks to preempt each other based on
their priorities. Real-time tasks can be periodical or non-periodical.
Fine-grained preemption is important for both, as the arrival of pe-
riodical tasks may not adhere to fixed intervals due to unavoidable
uncertainty or jitter in the input preprocessing [42], which makes
the static scheduling unable to stably guarantee their timeliness.

1In addition, the execution of blocks in the same GPU stream always follows FIFO,
and the running of blocks in different GPU streams but with the same priority can be
unordered, which is scheduled by the GPU driver to maximize GPU throughput.

This uncertainty can be more severe for non-periodical tasks. On
the other hand, the new preemption solution should also be back-
ward compatible with existing preemption enabling real-time tasks
to preempt best-effort tasks. We find that two stream priorities are
actually sufficient, and we will detail our design of Pantheon to
achieve this goal in §3.

2) Insights from CPU preemption. Even if we had such a pre-
emption solution, the performance will suffer if its efficiency is low
since it processes DNN tasks. In light of this, we draw inspiration
from the preemption on CPUs. Preemption is mature on CPUs,
which divides tasks into small chunks in time (time slicing) so that
the CPU can switch between different tasks for multitasking [58].
Since CPUs are opted for flexibility, the underlying hardware and
operating system support lightweight context switching, i.e., CPU
preemption only requires saving the task context from dozens of
registers (e.g., 32 registers on ARM64 [3]) to memory.

Following the same principle, we can also slice the DNN into
chunks, hoping for fine-grained cross-DNN preemption in time. A
chunk is different from a thread block and is typically larger than it.
However, GPU involves massively parallel processing, which pro-
duces massive intermediate results, e.g., more than ten thousands
GPU registers [51]. Thus, DNNs cannot be sliced into chunks arbi-
trarily. Otherwise, excessive intermediate results will be saved and
restored, which will notably slow down context switching and thus
increase the latency of DNN inference.2 Pantheon will carefully
address this issue, which adopts the principle of CPU preemption
and caters for the unique DNN characteristics.

3 SYSTEM DESIGN
Figure 2 shows the Pantheon design that works between the deep
learning framework and the applications.

1) Online module. This module is the core component for enabling
preemptive DNN inference. It includes our proposed (i) preemptive
runtime framework, which consists of a dedicated worker, memory
manager, runtime queue, etc., as well as (ii) core preemptive task
scheduling algorithm (§3.1). The internal workflow of the runtime

2Taking GoogLeNet as an example, the intermediate results between chunks are
54.1 MB on average if sliced uniformly (see Figure 6), which cause a delay of about 0.88
ms when moving intermediate results from the cache to the memory during context
switches on a Jetson device. Since the deadline of real-time tasks in mEdge applications
is usually at the millisecond level, this delay cannot ignored and should be reduced,
e.g., it can be reduced to approximately 0.37 ms based on our slicing design in §3.2.1.

MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan Lixiang Han, Zimu Zhou, and Zhenjiang Li

framework (0○– 6○) will be detailed in Figure 3. The runtime con-
nects high-priority GPU streams to enable preemption between dif-
ferent real-time tasks. Consistent with existing work, low-priority
streams are reserved for best-effort tasks. This online module can
be installed as an intermediary layer between applications and the
GPU backend without requiring modifications to its deep learning
framework and the underlying GPU hardware and driver.

2) Offline module. This module contains two necessary (iii) pre-
processing of the DNN to support preemption (§3.2), which is a
one-time effort when the DNN is registered in the system.

The application may have its internal controls to obtain better
quality of service (QoS), such as skipping certain non-keyframe
processing. Since Pantheon aims to provide a general-purpose pre-
emptive DNN inference service for upper-layer applications, we
design it as a middleware between the application and the device
backend. If an application requires QoS control, it will be performed
at the application layer and this decision will not be deferred to
Pantheon. Therefore, we consider all the input tasks to Pantheon
should be performed. Below we introduce the detailed design of
each module and use the following priority setting in Pantheon:

• Real-time tasks: tasks with shorter remaining time to their
deadline will have higher priority, which are allowed to
preempt each other with Pantheon.

• Best-effort tasks: they (e.g., in-car entertainment or as-
sistant services [8]) all have lower priority than real-time
tasks. Similar to existing work [16], they are handled in low-
priority GPU streams following FIFO.

3.1 Online Preemptive Design
We first describe the runtime architecture to enable the preemption
of DNN tasks in §3.1.1 and then introduce the core preemptive task
scheduling algorithm in §3.1.2.

3.1.1 Preemption runtime. Figure 3 illustrates the runtime preemp-
tion architecture proposed in Pantheon.

1) Principle and design. Once the runtime dispatches a DNN
to GPU streams, it enters the standard GPU inter-stream scheduling
routine and we lose further control. Therefore, we should complete
the entire preemption logic in the runtime.

Our main idea of achieving preemption is to timely refresh (sort)
all DNN chunks in the runtime queue in order of priority from high
to low, where all chunks of a DNN have the priority of that DNN
task. Then the next DNN chunk to run will always be from the task
with the highest priority. Specially, similar to time slicing in CPU
preemption [58], we also slice each DNN into chunks. Meanwhile,
we add early exits in each DNN to generate multiple model variants
in the registration stage of the model and 0○ store them in a pool
of variants (see Figure 3). How to achieve good DNN slicing and
variant generation for preemption will be introduced in §3.2. With
Pantheon, DNNs to be executed first 1○ enter the runtime queue.
The scheduler then 2○ refreshes the runtime queue by sorting the
tasks and 3○ selecting the suitable variants (based on the algorithm
in §3.1.2). Once the GPU has free computing resources, the worker
4○ fetches the next chunk in the queue and 5○ collaborates with the
memorymanager to 6○ dispatch the chunk to the device backend for
execution. If the new DNN has the highest priority, it will be placed

Head

DNN AppsReal-Time DNN Tasks

Memory
manager

Worker

Scheduler

P
o

o
l o

f
V

ar
ia

n
ts⓪

 R
e

gi
st

ra
ti

o
n

④
 Fe

tch

① Enter

GPU Hardware

High-priority
streams

⑥ Dispatch

Q
u

eu
e

Chunk

SMs

DL Framework
&

② Refresh② Refresh

snapshot

update

③

⑤

Figure 3: The preemption runtime in Pantheon.

at the queue head, which is equivalent to interrupting the DNN
task that was previously at the head, thereby achieving preemption.
The chunk-wise dispatching ensures that a lower-priority DNN
task can be interrupted in the middle of its execution.

In Figure 3, after the first chunk of the (pink) DNN is dispatched
for execution, another (skyblue) DNN enters the queue of a higher
priority. After scheduling, its chunks will be placed at the queue
head to run first, which interrupts the execution of the (pink) DNN
task. Overall, the runtime works as follows. All real-time DNN tasks
first enter the runtime queue. The worker always dispatches the
first chunk of the DNN in the head of the queue for execution when
GPU has available computing resources, and the memory manager
saves the state of preempted tasks, i.e., the generated intermediate
inference results from the executed chunks. Whenever a new DNN
task enters the queue, the scheduler is triggered to refresh the queue
based on the priorities of tasks. However, to ensure the correct
operation of the runtime, we need to further address a task order
inconsistency issue.

2) Task order inconsistency issue.When a new DNN enters
the runtime, it is pushed to the end of the queue, and the scheduler
is triggered to update the order of existing tasks. To this end, the
scheduler takes a snapshot of the current task order and computes
a new order. However, before the scheduling is completed, it is
possible that the ongoing chunk in GPU is finished and the next
chunk (denoted as𝑢) of the current head task needs to be dispatched.
However, since chunk 𝑢 is in the snapshot, after the scheduler
returns the new order, chunk 𝑢 is still included. Because this chunk
has been dispatched, its state data will be released after execution
to conserve memory, and an attempt to run it again will result in a
system error. We address this issue from two aspects.

• First, the scheduler needs to update the task order very
quickly to minimize the chance that such chunks (e.g., chunk
𝑢) occur, which will be introduced below.

• Second, we further introduce a vector <. . . , 𝑓 𝑗𝑛𝑖 , . . . > in the
memorymanager, where 𝑓 𝑗𝑛𝑖 a pointer pointing to the first un-
dispatched chunk 𝑗 of each existing DNN 𝑛𝑖 , based on which
the worker can also skip the chunks dispatched already as a
remedy for this problem.

The above two designs are indispensable. If we only had the
vector, the overall scheduling would be very slow, which could lead
to frequent device timeout errors. However, only adopting a faster

Pantheon: Preemptible Multi-DNN Inference on Mobile Edge GPUs MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan

(b)

0 2 4

of Chucks

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

(a)

 Sort

argmin(Δa1, Δa2 ,Δa3) = 2

DNN
Tasks

d3 = 10 msd2 = 30 msd1 = 20 ms

n2 n3n1

n3

n3

20 Time (ms)3010

n3

argmin(Δa1, Δa2 ,Δa3) = 1

n1 n2

...

n1

...

n2

n1 n2

...

...

Figure 4: (a) CDF of task order inconsistency occurs. (b) Il-
lustration of the preemptive scheduling execution.

algorithm does not completely avoid the task order inconsistency
issue. Fortunately, due to the efficiency design, our scheduling algo-
rithm (in §3.1.2) can be finished in the 𝜇s level, and the inconsistent
task order does not occur frequently during execution. Throughout
all our evaluation in §5, Figure 4(a) shows that in only 24.51% of
the cases, at most one chunk suffers from the inconsistent order
issue, which can be corrected by our remedy mechanism easily.

3.1.2 Preemptive scheduling algorithm. We then introduce the sched-
uling algorithm design used by the scheduler in the runtime. To
determine the order to execute tasks with deadlines, the earliest-
deadline-first policy has been extensively studied in the real-time
system domain and proven that it can derive the optimal order of
task execution when preemption is allowed and a feasible sched-
ule exists [43]. However, for DNN tasks, their complexity is much
heavier and the deadlines are quite tight [42]. Merely adjusting the
execution order may not be feasible in practice, which could still
result in a high deadline miss rate [42].

1) Observation and formulation. Although DNN tasks are
complex, recent work has identified the potential to slim down
DNN models by generating smaller variants that slightly affect
accuracy but greatly reduce running latency [11, 59]. In Pantheon,
we exploit this opportunity by jointly determining 1) the order of
each task in the queue and 2) the appropriate variant with a smaller
size for each DNN.

To this end, for each DNN 𝑛𝑖 , we preprocess it to generate multi-
ple (𝐾) smaller variants {𝑛 𝑗

𝑖
}𝐾
𝑗=0, where 𝑛

0
𝑖
is the original DNN and

the size of 𝑛 𝑗
𝑖
decreases as 𝑗 increases. Generating these variants is

non-trivial due to a unique issue from preemption. How Pantheon
generates them will be introduced in §3.2.2. We first assume that
these variants are available.

Given all the variants {𝑛 𝑗
𝑖
}𝐾
𝑗=0 of each DNN 𝑛𝑖 , their accuracy

{𝑎(𝑛 𝑗
𝑖
)}𝐾
𝑗=0 can be profiled in advanced [34]. We then define two

decision variables C and V , where C records the order of each
DNN 𝑛𝑖 to execute, andV specifies the variant 𝑛 𝑗

𝑖
to select for each

DNN 𝑛𝑖 in C, to achieve:

max
{C,V}

∑
𝑛𝑖 ∈C

𝑎(𝑛 𝑗
𝑖
); 𝑠 .𝑡 . (𝑖) 𝑛 𝑗

𝑖
∈ V, (𝑖𝑖) 𝑟𝑖 ≤ 𝑑𝑖 , (1)

where the objective is to select the appropriate variant 𝑛 𝑗
𝑖
for each

DNN task 𝑛𝑖 according to the first constraint (i) to maximize the
overall accuracy (Since Pantheon is designed to provide a general
preemptive service and perform all input tasks, we use this overall
accuracy as the optimization objective), and the second constraint

(ii) to ensure that the execution time 𝑟𝑖 of the remaining part of
each DNN task 𝑛𝑖 is within the deadline 𝑑𝑖 of DNN task 𝑛𝑖 .

2) Large search-space issue.However, it is difficult to solve the
optimization efficiently because a joint consideration of the execu-
tion order and the variant version largely increases the search space.
Specially, the problem’s time complexity in Eq. (1) isO(𝑁 !

∏𝑁
𝑖=1 𝐾𝑖),

where𝑁 and𝐾𝑖 are the number of DNNs and the number of variants
per DNN, respectively. Our experiment finds that directly solving
Eq. (1) is very slow and will cause system timeout errors.

3) Solution. Our idea in solving this problem is to first assume
that all tasks are feasible for scheduling and adopt the earliest-
deadline-first strategy [43] to obtain a preliminary execution order.
If there is indeed some task that will miss the deadline in this order,
then we select this DNN and/or other DNNs preceding it to switch
to a smaller variant so that it can catch up with the deadline.

Therefore, selecting suitable DNN variants essentially converts
this problem into a feasible problem in traditional real-time systems,
and the earliest-deadline-first strategy further guarantees the effec-
tiveness of the execution order. This way we can still consider both
decision variables in Eq. (1) (i.e., the execution order and variant of
DNN tasks), but effectively decouple their dependency to speed up
the answer search, which trades some optimality for the latency
performance to make the scheduling tractable and practical.

With this solution, DNN tasks are first sorted based on deadline
from closet to furthest, and we then scan these sorted tasks starting
from the head. For each DNN 𝑛𝑖 of order 𝑐𝑖 , we can compute its
finishing time 𝑟𝑖 below:

𝑟𝑖 =

{
𝑡 (𝑙𝑖 , 𝑐𝑖), when 𝑖 = 1,
𝑟𝑖−1 + 𝑡 (𝑙𝑖 , 𝑟𝑖), otherwise,

(2)

where 𝑙𝑖 is the index to the beginning of the remaining part of
DNN 𝑛𝑖 that is not executed yet due to preemption, and 𝑡 (𝑙𝑖 , 𝑐𝑖)
is execution time of 𝑛𝑖 starting from 𝑙𝑖 . Our scheduling algorithm
then proceeds as follows.

Step-1): For the first task (when 𝑖 = 1), 𝑟𝑖 is the time to execute
its remaining part, while for other tasks, 𝑟𝑖 also adds the execution
time of all the tasks in front.

Step-2): During calculating each 𝑟𝑖 in Step-1), if a DNN 𝑛𝑘 cannot
be finished before deadline, among all tasks before 𝑛𝑘 and 𝑛𝑘 itself
(from 𝑐1 to 𝑐𝑘), we select one task whose next smaller variant has
the least accuracy drop, and use such variant for this DNN task,
which can make 𝑛𝑘 start earlier.

Step-3): After the above update, the scheduler computes Eq. (2)
for 𝑛𝑘 again. If its deadline can be met, the scheduler proceeds for
the following tasks. If its deadline still cannot be met, the scheduler
repeats Step-2) to replace one more task by its next smaller variant
until the deadline is met. If all DNNs from 𝑐1 to 𝑐𝑘 already use their
smallest variants but 𝑛𝑘 still misses its deadline, it means that 𝑛𝑘
is not schedulable anyway, and the scheduler skips it and follow
Step-2) and Step-3) to process the next DNN task.3

Figure 4(b) shows an example. Tasks are first sorted by deadline.
The scheduler then scans them from left to right, calculates the
finishing time 𝑟𝑖 of each task, and finds that 𝑛2 is the first task

3After a task is processed and can meet the deadline already, it may be adjusted
again due to subsequent tasks. Since only smaller variants will be used, tasks that
already meet the deadline will not become overdue again.

MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan Lixiang Han, Zimu Zhou, and Zhenjiang Li

(a)

Node Critical node

(b)

C
o

n
v

B
N

R
e

Lu

C
o

n
v

Scan

......

S1 S2S2'
A merged chunk

Figure 5: (a) Slice the DNN between critical nodes. (b) Merge
computation-expensive and lightweight layers.

to miss its deadline. Among 𝑛3, 𝑛1 and 𝑛2, since 𝑛2 has the least
accuracy drop when changing it to its next smaller variant, the
scheduler selects 𝑛2 to change. After the changing, although 𝑛2 can
be completed earlier, it still exceeds the deadline. The scheduler
therefore proceeds to select the next taskwhose next smaller variant
causes the least accuracy drop, e.g., 𝑛3. By changing 𝑛3 to the next
smaller variant, 𝑛2 can start earlier. The scheduler finds that 𝑛2
can meet its deadline at this time, and its processing ends. The
scheduler will then handle subsequent tasks similarly.

With this algorithm design, the search complexity can be reduced
to O(𝑁𝑙𝑜𝑔𝑁 + ∑𝑁

𝑖=1 𝐾𝑖). Our evaluation in §5.5 shows that each
scheduling takes about 46–219 𝜇s only.

3.2 Offline Preprocessing Design
The offline module of Pantheon contains two preprocessing opera-
tions, including 1) the DNN slicing to ensure timely chunk-wise in-
terruption and minimize the overhead of context switching (§3.2.1),
and 2) the generation of DNN variants required by our scheduling
algorithm (§3.2.2).

3.2.1 DNN slicing for preemption. As aforementioned, if DNNs
are not issued in chunks, once an entire DNN is dispatched into
the GPU stream, it enters the standard GPU processing routine
and our runtime loses the control to perform preemption further.
Therefore, slicing DNN into chunks and performing chunk-wise
interruptions ensure timely and fine-grained preemption. To slice
DNNs for Pantheon, the primary consideration is to minimize the
amount of intermediate data to store for the preempted chunks.

1) Design for slicing. DNN can be represented as a directed
acyclic graph (DAG) [23]. Each DNN layer corresponds to a node in
the graph, and the edges are constructed based on the connectivity
between the layers. There are many paths from the start node (the
first layer) to the end node (the last layer) in the DAG. Meanwhile,
there exist many nodes through which all paths pass from the start
node to the end node, and we define such nodes as critical nodes.
As all paths are aggregated into the critical nodes, if the DNN is
sliced at such nodes, the amount of intermediate data to store is
small, i.e., the intermediate data from just one node, such as S1 and
S2 in Figure 5(a). Otherwise, the intermediate data from multiple
nodes need to be stored, e.g., S2’ in Figure 5(a). This is helpful for
most DNNs with branching structures. Therefore, we define the
edges between two adjacent critical nodes as slicing points and use
depth-first search to identify all slicing points. Then for each slicing
point, we perform slicing to obtain a series of chunks for the DNN.

2) Enhancing execution efficiency. The slicing mechanism
above considers only the storage overhead, but we find that it

0 50 100 150
Memory (MB)

0.0
0.2
0.4
0.6
0.8
1.0

C
D

F

(a)

Ours
Uniform

VGG11 VGG13 VGG16 VGG19
0

5

10

15

La
te

nc
y

(m
s)

(b)

 6.20 6.63
 9.27

12.26

 6.78 7.67
10.74

13.88

Merged Unmerged

Figure 6: (a) Memory consumption using uniform and our
slicing on branched DNNs e.g., GoogLeNet. (b) Execution
speedup for chain-structure DNNs by merging.

usually separates the computation-expensive layers (e.g., convolu-
tion or fully-connected layers) with the lightweight layers (e.g.,
batch-normalization or activation layers) into different chunks
for chain-structured DNNs, e.g., the VGG series. However, deep
learning frameworks often optimize execution efficiency by fusing
computation-expensive with lightweight layers [47], e.g., PyTorch
uses it for DAG optimization. Therefore, to exploit this optimization,
we traverse all the chunks after DNN slicing. For any computation-
expensive chunk 𝑎, the following chunks will be merged into 𝑎 if
they are lightweight chunks, as shown in Figure 5(b), which con-
tinues until the next computation-expensive chunk is encountered.
We currently integrate this common fusion strategy into our slicing
design, but it is not limited to this strategy. If more strategies are
known in the future, we can integrate their fusion logic into our
DAG optimization design and adjust accordingly.

The slicing and merging described above is a one-time effort
that occurs when a pretrained DNN is registered to the system.
Figure 6(a) shows that compared to the uniform division, our slic-
ing can reduce the memory consumption per chunk by 60.7% on
average for GoogLeNet. The layer merging mechanism can further
improve the execution efficiency by 10.3% on average for various
VGG models in Figure 6(b).

3.2.2 Generation of DNN variants. If a DNN is preempted, one
unique challenge posed by preemption is that its remaining part
may not be completed before the deadline after resuming. Existing
work [33, 42, 46] suggests preparing multiple smaller variants of
each DNN, e.g., via compression [19, 28, 42]. But if so, we would
need to run a new variant from scratch every time. In this way, even
if we run a very small variant, it may still fail to complete when the
deadline is tight or the model accuracy will be low. Thus, we need to
consider how the intermediate result of the previous variant (before
preemption) can be reused by the new variant without running the
new variant from scratch, which is called nest redundancy (§1).

1) Observation. We find that the early exit mechanism [24, 34,
61] is well-suited for generating DNN variants when preemption is
enabled, which inserts additional exits (e.g., fully connected layers)
into the DNN. Each exit can provide the same output as the original
model exit, so we can choose to skip the rest of the model from any
exit to end the model execution early. It is equivalent to running a
smaller variant of this DNN, which reduces the execution latency.

With this mechanism, for each DNN task, we only need to main-
tain its original model with a set of early exits. By selecting different
exits, we equivalently obtain different variants of this model. Thus,
the intermediate results of the preempted chunk can be used to
complete inference from any later exits after resuming execution

Pantheon: Preemptible Multi-DNN Inference on Mobile Edge GPUs MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan

(a)
C

h
u

n
k

1

C
h

u
n

k
2

C
h

u
n

k
3

C
h

u
n

k
4

C
h

u
n

k
5

Ex
it

Ex
it

 1

Ex
it

 2

Ex
it

 3

Ex
it

 4

m + 2 = 6 original exit
0 4 8 12

Delay (ms)

80

85

90

95

100

A
cc

u
ra

cy
 (

%
)

(b)

Removed

Pareto

Figure 7: (a) Potential locations (𝑚 = 4) of adding early exits.
(b) Pareto frontier for the accuracy and delay.

by exploiting the nested redundancy. For example, in Figure 7(a),
before preemption, the model aims to use the original exit, but
its execution is preempted after the execution of “Chunk 2”. After
resuming, the intermediate results from “Chunk 2” can be further
processed by “Chunk 3”, even another variant is scheduled to use,
e.g., using “Exit 3 or 4”. However, each exit also incurs additional
memory overhead and achieves different accuracy. We should care-
fully plan where and how many exits to insert to achieve a good
balance between overhead and accuracy.

2) Placement of early exits. If the DNN has𝑚 +2 chunks after
slicing, in principle, we can insert an exit after each of the first𝑚
chunks, that is,𝑚 candidate locations to add early exits.4 Therefore,
we can initially add an early exit to each candidate location and
then determine which exits should be preserved. The structure of
each exit is set to be the same as the original exit of this DNN, but
we can add one or two convolution and pooling layers to adjust
their dimensions when added to the DNN. We then train these𝑚
exits by freezing the original DNN parameters and profile:

• the accuracy (𝑎 𝑗) and the execution delay (𝑡 𝑗),

when using each exit 𝑗 after training. Then we define a decision
variable 𝒑 = (𝑝1, · · · , 𝑝𝑚+1), where each 𝑝 𝑗 ∈ {0, 1} indicates
whether the 𝑗-th exit should be preserved. The subscript up to𝑚+1
means the original DNN exit is allowed to remove. We consider the
following aspects to optimize 𝒑.

i) Accuracy. Given a placement strategy 𝒑, 𝑎𝑚+1 is the accuracy
by using the original model exit and 𝑎 𝑗 is the accuracy by using
each remaining exit 𝑗 , 1 ≤ 𝑗 ≤ 𝑚. So the maximum accuracy drop
caused by early exits is Δ𝑎𝑐𝑐 (𝒑) = 𝑎𝑚+1 − min({𝑎 𝑗 |𝑝 𝑗 = 1}). We
introduce the first constraint:

𝑪𝒂𝒄𝒄 : Δ𝑎𝑐𝑐 (𝒑) ≤ 𝛼, (3)

where 𝛼 represents the maximum accuracy drop allowed.
ii) Pareto efficiency. Given a set of model variants, the general

trend is that a larger variant has a larger delay but higher accuracy.
However, we observe that it is possible for a larger variant (with
larger delay) to be less accurate than another smaller variant. So
such large variants can be replaced by small ones, and we aim
to further rule out these anomalous variants. To this end, we can
plot the accuracy-delay pairs of each exit, and their upper envelop
forms a Pareto frontier of the delay and accuracy, as shown in
Figure 7(b). Any points falling within (below) the Pareto frontier
can be excluded, since for each of such points, we can find another

4The last chunk is the original exit and the second last is the layer connects to
the original exit. We do not need to add extra exits to them.

point on the frontier that achieves a similar accuracy but with a
shorter delay. We thus have the second constraint:

𝑪𝒑𝒂𝒓 : { 𝑗 |𝑝 𝑗 = 1} ⊆ 𝑃𝐹, (4)

where 𝑃𝐹 = { 𝑗 |∀𝑘 ≠ 𝑗, 𝑡 𝑗 < 𝑡𝑘 ∨ 𝑎 𝑗 ≥ 𝑎𝑘 } is the Pareto frontier
formed by the accuracy and execution delay. This constraint en-
sures that only exits along the Pareto frontier are selected, thus
maintaining the relationship in which larger variants have longer
delays but higher accuracy.

iii) Memory. Under placement policy 𝒑 for early exits, the total
size of all model variants is the sum of each chunk and preserved
early exits. Therefore, we have 𝑀𝑒𝑚(𝒑) =

∑𝑚′
𝑖=1 𝑠𝑐𝑖 +

∑
𝑗 ∈𝒑 𝑠𝑒 𝑗 ,

where 𝑚′ = max({ 𝑗 |𝑝 𝑗 = 1}) is the number of chunks, and 𝑠𝑐𝑖
and 𝑠𝑒 𝑗 are the sizes of chunk 𝑖 and exit 𝑗 , respectively. Hence, to
control the overall memory cost of all model variants, we define
the third constraint on memory below:

𝑪𝒎𝒆𝒎 : 𝑀𝑒𝑚(𝒑) ≤ 𝛽, (5)

where 𝛽 is the maximum overall size allowed for the DNN.
iv) Objective. A preempted DNN may need to be executed again

close to its deadline. Thus, the variants we generate should provide
the flexibility to allow the remaining execution to be completed as
quickly as possible. Considering this unique requirement due to
preemption, we can measure each chunk’s execution delay 𝑡 ′

𝑗
to

its nearest exit in advance, and minimize the average 𝑡 ′
𝑗
across all

chunks when determining 𝒑, which helps minimize the deadline
miss rate of DNN tasks. Therefore, we have the following objective:

min
𝒑

1
𝑚′

∑𝑚′

𝑗=1
𝑡 ′𝑗 , (6)

subjected to 𝑪𝒂𝒄𝒄 , 𝑪𝒑𝒂𝒓 and 𝑪𝒎𝒆𝒎 three constraints.

3.2.3 Summary of offline preprocessing. When each (pretrained)
DNN task is registered in Pantheon, it is first sliced into chunks.
Then, we add an early exit after to each chunk (except the last two
chunks) and train them with the original DNN parameters frozen
by minimizing the loss below:

L = {L0 (𝑦 𝑗 , 𝑦) |∀𝑗 ∈ [1,𝑚]}, (7)

where L0 is the original loss function of the DNN. After this train-
ing, we solve Eq. (6) subjected to Eqs. (3)–(5) to obtain the placement
strategy 𝒑 and only keep each exit 𝑗 , whose 𝑝 𝑗 = 1. These𝑚∗ pre-
served exits essentially form𝑚∗ variants for this DNNmodel, which
are stored in the DNN variant pool to be used by the preemptive
scheduling algorithm.

Note that model slicing and variant generation are both one-time
effort when each DNN is registered in the system.

4 IMPLEMENTATION
Hardware. We develop Pantheon on NVIDIA Jetson Xavier NX
equipped with a 384-core Volta GPU to evaluate its performance.
In addition, we also deploy Pantheon on Jetson Nano of a 128-core
Maxwell GPU to examine its performance on a lower-end device
and a small autonomous car equipped with a Jetson Xavier NX, as
shown in Figure 8, to perform a field case study of smart driving.
Software. We develop the offline module of Pantheon, responsible
for slicing each DNN and adding early exits, using Python 3.8 and

MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan Lixiang Han, Zimu Zhou, and Zhenjiang Li

Application Task Type Dataset DNN Model Deadline (ms) Number of Exits Accuracy (%)

Smart traffic Traffic light detection Indoor smart traffic [40] SSDLite [56] 20 ms 4 98.20
Traffic sign classification GTSRB [22] MobileNetv2 [56] 31 ms 8 97.75

Service robot

Face Detection FDDB [27] SSDLite [56] 20 ms 2 87.02
Age Classification Adience [10] ResNet18 [21] 28 ms 2 71.67
Gender Classification Adience [10] VGG16 [57] 31 ms 4 83.74
Emotion Recognition FER [15] ResNet50 [21] 31 ms 4 69.17

UAV ground station
Wildfire Detection Wildfire Smoke [55] SSDLite [56] 20 ms 1 91.41
Wildlife Identification Oregon Wildlife [48] GoogLeNet [60] 31 ms 2 87.45
Scene Recognition Scene-15 [12] ResNet34 [21] 31 ms 2 81.80

Table 1: Details of the nine real-time DNN tasks used for evaluation.

Camera

Jetson NX

Training
Desktop

Figure 8: Devices used for the evaluation.

PyTorch. After the offline preprocessing, each DNN is converted
from PyTorch format to TorchScript format and stored in the DNN
pool of the online runtime. For efficient execution, we implement
the online runtime and the scheduling algorithm using C++ and
LibTorch, i.e., the C++ front-end of PyTorch. The scheduler and
worker of our runtime run in separate threads, both having access
to the runtime queue protected by a Mutex. The scheduler runs
the scheduling algorithm once a new task enters the queue. The
worker keeps dispatching DNN chunks in the runtime queue to the
underlying deep learning framework for execution. The memory
manager provides APIs for adding new input and returning results
to upper-layer applications, as well as guidance for context switch-
ing to the worker. The entire runtime is developed as a middleware
between the deep learning framework and applications without
necessitating modification to the framework and GPU driver.
Application tasks. In the experiments, nine DNN tasks (Table 1)
from three applications are used to evaluate Pantheon:

1) Smart traffic: it involves 4 tasks, including 1) two traffic light
detection using two SSDLites [56] and 2) two traffic sign classifica-
tion using two MobileNetv2s [56] from the video frames captured
by different cameras on vehicle [42].

2) Service robot: it involves 4 tasks, including 1) a face detection
using SSDLite [56], 2) an age classification using ResNet34 [21],
3) a gender classification using VGG16 [57], and 4) an emotion
recognition using ResNet50 [21], which enable a robot to better
interact with different users.

3) UAV ground station: it involves 3 tasks, including 1) a wild-
fire detection using SSDLite [56], 2) an animal identification using
GoogLeNet [60], and 3) a scene recognition using ResNet18 [21]
for monitoring the outdoor environment [52].

When we generate DNN variants (offline) for each application,
the parameter 𝛼 of accuracy constraint 𝑪𝒂𝒄𝒄 is set to 1% for smart
traffic and robot. For UAV ground station, we find that 1% is too
tight, which makes DNN tasks unschedulable. and we set it to 2% for
this application. The parameter 𝛽 of memory constraint 𝑪𝒎𝒆𝒎 is

set to 120% of the original model size. For each application, the total
sizes of their DNNs are 20.4, 246.7 and 75.3 MB, which are increased
to 23.9, 280.4 and 90.9 MB respectively after adding exits. In three
applications, each task is released at 30 frames per sec and the jitter
of releasing each task is within ±1 ms. The deadline for each task
is set to 33 ms minus the pre-processing and post-processing time
it requires [42]. Additionally, we run an AlexNet as the best-effort
task in each application.

5 EVALUATION
1) Methods. We compare Pantheon with the following methods:

Rate-monotonic scheduling (RMS): it assigns higher priority
to the task with a shorter execution duration, a typical scheduling
algorithm in the real-time system domain [32].

Deadline-monotonic scheduling (DMS): it assigns the prior-
ity for tasks based on their closeness to deadline, another popular
scheduling algorithm in real-time systems [66].

RTm-DL: the state-of-the-art DNN task scheduling on mEdge
GPUs [42]. It adopts the Multi-Objective Evolutionary Algorithm
to derive the global optimal scheduling strategy for priority assign-
ment and model scaling with the assistance of a pre-trained random
forest to predict the deadline miss rate for each scheduling strategy.

While continuously scaling down a model reduces model size
and execution latency, it can also affect model accuracy. RTm-DL
considers this accuracy constraint, and we use the same accuracy
constraint as Pantheon as described above for a fair comparison
in the evaluation. Furthermore, the operating frequency of GPU is
fixed at the highest level for all methods throughout the evaluation.
2) Performance Metrics. Two main metrics are used to quantify
the performance of each method. Before describing them, we clarify
one concept used in both metrics:

• Job: when DNN tasks (Table 1) are periodically released to
run, we denote the instance of each task as a job.

Deadlinemiss rate (DMR): this is an important metric to quan-
tify the scheduling performance for real-time tasks with dead-
lines [42], which is computed as the ratio of the number of jobs
(task instances) that miss deadlines and the total number of jobs
executed during the evaluation.

Model accuracy: since different DNN models have different
accuracies, we compute the relative accuracy of each DNN for clear
illustration, which is defined as the ratio between the accuracy
achieved by its variant and the accuracy achieved by the original
model in Table 1. In addition, the accuracy of one job is counted as
zero if it misses its deadline.

Pantheon: Preemptible Multi-DNN Inference on Mobile Edge GPUs MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan

Traffic Robot UAV
 0
25
50
75

100

D
M

R
 (%

)

(a)

41.6

61.2 58.163.9
74.5 76.2

 2.4

30.4 31.8

0.4 0.8 1.1

RMS DMS RT-mDL Pantheon

Traffic Robot UAV
0

25
50
75

100

A
cc

ur
ac

y
(%

)

(b)

58.4

38.6 41.936.0
25.5 23.8

96.6

69.4 67.8

98.8 98.4 99.0

RMS DMS RT-mDL Pantheon

0 15 30
Preempted (%)

U
A

V
R

obot
Traffic

(c)

Figure 9: (a) DMR and (b) accuracy
achieved by eachmethod. (c) Ratio of the
preempted jobs over the total number of
jobs executed.

0 15 30 45 60 75 90
10

20

30

C
o

m
p

le
ti

o
n

Ti
m

e
 (

m
s)

(a)

Pantheon Deadline

0 15 30 45 60 75 90

Time (s)

10

20

30

C
o

m
p

le
ti

o
n

Ti
m

e
 (

m
s)

(b)

RT-mDL Deadline

0 15 30 45 60 75 90
10

20

30

C
o

m
p

le
ti

o
n

Ti
m

e
 (

m
s)

(a)

Pantheon Deadline

0 15 30 45 60 75 90

Time (s)

10

20

30

C
o

m
p

le
ti

o
n

Ti
m

e
 (

m
s)

(b)

RT-mDL Deadline

Fac + Gen Fac + Gen + Age
Fac + Gen

+ Age + Emo

Figure 10: Completion time of “Fac” task
achieved by (a) Pantheon and (b) RT-
mDLunder different numbers of concur-
rent tasks.

2 3 4
0

25
50
75

100
125

A
cc

ur
ac

y
(%

)

(a)

Pantheon RT-mDL

2 3 4
Number of tasks

0

25

50

75

100

G
PU

U
lti

liz
at

io
n

(%
)

(b)

Pantheon RT-mDL

Figure 11: (a) Accuracy of “Fac” task
and (b) GPU utilization achieved by Pan-
theon andRT-mDLunder different num-
bers of tasks in Figure 10.

5.1 Overall Performance
We first examine the overall performance of each method.
Performance. Figure 9 shows the deadline miss rate (DMR) and
accuracy achieved by each method.

Deadline miss rate. From Figure 9(a), we can see that for concur-
rent DNN tasks, the classical real-time scheduling methods RMS
and DMS become much less effective, leading to high deadline miss
rates. RT-mDL can perform model scaling and execution schedul-
ing to better accommodate multiple DNN tasks and significantly
improve the deadline miss rate compared with RMS and DMS. How-
ever, due to its non-preemptive nature, RT-mDL can be affected by
workload dynamics, which in turn could compromise the prede-
fined schedule and result in missed deadlines. In contrast, Pantheon
leverages preemption and can further reduce deadline miss rate to
0.39–1.10% in three applications, outperforming RMS, DMS, and
RT-mDL by 92.51–98.98%, respectively.

Accuracy. As real-time task output that misses the deadline be-
comes invalid [66], the accuracy of a job is counted as zero if it
misses the deadline. Thus, the accuracy of RMS and DMS is rel-
atively low in Figure 9(b) due to their high deadline miss rates.
RT-mDL significantly surpasses RMS and DMS in accuracy, while
Pantheon can achieve even higher accuracy than RT-mDL in all
three applications. Overall, Pantheon improves the accuracy by
69.1–154.8%, 174.7–315.5% and 2.2–46.0% compared to RMS, DMS,
and RT-mDL, respectively.
Occurrence of preemption. To further delve into the perfor-
mance gains of Pantheon, we count how often the preemption
occurs in Figure 9(c). In the traffic application, the workload of DNN
tasks is relatively lower than other two applications, and about 12%
jobs need to be preempted, which already leads to substantial per-
formance gains achieved by Pantheon than other methods. As the
need of preemption further increases, more performance gains are
obtained in Figure 9, indicating the efficacy of the Pantheon design.
Performance under different tasks. In this experiment, we fur-
ther compare the system performance over time when we gradually
add DNN tasks. Due to the page limitation, we mainly compare
Pantheon with the state-of-the-art RT-mDL.

Deadline miss rate. Initially, only face detection (“Fac”) and gen-
der classification (“Gen”) tasks in the robot application are running.

Figure 10 shows the completion time of each “Fac” job and hori-
zontal line is the deadline. When the completion time is lower than
deadline, this job is finished on time. Both methods can catch up the
deadline well, but the completion time of Pantheon is more stable.

When the task of age classification (“Age”) is further added, RT-
mDL starts to experience frequent deadline misses, while Pantheon
maintains small and stable completion times. When the emotion
classification (“Emo”) task is finally added, Pantheon can select
an appropriate model variant to ensure good compliance with the
deadline. However, many jobs in RT-mDL miss their deadlines. In
the last stage, the plot of RT-mDL appears sparser than that of
Pantheon, because, for each job, if it already misses its deadline as
soon as it starts running, we ignore it without execution (executing
such job affects the execution of subsequent jobs). Many jobs of
RT-mDL miss deadlines due to this reason, which are thus excluded
in the figure and results in the sparse plot.

Accuracy. In Figure 11(a), we show the accuracy of “Fac” achieved
by two methods under each setting in Figure 10. Pantheon performs
consistent well, while the accuracy of RT-mDL drops when DMR is
high in the last two settings.

GPU utilization. In Figure 11(b), we show the GPU utilization for
two methods. In general, they achieve similar utilization in each set-
ting, e.g., 50.85–78.50% by Pantheon and 46.10–80.05% by RT-mDL.
Figure 10–11 suggest that while consuming similar computation
power, effective preemption can further ensure the timeliness of
concurrent DNN tasks.

5.2 Ablation Study
Next, we conduct an ablation study to evaluate the effectiveness of
two main designs proposed in Pantheon. To this end, we develop
two intermediate versions of Pantheon:

• Pantheon-w/o-ee: it disables the capability to switch model
variants once DNN execution begins. In other words, after a
model is resumed after preemption, this version still uses the
previous model variant for execution, which has a higher
chance to miss deadline.

• Pantheon-w/o-ee-pr: it further disables the chunk-level
preemption capability. The scheduling algorithm still sorts
tasks based on their priorities to provide amodel-wise (rather

MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan Lixiang Han, Zimu Zhou, and Zhenjiang Li

0 15 30 45 60
DMR (%)

Traffic

Robot

UAV

(a)

Pantheon Pantheon-wo-ee Pantheon-wo-ee-pr

0 25 50 75 100
Accuracy (%)

Traffic

Robot

UAV

(b)

Figure 12: Ablation study for (a) DMR
and (b) accuracy achieved by different
versions of Pantheon in the three appli-
cations.

15 17 19 21 23 25

0.0

0.5

1.0

1.5

D
M

R
 (%

)

(a)0.40 0.59 0.43 0.31
0.63 0.75

0.43 0.59 0.55 0.57 0.65

15 17 19 21 23 25
Best-effort workload (job/s)

0
25
50
75

100

A
cc

ur
ac

y
(%

)

(b)

98.8 98.6 98.7 98.9 98.5 98.4 98.8 98.6 98.6 98.6 98.5

Figure 13: (a) Deadline miss rate and
(b) accuracy of real-time DNN tasks
achieved by Pantheon when the best-
effort task workload changes.

2 3 4
0.0

1.0

2.0

D
M

R
 (%

)

(a)

0.06 0.11

0.97

0.06 0.22

0.78

Jetson Nano Jetson Xavier NX

2 3 4
Number of real-time DNN tasks

90

95

100

A
cc

ur
ac

y
(%

)

(b)

99.95 99.88 98.80
99.95 98.98 98.40

Jetson Nano Jetson Xavier NX

Figure 14: (a) Deadline miss rate and (b)
accuracy of Pantheon under different
numbers of concurrent real-time tasks
on Nano and Xavier NX.

than chunk-wise) preemption.

We conduct the ablation study for all three applications. Fig-
ure 12 shows that without flexible variant adaptation, the deadline
miss rate of Pantheon-w/o-ee is increased by 14–65× and the ac-
curacy drops by 10.29–27.48%. Without chunk-level preemption,
Pantheon-w/o-ee-pr further increases 44–134× deadline miss rate
and degrades 33.12–52.07% accuracy. Figure 12 indicates the efficacy
of our technical design for Pantheon in this paper.

5.3 Micro-benchmarks
In this subsection, we conduct micro-benchmark experiments to
evaluate Pantheon under different settings.
Workload of best-effort task. To examine the impact of best-
effort task, we run all four real-time DNN tasks in the robot ap-
plication and change the best-effort workload of AlexNet from 15
jobs/sec to 25 jobs/sec. Since best-effort workloads are processed
by low-priority GPU streams, computing resources are prioritized
for real-time tasks. Thus, as shown in Figure 13(a), under different
best-effort workloads, the deadline miss rates of all real-time tasks
are stable, with the average and variance of 0.54% and 0.02% respec-
tively. Figure 13(b) shows that their accuracy is also stable, with
the average and variance being 98.64% and 0.02% respectively.
Different devices. In this experiment, we further deploy Pantheon
on Jetson Nano, which has lower computing power than Xavier
NX. To achieve similar workloads on the Nano as on Xavier NX,
we scale the release rate and deadline of each task based on the
difference in computing power between the two devices, following
the approach in existing work [42]. Figure 14 shows the results
when we vary the number of real-time DNN tasks in the robot
application. For reference, we also plot the performance on Xavier
NX. We can see that Pantheon achieves a deadline miss rate of
0.06–0.97% and an accuracy of 98.80–99.95% on Nano, which is
similar to what is achieved on Xavier NX, which is 0.06–0.78% and
98.80–99.95% for deadline miss rate and accuracy, respectively.
Non-periodic task arrivals. In practice, the arrival of some DNN
tasks may follow non-periodic patterns. For instance, the object de-
tection task periodically works, but the number of objects detected
varies. As a result, the number of jobs launched to process the de-
tected objects is not fixed, leading to a non-periodical arrival rate.
In this experiment, we aim to examine the Pantheon performance

under such a setting. Another importance of this experiment is that
burst job arrivals may occur under non-periodic arrival patterns.

In the three applications investigated before, each of them has the
detection DNN task. In this experiment, we run the detection task
periodically and change the arrival time of other tasks to be non-
periodic, which follows a Poisson distribution so that the arrival
rate can be quantified. Figure 15(a) plots the Poisson distributions
used in this experiment with the expected values of 𝜆 from 10 to 25.
Figure 15(b) shows that Pantheon achieves small deadline miss rate
(0.20–0.66%) under moderate non-periodic arrival rates (e.g., 𝜆 = 10
or 15). The rate increases to 1.14% on average when 𝜆 increased to
20. Under a high non-periodic arrival rate (𝜆 = 25), where the peak
number of concurrent jobs in the runtime queue is 9, Pantheon
can still achieve a relatively small deadline miss rate, e.g., 2.11% on
average. Figure 15(c) shows the accuracy achieved under different
𝜆 values, where the accuracy is 97.27–99.61%, 96.22–99.54% and
96.22–99.65% in three applications, respectively. These results show
that Pantheon performs well even when burst task arrivals occur.

5.4 Case Study
We further conduct a case study for a field evaluation of Pantheon.
We build a 2m × 3m indoor smart traffic test field, as illustrated in
Figure 16(a–b). The autonomous car is equipped with a camera and
a Jeston Xavier NX. In the field, we set up six traffic lights distributed
at the four corners and in the middle of the long side, and toy cars
are randomly distributed along the road. In this experiment, our
car aims to detect traffic-related objects and recognize traffic signs
and scenes at the same time. Specifically, the car runs an SSDLite
to detect five types of objects, including the other cars and the
four statuses of the traffic lights (red, yellow, green and unlit) from
the captured video frames from the camera on the car, as shown
in Figure 16(c). Before the experiment, the car orbits the field to
collect eight two-minute videos, which are labeled manually to
train SSDLite. The video frame rate is 30. Since the car has only
one camera, similar to the setting in existing work [42], we preload
video frames to the car for other two tasks (traffic sign and scene
recognition), and the car concurrently runs a MobileNetv2 and a
ResNet34 for them respectively during testing. In the case study,
the deadlines of SSDLite, MobileNetv2 and ResNet34 are 18, 30 and
30 ms respectively, which are set as the release period minus the
time required for pre-processing and post-processing.

Pantheon: Preemptible Multi-DNN Inference on Mobile Edge GPUs MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan

0 5 10 15
Probability (%)

0

10

20

30

40

50

W
or

kl
oa

d
(jo

b/
s)

(a)
=10
=15
=20
=25

10 15 20 25
0
1
2
3
4

D
M

R
 (%

)

(b)

0.27
0.66

1.27

2.53

0.41 0.58

1.43

3.46

0.13 0.20
0.73

0.35

Traffic Robot UAV

10 15 20 25
80

90

100

A
cc

ur
ac

y
(%

)

(c)
99.6 99.2 98.5 97.3

99.5 99.2 98.4
96.2

99.7 99.6 99.1
96.2

Traffic Robot UAV

Figure 15: (a) Four Poisson distributions.
(b) DMR and (b) accuracy of Pantheon
with the task arrival rates following
these distributions.

2
 m

3 m

Traffic Light Car

Figure 16: (a) Layout of testing field.
(b) Testbed setup. (c) Examples of video
frames captured. (d) DMR and accuracy
achieved by Pantheon.

0 10 20 30 40 50 60
 2.0

 4.0

 6.0

 8.0

(a)
Traffic light detection

0 10 20 30 40 50 60
 2.0

 4.0

 6.0

 8.0

Tr
ai

ni
ng

 L
os

s

(b)
Face detection

0 10 20 30 40
Time (min)

 4.0

 8.0

12.0

16.0

(c)
Wildfire detection

Figure 17: Training time of early exits
in Pantheon on (a) traffic light detection,
(b) face detection, and (c) wildfire detec-
tion three different tasks.

Figure 16(d) shows that Pantheon achieves a good deadline miss
rate of 2.15–4.91% on three tasks (3.59% on average), which is
slightly higher than that in §5.1 since we set shorter deadlines to ac-
commodate stronger delay jitter in video pre- and post-processing
in the real system. Meanwhile, Pantheon also achieves good accu-
racy (94.4–97.2%) on three tasks.

5.5 System Overhead
Finally, we examine the overhead of Pantheon, including the train-
ing time of early exits, the latency of the scheduling algorithm and
power consumption in this subsection.
Training time. In Pantheon, we add early exits to each pre-trained
DNN model and then train all early exits for each model. Figure 17
shows the training loss versus the training time of early exits for
three models used in the above evaluation. Since each model con-
tains multiple early exits, we plot the average training loss in the
figure. From the results we can see that the training of early exits
converges within tens of minutes, such as 40–60 minutes for the
three models in Figure 17. Through our experiments, we also find
that this training time is in the same order of magnitude as the
pre-training time of the models themselves, e.g., the pre-training
of these three models was completed in 25–35 minutes. Further
considering that training early exits is a one-time effort for each
model, such time overhead is not significant in practice.
Latency of the scheduling algorithm. Since this algorithm is
frequently launched to provide the preemption logic, its execution
latency should be small. Otherwise, it will affect the correctness of
the task order and consequently the effectiveness of preemption.
Overall, our algorithm design is efficient, which can complete the
scheduling in the micro-second level. When the number of jobs
to schedule is small (e.g., ≤ 4), the scheduling takes 46.17 𝜇s to
complete on average. When the number of jobs is moderate (e.g.,
≤ 8), the latency is 130.81 𝜇s on average. When the number of jobs
is large (e.g., up to 11), which is not common in practice, the latency
is still small, e.g., 218.86 𝜇s on average. For clarity, we show them
separately in Figure 18(a).
Power consumption. As the preemptive scheduling introduces
additional computations, we further investigate the device power
consumption when Pantheon is used, which is measured using the
INA3221 power monitor on Xavier NX. Since RT-mDL does not

/

Idle IdleRunning Multiple DNN Tasks

46.17 130.81
218.86

Figure 18: Systemoverhead. (a) CDF of latency in completing
the scheduling algorithm once, and (b) power consumption.

introduce additional online computations for scheduling, we also
measure its power consumption as a baseline. In Figure 18(b), the
device power consumption is about 4.01 W in the idle state. During
the execution of DNN tasks, the power consumption of RT-mDL
is mainly for DNN execution, which is 9.73 W on average. Due to
the preemptive scheduling, the power consumption of Pantheon
is increased by 4.3% only from 9.73 W to 10.15 W, which is much
smaller than the energy used for the DNN execution.

6 DISCUSSION
Model profiling. In the offline preprocessing phase of Pantheon,
the performance of each model variant (achieved with different
early exits in Pantheon) is profiled, and the profiled results are
used to place early exits. Given actual inputs and device runtime
states, the performance of a model variant (e.g., accuracy) may differ
from the profiled one. However, profiling is still widely adopted in
mobile edge systems and application designs, such as [5, 11, 19] and
Pantheon in this paper, as profiling often only intends to gain a prior
knowledge of the expected performance of models and provide a
practical reference for runtime operations. For example, Pantheon
uses it as a reference to select the appropriate model variant during
preemptive scheduling in this paper.
Additional memory access. Preemptive scheduling inevitably
incurs additional memory accesses, which may slow down task
inference. If we load model variants into memory from external

MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan Lixiang Han, Zimu Zhou, and Zhenjiang Li

storage via onlinememory allocation every time, this may introduce
long delays in model inference that occurs on every context switch.
Therefore, we prioritize latency by exchanging some memory cost
(overseen by the memory constraint in early exit placement opti-
mization) to avoid this delay. On the other hand, when preemption
occurs, the intermediate results of the current task should be stored
from the cache to the memory so that execution of the task can be
resumed later. This delay cannot be completely avoided. Hence, we
propose an efficient model slicing design to reduce it.
Future plans. In this paper, we mainly use CNN as an example
to introduce how to apply nested redundancy to achieve efficient
preemptive GPU scheduling. Specifically, unlike previous studies
that explored compressed models for fixed-deadline inference [19,
28, 42], we exploit nested redundancy under a new optimization
framework with early exits to enable the model to reuse the results
before preemption and adjust the remaining sliced chunks to meet
the deadline while maintaining good accuracy. Since early exit is
mainly for CNN tasks, as an important future work of this paper,
we will explore extending the Pantheon design to other types of
deep learning tasks, such as transformers. In addition, we will also
investigate the performance of Pantheon on more types of devices
and deep learning frameworks in the future.

7 RELATEDWORKS
DNN task scheduling on GPUs. Scheduling methods [4, 20, 36]
in real-time systems can be applied to DNN scheduling on mEdge
GPUs. However, they often fall short in efficiency as they do not
consider the unique characteristics of DNN tasks and GPU architec-
tures. Consequently, recent research on mEdge devices [35] exploit
the multi-stream optimization for better parallelism between mul-
tiple DNNs [70], which still does not guarantee the timeliness of
multitasking. However, multi-stream optimization is orthogonal to
preemptive scheduling. It may further improve GPU throughput on
top of preemption, but will significantly increase the profiling over-
head (i.e., covering all combinations of task parallelism and different
levels of stream allocation even for the same set of tasks running
in parallel) and the search space of online preemptive scheduling.
RT-mDL [42] compresses DNNs based on their deadlines, but as
a non-preemptive solution, workload dynamics could affect the
execution delay of each task, which in turn may compromise the
predefined schedule and result in missed deadlines.

For efficient task processing, mobile edge GPUs offer limited
GPU stream priorities (§2). Deep learning frameworks aggregate
them into high and low two priorities and follow a FIFO strategy to
dispatch DNN tasks to GPU, using the priority specified by the de-
veloper. Although NVIDIA claims to support preemption from the
Pascal architecture, there is no publicly available information or us-
able programming interface [16]. Therefore, recent work leverages
the two-tier priorities to enable coarse-grained GPU-preemptive
DNN inferences, allowing real-time tasks (given a high priority)
to preempt best-effort tasks (given a low priority). For instance,
DART [66] proposes a pipeline-based scheduling architecture, and
another method [16] further improves preemption speed. However,
these existing methods, which only support two-tier preemption,
struggle to accommodate the trend of more concurrent real-time
DNN tasks in emerging applications, which have diverse and strict

latency requirements. These tasks should also be preempted among
each other according to their respective deadlines.
DNN task scheduling on other platforms. Traditional mobile
devices and desktop computers have not specifically provide GPU
preemption. On traditional mobiles, their GPUs are only compara-
ble to CPUs in handling DNNs [62]. Hence, recent mobile designs
primarily focus on coordinating DNN processing between proces-
sors [14, 17, 29, 30] or coexisting with other tasks like video render-
ing [69]. In contrast, mobile edge GPUs need to handle DNN tasks
independently and require a dedicated solution for multi-DNN infer-
ence. Desktops, which rarely encounter concurrent DNNs, mainly
follow FIFO as well [54]. High-performance platforms, which often
have multiple GPUs to handle complex concurrent DNN tasks [37],
typically focus on allocating a dedicated or multiple GPUs per
model [7, 37]. However, on mEdge devices, it is mainly multiple
DNNs competing for one GPU.
DNN model processing. To leverage the structural and redun-
dant characteristics of DNNs, existing studies introduce various
methods to process DNNs before deployment to facilitate improved
scheduling and resource allocation. One typical method is DNN
slicing [18, 19, 32, 41, 66], which divides a DNN into small chunks
with the aim of assigning chunks to different processors based
on their affinity [32, 41, 66], reducing communication cost in of-
floading [18, 25], maintaining display stability [69], etc. Moreover,
the redundancy of DNNs is utilized by existing work [32, 42] to
adapt DNN workloads for varying deadlines. Our design is inspired
by them, but we propose new designs for reducing the latency of
context switching and adjusting the remaining DNN structure at
runtime to meet shortened deadlines due to preemption.

8 CONCLUSION
This paper introduces Pantheon, a new preemption design for
multi-DNN inference in mobile edge GPUs. The design of Pan-
theon reveals that the two-tier GPU stream prioritization available
on mobile edge devices is adequate to enable such services. These
two tiers of priorities are primarily used to distinguish between
real-time and best-effort tasks. Preemption between real-time tasks,
whose priorities change over time, can be further achieved through
software design. This includes an online runtime with compre-
hensive preemption logic and innovative scheduling, and offline
DNN processing. Pantheon does not need to modify deep learning
frameworks and GPU drivers, making it easy to deploy. Extensive
experiments show significant improvements in system performance
compared to state-of-the-art methods.

ACKNOWLEDGEMENT
We sincerely thank anonymous reviewers for their helpful review
comments to improve the quality of this paper. This work is sup-
ported by the GRF grant from Research Grants Council of Hong
Kong (CityU 11202623) and the APRC grant from City University
of Hong Kong (Project No. 9610633). Zimu Zhou and Zhenjiang Li
are the corresponding authors.

APPENDIX
The research artifacts accompanying this paper are available via
https://doi.org/10.5281/zenodo.11094058.

https://doi.org/10.5281/zenodo.11094058

Pantheon: Preemptible Multi-DNN Inference on Mobile Edge GPUs MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan

REFERENCES
[1] Tensorflow. https://www.tensorflow.org/, 2023.
[2] Tanya Amert, Nathan Otterness, Ming Yang, James H Anderson, and F Donelson

Smith. Gpu scheduling on the nvidia tx2: Hidden details revealed. In Proc. of
IEEE RTSS, 2017.

[3] ARM. Arm® cortex®-a series programmer’s guide for armv8-a.
https://developer.arm.com/documentation/den0024/a, 2015.

[4] Neil C Audsley, Alan Burns, and Andy J Wellings. Deadline monotonic
scheduling theory and application. Control Engineering Practice, 1993.

[5] Soroush Bateni and Cong Liu. Neuos: A latency-predictable multi-dimensional
optimization framework for dnn-driven autonomous systems. In Proc. of
USENIX ATC, 2020.

[6] Jiani Cao, Chengdong Lin, Yang Liu, and Zhenjiang Li. Gaze tracking on any
surface with your phone. In Proc. of ACM SenSys, 2022.

[7] Daniel Crankshaw, Xin Wang, Guilio Zhou, Michael J Franklin, Joseph E
Gonzalez, and Ion Stoica. Clipper: A low-latency online prediction serving
system. In Proc. of USENIX USDI, 2017.

[8] Xianzhong Ding, Wan Du, and Alberto Cerpa. Octopus: Deep reinforcement
learning for holistic smart building control. In Proc. of ACM BuildSys, 2019.

[9] Jonatan S Dyrstad and John Reidar Mathiassen. Grasping virtual fish: A step
towards robotic deep learning from demonstration in virtual reality. In Proc. of
IEEE ROBIO, 2017.

[10] Eran Eidinger, Roee Enbar, and Tal Hassner. Age and gender estimation of
unfiltered faces. IEEE Transactions on information forensics and security, 2014.

[11] Biyi Fang, Xiao Zeng, and Mi Zhang. Nestdnn: Resource-aware multi-tenant
on-device deep learning for continuous mobile vision. In Proc. of ACM MobiCom,
2018.

[12] Li Fei-Fei and Pietro Perona. A bayesian hierarchical model for learning natural
scene categories. In Proc. of IEEE CVPR, 2005.

[13] Ernestine Fu, David Hyde, Srinath Sibi, Mishel Johns, Martin Fischer, and David
Sirkin. Assessing the effects of failure alerts on transitions of control from
autonomous driving systems. In Proc. of IEEE IV, 2020.

[14] Petko Georgiev, Nicholas D Lane, Kiran K Rachuri, and Cecilia Mascolo. Leo:
Scheduling sensor inference algorithms across heterogeneous mobile processors
and network resources. In Proc. of ACM MobiCom, 2016.

[15] Ian J Goodfellow, Dumitru Erhan, Pierre Luc Carrier, Aaron Courville, Mehdi
Mirza, Ben Hamner, Will Cukierski, Yichuan Tang, David Thaler, Dong-Hyun
Lee, et al. Challenges in representation learning: A report on three machine
learning contests. In Proc. of ICONIP, 2013.

[16] Mingcong Han, Hanze Zhang, Rong Chen, and Haibo Chen. Microsecond-scale
preemption for concurrent GPU-accelerated DNN inferences. In Proc. of USENIX
OSDI, 2022.

[17] Myeonggyun Han and Woongki Baek. Herti: A reinforcement
learning-augmented system for efficient real-time inference on heterogeneous
embedded systems. In Proc. of IEEE PACT, 2021.

[18] Myeonggyun Han, Jihoon Hyun, Seongbeom Park, Jinsu Park, and Woongki
Baek. Mosaic: Heterogeneity-, communication-, and constraint-aware model
slicing and execution for accurate and efficient inference. In Proc. of IEEE PACT,
2019.

[19] Rui Han, Qinglong Zhang, Chi Harold Liu, Guoren Wang, Jian Tang, and Lydia Y
Chen. Legodnn: block-grained scaling of deep neural networks for mobile vision.
In Proc. of ACM MobiCom, 2021.

[20] Yifan Hao. Deep intelligence as a service: A real-time scheduling perspective. PhD
thesis, University of Illinois at Urbana-Champaign, 2019.

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual
learning for image recognition. In Proc. of IEEE CVPR, 2016.

[22] Sebastian Houben, Johannes Stallkamp, Jan Salmen, Marc Schlipsing, and
Christian Igel. Detection of traffic signs in real-world images: The German
Traffic Sign Detection Benchmark. In Proc. of IJCNN, 2013.

[23] Chuang Hu, Wei Bao, Dan Wang, and Fengming Liu. Dynamic adaptive dnn
surgery for inference acceleration on the edge. In Proc. of IEEE INFOCOM, 2019.

[24] Gao Huang, Danlu Chen, Tianhong Li, Felix Wu, Laurens Van Der Maaten, and
Kilian Q Weinberger. Multi-scale dense networks for resource efficient image
classification. In Proc. of ICLR, 2018.

[25] Kai Huang and Wei Gao. Real-time neural network inference on extremely weak
devices: agile offloading with explainable ai. In Proc. of ACM MobiCom, 2022.

[26] Modor Intelligence. Gpu market size & share analysis – growth trends &
forecasts (2023 - 2028). https://www.mordorintelligence.com/industry-
reports/graphics-processing-unit-market, 2023.

[27] Vidit Jain and Erik Learned-Miller. Fddb: A benchmark for face detection in
unconstrained settings. Technical Report UM-CS-2010-009, University of
Massachusetts, Amherst, 2010.

[28] Seunghyeok Jeon, Yonghun Choi, Yeonwoo Cho, and Hojung Cha. Harvnet:
Resource-optimized operation of multi-exit deep neural networks on energy
harvesting devices. In Proc. of ACM MobiSys, 2023.

[29] Joo Seong Jeong, Jingyu Lee, Donghyun Kim, Changmin Jeon, Changjin Jeong,
Youngki Lee, and Byung-Gon Chun. Band: coordinated multi-dnn inference on

heterogeneous mobile processors. In Proc. of ACM MobiSys, 2022.
[30] Fucheng Jia, Deyu Zhang, Ting Cao, Shiqi Jiang, Yunxin Liu, Ju Ren, and Yaoxue

Zhang. Codl: efficient cpu-gpu co-execution for deep learning inference on
mobile devices. In Proc. of ACM MobiSys, 2022.

[31] Shiqi Jiang, Zhiqi Lin, Yuanchun Li, Yuanchao Shu, and Yunxin Liu. Flexible
high-resolution object detection on edge devices with tunable latency. In Proc. of
ACM MobiCom, 2021.

[32] Woosung Kang, Kilho Lee, Jinkyu Lee, Insik Shin, and Hoon Sung Chwa.
Lalarand: Flexible layer-by-layer cpu/gpu scheduling for real-time dnn tasks. In
Proc. of IEEE RTSS, 2021.

[33] Nicholas D Lane, Sourav Bhattacharya, Petko Georgiev, Claudio Forlivesi, Lei
Jiao, Lorena Qendro, and Fahim Kawsar. Deepx: A software accelerator for
low-power deep learning inference on mobile devices. In Proc. of ACM/IEEE
IPSN, 2016.

[34] Stefanos Laskaridis, Stylianos I Venieris, Hyeji Kim, and Nicholas D Lane. Hapi:
Hardware-aware progressive inference. In Proc. of IEEE/ACM ICCAD, 2020.

[35] Jingyu Lee, Yunxin Liu, and Youngki Lee. Parallelfusion: towards maximum
utilization of mobile gpu for dnn inference. In Proc. of ACM EMDL, 2021.

[36] John Lehoczky, Lui Sha, and Yuqin Ding. The rate monotonic scheduling
algorithm: Exact characterization and average case behavior. In Proc. of IEEE
RTSS, 1989.

[37] Zhuohan Li, Lianmin Zheng, Yinmin Zhong, Vincent Liu, Ying Sheng, Xin Jin,
Yanping Huang, Zhifeng Chen, Hao Zhang, Joseph E Gonzalez, et al. Alpaserve:
Statistical multiplexing with model parallelism for deep learning serving. In
Proc. of USENIX OSDI, 2023.

[38] Chengdong Lin, Kun Wang, Zhenjiang Li, and Yu Pu. A workload-aware dvfs
robust to concurrent tasks for mobile devices. In Proc. of ACM MobiCom, 2023.

[39] Shih-Chieh Lin, Yunqi Zhang, Chang-Hong Hsu, Matt Skach, Md E Haque,
Lingjia Tang, and Jason Mars. The architectural implications of autonomous
driving: Constraints and acceleration. In Proc. of ACM ASPLOS, 2018.

[40] Neiwen Ling, Yuze He, Nan Guan, Heming Fu, and Guoliang Xing. An indoor
smart traffic dataset and data collection system: Dataset. In Proc. of ACM SenSys,
2022.

[41] Neiwen Ling, Xuan Huang, Zhihe Zhao, Nan Guan, Zhenyu Yan, and Guoliang
Xing. Blastnet: Exploiting duo-blocks for cross-processor real-time dnn
inference. In Proc. of ACM SenSys, 2022.

[42] Neiwen Ling, Kai Wang, Yuze He, Guoliang Xing, and Daqi Xie. Rt-mdl:
Supporting real-time mixed deep learning tasks on edge platforms. In Proc. of
ACM SenSys, 2021.

[43] Jane WS Liu et al. Real-time systems. Pearson Education India, 2006.
[44] Luyang Liu, Hongyu Li, and Marco Gruteser. Edge assisted real-time object

detection for mobile augmented reality. In Proc. of ACM MobiCom, 2019.
[45] Sicong Liu, Bin Guo, Ke Ma, Zhiwen Yu, and Junzhao Du. Adaspring:

Context-adaptive and runtime-evolutionary deep model compression for mobile
applications. Proceeding of the ACM on IMWUT, 2021.

[46] Sicong Liu, Yingyan Lin, Zimu Zhou, Kaiming Nan, Hui Liu, and Junzhao Du.
On-demand deep model compression for mobile devices: A usage-driven model
selection framework. In Proc. of ACM MobiSys, 2018.

[47] Szymon Migacz. Performance tuning guide – use onednn graph with torchscript
for inference.
https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html#use-onednn-
graph-with-torchscript-for-inference, 2023.

[48] David Molina. Oregon wildlife.
https://www.kaggle.com/datasets/virtualdvid/oregon-wildlife, 2018.

[49] NVIDIA. Cuda runtime api.
https://docs.nvidia.com/cuda/cuda-runtime-api/index.html, 2023.

[50] NVIDIA. Nvidia jetson.
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/,
2023.

[51] NVIDIA. Tuning cuda applications for volta.
https://docs.nvidia.com/cuda/volta-tuning-guide/index.html, 2023.

[52] Lucas Prado Osco, José Marcato Junior, Ana Paula Marques Ramos, Lúcio André
de Castro Jorge, Sarah Narges Fatholahi, Jonathan de Andrade Silva,
Edson Takashi Matsubara, Hemerson Pistori, Wesley Nunes Gonçalves, and
Jonathan Li. A review on deep learning in uav remote sensing. International
Journal of Applied Earth Observation and Geoinformation, 2021.

[53] Xiaomin Ouyang, Xian Shuai, Jiayu Zhou, Ivy Wang Shi, Zhiyuan Xie, Guoliang
Xing, and Jianwei Huang. Cosmo: contrastive fusion learning with small data
for multimodal human activity recognition. In Proc. of ACM MobiCom, 2022.

[54] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
et al. Pytorch: An imperative style, high-performance deep learning library.
Advances in neural information processing systems, 2019.

[55] roboflow. Wildfire smoke dataset.
https://public.roboflow.com/object-detection/wildfire-smoke, 2020.

[56] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and
Liang-Chieh Chen. Mobilenetv2: Inverted residuals and linear bottlenecks. In
Proc. of IEEE CVPR, 2018.

https://www.tensorflow.org/
https://developer.arm.com/documentation/den0024/a
https://www.mordorintelligence.com/industry-reports/graphics-processing-unit-market
https://www.mordorintelligence.com/industry-reports/graphics-processing-unit-market
https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html#use-onednn-graph-with-torchscript-for-inference
https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html#use-onednn-graph-with-torchscript-for-inference
https://www.kaggle.com/datasets/virtualdvid/oregon-wildlife
https://docs.nvidia.com/cuda/cuda-runtime-api/index.html
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/
https://docs.nvidia.com/cuda/volta-tuning-guide/index.html
https://public.roboflow.com/object-detection/wildfire-smoke

MOBISYS ’24, June 3–7, 2024, Minato-ku, Tokyo, Japan Lixiang Han, Zimu Zhou, and Zhenjiang Li

[57] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for
large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

[58] William Stallings. Operating systems: internals and design principles. Prentice
Hall Press, 2011.

[59] Vivienne Sze, Yu-Hsin Chen, Tien-Ju Yang, and Joel S Emer. Efficient processing
of deep neural networks: A tutorial and survey. Proceedings of the IEEE, 2017.

[60] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
deeper with convolutions. In Proc. of IEEE CVPR, 2015.

[61] Surat Teerapittayanon, Bradley McDanel, and Hsiang-Tsung Kung. Branchynet:
Fast inference via early exiting from deep neural networks. In Proc. of IEEE ICPR,
2016.

[62] Manni Wang, Shaohua Ding, Ting Cao, Yunxin Liu, and Fengyuan Xu. Asymo:
scalable and efficient deep-learning inference on asymmetric mobile cpus. In
Proc. of ACM MobiCom, 2021.

[63] Yanwen Wang, Jiaxing Shen, and Yuanqing Zheng. Push the limit of acoustic
gesture recognition. In Proc. of IEEE INFOCOM, 2020.

[64] Zeyu Wang, Xiaoxi He, Zimu Zhou, Xu Wang, Qiang Ma, Xin Miao, Zhuo Liu,
Lothar Thiele, and Zheng Yang. Stitching weight-shared deep neural networks
for efficient multitask inference on gpu. In Proc. of IEEE SECON, 2022.

[65] Wikipedia. Preemption (computing).
https://en.wikipedia.org/wiki/Preemption_(computing), 2023.

[66] Yecheng Xiang and Hyoseung Kim. Pipelined data-parallel cpu/gpu scheduling
for multi-dnn real-time inference. In Proc. of IEEE RTSS, 2019.

[67] Huatao Xu, Pengfei Zhou, Rui Tan, Mo Li, and Guobin Shen. Limu-bert:
Unleashing the potential of unlabeled data for imu sensing applications. In
Proc. of ACM SenSys, 2021.

[68] Juheon Yi, Sunghyun Choi, and Youngki Lee. Eagleeye: Wearable camera-based
person identification in crowded urban spaces. In Proc. of ACM MobiCom, 2020.

[69] Juheon Yi and Youngki Lee. Heimdall: mobile gpu coordination platform for
augmented reality applications. In Proc. of ACM MobiCom, 2020.

[70] Zhihe Zhao, Neiwen Ling, Nan Guan, and Guoliang Xing. Miriam: Exploiting
elastic kernels for real-time multi-dnn inference on edge gpu. In Proc. of ACM
SenSys, 2023.

https://en.wikipedia.org/wiki/Preemption_(computing)

	Abstract
	1 Introduction
	2 Background and Motivation
	3 System Design
	3.1 Online Preemptive Design
	3.2 Offline Preprocessing Design

	4 Implementation
	5 Evaluation
	5.1 Overall Performance
	5.2 Ablation Study
	5.3 Micro-benchmarks
	5.4 Case Study
	5.5 System Overhead

	6 Discussion
	7 Related Works
	8 Conclusion
	References

