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Abstract

The recent availability of digital traces generated by cellphone calls has significantly

increased the scientific understanding of human mobility. Until now, however, based on low

time resolution measurements, previous works have ignored to study human mobility under

various time scales due to sparse and irregular calls, particularly in the era of mobile Inter-

net. In this paper, we introduced Mobile Flow Records, flow-level data access records of

online activity of smartphone users, to explore human mobility. Mobile Flow Records collect

high-resolution information of large populations. By exploiting this kind of data, we show the

models and statistics of human mobility at a large-scale (3,542,235 individuals) and finer-

granularity (7.5min). Next, we investigated statistical variations and biases of mobility mod-

els caused by different time scales (from 7.5min to 32h), and found that the time scale does

influence the mobility model, which indicates a deep coupling of human mobility and time.

We further show that mobility behaviors like transportation modes contribute to the diversity

of human mobility, by exploring several novel and refined features (e.g., motion speed, dura-

tion, and trajectory distance). Particularly, we point out that 2-hour sampling adopted in pre-

vious works is insufficient to study detailed motion behaviors. Our work not only offers a

macroscopic and microscopic view of spatial-temporal human mobility, but also applies pre-

viously unavailable features, both of which are beneficial to the studies on phenomena

driven by human mobility.

Introduction

People are curious about their movement patterns and have been diligently exploring the basic

laws behind their mobility for a long history. The study of human mobility plays an important

role in many subjects of science[1], such as physics, biology, anthropology, demography, soci-

ology, history, etc. Human mobility is composed of a large population of free-will and autono-

mous decision-making individuals; and it is also influenced by many unknown factors and

their interaction[1]. As a result, the characterization of human mobility is extremely difficult,

attracting many researchers engaged in the study of this area in the past decades.
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The effective measures of mobility of a large-scale population are absent for a long time. In

the early stage of study, based on the measurements of albatrosses, monkeys and marine preda-

tors, some researchers study the general pattern of animal mobility[2–4], which can be used as

an approximation of human mobility. A subsequent trend of research works utilizes indirect

measurements of human movement as their primary data. Typical examples include tracking

bank note circulation[5], monitoring taxi trajectory[6, 7], documenting public transit data[7],

and collecting user geo-tagged logins of online social networks[8]. Particularly, the study on

bank note circulation suggests that human trajectories are well modelled as a random walk

with fat-tailed displacement and waiting-time distribution, given that bank note dispersal is a

proxy for human movement[5]. All these tactful means, however, introduce self-insurmount-

able shortcomings of indirect measures, e.g., sampling bias, proxy complication, and the inter-

action of unknown factors.

In recent years, the availability of telecommunication big data capturing aspects of human

mobility has given a new empirically driven momentum to the subject. Cellphone data (specif-

ically, Calling Description Records, CDRs) is collected by mobile operators for billing purpose

originally. CDR includes calling records, as well as the time, location, duration, and other

information associated with each phone call. The use of CDR enables tracking individual

movements of a large population of mobile phone users, which made a milestone progress of

human mobility research. Making full utilization of these data has demonstrated its great

potentials to a broad range of novel applications, including crowd flow forecasting[9–11], taxi

demand prediction[12], public transportation planning[7, 13, 14], urban planning[15, 16],

etc., which are the basis to provide effective, real-time, and intelligent city management and

services. Existing studies show that human mobility can be described by a number of quantita-

tive characteristics, e.g. jump size and gyration radius, and it can be best modelled by Lévy

flight[17, 18] or Continuous-Time Random-Walk (CTRW)[19, 20] models, two classical and

well-studied modeling frameworks in the random-walk community[21]. However, those find-

ings are observed when sampling rate is low, which results in incomplete human movement.

Previous works intentionally select a specific group of users whose call frequency is greater

than 0.5 times per hour (a phone call in every 2 hours on average) within a certain time period,

which reluctantly filters out a vast majority of available participants being investigated[1, 22].

Even for those preserved users, 2-hour time span of consecutive location samples is too coarse-

grained and may omit individual movement lasting less than two hours, leading to underesti-

mated range of movement, inaccurate waiting-time estimation, and low rate of convergence of

statistics and model parameters. Recently, the extensive use of GPS enables researchers to

study human mobility at a finer granularity than before and some works try to reveal how tem-

poral resolution impacts the observations of human mobility by GPS[23, 24]. However, due to

privacy issues, GPS data sets usually contain a limited number of people and conclusions

based on GPS may be biased. Human mobility patterns of a large group of people at high time

resolution are still absent so far. Meanwhile we have no idea how time resolution influences

the statistical model of mobility of the crowd.

In the mobile Internet era, people’s online activities, like sending an instant message,

browsing websites, watching online videos, playing mobile games, even regular background

application data exchange and automatic update, has partly taken place of traditional phone

calls and become increasingly prevailing; thus providing much richer and denser Internet

access logs than CDR[25–27]. Mobile Flow Records (MFRs), system logs collected by mobile

operators, document such online activities of data cellular networks, including flow-level wire-

less-specific resource-usage information and the relation of traffic to individual subscriptions

and devices. Regarding to human mobility, MFR provides much higher time-resolved user

locations and captures more detailed motion behavior than CDR.

Understanding human mobility under multi-time scales
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In this study, we analyzed and modeled human mobility based on two data sets of MFR,

capturing about 3.5 × 106 users for 1 week and 1.4 × 106 users for 5 weeks respectively. Taking

advantage of high time-resolved records provided by MFR, we resampled from original data

sets to get data sets under different time scales (sampling interval ranging from 7.5min to

32hour). The results of our experiments indicate that the time scale does influence the fitting

parameters of mobility model, which indicates a deep coupling of human mobility and time.

Specifically, our findings suggest a decreasing trend of diffusion rates along with increasing

sampling intervals. Our results also clarify that time resolution may be an explanatory variable

for model inconsistency and variability in previous works[1, 21, 22, 24, 28, 29].

MFR provides fine-grained location information for large-scale populations, which enables

researchers to dig deeper into the human mobility. We believe that it will be an important

proxy to study human behaviors in the future. Despite the advantages, MFR also has some limi-

tations. For example, the spatial resolution of MFR is determined by the density of cell towers

and is still less accurate than that of GPS. The sampling of MFR is passive and nonuniform[25].

Results

Data sets and measures

We used two data sets of MFR to explore the mobility pattern of individuals. The first (D1)

consists of the mobility patterns recorded over one-week period for 3,542,235 anonymized

mobile phone users in Xi’an, a metropolitan locating in the west part of China. To make sure

that the obtained results were not affected by particular city-specific characteristics, we also

studied a data set (D2) that captured the locations of 1,387,448 mobile phone users over 5

weeks, in Shenyang, a major city in northeastern China. In both data sets, the spatial resolution

was determined by the local density of more than 6,062 cell towers for D1 and 1,548 cell towers

for D2, registering movement only when a user moved between areas serviced by different

towers. The average service area of each tower was about 1.68 km2 and 1.03 km2 for D1 and

D2, respectively. Fig 1 shows the mobility networks of two typical users deduced from MFR

data. See detailed information about MFR and datasets in S1 Table.

In addition, we used a CDR data set to compare the efficiency of MFR and CDR. The CDR

data set collects records of 572,707 users in Urumqi, another Chinese city for 1 month. Com-

pared with the CDR data set used in previous work[1], they share similar interevent time distri-

butions. This indicates that CDR data sets collected from different cities are likely to have

similar patterns. Therefore, although the CDR data set was not collected from the same city as

MFR, they are still comparable. Fig 2A shows the distribution of daily number of records N per

person and we found that MFR provided much more mobility information that CDR for most

people. To make a comparison of their spatial-temporal granularity, we studied the distribution

of interevent time ΔT and interevent distance ΔS, the time interval and distance between conse-

cutive communication records of the same user. For the MFR data set, the sample size of ΔT is

243,439,240 and that of ΔS is 25,541,472; for the CDR data set, the sample size ΔT is 4,810,118

and that of ΔS is 2,574,428. As is shown in Fig 2B and 2C, ΔT and ΔS of MFR and CDR followed

a ‘bursty’ pattern but P(ΔT) and P(ΔS) of MFR are significantly steeper than those of CDR. The

average time interval is 188 seconds for MFR and about 12 hours for CDR. Previous works only

kept users whose call frequency was larger than 0.5h-1 to ensure trajectory completeness[1, 22].

However, this process filters a large number of users and the 2-hour call interval is still large.

Since the numbers of users in these two data sets are different (3.5 million for MFR and 0.5

million for CDR), these may affect the results in Fig 2. To exclude the influence of data set size,

we down-sampled the two data sets of MFR and CDR to make them contain the same number

of individuals. Table 1 shows the results. The averages of these metrics are stable under

Understanding human mobility under multi-time scales

PLOS ONE | https://doi.org/10.1371/journal.pone.0207697 November 27, 2018 3 / 15

https://doi.org/10.1371/journal.pone.0207697


different sample sizes and are consistent with the corresponding averages in Fig 2. Therefore,

the current results are enough to show the differences between MFR and CDR. We can con-

clude that MFR is a better proxy with finer spatial and temporal granularity than CDR for

human movement and it enables us to explore human mobility under multi-time scales.

To understand mobility behaviors, we investigated several features (e.g., jump size, radius

of gyration, waiting time, speed, and transportation mode) and analyze their variation trend

under various time scales (sampling intervals ranging from 7.5-min to 32-hour). In the follow-

ing sections, we use “high sampling rates” and “small sampling intervals” to mean that the

locations of the individual are recorded frequently (usually sampling intervals are less than 30

Fig 1. Mobility networks of two typical users. The circles in the map denote the recorded locations of users based on MFR. The size of each

circle, as well as the associated percentage, expresses the weight of each location, which is determined by the waiting time at every location. A,

User 1’s trajectory presents regular weekday commute between his workplace and his home, and a weekend route to scenic spots. B, User 2’s

trajectory consists of 3 frequently visited locations: home, workplace, and entertainment, each of which is with different weights. The labels of

locations (e.g., home, workplace, entertainment, scenic spots) are speculated from city Point of Interests (POIs) information, time and

duration of stays, frequency of visits, and dates (holiday and what day of a week). Visualization of users’ trajectories can be queried from an

interactive website http://tns.thss.tsinghua.edu.cn/humanmobility.

https://doi.org/10.1371/journal.pone.0207697.g001
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https://doi.org/10.1371/journal.pone.0207697.g002
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minutes), while “low sampling rates” and “large sampling intervals” mean that the sampling

process is relatively less frequent (usually sampling intervals are larger than 2 hours).

Jump size under multi-time scales

We measured the jump size, the distance between user’s positions at consecutive data access

records, capturing more than 106 displacements for the D1 and D2 under each time scale

(except for 32hour-sampling having more than 105 samples). We re-sampled the raw MFRs

with the sampling intervals of δ� 7.5min, 15min, 30min, 1hour, 2hour, 4hour, 8hour, 16hour,

32hour. And the corresponding numbers of samples for every sampling interval are listed in

Table 2. We found that the distribution of jump size (Δr) over all users is well approximated by

a truncated power-law with exponential cut-off (denoted as TPL(β, κ) in Fig 3):

PðDrÞ / Dr� b exp �
Dr
k

� �

ð1Þ

with the fitting parameters, however, behaving differently at different time resolutions. Since

the results are consistent under all time scales, Fig 3 only shows the cases of δ� 7.5min, 30

min, 2hour, 8hour, 32hour (see other cases in S1 Fig). We further zoomed in for a closer look

at the tail distribution of measurements from 70%ile to 96%ile and found that they are best

modeled by power law distribution, shown in the insets of Fig 3B–3F, for time scales of δ�
7.5min, 30min, 2hour, 8hour, 32hour, respectively. This conclusion also holds for any subset

of tails, e.g., from 80% to 95%. It is worth mentioning that, for sufficiently large time scales, the

Table 2. Number of samples for each sampling interval.

Sampling interval δ Number of samples

7.5 minutes 7,567,233

15 minutes 8,258,692

30 minutes 7,006,878

1 hour 5,071,176

2 hours 3,498,286

4 hours 2,226,450

8 hours 1,347,365

16 hours 702,218

32 hours 508,482

The corresponding numbers of samples for every sampling interval.

https://doi.org/10.1371/journal.pone.0207697.t002

Table 1. Comparison of MRF(D1) and CDR at different sample sizes.

Sample Size 50,000 100,000 500,000

N CDR 3.39 3.37 3.42

MFR 468.23 468.96 473.81

ΔT (s) CDR 43166.71 43535.76 42765.44

MFR 187.35 187.65 187.27

ΔS (km) CDR 6.76 6.57 6.50

MFR 1.57 1.57 1.57

The averages of daily number of records N, interevent time ΔT, and interevent distance ΔS at different sample sizes.

These averages are stable under different sample sizes and are consistent with the corresponding averages in Fig 2.

https://doi.org/10.1371/journal.pone.0207697.t001
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frequency distribution of Δr collapses when Δr� 80km, which seems to be related to the scale

of urban areas. Note that the range of our data set covers both urban and rural areas of a city.

Our findings about Δr include two aspects. First, the mobility patterns, deriving from the

same datasets but with different time scales, are best described by various values of β, indicat-

ing that time scales (sampling rates) do influence mobility model. Second, the values of β
range from 2.16 to 1.80 when sampling intervals rise from 7.5 minutes to 32 hours. As β is a

metric of diffusion speed, human movement presents a certain extent of purposefulness when

δ< 2 hours, in accord with our intuition of a commuting trajectory with a destination. In con-

tract, when δ� 2 hours, the extent of purposefulness weakens. The overall trend of diffusion

speeds is decreasing along with time scales.

Radius of gyration

When studying human mobility, the radius of gyration (rg) is another important statistic that

indicates the characteristic distance travelled by a person during a period. We show the distri-

butions of rg under time scales ranging from 7.5min to 32hour (n = 369,539 samples) and

depict the results only for δ� 7.5min, 30min, 2hour, 8hour, 32hour in Fig 4A due to visual

clarity of figure. The results for intermediate time scales are consistent. To our surprise,

although time scales vary greatly, all of them are able to capture the tail distribution of rg
characteristically. One reason for this may be the sufficiently long observation period, 35 days

for D2. Regarding to user groups of different mobility modes, however, we hypothesized that

sampling rates have a notable impact on moving trajectory description, which is reflected in

the measurement of rg. And we tested it by measuring the time dependence of gyration radius

for users whose gyration radius would be considered small (rg(T)� 5km, n = 21,264 samples),

medium (rg(T)� 10km, n = 3,793 samples), and large (rg(T)� 15km, n = 255 samples) at the

end of our observation period. As shown in Fig 4B, 4C and 4D, we observed that 1), for the
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group of almost-static users, only sampling rates higher than 8-hour (considerably low sam-

pling rates) are able to accurately estimate rg; 2), for the group of moderately mobile users, dif-

ferent sampling rates begin to behave differently, and the lower the sampling rates, the more

underestimated rg; 3), for highly mobile users, the above-mentioned phenomenon emerges

earlier at around 200 hours and finally lower sampling rates result in significant deviation

from ground truth. The results from D1 (see S3 Fig) also verify our statement.

Another thing worth to mention is that, previous work[22, 28] concludes that the time

dependence of the average radius of gyration is better approximated by a logarithmic increase

in a large time scale (months). Our results show the detailed description of how rg increases in

the first few days, which is unlikely a logarithmic increase but a linear increase with different

fitting parameters. The linear increase lasts for about a week, indicating that for the majority,

the mobility patterns change a lot in the first week and gradually tend to stabilize. This means

that people’s behaviors are likely to be different on different days of a week and be similar at

the same time of different weeks. This conclusion is consistent with the fact that our life is basi-

cally in a one-week cycle. Due to the short duration of D1 (see S3 Fig), the process of how rg
converges is not complete. Thus, whether and how a city infects rg of its citizens needs further

research.
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Fig 4. Gyration radius of human mobility (D2, see S3 Fig for D1). A, The distribution of gyration radius rg under time scales δ� 7.5min, 30min, 2hour, 8hour,

32hour. We further divided all users into 3 groups according to their final gyration radius rg(T) during the whole observation period T. B-D, show the convergence

speeds of rg of different user group rg(T) = Rg ± 0.05Rg and Rg = 5km, 10km, 15km, respectively.

https://doi.org/10.1371/journal.pone.0207697.g004
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Time related statistics

We measured P(Δt), where the waiting time Δt is defined as the time a user spent at one loca-

tion. It is apparent that the higher time resolution, the more accurate waiting time measure-

ments. But we have no idea what sampling rate is sufficient to capture waiting time and how

sampling rates influence the measurements. One specific case is that, due to low sampling rate,

it is extremely difficult to document user’s waiting time using CDR data. We first show the

distribution of Δt under various sampling rates δmin (n = 11,323,385) and δ� 7.5min (n =

4,911,081), 30min (n = 2,695,818), 2hour (n = 1,501,153), 8hour (n = 849,327), and 32hour

(n = 404,393) in Fig 5A. Note that δmin is the highest sampling rate we can achieve via using all

time-stamped data (See the method part for details). There seems a threshold of sampling

interval of δ� 7.5min, under which the waiting time can be accurately captured and obeys a

power law distribution. In contrast, the waiting time measurements at larger sampling inter-

vals are meaningless due to unreasonable repeating patterns of distribution caused by coarse

sampling, shown in Fig 5A. Different from the previous result[21], the distribution of Δt fol-

lows a power-law model of P(Δt)*|Δt|-β with exponent β = 1.5708 ± 0.0004 (mean ± standard

deviation), rather than a power-law model with β = 1.8 ± 0.1 based on CDR or geo-tagged

signed up for a location-based service[21]. This inconsistency can be attributed to sampling

bias: the time unit used in previous work was one hour, which was too large to capture an

accurate duration of a stay at a specific location; thus, P(Δt) tends to be underestimated for

large Δt and overestimated for small Δt, leading to a larger exponent.

Owing to low-density sampling, most previous research works based on CDR did not study

a critical metric of motion, the moving speed, which is important not only for understanding

how human move, but also for a series of real-world applications, e.g., crowd flow prediction,

traffic control and engineering, public transportation planning, road planning, urban plan-

ning, etc. Based on MFR, we were able to characterize moving speed distribution for a large

population in an unprecedented granularity. The moving speed v is defined as v = Δr/τ, where

Δr and τ are the displacement and time of each motion, respectively.

We show the distribution of moving speed under time scales δ� 7.5min (n = 7,567,233),

30min (n = 7,006,878), 2hour (n = 3,498,286), 8hour (n = 1,347,365), and 32hour (n = 508,482)

in Fig 5B. We found that, as the highest sampling rate, 7.5-min sampling best reflects the speed

distribution we see in our real life; besides, the 30-min sampling yields approximate estima-

tion, except for overestimated frequency of low speed cases; 1-hour sampling performs mar-

ginally acceptably (not shown due to space limit in the figure). However, low sampling rates

(2-, 8-, 32-hour) fail to capture the moving speeds larger than around 10km/h (not a high

speed at all). Particularly, taking the 7.5-min sampling (blue line) as an example, it captures

human moving speeds ranging from 0-100km/h, which further can be used to indicate the

forms of urban transportation (e.g., walking, cycling, riding or driving), a unique characteristic

of human motion, rather than animals. From another aspect, for a high driving speed >60km/

h, 7.5-min sampling shows around 5.25% of people traveling are probably by car or public

transportation; in contrast, this portion slumps to a completely ignorable level of 10−6 (roughly

several individuals) if sampling at every 2 hours, which is unreasonable.

From our point of view, the reasons for phenomena are twofold. First, the displacement

length is likely to be shorter than the actual trajectory length and the larger the sampling inter-

val is, the more significant the difference is. Second, when sampling intervals are getting larger,

there may be more travels and stops between two adjacent samples and this can lead to a lower

average speed. Therefore, 2-hour sampling adopted in previous works is insufficient to study

some critical metrics of motion, including waiting time, traveling speed, and other time- or

speed-related quantitative features.
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To further uncover the relationship between the movement statistics and speed of motion,

we grouped people by their traveling speeds and investigated the characteristics of gyration

radius rg and route distance Δs for every group. The criteria of user classification according to

speed are as follows: 1, users whose mainly transportation mode is walking with a maximum

speed 0< vmax� 6km/h (n = 13,807); 2, users who move moderately fast with a maximum

speed 15 < vmax� 25km/h (n = 22,516), indicating a mixed transportation of walking, bicy-

cling, riding, or driving; 3, users who move adequately fast with a maximum speed 30 < vmax

� 60km/h (n = 38,473), indicating a transportation mode of riding or driving vehicles.

From Fig 5C, the average rg of such 3 groups of people are 1.41km, 3.15km and 5.44km,

respectively. The values of rg seem to be underestimated considering the speed. The reason is

that when computing rg, the waiting time at location i is used at the weight of the squaring of

the distance between location i and the center of mass. For most people, a few specific places

(e.g., home or working site) take up a large portion of their time and accordingly obtain more

weights in the computation of rg, while some faraway places have lower weight.

To overcome such shortcomings, we show the relationship between the route length and

speed, where the route length is the total distance of consecutive sightings along a route. As

shown in Fig 5D, the average route lengths during morning rush hour (7am to 10am) of 3

groups are 1.38km, 8.30km and 16.82km, suggesting that the commuting distances vary with

different transportation modes. Previous studies on large population mobility are either unable

to distinguish transportation modes or based on a single data source of a specific transporta-

tion mode. By exploring several novel features (e.g., motion speed, duration, and trajectory

distance) based on MFRs, we show that the mixture of transportation modes is another impor-

tant dimension contributing for the diversity of mobility behaviors.

Discussion

We have shown that mobility models, including model parameters and goodness of fit, are sig-

nificantly influenced by sampling rates. It suggests that previous works that modeled their

measurements by TPL with different values of βmay have no direct conflict of each other due

to different sampling rates. The fundamental reason for the differences is that observations

with one sampling rate are insufficient to fully describe human mobility. Besides, we have

found that the diffusion speeds show a downward trend when sampling intervals increase.

Although the values of β ranging from 2.16 to 1.80 comply with Lévy Flight model, the decreas-

ing trend of β implies purposeful human movement, contradicting with the random direction

selection assumption of Lévy Flight model[30]. All observations above indicate that one con-

stant model cannot explain human movement properly and a more appropriate one should

vary under different time scales. It is worth mentioning that, for the crowds of a city, the

mobility model is also impacted by the scale of urban areas of the city.

In addition to time scales, we have pointed out that movement statistics are highly relative

to moving speeds too. When people move at different speeds, the patterns of their mobility

present completely different characteristics. For example, we have found that in terms of com-

muting, higher speed usually means longer commuting distance and therefore people with

higher speeds usually have larger gyration radius. Since different speeds usually mean different

transportation modes, how the heterogeneity of transportation modes affect the observed

mobility patterns deserves extensive research.

By studying MFR, we explored human mobility patterns at a finer granularity. Moreover,

MFR enables us to find out which time scale is suitable for a particular measurement job.

When measuring the distribution of rg, sampling intervals are concerned with space range and

time duration. If the crowds are in a large area and the measurement duration is limited, a
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high sampling rate is necessary to ensure the effectiveness. When sampling rate cannot be

increased for either technical or non-technical reasons, the measurement should last long

enough to guarantee the convergence of rg. In order to explore the patterns of moving speed,

sampling intervals have to be less than 30 minutes. The typical sampling rate of CDR, 0.5h-1, is

widely adopted[1, 22] but insufficiently good to estimate the proportion of high speed accu-

rately. Therefore, data sources with finer granularity, like MFR and GPS, are required.

Methods

Data description

Every time when one mobile phone accesses the Internet, the records of cell tower ID, time-

stamp and other necessary information about the data traffic flow are collected by mobile

operators for billing and operational purposes. We call such records as mobile flow records. In

the mobile Internet era, online activities have replaced traditional phone calls and text mes-

sages to become the main usage of mobile phones. Therefore, MFRs offer a better proxy to

study human mobility than CDRs.

In our experiment, we used two anonymized MFR data sets, collected by a major cellular

carrier in two big cites of China, to analyze and model human mobility. The first set (D1) cap-

tured 3,542,235 anonymized cellphone users in Xi’an, a central Chinese city with an area of

10,108 km2 over one-week period. The second set (D2) contained the mobility pattern of

1,387,448 anonymized individuals in a 40 × 40 km urban area of Shenyang, a major city in

northeast China, recorded for 5 weeks. A typical MFR consists of a unique anonymized user

ID, a corresponding cell tower ID, a timestamp of the creation time, an APP ID, a device type

ID and other information about the uplink and downlink traffic (see S1 Table for detailed col-

umn description). For a device, the location of its connected cell tower is an effective approxi-

mation of its location and we reconstructed its trajectory based on the time-ordered list of cell

towers. Since the location of cell tower was considered as an approximated location of each

record, the spatial resolution was determined by the local density of cell towers. The quantity

of cell towers for the D1 set is 6,062 and for the D2 set is 1,548. The average service area of

each tower is about 1.68 km2 and 1.03 km2 for D1 and D2 respectively.

Re-sampling

To explore the mobility pattern of individuals under different time scales, re-sampling is nec-

essary to convert an original data set to another one under a lower sampling rate. In our exper-

iment, we implemented two kinds of re-sampling methods. At the beginning of both methods,

the time-ordered list of mobile records was sorted for each individual. In the first method,

starting from the first record, we kept one record if the time interval between it and the last

kept record is greater than or equal to the given interval δt and dropped one otherwise. By this

method, we could get a complete trajectory but under a lower sampling rate for each individ-

ual. The result of this method is denoted as δ� δt in the corresponding figure legend. This

method was used in the experiment when calculating gyration radius and waiting time distri-

bution of each trajectory. The second method only kept records if they were separated by an

interval δt ± 0.05 δt. Different from the first one, the second method could not retain the integ-

rity of each trajectory but it had the advantage that intervals between consecutive records were

similar (� δt). The result of the second method is denoted as δ� δt in the corresponding figure

legend. We used this method when calculating jump size, moving speed and route length of

each individual. In addition, the denotation δmin in legends means that the corresponding

characteristic was computed directly upon the original data set without any re-sampling.
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Distribution fitting

In our study, we applied the method of maximum likelihood to estimate parameters for the fit

to empirical data[31, 32]. Accurate parameter estimates can be derived by maximizing the like-

lihood functions. Particularly, we used the powerlaw Python package to conduct the fitting

[33]. The powerlaw package is a statistical software to analyze a variety of probability distribu-

tions, including basic power-law, truncated power-law with exponential cut-off and log-nor-

mal. It provides functions to fit observed data to a specific distribution. However, this tool

does not provide the information of standard deviations and confidence intervals. We derived

the 95% confidence intervals by the Fisher Information and implemented our distribution fit-

ting procedure based on the functions of the powerlaw package by Python.

Statistical tests

Given the power-law distribution observed in the data sets, it is important to test if the best fit

is statistically consistent with the corresponding data. The data sets in our study consist of mil-

lions of displacements and therefore traditional statistical tools, which are designed to deal

with limit data, are less important[1]. We took the statistical tools, Kolmogorov-Smirnov (KS)

test, to examine the goodness of the fit. By performing the KS test, we could determine whether

the empirical data comes from the best fits.

The KS statistics is an indicator that shows to what degree two distributions are the same.

Two kinds of KS statistics were used in our experiment to conduct the KS test. The first is the

standard KS statistics, denoted as KS, which is defined as:

KS ¼ maxðjF � PjÞ ð2Þ

where F and P are the cumulative distributions of the fit and data respectively. Since the stan-

dard KS statistics is not sensitive on the edges of the cumulative distribution, we introduced

the weighted KS statistics KSW, which is defined as:

KSW ¼ max
jF � Pj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pð1 � PÞ

p ð3Þ

In the test, the null hypothesis is that the empirically observed distributions come from its

best fitted distribution. Our general approach was to generate synthetic data starting from the

fitted distribution and then perform KS test to see if the empirical data behave as well as the

synthetic data. For this, we computed the KS and KSW statistics between the empirical data

and its fit, the synthetic data generated and the fit respectively. If the empirical data behave as

good as or better than the synthetic data, that is, the KS and KSW for the empirical data are not

greater than those for the synthetic data, it means that the empirical data can be the result of its

fit. For each pair of data and fit, we generated 1,000 synthetic data sets to test the goodness of

this fit and used p-value to summary the results of the KS test. Here the p-value is defined as

the probability that the KS and KSW statistics of the synthetic data were smaller than those of

the empirical data and it represents the probability that the empirical data was the result of the

fit. A p-value close to 1 indicates the consistency between the empirical data and its fit and one

close to 0, specifically smaller than 0.01, means the empirical data cannot come from this fit.

S5 Fig compares the KS statistics of the empirical tail distribution of jump size (like the

insets of Fig 3B–3F) with those for 1,000 distributions of synthetic data generated from corre-

sponding fitting distribution. The p-values for the nine fits are 1.00, 1.00, 1.00, 1.00, 1.00, 0.46,

0.04, 0.00 and 0.03 respectively. The fits under all time scales passed the KS test except for

16-hour. From the inset of S1D Fig, it is obvious that this was caused by the roughness at Δr�
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25km. The same phenomena can be found when other sample time δ� 2h but they are more

slight. We believe that the root cause lies in the difference of human mobility between the

urban core area with others. S6 Fig shows the same for the KSW test and the p-values are all

1.00 under 9 time scales. In this case, all the fits passed the test, including the fit of 16-hour.

Therefore, we can conclude that the power law offers a good approximation of the observed

tail distribution of jump size and the scaling parameters β are meaningful.

Computation of gyration radius

We used the radius of gyration rg defined as[1, 28, 34]:

rg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

i¼1

nið ri
!� rcm

�!Þ
2

s

; ð4Þ

to characterize the typical distance occupied by an individual’s trajectory. Here N is the total

number of the distinct locations, ri
! is the geographic coordinates of location i = 1, 2, . . ., N, ni

is the visit frequency or the waiting time in location i and rcm
�! ¼ 1=N

PN
i¼1

ni ri
! represents the

center of mass of the trajectory. When computing the radius of gyration, usually we can set ni
as visit frequency for low sampling rate and waiting time for high sampling rate and the com-

putation result of rg varies when the meaning of ni differs. Since the time scales ranged from

7.5 min to 32 hours in our experiment, we used visit frequency as the weight ni of location i for

consistency. In addition, when we studied how radius of gyration changed over time, we used

rg(T) to represent the gyration radius to time T and N and rcm
�! changed to N(T) and rcmðTÞ

���!

accordingly.

Computation of waiting time

Due to the sparsity of CDR, when computing the distribution for waiting time on a CDR data

set, we have to discretize the time series with a unit T and find a cell tower of a CDR record for

each interval[21]. The limitations of this method lie in the large T (typically 1 or 2 hours) and

massive intervals without location information. MFRs have finer-grained temporal resolution

and can overcome these two defects. When computing waiting time, we first sorted an individ-

ual’s MFRs in time order and then combined consecutive records if they had the same cell

tower ID. Waiting time at each cell tower could be computed by subtracting the first time-

stamp from the last one at this tower.

Trajectory visualization

We visualized the trajectories on the map in order to help to analyze human mobility. The

map shown in Fig 1 was generated with Mapbox GL JS (https://www.mapbox.com/mapbox-

gl-js/api/) and map data by OpenStreetMap contributors (License: https://opendatacommons.

org/licenses/odbl/). Trajectories are visualized with D3JS (https://d3js.org/). An interactive

website for trajectory visualization can be found at Data Availability.

Supporting information

S1 Fig. Displacement of human mobility (D1). A-D, The distribution of displacement P(Δr)
and its best fits under time scales δ� 15min(n = 8,258,692), 1hour(n = 5,071,176), 4hour

(n = 2,226,450), 16hour(n = 702,218), respectively. The solid lines (green and blue) indicate a

truncated power law and a log-normal distribution with best fitting parameters. The insets
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show the best power law fitting for the tails (from 70%ile to 96%ile).

(PDF)

S2 Fig. Displacement of human mobility (D2). A, The distribution of displacement P(Δr)
under time scales δ� 7.5min(n = 7,567,233), 30min(n = 7,006,878), 2hour(n = 3,498,286),

8hour(n = 1,347,365), 32hour(n = 508,482). B-J, The distribution of displacement P(Δr) and

its best fits under time scales δ� 7.5min, 15min(n = 6,991,657), 30min, 1hour(n = 6,457,261),

2hour, 4hour(n = 4,259,369), 8hour, 16hour(n = 1,880,823), 32hour, respectively. The solid

lines (green and blue) indicate a truncated power law and a log-normal distribution with best

fitting parameters, respectively. The insets show the best power law fitting for the tails (from

70%ile to 90%ile). K. The variation trend of fitting parameter β with time scale δ with standard

deviation as error bar.

(PDF)

S3 Fig. Gyration radius of human mobility (D1). A, The distribution of gyration radius rg
under time scales δ� 7.5min, 30min, 2hour, 8hour, 32hour(n = 142,619). We further divide

all users into 3 groups (n = 5,001, 3,198 and 2,217) according to their final gyration radius

rg(T) during the whole observation period T. B-D, show the convergence speeds of rg of differ-

ent user group rg(T) = Rg ± 0.05Rg and Rg = 5km, 10km, 15km, respectively.

(PDF)

S4 Fig. Time related statistics of human mobility (D2). A, The distribution of waiting time

Δt under time scales δmin(n = 66,821,244) and δ� 7.5min(n = 38,617,952), 30min(n =

25,859,924), 2hour(n = 16,329,587), 8hour(n = 9,132,801) and 32hour(n = 3,882,266). B, The

distribution of moving speed under time scales δ� 7.5min(n = 5,249,717), 30min(n =

7,281,423), 2hour(n = 5,400,576), 8hour(n = 3,112,735), 32hour(n = 1,666,615). C, The distri-

bution of radius of gyration for 3 user groups with different max speeds 0< vmax� 6km/h

(n = 13,807), 15 < vmax� 25km/h (n = 22,516) and 30< vmax� 60km/h (n = 38,473) during

the whole observation period T. D, The distribution of moving distance for each group during

morning rush hour (7am to 10am).

(PDF)

S5 Fig. KS test for Fig 3 and S1 Fig. A-I, The KS test result of the best power law fitting for the

tail distribution of displacement under time scales δ� 7.5min, 15min, 30min, 1hour, 2hour,

4hour, 8hour, 16hour and 32hour. The fits under all time scales passed the KS test except for

16hour due to the roughness at Δr� 25km.

(PDF)

S6 Fig. KSW test for Fig 3 and S1 Fig. A-I, The KSW test result of the best power law fitting for

the tail distribution of displacement under time scales δ� 7.5min, 15min, 30min, 1hour,

2hour, 4hour, 8hour, 16hour and 32hour. The fits under all time scales passed the KSW test.

(PDF)

S1 Table. Columns of Mobile Flow Records (MFRs). Detailed description for some key col-

umns of MFRs about human behavior.

(PDF)
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