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Abstract—Intelligent personal and home applications demand
multiple deep neural networks (DNNs) running on resource-
constrained platforms for compound inference tasks, known
as multitask inference. To fit multiple DNNs into low-resource
devices, emerging techniques resort to weight sharing among
DNNs to reduce their storage. However, such reduction in storage
fails to translate into efficient execution on common accelerators
such as GPUs. Most DNN graph rewriters are blind for multi-
DNN optimization, while GPU vendors provide inefficient APIs
for parallel multi-DNN execution at runtime. A few prior graph
rewriters suggest cross-model graph fusion for low-latency multi-
DNN execution. Yet they request duplication of the shared
weights, erasing the memory saving of weight-shared DNNs. In
this paper, we propose MTS, a novel graph rewriter for efficient
multitask inference with weight-shared DNNs. MTS adopts a
model stitching algorithm which outputs a single computational
graph for weight-shared DNNs without duplicating any shared
weight. MTS also utilizes a model grouping strategy to avoid
overwhelming the GPU when co-running tens of DNNs. Extensive
experiments show that MTS accelerates multitask inference by
up to 6.0× compared to sequentially executing multiple weight-
shared DNNs. MTS also yields up to 2.5× lower latency and 3.7×
less memory usage compared with NETFUSE, a state-of-the-art
multi-DNN graph rewriter.

Index Terms—Deep Neural Networks; Multitask Inference;
Model Acceleration

I. INTRODUCTION

Deep learning empowered ubiquitous applications increas-
ingly demand the co-execution of multiple deep neural net-
works (DNNs), known as multitask inference, for complex
cognitive analysis [1]–[4]. In multitask inference, multiple
DNNs, each pre-trained for a single inference task, run con-
currently on resource-constrained platforms ranging from edge
servers [5] to embedded devices [1]–[3], [6] for correlated
inference tasks. Such multitask inference is critical for future
applications such as smart glasses that identify user attributes
e.g., age, gender, face, and recognize objects [2], [6]–[8], per-
sonal robots that classify places and sounds [3], autonomous
vehicles that perceive the surroundings with front, side, rear
camera views [4], home hubs that recognize emotions from
speech and facial expression [9] etc.

For efficient execution on low-resource platforms, DNNs
often undergo multiple levels of optimizations. At the model

level, over-parameterised DNNs can be compressed without
loss in inference accuracy [10]. The compressed DNNs, typ-
ically represented as computational directed acyclic graphs
(DAGs), are then optimized at the graph level via sub-graph
fusion and substitution to generate functionally equivalent
yet faster DAGs for the target hardware platform [11], [12].
The DAGs can be further optimized at the runtime level for
better resource utilization via hardware-aware scheduling [13].
Mainstream deep learning development frameworks such as
TensorFlow and PyTorch support automatic and customized
model- or graph-level optimizations whereas hardware vendors
like NVIDIA also provide APIs for user-specified runtime-
level accelerations. Despite extensive research on efficient
DNN execution [14]–[17], most efforts only focus on acceler-
ations within a single model, overlooking the potential gains
from cross-model optimization.

An emerging technique for efficient multitask inference
is cross-model weight sharing [3], [6], [8], [9], [18], [19].
Sharing weights across DNNs pre-trained for correlated tasks
reduces the memory footprint to deploy them on low-memory
devices. Task correlation is pervasive since multiple DNNs
may take the same input to generate different labels, or
augment complimentary inputs to jointly output a single label.
For example, DNNs that identify user age and faces from the
same input image may extract similar low-level features, while
DNNs for video- and audio-based emotion recognition may
share similar high-level features. As illustrated in Fig. 1(b),
cross-model weight-sharing methods automatically identify
correlated weights (colored in green) among weight matrices
pre-trained for different tasks (see Fig. 1(a)). Such weight-
shared DNNs save the storage for multitask inference.

However, the memory saving of weight-shared DNNs fails
to translate into efficient execution with existing graph- and
runtime-level optimizations. On the one hand, popular graph
rewriters such as TVM [11] and NVIDIA TensorRT [12]
optimize each DAG in isolation (see Fig. 1(c)). Such graph
rewriting duplicates the shared weights to create independent
DAGs for each task. On the other hand, native runtime APIs
such as CUDA Stream [20] and NVIDIA MPS [21] offer
limited multi-DNN parallelism support. Executing individual
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Fig. 1. Executing weight-shared neural networks on a GPU. (a) Input and pre-trained single-task models for two correlated tasks 1 and 2. (b) Cross-model
weight-sharing for storage saving of models. The green portion represents the shared weights uncovered by techniques such as [3], [6], [8]. Multitask inference
on weight-shared networks can be compiled as (c) two separate computational graphs; (d) a single computational graph by duplicating shared weights; or (e)
a single computational graph without duplicating shared weights. At runtime, (f) sequential execution of two graphs incurs long latency; (g) parallel execution
of two graphs leads to both high memory footprint and long latency due to inefficient GPU runtime support; (h) the state-of-the-art executes a combined
graph with a single stream, but duplicates the shared weights. (i) Our objective is to achieve both low memory and low latency.

DAGs as multiple streams leads to not only high memory
cost, but also latency almost as large as executing these DAGs
sequentially (see Fig. 1(f)-(g)). In fact, the state-of-the-art
multi-DNN graph rewriters [22], [23] suggest cross-model
fusion into a single DAG (see Fig. 1(d)) to comply with
the default one-DNN-per-stream execution logic in most deep
learning frameworks [4]. Yet these multi-DNN graph rewriters
duplicate the shared weights, thus erasing the memory saving
of weight-shared DNNs (see Fig. 1(h)).

In this work, we explore graph rewriting strategies dedi-
cated to weight-shared DNNs for efficient multitask inference.
Specifically, we aim to generate a single DAG for weight-
shared DNNs without duplicating the shared weights (see
Fig. 1(e)) to achieve both low latency and memory at runtime
when executed on GPU (see Fig. 1(i)). We focus on graph-level
optimization to induce minimal changes and dependency to the
runtime. Advanced multi-DNN runtime optimizations [5], [7]
are often complex to implement and rely on hardware-specific
APIs such as CUDA Stream [20], which are inaccessible on
platforms like mobile GPUs [24].

We design MTS, a novel cross-model graph rewriting frame-
work for efficient multitask inference with weight-shared
DNNs. The core of MTS is a model stitching algorithm which
outputs a single DAG for multiple DNNs without duplicating
their shared weights, which minimizes the runtime memory.
MTS also incorporates a model grouping strategy to organize
multiple models in groups to saturate, yet not overwhelm the
GPU. Our main contributions and results are as follows.

• We are the first to address the problem of runtime memory
saving for cross-model weight sharing.

• We propose MTS, which preserves the benefits of cross-
model weight sharing to minimize runtime memory usage,
and achieves pseudo-parallelism for low latency.

• Experiments are conducted on different hardware platforms,
numbers of tasks, network architectures, sharing ratios,
batch sizes and heterogeneity. Results show that MTS is able
to accelerate up to 6.0× comparing to sequentially executing
multiple weight-shared DNNs. MTS also yields up to 2.5×
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Fig. 2. Opportunities and challenges of parallel DNN execution. (a) GPU
utilization with ResNet50. (b) Inference latency of a single fully connected
layer using parallelism support available on commodity GPU runtime.

lower latency and 3.7× less memory usage compared with
the SOTA multi-DNN graph rewriter [22].
In the rest of this paper, we state our problem in Sec. II,

introduce the MTS overview in Sec. III, and elaborate on its
model stitching and grouping schemes in Sec. IV and Sec. V,
respectively. We present the evaluations in Sec. VI, review
related work in Sec. VII, and finally conclude in Sec. VIII.

II. PROBLEM STATEMENT

We focus on graph rewriting of weight-shared DNNs for
efficient multitask inference on single-GPU platforms. We
justify our objectives and scope in details below.
Objectives. We use runtime memory and overall latency to
assess the efficiency of multitask inference. Specifically, we
would like to preserve the memory saving of cross-model
weight sharing i.e., the benefits of weight-shared DNNs [3],
[6], [8], [9], [18], [19], while achieving low latency when
performing multiple inference tasks.
Scope. We target at efficient multitask inference on devices
equipped with a single GPU (either desktop- or mobile-grade)
by pseudo-parallelism at graph-level optimization of DNNs.
• We focus on GPUs because they are common hardware ac-

celerators even on low-resource devices. However, inference
with GPU/CPU co-execution [2], [4] is out of our scope.

• We aim at high parallelism to execute multiple DNNs for
low overall latency. Improving parallelism is a tangible
strategy because DNN inference often under-utilizes GPUs
due to low computation density of operations and too few
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Fig. 3. Notations for two tasks 1 and 2. (a) Layer (l − 1) and l without
weight-sharing as well as (b) the corresponding dimensions of the activations
at layer (l − 1) and the weights at layer l. (c) Layer (l − 1) and l with
weight-sharing as well as (d) the corresponding dimensions of the activations
at layer (l − 1) and the weights at layer l.

inputs for batching [5], [23], [24], which exists in both
desktop- [5] and mobile-grade [24] GPUs. As an example,
the NVIDIA GEFORCE RTX 2080 Ti GPU suffers from
severe resource under-utilization when executing ResNet50,
a representative CNN (see Fig. 2a).

• We resort to implement pseudo-parallelism at the graph
level rather than the runtime level, because parallelism
APIs for desktop GPUs, such as CUDA Stream [20] and
NVIDIA MPS [21], introduce non-trivial contentions [5],
scheduling overhead [25], and kernel launch overhead [22],
which dominate the overall latency of multitask inference.
Even worse, such parallelism APIs are unavailable in mobile
GPUs [24]. As a toy example, we measure the latency of
executing a single fully connected layer.As shown in Fig. 2b,
parallel execution with multiple CUDA streams fails to
deliver the expected acceleration over sequential execution.

III. MTS OVERVIEW

This section presents the overview of Multi-Task Stitching
(MTS), a graph rewriting scheme for low latency, low runtime
memory multitask inference on GPU-enabled devices. We
illustrate our solution with MTZ [6], [9], a recent method to
generate weight-shared DNNs. Our solution also applies to
other cross-model weight-sharing schemes [3], [8].

A. Notations

For ease of presentation, we explain our methods with fully-
connected (FC) layers and extend to other layers in Sec. IV-B.

Consider T models {Mt|1 ≤ t ≤ T}. Each model is a well-
trained DNN for an inference task t. Let Fl

t and Al
t be the

weight matrix (feature map for CONV layers) and the output
activation of layer l (1 ≤ l ≤ L) in model Mt. Then the input
activation of layer l is Al−1

t . Accordingly, A0
t represents the

input of Mt. Furthermore, for Mt, assume Bt is the input
batch size and Cl

t is the number of neurons of layer l, so
Al−1

t ∈ RBt×Cl−1
t , Fl

t ∈ RCl−1
t ×Cl

t .
Without cross-model weight-sharing, the weight matrices

{Fl
t} of multiple models {Mt} are stored separately (see

Fig. 3a for layer l of two models). The corresponding compu-
tations are also performed as separate computational graphs,
i.e., Al−1

t ×Fl
t at layer l for each Mt, as shown in Fig. 3(b).

With cross-model weight-sharing like [6], [9], each model
shares certain amount of neurons on a layer basis while
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Fig. 4. Workflow of MTS.

keeping other neurons exclusive. Concretely, the weight ma-
trix Fl

t at layer l of model Mt is split into four portions:
Ul ∈ RC̃l−1×C̃l

, Xl
t ∈ RC̃l−1×Ĉl

t , Yl
t ∈ RĈl−1

t ×C̃l

, and
Zl

t ∈ RĈl−1
t ×Ĉl

t , where C̃l, Ĉl
t are numbers of shared and task-

t-exclusive neurons, respectively. Matrix Ul is shared among
models and thus only one copy is stored (see Fig. 3c). Simi-
larly, the input activation Al−1

t is split into Pl−1
t ∈ RBt×C̃l−1

and Ql−1
t ∈ RBt×Ĉl−1

t . Pl−1
t contains shared neurons of

Al−1, while Ql−1
t contains the remaining exclusive neurons.

Fig. 3d illustrates the dimensions of each matrix.
Takeaways. As shown in Fig. 3c, cross-model weight-sharing
saves storage of weight matrix Ul. However, such storage
saving does not readily translate into runtime GPU memory
saving due to the lack of a cross-model computational graph
rewriter. Naive execution as Fig. 3d duplicates the shared
matrix Ul, and regards weight-shared DNNs as separate
computational graphs, which may incur high runtime memory
footprint and long latency. Our solution is to stitch both
activations and weight matrices of multiple models as a single
computational graph without duplicating the shared matrix Ul

for efficient execution on GPU, as explained in detail next.

B. Functional Modules

MTS aims at pseudo-parallelism of weight-shared DNNs at
the graph level. This is realized by stitching weight matrices
and activations of multiple tasks into a single stream for better
GPU utilization. The core design of MTS consists of two
complementary schemes (see Fig. 4).
• A model stitching scheme (Sec. IV) that reconstructs

multiple computational graphs into a single one without
duplicating shared weights, for spatial multiplexing of the
GPU among multiple models in parallel.

• A model grouping scheme (Sec. V) that determines which
models to be grouped for stitching without overwhelm-
ing the available resources, where groups of models are
sequentially executed with high utilization, i.e., temporal
multiplexing the GPU among model groups.

IV. MODEL STITCHING

The model stitching scheme combines the separate com-
putational graphs into a single one without duplicating the
shared weights. It demands cross-model stitching of both the
input/output activations and the weight matrices. We present
the stitching methods for two FC layers (Sec. IV-A), other
common layer types (Sec. IV-B), and finally discuss the
scalability to stitch more than two models (Sec. IV-C).



A. Stitching Two Fully Connected Layers

Consider the two fully connected (FC) layers in Fig. 3d. Our
objective is to reconstruct input activations Al−1

1 and Al−1
2 as

Al−1
Stitch, and weight matrices Fl

1 and Fl
2 as Fl

Stitch, which still
results in valid matrix multiplication Al−1

Stitch × Fl
Stitch, without

duplicating the shared weights Ul. We start with two special
cases which inspire our stitching method for the general case.

1) Special Case 1: Layers l of the two models share all
input neurons, i.e., Ĉl−1

1 = Ĉl−1
2 = 0. This is the case when the

last layer is fully merged. Accordingly, Cl−1
1 = Cl−1

2 = C̃l−1,
Al−1

1 = Pl−1
1 and Al−1

2 = Pl−1
2 . The weight matrices are simpli-

fied as Fl
1 =

[
Ul Xl

1

]
and Fl

2 =
[
Ul Xl

2

]
(Fig. 5a top).

We can concatenate input activation along the batch-size
dimension (Fig. 5a bottom)

Al−1
Stitch =

[
Pl−1

1

T
Pl−1

2

T
]T

. (1)

For valid matrix multiplication, we can concatenate the
weight matrices as (Fig. 5a bottom):

Fl
Stitch =

[
Ul Xl

1 Xl
2

]
. (2)

Multiplying the two stitched matrices, we have

Al
Stitch = Al−1

Stitch × Fl
Stitch =

[
Pl−1

1 Ul Pl−1
1 Xl

1 Pl−1
1 Xl

2

Pl−1
2 Ul Pl−1

2 Xl
1 Pl−1

2 Xl
2

]
.

Comparing the original calculations without stitching:

Al
1 = Al−1

1 × Fl
1 =

[
Pl−1

1 Ul Pl−1
1 Xl

1

]
,

Al
2 = Al−1

2 × Fl
2 =

[
Pl−1

2 Ul Pl−1
2 Xl

2

]
.

From special case 1, we make the following observations
• We can obtain output activations of the two models from

Al
Stitch with simple matrix rearrangements.

• The stitching strategy introduces certain redundant calcula-
tions, i.e., Pl−1

1 Xl
2 and Pl−1

2 Xl
1.

2) Special Case 2: Layers l of the two models share all
output neurons, i.e., Ĉl

1 = Ĉl
2 = 0. This may take place when

the next layer is fully merged. In this case, we cannot simplify
input activations, but weight matrices can be represented by
Fl

1 =
[
UlT Yl

1
T
]T

, Fl
2 =

[
UlT Yl

2
T
]T

(Fig. 5b top).
Naturally, we may concatenate weight matrices along the the
output-neuron dimension (Fig. 5b bottom) since Cl

1 = Cl
2 = C̃l

Fl
Stitch =

[
UlT Yl

1
T

Yl
2
T
]T

. (3)

Stitching of the input activations, however, is slightly more
difficult due to the unequal numbers of input neurons. An
intuitive solution is to expand Al−1

1 and Al−1
2 with additional

zeros. Thus, the stitched input activation is (Fig. 5b bottom).

Al−1
Stitch =

[
Pl−1

1 Ql−1
1 0

Pl−1
2 0 Ql−1

2

]
. (4)

The stitched output activation is calculated as

Al
Stitch = Al−1

Stitch × Fl
Stitch =

[
Pl−1

1 Ul +Ql−1
1 Yl

1

Pl−1
2 Ul +Ql−1

2 Yl
2

]
.

Note that the top half of Al
stitch is exactly the layer l output

activation of M1, i.e., Al−1
1 × Fl

1, while the bottom half is
exactly the layer l output activation of M2, i.e., Al−1

2 × Fl
2.

From special case 2, we make the following observations.
• We can obtain output activations of the two models from

Al
Stitch without redundant calculations.

• Stitching introduces extra zeros in the input activations.
3) General Case: Now we consider the general case to

stitch two FC layers. The input activations and the weight
matrices are as follows (Fig. 5c top):

Al−1
1 =

[
Pl−1

1 Ql−1
1

]
, Al−1

2 =
[
Pl−1

2 Ql−1
2

]
,

Fl
1 =

[
Ul Xl

1
Yl

1 Zl
1

]
, Fl

2 =
[
Ul Xl

2
Yl

2 Zl
2

]
.

Al−1
1 and Al−1

2 have the same form as those in special case
2, so we can stitch inputs following Eq. (4). As for weight
matrices, by taking the matrix size and output values into
account carefully, we can deduce from two special cases that

Fl
Stitch =

Ul Xl
1 Xl

2
Yl

1 Zl
1 0

Yl
2 0 Zl

2

 . (5)

Accordingly, the stitched output activation is calculated as

Al
Stitch = Al−1

Stitch × Fl
Stitch = (6)[

Pl−1
1 Ul +Ql−1

1 Yl
1 Pl−1

1 Xl
1 +Ql−1

1 Zl
1 Pl−1

1 Xl
2

Pl−1
2 Ul +Ql−1

2 Yl
2 Pl−1

2 Xl
1 Pl−1

2 Xl
2 +Ql−1

2 Zl
2

]
Discussions. We make the following notes on our scheme to
stitch two FC layers, i.e., Eq. (4) and Eq. (5).
• The stitched output activation involves redundant calcula-

tions, i.e., Pl−1
1 Xl

2 and Pl−1
2 Xl

1 in Eq. (6). We quantify the
impact of these redundant calculations in Sec. IV-C.

• If we set the redundant elements in Al
Stitch, i.e., Pl−1

1 Xl
2

and Pl−1
2 Xl

1, to zeros, it just becomes the stitched input
activation of the layer l + 1. That is, we do not need to
split and restitch activations between layers.

B. Stitching More Than FC Layers

Now we extend our stitching strategy to layer types in
representative convolutional neural networks (CNNs).

1) Stitching Convolutional Layers: Convolutional (CONV)
layers are the primary building blocks for CNNs. Since matrix
multiplication is a special convolution with input feature map
size and kernel size of (1, 1), we can stitch CONV layers in
the same way as FC layers, which ensures the flexibility and
efficiency of MTS. The main differences are in data dimensions
as the input Al−1

t and kernel Fl
t are non-degenerate 4D tensors.

Note that algorithms like im2col can convert convolution
into matrix multiplication. Hence another solutions is to stitch
the FC layers transformed from CONV layers. However,
im2col may notably increase the memory footprint [26]. As a
result, we do not use this solution in the final implementation.

2) Stitching Residual Blocks: Residual blocks are the main
components of residual networks. Different from FC and
CONV Layers, the residual block is a mixture of multiple
layers including several CONV layers and one addition op-
erator, and it’s a two-branch network instead of a series of
base layers strung sequentially. Existing cross-model weight-
sharing methods [9] merge residual blocks by sharing the same
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Fig. 5. Illustrations of model stitching for (a) special case 1; (b) special case 2; and (c) the general case.

input/output neurons across these two branches. Therefore,
we can stitch CONV layers along each branch independently
and exploit the stitched addition operator (more details in the
Sec. IV-B3) to combine two branch outputs.

3) Stitching Other Layers/Operators: We briefly discuss the
stitching of other common layers or operators in DNNs.

• Element-wise Binary Operators. Element-wise binary oper-
ators are common in DNN models, e.g., the residual block
uses an addition operator to merge branches. Since matrices
are only stitched over the neurons dimension, our stitching
scheme does not affect element-wise operators. We can
directly apply element-wise operators over stitched inputs.

• Batch Normalization (BN) Layers. The BN layer is applied
to the outputs to keep their mean close to 0 and standard
deviation close to 1. Since parameters in the BN layer
vary across models, it is impossible to stitch these BN
layers into one. However, as the parameters are fixed after
training, we can fuse BN layers into their respective previous
CONV layers by modifying the weights and bias of CONV
layers. Thus stitching BN layers is transformed into stitching
CONV layers, which has been solved in Sec. IV-B1.

• Activation/Pooling Layers. Activation layers are applied
for better fitting non-linear functions, while pooling layers
are used to decrease data dimensions. Since the activation
function and pooling function take a single element or a
cluster of elements as input, our stitching algorithm does
not interfere with these layers. The only trifle is that we
add additional zeros in inputs and outputs, while activation
functions like Sigmoid(·) map zeros to 0.5′s. These zeros
need to be preserved for correct feed-forward computation.

C. Stitching Multiple Layers

So far we have shown how to stitch layers of two models.
We now use the FC layers to illustrate how T > 2 models are
stitched. We can extend Eq. (4) to stitch input activations and

Eq. (5) to stitch weight matrices as:

Al−1
Stitch =


Pl−1

1 Ql−1
1 . . . 0

...
...

. . .
...

Pl−1
T 0 . . . Ql−1

N

 (7)

Fl
Stitch =


Ul Xl

1 . . . Xl
T

Yl
1 Zl

1 . . . 0
...

...
. . .

...
Yl

T 0 . . . Zl
T

 (8)

Hence Al
Stitch, the result of Al−1

Stitch × Fl
Stitch, has a similar

structure to Al−1
Stitch, from which we can obtain Al

t.
Analysis of Stitched Model. As mentioned in Sec. IV-A, the
stitching scheme introduces redundant computation. We now
estimate the overall computation of a stitched model.

Assume Al
Stitch and Fl

Stitch have dimensions of BS × Cl−1
S

and Cl−1
S × Cl

S . Then BS , Cl−1
S , and Cl

S are computed as:

BS =
T∑

t=1

Bt, Cl−1
S = C̃l−1 +

T∑
t=1

Ĉl−1
t , Cl

S = C̃l +

T∑
t=1

Ĉl
t .

The floating point operations (FLOPs) of the stitched model
is estimated as Gl

S = BS × Cl−1
S × Cl

S . For simplicity, assume
∀t ∈ [1, T ], B = Bt, C̃

l−1
t = αl−1Cl−1, C̃l

t = αlCl,
where αl−1, αl ∈ [0, 1] are the sharing ratios in cross-model
weight-sharing [6], [9]. Substituting with Eq. (6), the stitched
weight/model size (MS) and total FLOPs can be estimated as

MS = Cl−1
S × Cl

S

=
(
αl−1 + T · (1− αl−1)

)(
αl + T · (1− αl)

)
· Cl−1Cl

FLOPs = BS × Cl−1
S × Cl

S

= T
(
αl−1 + T · (1− αl−1)

)(
αl + T · (1− αl)

)
· Cl−1ClB

Hence the stitched model size is O(T 2) with O(T 3) FLOPs.
Discussions. We make the following notes.
• Since the GPU is under-utilized [5], [24] for inference, the

stitching scheme improves the throughput and reduces the
latency of multitask inference, as empirically validated in
Sec. VI (MTS against Sequential).

• The redundant computation does impair the scalability to
more e.g., tens of tasks, which motivates the model group-
ing design in Sec. V for temporal multiplexing the GPU
without overwhelming. Experimental results show that with



Algorithm 1: Model Grouping Algorithm
input : weight-shared models Mt(1 ≤ t ≤ T ),

corresponding inputs A0
t

output: model grouping scheme G, s.t. ∀Mt ∈ {Mt |
1 ≤ t ≤ T}, ∃!Gi ∈ G, Mt ∈ Gi

1 if models have the same structure and input batch size
then

2 F0 ← 0;
3 foreach n ∈ [2, T ] do
4 Ln ← latency to assign n models in one group;
5 Fn ← min

1≤j≤n
{Ln, Fn−i + Li} ;

6 extract G from the derivation of FT ;

7 else if T is small then
8 H∅ ← 0;
9 foreach S ⊆ {Mt | 1 ≤ t ≤ T} do

10 LS ← latency to assign S models in one group;
11 HS ← min

S′⊂S
{LS , HS′ +HS\S′};

12 extract G from the derivation of H{Mt|1≤t≤T};

13 else
14 foreach G ∈ [1, T ] do
15 construct empty groups Ĝ ← {G1,G2, · · · ,GG};
16 set group-queue [G1, · · · ,GG,GG, · · · ,G1, · · · ];
17 sort models in descending order of latency;
18 group models in the order of group-queue;
19 get Ĝ’s latency LĜ , update G if LĜ < LG ;

20 return G

model grouping, our method achieves comparable latency
with NETFUSE [22], the state-of-the-art multi-DNN graph
rewriter, with notably lower runtime GPU memory usage.

• Note that MS and FLOPs decrease as αl−1 and αl increase.
It indicates that when sharing ratios comes to 1, i.e., all T
models are exactly the same, MTS simply batches inputs.
Therefore, MTS is a novel extension of input batching.

V. MODEL GROUPING

In this section, we present the model grouping scheme of
MTS. It facilitates efficient multitask inference with even tens
of models. Specifically, the T models are organized into G
groups G = {Gi | 1 ≤ i ≤ G}. The groups are executed
sequentially, whereas models within a group are stitched and
executed in parallel. For efficient grouping, we propose a
greedy-based grouping scheme as illustrated in Algorithm 20.
Its details are explained below.

• Same Model Structure and Batch Size (Line 1-6). In this
case, each model can be considered as the same inference
task. Thus the latency of each group only depends on the
number of tasks, and we can use dynamic programming
to get the optimal grouping. Specifically, let Fn as the
minimum latency of the first n models. The recursive
definition of Fn in line 5 chooses the optimal scheme by
assigning j tasks to one group, and the remaining n − j

tasks to other groups. Finally, we construct an optimal group
scheme according to the computing progress of FT (line 6).

• Small Number of Tasks T (Line 7-12). In this case, we use
state compression dynamic programming to get the optimal
grouping scheme. Let HS be the minimum latency of all
models in set S . The recursive definition (line 11) and the
optimal grouping scheme construction (line 12) are identical
to the previous case, with the exception that the number of
tasks n is replaced with the group set S.

• General Case (Line 14-19). In the most general case, we
group models greedily: we enumerate the number of groups
from 1 to T , and put models into groups in a balanced
way (Line 15-18). The best grouping scheme is chosen. The
criterion is to balance the latency among groups.

Discussions. We make two notes on the model grouping.
• Despite the greedy grouping, it finds the optimal solution if

the model sizes and batch sizes are the same, or the number
of tasks is small (empirically set as 15).

• The algorithm requires inference latency (Line 4, 10, 17),
which can be estimated offline by direct measurements.

VI. EVALUATION

A. Evaluation Setup

Platforms and Implementation. We conduct experiments on
two platforms: Jetson TX2 and an edge server. Jetson TX2 is a
mobile computing platform equipped with a Quad-Core ARM
Cortex-A57 MPCore (NVIDIA Denver 2 CPU was disabled
during experiments) and 8GB RAM, as well as a 256-core
Pascal-based GPU. The edge server is equipped with an 32-
core Intel Xeon E5-2620@2.10GHz processor and 256GB
RAM, as well as a NVIDIA GEFORCE RTX 2080 Ti. All
the algorithms are implemented with PyTorch in Python.
Inference Workload. We experiment with three representa-
tive CNNs: ResNet18, ResNet50 and VGG16. Due to the
limited resources on mobile and edge devices, we also con-
sidered pruned versions of these models. Note that cross-
model weight-sharing schemes [6], [9] can also merge pruned
models. To generate multitask inference workload, we merge
a given number of the three CNN types, either pruned or
unpruned, by MTZ [6]. We test different model number,
pruning ratios, and sharing ratios. We consider a batch size
of 1 since most inference tasks demand real-time processing.
The detailed configurations are deferred to each experiment.
Baselines. We compare MTS with the following methods.
• Sequential: It selects one model from all in a round-

robin fashion and performs the inference one by one.
• NETFUSE [22]: It is the state-of-the-art multi-DNN graph

rewriter. It leverages operations like group convolution and
batch matrix multiplication for cross-model fusion.

• NETFUSE-no-Concurrency: It is the original
NETFUSE with multi-stream execution disabled. It is
to simulate the mobile GPU runtime because multi-stream
execution is not supported by most mobile GPUs [24].

• MTS-no-Grouping: It is MTS without the grouping.
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Fig. 6. Performance comparisons on mobile platforms (Jetson TX2).

Metrics. We use overall inference latency and peak memory
footprint to assess the performance of each algorithm. The
memory footprint of NETFUSE-no-Concurrency is omit-
ted because it has the same result as NETFUSE. We measure
the inference latency on GPU by calculating the average of
500 inference latency after 2 warmups, and capture the peak
memory footprint during execution with NVIDIA Nsight Sys-
tems [27]. Since the reconstruction of weights induces extra
delay in inference, the models in Sequential, NETFUSE,
and NETFUSE-no-Concurrency are not merged by cross-
model weight-sharing schemes for fair comparison.

B. Evaluation Results

We now present our evaluation results with various plat-
forms and workload settings.

1) Performance on Mobile Devices: In this experiment, we
compare different algorithms on Jetson TX2.
Settings. We choose pruned ResNet18 and VGG16 as the
model types. Each model has 90% neurons pruned (pruning
ratio = 0.9) and all of them share 90% of the remaining neu-
rons with each other (sharing ratio = 0.9). In this experiment,
we set the batch size of all models to 1 and vary the number
of weight-shared models from 4 to 32.
Results. Fig. 6 shows the inference latency and peak memory
footprint of ResNet18 and VGG16 on Jetson TX2.

For ResNet18 (see Fig. 6a and Fig. 6b), MTS yields about
2.5×, 4.8×, 5.8×, 6.0× speedup against Sequential when
executing 4, 8, 16, 32 models, respectively. MTS, however,
consumes more memory than Sequential when there are
4, 8 or 16 models. This is caused by the the temporary runtime
memory dominating in total memory usage. When the number
of tasks reaches 32, MTS’s memory footprint is reduced signif-
icantly and surpasses Sequential (1.4× memory saving),
benefiting from the grouping scheme. Compared to NETFUSE,
MTS is about 1.4× faster. The latency gap is closing, but
NETFUSE consumes much more memory: 1.8×, 1.9×, 1.6×
and 3.7×, respectively. As for MTS-no-Grouping, when
the number of tasks is small (4, 8 or 16), no grouping is
activated and it leads to the same performance as MTS. When
the number grows to 32, all tasks are grouped into three, thus
MTS saves 1.84× latency and 3.18× memory usage. At last,
the latency of NETFUSE-no-Concurrency is almost the
same as Sequential (2.1×, 3.7×, 4.7× and 5.1× slower
than MTS, respectively), indicating that NETFUSE is unfit for
mobile platforms without multi-stream APIs.

For VGG16 (see Fig. 6c and Fig. 6d), MTS achieves
1.5× speedup and 1.3× memory saving than Sequential.

Compared with the speedup for ResNet18, the lower speedup
is due to VGG16 being more computational intensive. For
the same reason, the latency of MTS-no-Grouping even
exceeds that of Sequential. The memory footprint of
MTS-no-Grouping is also drastically larger than that of
NETFUSE since the all-in-one stitched VGG16 model con-
sumes large amounts of runtime memory.

In a word, MTS achieves the best latency-memory balance
than baselines. For comparison, MTS accelerates up to 6.0×
and saving 1.4× memory compared to Sequential. As
for NETFUSE, MTS is 1.5× faster and 3.7× memory saving.
Furthermore, the results of MTS-no-Grouping demonstrate
the necessity of model grouping.

2) Performance on Edge Servers: In this experiment, we
test the algorithms on a desktop-grade GPU for edge servers.

Settings. We use a server equipped with an RTX 2080 Ti
GPU as the platform, and ResNet50 as the model type. Due to
the adequate resource on the desktop-grade GPU, we directly
adopt the unpruned ResNet50 as the model for inference tasks.
The sharing ratio and batch size are 0.9 and 1, respectively.

Results. Fig. 7 plots the inference latency and peak memory
footprint of each method when executing 4 to 32 weight-
shared ResNet50 models on the edge server. As with the
results on Jetson TX2, MTS is 5.3× faster than Sequential.
However, MTS is slightly slower than NETFUSE. This may
stem from the larger bandwidth and more CUDA cores,
allowing faster execution of group convolution and batch
matrix multiplication used by NETFUSE. In terms of memory
usage, MTS still notably outperforms NETFUSE, consuming
only 37% of memory NETFUSE does. Sequential’s peak
memory footprint grows drastically because the pruning ratio
is 1 and it is the models’ parameters rather than temporary
runtime memory that dominates in the total memory footprint.

3) Impact of Sharing Ratios: Another hyperparameter of
the inference workload is the sharing ratio. A large sharing
ratio is set for high task relatedness or limited resources [6].

Settings. We use Jetson TX2 as the platform, the pruned
ResNet18 with a pruning ratio of 0.9 as the model type and
set the batch size to 1. We experiment with four sharing ratios
(0.9, 0.8, 0.7, 0.6) and four numbers of tasks (4, 8, 16, 32).

Results. Fig. 8 shows the inference latency and peak memory
footprint of ResNet18 with different sharing ratios. When
operating the same grouping scheme (number of tasks is 4,
8 or 32), the inference latency and the memory footprint of
MTS decrease with the increase of sharing ratio, which is
consistent with our analysis in Sec. IV-C. MTS achieves the
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Fig. 9. Impact of model heterogeneity. (a): latency of VGG16’s with mixed
pruning ratios; (b) latency of ResNet18’s with mixed batch sizes.
lowest latency and memory cost with all sharing ratios. The
gain is more notable with more models e.g., 32. This is because
the model grouping scheme is activated by an excessively high
computing need. Then both the inference latency and peak
memory will be greatly reduced by model grouping of MTS.

4) Impact of Heterogeneity in Inference Workload: In this
experiment, we test the impact of heterogeneity in inference
workload on the performance of MTS. We consider two types
of heterogeneity: mixed layer widths and input batch sizes.

Settings. We conduct two experiments on Jetson TX2.

• In the first experiment, we force MTS and NETFUSE to
combine multiple VGG16’s compressed with two different
pruning ratios: 0.9 and 0.85. MTS naturally functions with
unequal layer widths. For NETFUSE to work with unequal
layer widths, it extends the narrower layers with redundant
neurons. The sharing ratio is 0.9 and the batch size is 1.

• In the second experiment, we vary the batch size from 1 to 3
and use ResNet18 as the model type. The stitching strategy
of MTS is designed to handle different batch sizes. Never-
theless, NETFUSE needs to group these models according
to the batch size and execute them one by one. We set both
the pruning ratio and the sharing ratio to 0.9 .

Results. Fig. 9a shows that the inference latency of VGG16s
with mixed pruning ratios. Comparing Fig. 9a with Fig. 6c,
where a fixed pruning ratio of 0.9 is adopted for all VGG16
models, the gain in latency of MTS over NETFUSE becomes
more notable, because NETFUSE has to pad redundant neurons
for combining models of different widths. Fig. 9b shows that
the inference latency of ResNet18s with mixed batch sizes.
Compared with Fig. 6a, MTS is much more efficient than
NETFUSE, especially when number of tasks is relatively small,
e.g., 4, 8. The forcing sequential execution of NETFUSE leads
to severe resource under-utilization.

5) Summary of Experimental Results: We summarize our
main experimental findings as follows.

• MTS can accelerate Sequential up to 6.0 times.

• With the model grouping scheme, MTS saves 3.2× latency
and 4.5× memory footprint over MTS-no-Grouping.

• Overall, MTS outperforms NETFUSE, a state-of-the-art
multi-DNN graph rewriter, in both inference latency (up to
1.5×) and runtime memory (over 3.7×). The advantages
of MTS are more notable with heterogeneity in inference
workload, achieving up to 2.5× speedup.

VII. RELATED WORK

Our work is related to the following categories of research.

A. Weight-Shared DNNs

Cross-model weight sharing facilitates DNN deployment
to low-memory devices. It applies to DNNs for either a
single task or multiple tasks. In single-task weight-shared
DNNs, each DNN is often a model variant for the same
inference task, yet of a different complexity-accuracy trade-
off. Examples include early-exits [28], nested architectures [1],
etc. In multitask weight-shared DNNs, each DNN is trained
for a different inference task. Multitask weight sharing is
feasible for correlated tasks, and can be achieved by cross-
model quantization [18] or fine-tuning [3], [6], [8], [9]. We
apply MTZ [6] to generate weight-shared DNNs, for it allows
adaptive weight sharing and supports diverse layer types.
Other studies either enforce full weight sharing [3] or support
convolutional layers only [8].

Although weight-shared DNNs save storage, their execution
may not speed up for multitask inference. Naive execution of
such networks results in multiple data flows [29]. This leads
to the same delay as running unshared DNNs sequentially, and
erases the memory saving of weight sharing. MTS is the first
attempt at efficient weight-shared DNN execution for multitask
inference while retaining the memory saving.

B. Multi-DNN Graph Rewriting

Deep learning(DL) frameworks such as TensorFlow and
PyTorch represent DNNs as computational DAGs. Graph
rewriters such as TVM [11] and NVDIA TensorRT [12] apply
configured graph substitution rules to output mathematically
equivalent DAGs that run faster on the given hardware plat-
form. Yet these rewriters optimize each DAG in isolation and
are ineffective for multi-DNN graph rewriting [22], [23].

HiveMind [23] and NETFUSE [22] are two SOTA multi-
DNN graph rewriters. The idea is to perform cross-model layer
fusion to increase the computational intensity of operations,
and thus the GPU utilization [23]. HiveMind assumes the same
input for weight-shared DNNs, while NETFUSE supports



cross-model layer fusion of DNNs with different inputs and
outputs. However, neither HiveMind nor NETFUSE retains the
memory saving of weight sharing, and they pose constraints
such as the same channel or input size on the DNNs. These
drawbacks motivates the model stitching strategy in our MTS.

C. Multi-DNN Runtime Scheduling

Given DAGs as input, a multi-DNN runtime schedules the
DAG operations to maximize the pipelined or parallel exe-
cution on the targeting platform. Despite multi-tenancy APIs
such as CUDA stream [20] and NVIDIA MPS [21], multi-
DNN runtime scheduling is still challenging because most DL
frameworks adopts one-DNN-per-process execution model by
default [4]. DeepEye [2] interleaves the executions of CONV
and FC layers of multiple DNNs for latency hiding. DART [4]
is a pipelined multi-DNN scheduling framework under real-
time constraints. MASA [7] is the latest memory-aware multi-
DNN runtime scheduler. For multi-DNN runtime scheduling
on mobile GPU, ParallelFusion [24] proposes kernel fusion to
maximum the utilization of mobile GPU.

Our MTS is complementary. We use a single CUDA stream
as the runtime for weight-shared DNNs to avoid the API’s
inefficient parallelism support [5], [23], [25] and because
current mobile GPUs only allows a single stream [24].

VIII. CONCLUSION

In this paper, we introduce MTS, a graph rewriting frame-
work for efficient multitask inference with weight-shared
DNNs. MTS uses a model stitching scheme to output a single
DAG for multiple DNNs with shared weights. The runtime
memory usage is minimized via avoiding the duplication of
shared weights. With the help of a dedicated model grouping
strategy, it also achieves a near optimal runtime latency.
We conducted extensive experiments on different hardware
platforms, numbers of tasks, network architectures, sharing
ratios, batch sizes and model heterogeneity. Results show that
MTS accelerates up to 6.0× compare to sequentially executing
multiple weight-shared DNNs. MTS also yields up to 2.5×
lower latency and 3.7× less memory usage compared with
NETFUSE, a state-of-the-art multi-DNN graph rewriter. We
envision our work as a critical step towards the full-stack
optimization for efficient multi-DNN execution.
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