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ABSTRACT
Regular free-weight exercise helps to strengthen the body’s
natural movements and stabilize muscles that are importan-
t to strength, balance, and posture of human beings. Prior
works have exploited wearable sensors or RF signal changes
(e.g., WiFi and Blue-tooth) for activity sensing, recognition
and counting etc.. However, none of them have incorporate
three key factors necessary for a practical free-weight exer-
cise monitoring system: recognizing free-weight activities on
site, assessing their qualities, and providing useful feedbacks
to the bodybuilder promptly. Our FEMO system responds
to these demands, providing an integrated free-weight ex-
ercise monitoring service that incorporates all the essential
functionalities mentioned above. FEMO achieves this by
attaching passive RFID tags on the dumbbells and lever-
aging the Doppler shift profile of the reflected backscatter
signals for on-site free-weight activity recognition and as-
sessment. The rationale behind FEMO is 1): since each
free-weight activity owns unique arm motions, the corre-
sponding Doppler shift profile should be distinguishable to
each other and serves as a reliable signature for each ac-
tivity. 2): the Doppler profile of each activity has a strong
spatial-temporal correlation that implicitly reflects the qual-
ity of each performed activity. We implement FEMO with
COTS RFID devices and conduct a two-week experimen-
t. The preliminary result from 15 volunteers demonstrates
that FEMO can be applied to a variety of free-weight activ-
ities and users, and provide valuable feedbacks for activity
alignment.
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01: concentration 
bicep curl

02: seated triceps 
press

03: inclined biceps 
curl

04:seated biceps 
curl alternating

05: bent over 
single arm row

06: bent over 
single arm lateral 

raise

07: seated bench 
press

08: chest fly on 
incline bench

09: front raise 
alternating

10: beginners 
squat

Figure 1: Sketches of the tested free-weight activi-
ties

1. INTRODUCTION
Free-weight exercise is indispensable in a balanced exercise

program and provides numerous health benefits. It helps to
stabilize bones and muscles that are relevant to strength,
balance and posture, and contributes to weight loss and
overall health [20]. Some researches recommend free-weight
training twice a week for adults [2], even for those who walk
or run regularly. Moreover, some individuals may prefer
free-weight exercises to aerobic exercises as the main fitness
activities simply for lifestyle or convenience reasons.

Monitoring and evaluation supports are crucial for free-
weight exercises. Compared with aerobic exercises e.g. run-
ning, people are more vulnerable to ine�cient training or
even accidental injuries in free-weight training. Stretching
or warping muscles improperly, e.g., to the wrong direction
or at a high speed, can lead to strains and tears. Timely
guidance is also important for exercise safety and quality s-
ince people might forget their progress, skip essential steps,
or miscount a sequence.

Despite academic and commercial success in aerobic ex-
ercise monitoring [10, 11, 12, 16, 43], there is a void in au-
tomatic free-weight exercise monitoring and evaluation. A
personal trainer is still by far the most common solution to
free-weight training monitoring, which incurs high recruit-
ment costs [1]. Unlike aerobic exercises where speed, dis-
tance and terrain are essential, the quality of free-weight
training is mostly defined by repetitions, durations and ac-
tivity sets. Existing schemes on general activity recognition
[8, 25] and aerobic exercise tracking [12, 16] fail to cap-
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ture such high-fidelity information for free-weight exercises.
Some pioneer work explored inertial sensors e.g. accelerom-
eter and gyroscope, for free-weight training monitoring [9,
28], yet these techniques cannot reliably handle the variety
of arm motion patterns and diverse training paces. Fur-
thermore, they also require body-worn sensors to function,
which poses inconvenience and might cause unwanted mo-
tion changes during training. A promising alternative is to
leverage wireless signals for device-free activity sensing. Re-
cent research has explored the feasibility of WiFi signals for
gesture and activity recognition [27, 30, 41], yet either in-
volves customized hardware (e.g., software radios [30] and
directional antennas [27]) or targets at location-aware activ-
ities [41], thus unsuitable for ubiquitous free-weight exercise
tracking.

In this paper, we design FEMO, an automatic, non-invasive
and light-weight Free-weight Exercise MOnitoring system.
We enable non-invasive free-weight exercise monitoring by
attaching passive Radio Frequency IDentification (RFID)
tags on assisted instruments (e.g. dumbbells) during train-
ing, and analyzing signals backscattered from tags during
exercises. Attaching passive RFID tags on instruments like
a dumbbell poses minimum overhead due to their negligible
weight and size. FEMO works by analyzing the Doppler
shifts extracted from the backscattered signals. It automat-
ically recognizes, counts, and assesses the exercises on-site
and in real time. The detailed assessment feedbacks are also
displayed on FEMO’s UI module to assist activity rectifica-
tion.

The design of FEMO involves the following challenges:
(1) How to detect and extract accurate Doppler shifts from

backscatter signals? Doppler shifts are accessible from com-
mercial RFID readers via a standard API. However, the raw
Doppler measurements are too noisy to precisely portray the
tag movements (i.e. dumbbell trails).

We address this problem by transforming the received
phases from backscatter signals into the corresponding Doppler
shifts (§3.1). FEMO tracks this Doppler stream and seg-
ments the Doppler shifts of each activity performed even at
diverse paces (§3.2).

(2) How to recognize free-weight exercises on-site? Tra-
ditional activity recognition schemes rely on sophisticated
feature selection and complex classification techniques for
accurate recognition, which incur a large computational la-
tency and are sensitive to training data.

FEMO addresses this problem by analyzing the temporal
patterns of RF signals a↵ected by body movements. Our ob-
servation is that each free-weight activity is a unique combi-
nation of basic arm motions. These combined arm motions
exhibit unique yet stable Doppler shift profiles in the tempo-
ral domain, producing light-weight and robust features for
activity recognition. We detail this idea and optimize the
recognition process in §3.3.

(3) How to assess user performances? Since FEMO aims
to provide useful feedbacks to users as guidance for improper
activity rectification, it is important to quantify the quality
of each performed activity.

In FEMO, we define a set of metrics evaluating the qual-
ity of activities during free-weight exercises from both the
local and global views. An assessment framework is pro-
posed to evaluate both the activity details and the activity
consistency within each training group.

We implement FEMO as a framework consisting of four
core modules: Doppler value pre-processing, activity seg-
mentation, activity recognition and activity assessment. We
prototype FEMO on commodity hardware including a Com-
mercial O↵-The-Shelf (COTS) RFID reader, a directional
antenna, and two passive RFID tags attached to the dumb-
bells. It runs on a central server and processes the tag read-
ing stream in pipeline. It also provides an interface to other
applications such as activity counting and training process
tracker, where they can obtain the current activity primi-
tives from FEMO via programming interfaces. We evaluate
the performance of FEMO on free-weight training data col-
lected in two weeks from 15 volunteers. The data cover 1,534
minutes of exercises, with 4,500 repetitions of 10 represen-
tative exercises. Results demonstrate that FEMO can be
applied to various representative free-weight activities, and
provide valuable feedbacks to users, especially beginners.

We summarize the contributions of this paper as follows:

• We introduce the first passive RFID-based system for
free-weight exercise monitoring. This system enables
on-site activity recognition and assessment, and pro-
vides rich feedbacks to the user for activity rectifica-
tion. Di↵erent from prior works that only coarsely
recognize to which type the activity is belonging, our
FEMO system can provide fine-grained measurements
on the activity by using the subtle Doppler values re-
trieved from COTS passive RFID devices.

• We present a set of algorithms to e↵ectively extract
free-weight exercise information from backscatter sig-
nals. Specifically, our algorithms enable 1) extracting
minute Doppler shifting from noisy tag readings re-
ported by commercial RFID readers; 2) segmenting the
Doppler streaming such that each segment contains an
intact activity; 3) assessing the exercise performance
and providing useful feedbacks to the bodybuilder.

• Last but not the least, we establish a proof-of-concept
prototype and conduct two-weeks experiments. Re-
sults demonstrate the e↵ectiveness of our system. It
can detect ten typical free-weight activities with an av-
erage accuracy of 90.4%, and facilitate rectifying irreg-
ular exercise behaviors, especially for fitness novices.

2. OVERVIEW
This section briefly introduces the taxonomy of the target-

ed free-weight activities and the overall work-flow of FEMO.

2.1 Taxonomy of Free-weight Activities
In this paper, we focus on ten common and representative

free-weight activities, which can train di↵erent parts of the
muscle groups. We choose these popular activities based on
a two-week questionnaire investigation on fitness enthusiasts
in our university. Similar to [9], we categorize these activities
into di↵erent groups based on the muscle groups desired to
be trained. Figure 1 illustrates ten free-weight activities
of interests, which will be used to demonstrate our work
throughout this paper.

2.2 FEMO Work-flow
Figure 2 presents the work-flow of FEMO. It contains

four major steps: preprocessing, activity segmenting, ac-
tivity recognition, and activity assessment.
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Figure 2: An overview of FEMO’s work-flow

The first step is preprocessing, where the system purifies
the raw phase readings and computes the Doppler shifts.
In this step, FEMO first mitigates the noisy phase readings
introduced by the hardware heterogeneity of the reader and
the inconsistency of tag orientations. FEMO then computes
the Doppler values and finally employs a moving-average
filter to smooth the Doppler values.

The second step is to segment the Doppler stream, such
that each segment contains a single free-weight activity. A
main challenge lies in the heterogeneity of Doppler profiles
with respect to di↵erent activities. We find that the state-
of-the-art, e.g., threshold-based filters [9, 10] or peak detec-
tion schemes [14], fails to segment the activity precisely. In
FEMO, we exploit the stochastic characteristics of Doppler
values and design a KL-divergence based segmentation algo-
rithm. This algorithm works e�ciently and adapts to vari-
ous free-weight activities and users.

The third step is to recognize each activity from the Doppler
segment. Towards accurate and prompt recognition, we
build up a body movement model and observe that each
activity has a unique yet stable combination of arm motion
trails. Based on this observation, we employ the Doppler
profile as the feature of each activity and design a finger-
print based activity recognition scheme. To improve the
recognition e�ciency, we leverage the motion order of arms
to prune the unqualified matching candidates in advance.

The final step is to measure the quality of each activity
and provide valuable feedbacks to users. In FEMO, we as-
sess each activity from both the local and global views. Local
analysis concentrates on the activity details by comparing
the proposed features against the standard ones. The global
analysis focuses on the consistency of each group of activi-
ties by measuring the smoothness and continuity of activities
within each group. The assessment results are displayed on
the end-user interface to assist activity rectification.

3. SYSTEM DESIGN
This section details the FEMO design and highlights the

challenges, key observations, and core techniques behind the
activity segmentation, recognition and assessment of FEMO.

3.1 Data Acquisition and Preprocessing
Standard Doppler API: Commercial RFID readers of-

fer a standard API to retrieve Doppler shifts. However, ac-
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Figure 3: Doppler phase shifting acquired from the
API

cording to our initial experiments, we find that the reported
Doppler values fail to precisely depict the free-weight activ-
ity. As an example, we perform the Bent over single arm
lateral raise ten times in front of an ImpinJ R420 reader.
Figure 3 plots the Doppler values reported by the standard
API. Ideally, the Doppler values should be close to zero when
the user keeps still, yet increase positively (negatively) as
the dumbbell moves towards (away from) the reader. Since
the activity is repeated ten times, the Doppler shifts should
show a consistent pattern. However, from Figure 3, we find
that the reported Doppler values change irregularly over the
whole process. The results indicate that neither the tag’s ap-
proaching nor the opposite movement to the reader results
in a clear positive or negative peak. Even worse, it is dif-
ficult to recognize the repetitive pattern from the collected
Doppler readings. The technical report released by Impinj
states that the reader estimates the Doppler shift of a tag
through the time duration and phase di↵erence of a single
tag packet. Thus, the inaccurate Doppler may be related to
both the time disalignment and phase noise. Hence we seek
other methods to acquire precise Doppler values.

RF phase measurement: Instead of directly using the
Doppler shifts from the API, we deduce the Doppler shift-
s from the phase measurement reported by the commercial
reader. The phase value of an RF signal ✓ describes the o↵set
of the received signal from the original one before transmis-
sion, ranging from 0 to 2⇡.

⇢
✓ = (2⇡ 2l

�

+ µ) mod 2⇡
µ = ✓

Tx

+ ✓
Rx

+ ✓
TAG

(1)
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Figure 4: (a) Phase measurements under di↵erent
tag orientations (b) QQ Plot of sample data versus
standard normal distribution

where l is the distance between the antenna and the tag, �
is the wavelength, and µ is the system noise. Due to the
imperfect manufacture, the reader’s transmit circuits (✓

Tx

),
the receiver circuits (✓

Rx

), and the tag’s reflection character-
istics (✓

TAG

) will introduce additional phase rotations, i.e.,
noises, to the phase measurement.

3.1.1 Preprocessing
Phase measurement smoothing: To deduce precise

Doppler shifts, it is crucial to minimize the phase noise. We
change the tag orientation with respect to the antenna with
a step of 6� and examine how sensitive the phase measure-
ment is to tag orientations. The antenna is set to be 2m
away from the tag. Figure 4(a) shows the raw phase mea-
surements when the tag rotates 2⇡ (marked as red points).
We find that due to the inherent circuit noise, the phase
values fluctuate continuously and randomly. We further test
the distribution of these measurements against the standard
Gaussian distribution (shown in Figure 4(b)). The linearity
of the points on the Q-Q plot suggests that the data are
normally distributed, with a standard deviation of 0.0332
radian. Based on this observation, we model the phase mea-
surement ✓ as a Gaussian random variable N (µ,0.0332). We
then utilize the standard Kalman Filter [17] to smooth the
phase values. We test various lookback window sizes, and
empirically set it as 10 which optimizes the smoothing per-
formance.

Figure 5 shows the phase measurement before/after s-
moothing in both the static and movement cases. The dif-
ference indicates that the Kalman filter e↵ectively enhances
the stability of phase measurements of static tags. For the
moving-tag case, we can see that the phase values change
steadily after filtering. Yet they still retain a clear profile of
each free-weight activity.

Deducing Doppler shifts: Doppler shifts are generated
due to the relative movement between a sender and a receiv-
er, e.g., the stationary reader and the moving tag. Suppose
at time t

i

and t
i+1, the reader receives two consecutive sig-

nals from the moving tag, with the phase readings ✓
i

and
✓
i+1. Let v be the tag’s moving speed within the period of
[t
i

, t
i+1]. v can be regarded as a constant due to the short

interval between two consecutive tag readings. Hence the
distance (d) that the tag moves equals to v · (t

i+1 � t
i

). On
the other hand, we know that the signal in the backscatter
communication traverses 2 times of d. Thus we have:

2v · (t
i+1 � t

i

) = � · (
✓
i+1 � ✓

i

2⇡
) (2)
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Figure 5: Phase measurements before/after smooth-
ing under static/movement cases

The Doppler shift can be further expressed as:

f =
v

�
=

✓
i+1 � ✓

i

4⇡ · (t
i+1 � t

i

)
(3)

Figure 6(b) shows the phase-deduced Doppler shifts. The
measurements are collected when a volunteer performs Bent-
over lateral raise ten times. Compared with the noisy Doppler
values reported by the API (Figure 6(a)), the deduced Doppler
values clearly show ten repetitive patterns.

Despite the high resolution, from Figure 6(b) we find that
the deduced doppler value still fluctuates over time. This
is because the time interval between any two consecutive
readings may vary due to the random access mechanism of
ALOHA protocol [32]. Such non-uniform time intervals lead
to Doppler fluctuations and jitters that overwhelm the orig-
inal appearance of each activity. Therefore, after computing
the Doppler value, we apply a moving average filter over
the last n readings (n=10 in FEMO) to smooth the Doppler
values. Figure 6(c) shows the final results.

3.2 Activity Segmentation
The activity segmentation module identifies Doppler seg-

ments that are likely to contain a complete free-weight ac-
tivity. We define each segment as 

i

= (t
s

: t
e

), with start
time t

s

and end time t
e

within the Doppler stream. The seg-
mentation yields a set of segments K, with each containing
a free-weight activity: K = {1,2, ...,m

}.
There has been extensive e↵orts on activity segmentation

[8]. Most of them assume that each activity will exhibit a
clear peak in the received signal stream. Thus by compar-
ing each signal strength with a static threshold, the activity
segments will be located accordingly. However, such a solu-
tion is unsuitable for FEMO as a free-weight activity usually
contains multiple peaks within an activity period. The one-
peak detection scheme may split one activity into multiple
segments.

3.2.1 Key observations
In FEMO, the activity segmentation scheme is based on

the fact that people tend to take a short rest after each activ-
ity to control the training pace. We term such a short rest as
a resting interval. The resting intervals have small Doppler
values, which naturally separate the activities. Thus by ex-
tracting the start and end times of each resting interval, we
can acquire each activity segment accordingly. Neverthe-
less, a simple threshold still fails since people may adjust
poses slightly within the resting intervals, leading to sharp
Doppler peaks in the resting intervals. Such Doppler peaks
can exceed the threshold and incur incorrect segments.
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Figure 6: Doppler shift of 10
consecutive Bent-over lateral raise

0 2 4 6 8 10 120
0.1
0.2
0.3
0.4

Bins

PD
F

0 2 4 6 8 10 120

0.1
0.2
0.3
0.4

Bins

the PDF of doppler values within free−weight activities

0 2 4 6 8 10 120
0.1
0.2
0.3
0.4

Bins

0 2 4 6 8 10 12
0

0.5

1

Bins

PD
F

0 2 4 6 8 10 120

0.5

1

Bins

the PDF of doppler values within resting intervals

0 2 4 6 8 10 12
0

0.5

1

Bins

Figure 7: PDF of doppler values
within di↵erent windows

0 200 400 600 800 1000 1200 1400 1600 1800 2000−3

−2

−1

0

1

2

3

Samples

Fr
eq
ue
nc
y

1 2 3 4 5 6 7 8 9 10

Figure 8: Segmentation result of 10
activity performing

Our segmentation scheme leverages two insights:

• The sharp Doppler values usually take a small portion
of the whole data within the resting interval.

• Except for the sharp Doppler values incurred by the
pose adjustment, the remaining Doppler readings with-
in the resting interval are relatively small and stable.

Thus if we split a resting interval into multiple consecu-
tive windows, the distribution of Doppler values within each
window should be similar. Conversely, the Doppler values
outside the resting interval corresponds to the free-weight
activity. These values change rapidly and show a complete-
ly di↵erent distribution from those in the resting interval.

3.2.2 Segmentation scheme
The above analysis leads us to an adaptive segmenta-

tion scheme based on the KL divergence [34]. Denote the
Doppler stream as S = (s

i

) 2 R1⇥N , where N is the num-
ber of discrete time points t1, ..., tN at which the Doppler
values are sampled. For each w consecutive Doppler val-
ues, we group them into a window. Within each window,
we further categorize the Doppler values into multiple bins.
The bin size is empirically set as 0.35. Then we can get the
discrete probability distribution function (PDF) of Doppler
values within each window. Given two consecutive windows
w

i

and w
j

, let P and Q be their PDF, respectively. The KL
divergence of Q from P is defined as:

D
KL

(P ||Q) =
X

i

P (i) · ln
P (i)
Q(i)

(4)

The KL divergence measures the information loss when Q
is used to approximate P . In FEMO, there are three cases:

1. both windows are within the resting interval;

2. both windows are within the activity period;

3. one is within the resting interval and another is within
the activity period;

In the first case, D
KL

(P ||Q) will be close to zero due to
the similar probability distributions within these two win-
dows (Figure 7(a)). In the latter two cases, D

KL

(P ||Q) will
be significantly larger than zero as the distribution varies
sharply among these two windows (Figure 7(b)). Hence by
checking D

KL

(P ||Q), we can ascertain whether the current
window is within the resting interval or not. After finding
all windows within the resting interval, we can extract the

activity segment accordingly. Figure 8 shows the segmenta-
tion result over a Doppler stream, we see that all of these
ten activities are correctly identified. We also notice the
Doppler profile of each activity is completely contained in
the corresponding segment, indicating accurate and robust
segmentation.

3.3 Activity Recognition
The activity recognition module aims to identify the free-

weight activity within each segment. Many previous works
focus on building a robust activity recognition system [9,
10, 29, 30, 41]. The main principle is to extract unique
features for the activity from the input signals, and train a
classifier to distinguish each unlabelled activity. However,
this method has two major drawbacks. First, the system
performance is sensitive to the training set. If the train-
ing set is small or biased, the classifier will su↵er from low
recognition accuracy. Although a larger training set may
lead to a more accurate classifier, it will incur a higher over-
head (e.g., time and cost for collecting the ground-truth) on
system realization and deployment. Second, such a method
su↵ers from higher latency. To get a better performance,
researchers leverage advanced graphic model (e.g., Hidden
Markov Model (HMM) and Conditional Random Field (CR-
F)) to explore the transition between consecutive activities.
These model based enhancements, however, usually incur
much higher computational overhead as they require a large
amount of training data to determine the parameters of their
models before deployment. Moreover, they will involve the
states of previous activities when recognizing the current
activity, which is also very computationally costly. We are
motivated to design our activity recognition scheme balanc-
ing accuracy and overhead.

3.3.1 Fingerprint Matching
We find that each free-weight activity can be considered

as a combination of di↵erent arm motions. For various free-
weight activities, each arm motion presents a unique motion
trail, generating unique Doppler profiles. Figure 9 demon-
strates the e↵ectiveness of Doppler profile. The two upper
subfigures verify the stability of Doppler profiles while the
uppermost and the lowermost ones confirm that the Doppler
profiles disperse in di↵erent free-weight activities. Hence,
the Doppler profile can discriminate the free-weight activi-
ties and act as a reliable signature.

FEMO compares the profile in each segment against the
standard to identify free-weight activities. Hence we need
to evaluate the similarity between two Doppler profiles. We
argue that the Euclidean-distance metric is unsuitable s-
ince activity segments may vary in length due to personal
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preferences, physical characters (weight, height) and other
reasons.

FEMO uses Dynamic Time Warping (DTW) [35] to com-
pute the similarity between two Doppler profiles. The ben-
efits are twofold. On one hand, DTW compares two profiles
with di↵erent lengths. On the other hand, DTW automat-
ically compresses or stretches a sequence to minimize the
distance between two sequences, thus focusing on the shape
similarity rather than the absolute values. Figure 10 shows
the Doppler profiles of bent-over one-arm dumbbell that are
aligned with DTW. We observe that Doppler profile 1 is
stretched and shifted to match with Doppler profile 2.

3.3.2 Hierarchical activity recognition framework
Directly using DTW for activity recognition is costly. The

complexity of DTW is O(mn), indicating a large overhead
for long Doppler profiles, especially when we have to com-
pare one Doppler profile against all candidates in the database.
To reduce the computational overhead, we design a hierar-
chical activity recognition framework based on two observa-
tions on the arm motion pattern:

1. The free-weight activity involves either a single arm
motion or two arm motions.

2. For the two arm motion activities, they are either con-
ducted in parallel or alternatively.

Figure 11 shows the decision-tree based recognition scheme.
At the first level, FEMO classifies the candidate by detect-
ing whether the current activity is a single arm activity or
not. This process can be achieved by checking whether the
attached two tags on the dumbbells are detected together.
If yes, FEMO further classifies the candidate by checking
whether the current two-arm activity is performed alterna-
tively or not. This process can be done by examining the
concurrency of activities within these two doppler streams.
Specifically, let t

o

and t
l

be the overlapping duration and
the longest time duration of two activity segments, respec-
tively. If t

o

� � · t
l

, FEMO ascertains these two motions are
conducted in parallel. With above pruning process, we can
shrink the candidate group to no more than half its original
size.

In our implementation, we set � as 2
3 by default. Identi-

fying the tag ID takes O(1) time, while judging the concur-
rency of two activities is achievable in O(1) time. These two
simple operations help to prune the unqualified profiles in
an early stage of activity recognition, thereby improving the
computational e�ciency. After the activity recognition, all
activities will be labelled and stored for activity assessment.

3.4 Activity Assessment
The activity assessment aims to characterize the quali-

ty of the exercise and provides feedback to users. We first
measure the quality for each individual activity by compar-
ing its characteristics against the standard ones. Note that
free-weight activities are often grouped where each group
contains a set of repetitive activities. Activity consistency
within an activity group is also essential to the gym train-
ing [18]. Hence we assess the quality of activities from two
perspectives, i.e., the local view and global view, to reflect
both the o↵set of each individual activity from the standard
and the inconsistency of a activity group.

3.4.1 Local Analysis
Local analysis evaluates the quality of each activity by

concentrating on its duration and intensity, which are two
general criteria for evaluating the free-weight activities.

Duration: It measures how long an activity is performed
by the user. The duration of an activity is critical to the
free-weight training [3]. A longer duration indicates a slower
arm motion, which potentially corresponds to an ine↵ective
muscle workout. If the duration is too short, the muscle will
be stretched or warped fiercely, leading to an excessive mus-
cle workout. Either case degrades the e↵ectiveness of gym
training. In order to improve the training e�ciency, FEMO
measures the di↵erence of the durations between each con-
ducted activity and the standard. Let d

i

be the duration
of activity i, d

s

be the duration of the corresponding stan-
dard activity. FEMO computes their di↵erence d

i

� d
s

and
reports the result to the user at the end of each activity
group.

Intensity: Intensity is another important metric to e-
valuate the quality of free-weight activities. It reflects the
energy of the arm motions expended by an activity [39]. It
is understandable that a high quality activity should show
a similar energy trend to the standard. Adapting this idea
to the doppler domain, it then becomes much clear that
we measure the similarity between their doppler segments.
Specifically, Let A = {a1, a2, ..., am

} 2 R1⇥m be the doppler
segment of the desired activity, B = {b1, b2, ..., bn} 2 R1⇥n

be the corresponding standard activity. In FEMO, we first
align these two doppler segments by DTW to address the
potential inconsistency of segment length. After that, we
compute their similarity using Euclidean distance metric. A
shorter distance between two doppler segments indicates a
higher similarity, and hence a higher performance of this
activity.
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Figure 12: Training tracker service Figure 13: Performance assess-
ment
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Figure 14: Experiment scenario

3.4.2 Global Analysis
Global analysis aims at monitoring how well each group

of activities are performed, with an emphasis on unveiling
the abnormal activity pattern and irregular resting intervals
within each activity group. This part concentrates on two
kinds of characteristics: smoothness and continuity.

Smoothness: Smoothness reflects how similar each ac-
tivity is to the remaining activities within an activity group.
Dumbbells also require more balance and more muscular
control than others, such as the training with barbells or ma-
chines, and balance is crucial for optimal performance [6]. S-
moothness can well reflect the balance by measuring the sim-
ilarity of exercises in a group. A larger similarity indicates
more regular arm actions, corresponding to e↵ective muscle
trainings. To evaluate the smoothness of an activity, we em-
ploy the discrete PDFs of all the Doppler values within an
activity segment as the proposed features. Specifically, let
PDF (A) = {p

i

}

m

i=1 be the PDF of the activity segment A,
where p

i

represents the ith bin value. Since the Doppler val-
ue induced is at the granularity of 0.3 Hz, the number of bins
to calculate the discrete probability distribution function is
also set to the granularity of 0.3 Hz. In our measurements,
we find that the fluctuation range of most Doppler values is
around 6 Hz, we therefore set the number of bins to 20. To
compare the similarity between two activities, we employ
the Earth Mover’s Distance (EMD) [33]. EMD measures
the dissimilarity between two discrete probability distribu-
tion function PDF (A) = {p

i

}

m

i=1 and PDF (B) = {q
j

}

n

j=1.
It is the minimal e↵ort required to transform one histogram
into another.

Continuity: Continuity depicts the consistency of resting
intervals within an activity group. For e�cient training, the
users should pace themselves throughout the exercises [7].
A higher consistency of resting intervals indicates that the
user has a good motion pace control, i.e., a regular muscle
stretching/warping pace. Ideally, within an activity group,
the resting intervals should be consistent with each other.
However, even a professional gymnasium trainer may fail to
keep strictly consistent resting intervals. Thus we model the
resting interval of the standard activity group as a standard
normal random variable. To evaluate the continuity of ac-
tivities performed within an activity group, we investigate
the statistical characteristic of resting intervals and employ
kurtosis as a metric. The coe�cient of kurtosis is a measure-
ment on the degree of peakedness in a variable distribution.
Specifically, let R = {r

i

}

m

i=1 be the vector of resting intervals
within an activity group. The kurtosis can be computed as
follows:

�2 =

P
m

i=1(ri � µ)4

(
P

m

i=1(ri � µ)2)2
� 3 =

µ4

�4
� 3 (5)

where µ and � are the mean value and standard deviation
of the resting interval vector. As larger �2 value indicates
a concentrated distribution of resting intervals, therefore a
better continuity of activities that the user performs.

4. SYSTEM IMPLEMENTATION
This section presents both the hardware composition and

software realization of FEMO.
Hardware: We implement a prototype of FEMO on COT-

S UHF RFID devices, including an ImpinJ reader Model
R420, a Laird antenna model A9028R0NF (with a gain of
8dbi), and a set of passive RFID tags. As the metal dumb-
bell will block the magnetic waves, we place the tag on a
plastic form, which is further attached to the dumbbell. The
reader is connected to a backend PC via an Ethernet cable
and continuously reports the signal features backscattered
from tags, including RSSIs, phase angles, and Doppler shift-
s. We time-stamp each tag reading by using the reader’s
local clock in order to eliminate the influence of network
latency.

Software: The software of FEMO is fully implemented
in C#. It comprises of three components: data collection
module, data analysis module and UI module. The data
collection module is integrated with the Octane SDK, an
extension of the LLRP Toolkit, which supports continuous
tag interrogation at a rate of 340 readings/s. The data anal-
ysis module is responsible for recognizing and assessing the
quality of each performed activity. The assessment results
are displayed on a web-based UI module. The software runs
on a Lenovo PC with an Intel Core i7-4600U 2.10GHz CPU
and 8GB RAM.

UI module: FEMO currently provides two services to
the bodybuilder: training tracker service and activity per-
formance assessment service. Figure 12 shows the UI page
of the training tracker service. This service aims to provide
daily training statistics to the bodybuilder, including the
accumulative training summary and daily activity summa-
ry. The former one records the training frequency, workout
and duration of the bodybuilder. The latter one reports the
amount of activities and average duration of each activity.
In this way, FEMO provides the raw training data to the
bodybuilder. Figure 13 illustrates the UI page of the activ-
ity performance assessment service. This service o↵ers the
quantitative performance assessment on each activity in the
daily training. The user can visualize his doppler profiles of
the current activity group against the standard template for
evaluating his activity performance. The service also o↵ers
quantitative reports on the quality of the selected activity
group against the standard template, such as the smooth-
ness of each activity and duration/intensity di↵erences from
standard template, within each activity group. Based on the
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Figure 15: Evaluation result of activity segmentation scheme

comparison, the user obtains a thorough summary on the
continuity of activity groups. Although our current FEMO
prototype only has fundamental functions, e.g., the visu-
alized quality report for daily activities and logging data
along the overall training process, we plan to integrate more
advanced functionalities in our future work, such as the cus-
tomized training reminder and intelligent training advisor.

5. SYSTEM EVALUATION
In this section, we conduct extensive experiments and e-

valuate the performance of FEMO in terms of accuracy, ef-
fectiveness, and overhead.

5.1 Experiment setups
The experiment scenario is shown in Figure 14. We attach

two Impinj H47 passive tags on a pair of dumbbells. Each
dumbbell weighs 2.5kg. Note that the H47 passive tag is a
non-metal mount tag hence does not work on metal surfaces,
we thus mount it on a foam plastics that is attached on the
dumbbell. The foam plastics su�ciently isolates the tag
from the metal. To conduct a comprehensive evaluation, we
design a training workout with the ten free-weight activities.
In this workout, each activity is required to be performed
with three groups of ten repetitions. Then we recruit 15
volunteers (vary in age, gender, height, and weight) to follow
this workout and track their training process during two
weeks. The total duration of the training is 1,534 minutes,
with over 4,500 repetitions in total. The 15 volunteers are
diverse in weight, height and exercise frequency. Among
them, some ones are our acquaintances, and others are not.
To obtain standard templates, we recruit one gym trainer
who has over 5 years experience and let him perform this
workout under the same settings as the other volunteers.
In addition, to get the mostly e↵ective assessment of his
training, we recommend the trainer to stand at a constant
place during his free-weight exercises.

5.2 Activity segmentation

5.2.1 Evaluation metric
We evaluate the activity segmentation scheme based on

six metrics [8]: insertion rate, deletion rate, fragmentation
rate, merge rate, underfill rate and accuracy. The former
five metrics are used to examine the segmentation robust-
ness while the last is to examine the overall segmentation
accuracy. The detailed explanation of these metrics are as
follows:

• Insertion rate: The proportion of cases that FEMO
detects an activity within the resting interval. It ex-

amines how resilient FEMO is to noisy Doppler peaks
within resting intervals.

• Deletion rate: The proportion of cases that FEMO
misses one activity. It examines how sensitive FEMO
is to weak Doppler changes incurred by gym activity.

• Fragmentation rate: The proportion of cases that
FEMO splits a single activity into multiple ones. It
evaluates the ability of FEMO in processing compli-
cated or incoherent activities.

• Merge rate: The proportion of cases that FEMO
merges multiple activities into a single one. It evalu-
ates FEMO’s ability in segmenting the activity with
high training pace (i.e., with tiny resting intervals).

• Underfill rate: The proportion of cases that the seg-
mented activity is incomplete. It examines whether
our method is capable to accurately while completely
excavate the entire doppler profile for an activity.

• Accuracy: # of correctly detected activity

#of activities that are performed

. It exam-
ines the overall performance of FEMO on activity seg-
mentation.

5.2.2 Evaluation result
Fine-grained segmentation performance: Figure 15(a)

shows the fine-grained performance of the segmentation scheme.
In particular, the insertion rate is zero for activity 01 and
05. This value then increases steadily to around 0.005 for
activities 02, 03, 04 and 10. Finally, it almost reaches 0.015
for activities 06, 07, and 08, which occupies ignorable por-
tion of all the segments. For all activities, the insertion rate
is extremely low. This result indicates that our method is
resilient to those doppler peaks within the resting interval.

After checking the deletion rate, we find that it is also
extremely small (below 0.01) for all the desired activities
except activity 07. This is because that people usually raise
the dumbbells up slowly when performing activity 07, lead-
ing to minor Doppler values. Such minor changes, in some
cases, may be incorrectly put in resting intervals. Never-
theless, FEMO still controls the deletion rate below 0.02 for
activity 07. This result clearly demonstrates that FEMO is
sensitive to Doppler changes incurred by the gym activity.

As the bar chart in Figure 15(a) shows, FEMO achieves
diverse fragmentation rate for di↵erent activities. The frag-
mentation rate is relatively small for activities 02, 04, 06
and 09, i.e. below 0.01 on average. It then triples for ac-
tivities 07 and 10, and further quintuples for activities 01,
03, 05 and 08. This is because activities 01, 03, 05 and
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08 contain a reciprocating motion, and people tend to keep
a stable posture for a while within these activities. Despite
the high disparity, we observe that the overall fragmentation
rate for ten activities is below 0.065. This result shows that
the probability of segmenting one activity to multiple ones is
very small.

In Figure 15(a), we also notice a gap between the maxi-
mum and minimum merge rates. This is due to the diverse
training pace on di↵erent gym activities. For example, in
our experiment, we find that the resting interval is relative
longer for activity 01, 02 and 03, which results in a lower
merge rate. While for activity 06, 08 and 09, people tend to
take a short rest after performing the activity. Such a short
rest leads to activity omissions, yielding a relative larger
merge rate. Although the gap exists, it is still relative small
(approximate to 0.05) and FEMO can achieve a merge rate
of below 0.065 in the worst case. Therefore, we can conclude
that our method scales well to di↵erent training paces.

Figure 15(a) also shows the underfill rate of FEMO. We
find that FEMO can precisely capture the entire Doppler
profile of activity 02, 04, 06 and 09. Then the underfill
rate increases slightly for more complex free-weight activi-
ties (e.g., activity 01, 03, 05 and 08). The highest underfill
rate is 0.04 for activity 08, indicating FEMO can precisely
capture the entire doppler profile of this activity with a suc-
cess rate of 0.96. This result clearly states that our method
can accurately excavate the entire doppler profile for each
activity.

Accuracy w.r.t Activity diversity: Figure 15(b) plots
the result of overall segmentation accuracy with respect to
di↵erent activities. The performance of the segmentation
result can be categorized into three groups. The first group
contains activities 01, 02, 05, and 10, where FEMO achieves
a segmentation accuracy over 0.95. In the second group,
FEMO achieves a segmentation accuracy between 0.9 and
0.95. This group contains activities 04, 06, 07, and 09. While
the last group contains activities 03 and 08. For this group,
FEMO achieves an accuracy between 0.85 and 0.9. The
first two categories together cover eight out of ten activities,
indicating that FEMO can achieve a high accuracy (i.e., >
0.9) for the major activities. As for the last group, although
the segmentation accuracy reduces, it is still above 0.85.
Therefore, we can conclude that FEMO is robust to activity
diversity and can achieve desirable segmentation accuracy.

Accuracy w.r.t Human diversity: In this experimen-
t, we examine the e↵ect of human diversity on the seg-
mentation accuracy. For each volunteer, we compute the
segmentation accuracy on di↵erent activities and get the
overall accuracy distribution. The result is shown in Fig-
ure 15(c). The overall segmentation accuracy for the 15 vol-
unteers maintains in a high level. Specifically, the median
accuracy is above 0.9 for 12 volunteers. For the remaining 3
volunteers (volunteer 9, 10, and 11), we can see that FEMO
achieves a relative inferior performance, with an accuracy of
0.83 on average. Interestingly, based on the physical char-
acteristic records of volunteers, we find that all the three
volunteers seldom go to the gym. As a result, the lack of
exercise of these volunteers may lead to non-standard be-
haviors, thus lowering the segmentation accuracy of FEMO.
We further investigate the fine-grained segmentation accura-
cy distribution of each volunteer. We can see that as shown
in Figure 15(c), those who take exercise regularly (e.g., vol-
unteer 3, 4, 6 and 12), the box is relatively short, suggesting

Figure 16: Confusion matrix of activity recognition

that the segmentation accuracy of overall activities has a
high level similarity with each other. While for those seden-
tary group (e.g., volunteer 9, 10 and 11), we can see that
the box of accuracy distribution is comparatively tall, indi-
cating that FEMO holds di↵erent accuracy performance on
di↵erent kinds of activities.

5.3 Evaluation on activity recognition

5.3.1 Evaluation metric
It is possible that the activity recognition system can miss,

confuse, or falsely detect activities that did not occur. Thus,
in evaluating our activity recognition scheme, we employ the
following three metrics:

Precision P : TP

TP+FP

, where TP and FP represent the
true positives and the false positives. Precision is the frac-
tion of correctly recognized activities that are relevant to all
the recognized activities.

Recall R: TP

TP+FN

, where FN is the false negatives. Re-
call is the fraction of the correctly recognized activities that
are relevant to all this kind of activities.

False Positive rate FPR: The proportion of cases that
FEMO mistakes an activity for other activities.

5.3.2 Evaluation result
Overall Accuracy on di↵erent activities: Figure 16

shows the confusion matrix for the 10 free-weight activities
across 15 volunteers. Each row denotes the actual activity
performed and each column represents the activity recog-
nized by FEMO. Each element in the matrix represents the
fraction of activities in the row that were regarded as the
activity in the column. As is shown, the average accuracy
is 0.90 with a standard deviation of 0.03 for 10 gym activi-
ties. This shows that we can extract rich information about
free-weight activities from the Doppler profiles. The result
clearly shows that FEMO achieves a high and stable activity
recognition performance, due to its e�cient Doppler profile
extraction scheme and robust profile matching algorithm.

Examine the fine-grained performance: In this ex-
periment, we examine the the precision, recall and false posi-
tive rate of the recognition performance. The result is shown
in Figure 17. FEMO achieves an average precision of 0.90
with a standard deviation of 0.04. This result demonstrates
that FEMO substantially returns more actual labels to the
activity than error labels. As Figure 17 shows, although the
recall fluctuates over di↵erent activities, it still maintains
a high level for all of these 10 activities, achieving a mean
value of 0.91 with a standard deviation of 0.03. This result
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Figure 19: Computational latency

demonstrates that FEMO can recognize all of these 10 ac-
tivities with high accuracy. In a nutshell, the high precision
and recall achieved by FEMO manifests that our recognition
scheme scales well to di↵erent activities.

We then examine the FPR of the recognition result. A
higher FPR implies a great portion of other activities that
are mistakenly classified as the targeting activity. As a re-
sult, people may ignore the system’s notifications and even-
tually abandon the system. Figure 17 shows the FPR cross
10 activities. We observe that FEMO achieves an average
FP rate of 0.011 with a standard deviation of 0.004. Such
a low FP rate suggests that FEMO rarely takes other ac-
tivities as the targeted activity. Therefore, we can trust the
activity recognition result with high confidence.

Impact of antenna-to-user distance: we further ex-
amine the impact of antenna-to-user distance on the activ-
ity recognition. In this trail of experiments, we ask three
volunteers to perform activities under di↵erent antenna-to-
user distance settings. Each activity is performed 30 times
by each volunteer. For each activity, we average the recog-
nition accuracy of these volunteers. We randomly pick out
three activities and show their recognition accuracy in Fig-
ure 18. As the result indicates, when the user is with close
proximity to the antenna, the recognition accuracy of these
three activities all maintain in a high level. As we expand the
user-to-antenna distance, the recognition accuracy changes
moderately. This result clearly demonstrates that our recog-
nition scheme is insensitive to the user-to-antenna distance.

5.4 Evaluation on activity assessment
FEMO can show the user the detailed assessment informa-

tion about Duration, Intensity, Smoothness, and Continuity
of his/her exercises. Then, to evaluate the activity assess-
ment service, we survey the 15 volunteers to get qualitative
feedback on the e↵ectiveness and practicability of our system
objectively based on their true experience. This includes the
user satisfaction and attractive feature. For each aspect, the
volunteer is required to give a score between 1 (lowest) to
5 (highest). And we treat these scores as the evaluation for
our activity assessment module.

Overall feedbacks: Table 1 shows the overall feedback
on FEMO. Participants consider that FEMO could help to
reach the training goal with an average satisfaction score of
4.5, the standard deviation is 0.6. The potential to moti-
vate regular training achieves a score of 4.7 on average, with
std=0.4. Besides, participates also show high interest (4.6)
to use FEMO for monitoring their free-weight training pro-
cess. Overall, the feedback confirms that FEMO can help
to reach training goals faster, motivate the training, and
attract participants for long-term use.

Feedback item Rating std
could help to reach the training goal 4.5 0.6
could help to rectify the irregular motion 4.7 0.4
would continue using it 4.6 0.6

Table 1: feedback on FEMO after two weeks training

Attractive services: Table 2 shows the ratings on dif-
ferent services provided by FEMO. In the result, the most
attractive services that the participants agree with is the
accumulative training summary and the local assessment.
These two services are scored 4.7. The global assessment is
also attractive, achieving a score of 4.6. Although the daily
activity summary is less attractive compared with the oth-
ers, it still achieves a pretty high score (4.3 with std=0.4).
Therefore, from above results we believe that FEMO really
provides valuable feedback to the user.

5.5 System Overhead
Recognition Latency: FEMO should provide timely ac-

tivity recognition such that the statistical information of the
training process can be displayed promptly. We measure the
recognition latency of each activity as the duration from the
time point that bodybuilder finishes this activity to the time
point the recognition result is shown in the UI module. For
each kind of activities, we randomly choose 20 repetition-
s from 15 volunteers and record their recognition latency.
The distribution of the recognition latency for each kind
of activities is shown in Figure 19. It shows that FEMO
achieves a recognition latency of 0.09s on average for these
10 activities. Therefore, we can conclude that FEMO can
provide on-site activity recognition result.

Storage overhead: the RFID reader in FEMO periodi-
cally interrogates with tags to sense the body motion. The
acquired data is thereby accumulated gradually. To exam-
ine the storage overhead of FEMO, we give a snapshot of
storage augmenting when a volunteer performs activity 03.
The result is shown in Figure 20. For comparison, we also
plot the accumulated raw data within the same period ac-
quired from the reader before the FEMO processing. We
observe that the storage overhead of the raw data stream
increases linearly with the time. It rapidly accumulates to
over 7.5Mb at the end of the 30th second. Since conducting
a workout commonly takes over one hour, recording this w-
hole training process may incur about 1Gb storage overhead.
In contrast, we can see that FEMO incurs significantly lower
storage overhead, which accumulates to 0.33Mb at the end
of the 30th second. From a long-term view, FEMO would
accumulate about 40Mb of a one-hour training procedure,
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Service item Rating std
accumulative training summary 4.7 0.3
daily activity summary 4.3 0.4
global assessment 4.6 0.5
local assessment 4.7 0.4

Table 2: Service assessment after two weeks training

which is negligible compared to one-hour video based record-
ing. Therefore, we can conclude that as a long-term running
system, FEMO is much storage-e�cient.

6. CASE STUDY
We deploy our FEMO system into a small fitness room

in our lab. As the bottom-right figure shown in Figure 14,
there are other equipments coexisting, such as treadmills
and pedalling machines. We conduct experiments in this
scenario and test the robustness of FEMO.

In this trail of experiments, we ask three volunteers to
perform activities under various conditions. The first group
of experiments (Condition #1) are conducted in normal en-
vironment, e.g., relatively constant surroundings. In the
second group of experiments (Condition #2), the volunteers
perform their dumbbell activities with some other trainers
running on the treadmills concurrently. During the third
group of experiments (Condition #3), a disturber walks
across the line of sight between the reader antenna and the
volunteer frequently. We pick out three one-arm activities
as the examples. Every volunteer performs each activity
30 times under each condition. The segmentation and the
recognition accuracy are shown in Figure 21 and Figure 22.
From the results we can see that the segmentation accuracy
scales well under various conditions. On the other hand, the
recognition accuracy has a significant reduction under con-
dition #3. It tells that when the line of sight from the reader
antenna to the user is frequently blocked, the Doppler profile
will change and become hardly recognizable. However, both
segmentation and recognition accuracy (say 0.93 and 0.87)
under condition #2 are slightly influenced, which supports
the deployment of FEMO in a real gym in the future.

7. DISCUSSION AND FUTURE WORKS
7.1 Discussion

This section discusses limitations and practical deploy-
ment issues.

(1) Impact of Item Placement: In a real gym, there
exists various objects or fitness equipments, and they are
considered as obstacles to FEMO. These obstacles (some of
them are in the metal material) have slight impact on the
accuracy of FEMO, as long as they do not exactly block the
line of sight from the reader antenna to the user (tag). In
common scenarios, the obstacles may reflect or absorb some
signals, resulting in the reduction of signal energy. But they
have negligible inference to the Doppler profile as well as our
solutions.

(2) Deployment Cost for Full Coverage: The current
Impinj reader we adopted is not particulary cheap. However,
passive RFID technology is promising to be widely spread in
the near future. And Impinj reader is a mainstream COT-
S device, which supports the extension and application of
FEMO.

(3) Scaling to Reader Diversity: The impinj reader of-
fers a standard API to retrieve Doppler values, but they are

not accurate. If we use other devices that can report accu-
rate Doppler shift, FEMO can skip the signal preprocessing
and utilize subsequent modules to monitor free-weight activ-
ities directly. Thus, FEMO works well with current readers
that report low-quality Doppler shift readings, and will per-
form much better and more e�cient if using those readers
with high-quality Doppler shift reporting.

(4) Handling Unknown Activities: In this paper, we
evaluate 10 popular free-weight activities. It is possible for
users to perform incomplete actions during the exercises due
to e.g. fatigue, which may lead to unknown Doppler pro-
files. In the current prototype, we filter out these unknown
Doppler profiles by comparing their DTW distance with a
pre-calibrated threshold. Similarly, other activities, such as
picking up or putting down dumbbells, can also be filtered.
Only those qualified profiles (i.e., DTW distance below the
threshold) are counted.

(5) All-time Accessibility: In FEMO, we require the
user to do exercise within the interrogation zone of the an-
tenna so that the tag can be interrogated interruptedly dur-
ing the exercise. It is possible to relax this constraint on
user location via boosting the transmitting power and opti-
mizing the antenna position. It is also viable to extend the
coverage of the reader by using multiple antennas to ensure
all-time accessibility of tags even if the user is out of the
interrogation zone of one or several antennas.

(6)Extending to Multiple Users: In the current proto-
type, we only evaluate FEMO in single-user cases. We envi-
sion FEMO can be extended to multi-user case via multiple
antennas or distributed MIMO technology, e.g. each anten-
na separately monitors one user. As part of our on-going
studies, we also leverage multiple antennas to monitor syn-
chronized sports like group dancing training and computer-
supported cooperative working.

7.2 Future Works
(1) Scaling to non-stop activities: We admit that our

proposed segmentation algorithm is based on the fact that
people tend to take a short rest after each activity to control
the training pace. When adopting the algorithm to deal with
non-stop activities, the segmentation accuracy will degrade
to a certain extent. We will design a more robust algorithm
in our future work.

(2) Quantitative metric for activity assessment: In
the current prototype, we take the data collected from one
gym trainer with 5-year experience as the standard tem-
plates. To further improve the e↵ectiveness and availability
of FEMO and provide more accurate assessment result, we
would extend the standard templates to suit di↵erent users,
e.g., recruiting more professional trainers or coaches (vary-
ing in gender, height, weight, etc.) to provide the standard
activity templates. Thus, FEMO can choose appropriate
templates for the user based on his/her personal information
when he/she first uses FEMO. Also, to improve the design of
assessment criteria so as to further improve the availability
of FEMO, we would consult these coaches to give more pro-
fessional advices or acquire qualitative feedbacks from focus
groups.

8. RELATED WORK
The design of FEMO is closely related to the following

research categories.
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Figure 20: Storage overhead
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Figure 21: Segmentation accuracy
over various conditions
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Figure 22: Recognition accuracy
over various conditions

Activity Recognition: There is a large body of works
on human activity recognition. Based on di↵erent processing
patterns, the works in this domain can be broadly divided
into two categories. The first category of works leverage
dedicated sensors, e.g., the gyroscope and accelerometer,
for human activity recognition. These works build upon
the fact that the sensor can provide rich information reflect-
ing the gesture recognition. UbiFit Garden [10] infers the
body movement via a on-body sensing module, and displays
the result on the mobile terminal to encourage individuals’
training enthusiasm. RistQ [29] leverages the accelerations
from a wrist strap to detect and recognize smoking gestures.
Chang et al. [9] also use accelerometer sensors embedded in
a glove to recognize and track the free-weight exercises in
the gym. Although these proposals have demonstrated an
inspiring power in activity recognition, the requirement of
wearing some dedicated sensors is usually cumbersome or
unsuitable for gym activity recognition. Besides, the per-
formance of these sensor based schemes is sensitive to the
hardware characteristics (e.g., the sampling rate or compu-
tational capacity), which limits the wide adoption in prac-
tice.

Another brunch of activity recognition solutions exploit
the change of wireless signals incurred by the human’s ac-
tions. RF-IDraw [40] can infer a human’s writing by track-
ing a passive RFID tag attached to his/her pen. E-eyes [41]
leverages WiFi signals to recognize the in-home activity of
human beings. In particular, there are many prior works
detecting movements by resorting to Doppler e↵ect [5, 19,
37, 38]. Their common insight is that the Doppler shift
generated from the non-rigid-body motions of humans con-
tains valuable information related to the human movemen-
t. The authors in [5, 37] extract certain features from the
Doppler shift to distinguish among humans, animals, and
vehicles. The work proposed in [19] can classify seven hu-
man activities (such as the running, walking, etc.) by ex-
tracting Doppler features from the signals collected by a
2.4GHz Doppler radar. By deploying Doppler sensors on
the wall or tables, the work proposed in [26] can sense dai-
ly human activities using the Doppler e↵ect in 24GHz mi-
crowaves. WiSee [30] exploits the Doppler e↵ect of WiFi
signals caused by the body reflection to infer nine typical
human motions. Similar to our work, these approaches are
device-free such that users are released from wearing or car-
rying any devices. However, they either adopt dedicated
hardware (e.g., Software defined radio, Doppler radar, etc.)
or require complicated signal processing procedure, intro-
ducing a high deployment cost or huge computational over-
head. Moreover, they have to rely on high-frequency sig-

nals (such as 2.4GHz, 24GHz), in which cases the Doppler
change induced by human motions are obvious and easy to
track. Our work releases this constraint in that we realize
the accurate activity recognition and assessment by using a
much lower frequency spectrum, i.e., 860MHz ⇠ 960MHz,
which is adopted by COTS passive RFID devices. Within
this spectrum, the Doppler changes are subtle and vulnera-
ble to noises [22]. In addition, we enable the on-site activ-
ity recognition and assessment by adopting several e�cient
techniques, e.g., DTW, and provide rich feedbacks to the
user for assessments.

Context-awareness Sensing: Recent advances in light-
weighted sensors [23] and signal processing techniques have
witnessed the prosperity of context-awareness sensing. Cross-
Navi [36] enables the crossroad navigation for the blind with
the calibration of built-in sensors on commodity phones.
SurroundSense [4] exploits built-in sensors on smartphones
to characterize ambient features for logical localization. Sim-
ilarly, SoundSense [24] analyzes the characteristics of sound
events via a mobile phone to recognize the context around
the user. The sound characteristics are further used for
monitoring the face-to-face interaction [21], non-speech body
sound recognition [31], speaker counting [42], and sleep qual-
ity monitoring [15, 13]. These works can provide partial
indication on human environment, thereby enhancing the
activity recognition performance.

9. CONCLUSION
In this paper, we present the design, implementation and

evaluation of FEMO, a passive RFID based free-weight ac-
tivity monitoring system. FEMO attaches passive RFID
tags to the training devices, i.e., dumbbell in this work, and
leverages the backscattered signal for on-site activity recog-
nition and assessment. The result of extensive experiments
collected from 15 volunteers demonstrates that FEMO can
be applied to a variety of free-weight activities, providing
valuable feedbacks for users’ activity rectification.
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[14] N. Y. Hammerla, T. Plötz, P. Andras, and P. Olivier.
Assessing Motor Performance with PCA. In
Proceedings of IWFAR, 2011.

[15] T. Hao, G. Xing, and G. Zhou. iSleep: Unobtrusive
Sleep Quality Monitoring using Smartphones. In
Proceedings of ACM MobiSys, 2013.

[16] iOS 8 HealthKit.
http://www.apple.com/ios/whats-new/health/.

[17] R. E. Kalman. A new Approach to Linear Filtering
and Prediction Problems. Journal of Fluids
Engineering, 82(1):35–45, 1960.

[18] C. Kennedy-Armbruster and M. Yoke. Methods of
Group Exercise Instruction. Human Kinetics, 2014.

[19] Y. Kim and H. Ling. Human Activity Classification
Based on Micro-Doppler Signatures Using a Support
Vector Machine. IEEE Transactions on Geoscience
and Remote Sensing, 47(5):1328–1337, 2009.

[20] J. Kruger, H. M. Blanck, and C. Gillespie. Dietary
and physical activity behaviors among adults
successful at weight loss maintenance. International
Journal of Behavioral Nutrition and Physical Activity,
3(1):17, 2006.

[21] Y. Lee, C. Min, C. Hwang, J. Lee, I. Hwang, Y. Ju,
C. Yoo, M. Moon, U. Lee, and J. Song. Sociophone:
Everyday Face-to-face Interaction Monitoring
Platform using Multi-phone Sensor Fusion. In
Proceeding of ACM MobiSys, 2013.

[22] H. Li, Y. Can, and P. S. Alanson. IDSense: A Human
Object Interaction Detection System Based on Passive
UHF RFID. In Proceedings of ACM CHI, 2015.

[23] Z. Li, W. Chen, C. Li, M. Li, X.-y. Li, and Y. Liu.
FLIGHT: Clock Calibration Using Fluorescent
Lighting. In Proceedings of ACM MobiCom, 2012.

[24] H. Lu, W. Pan, N. D. Lane, T. Choudhury, and A. T.
Campbell. SoundSense: Scalable Sound Sensing for
People-centric Applications on Mobile Phones. In
Proceedings of ACM MobiSys, 2009.

[25] H. Lu, J. Yang, Z. Liu, N. D. Lane, T. Choudhury,
and A. T. Campbell. The Jigsaw Continuous Sensing
Engine for Mobile Phone Applications. In Proceedings
of ACM SenSys, 2010.

[26] S. Masatoshi and M. Kurato. Activity Recognition
Using Radio Doppler E↵ect for Human Monitoring
Service. Journal of Information Processing,
20(2):396–405, 2012.

[27] P. Melgarejo, X. Zhang, P. Ramanathan, and D. Chu.
Leveraging Directional Antenna Capabilities for
Fine-grained Gesture Recognition. In Proceedings of
ACM UbiComp, 2014.

[28] D. Morris, T. S. Saponas, A. Guillory, and I. Kelner.
RecoFit: Using a Wearable Sensor to Find, Recognize,
and Count Repetitive Exercises. In Proceedings of
ACM CHI, 2014.

[29] A. Parate, M.-C. Chiu, C. Chadowitz, D. Ganesan,
and E. Kalogerakis. RisQ: Recognizing Smoking
Gestures with Inertial Sensors on A Wristband. In
Proceedings of ACM MobiSys, 2014.

[30] Q. Pu, S. Gupta, S. Gollakota, and S. Patel.
Whole-home Gesture Recognition using Wireless
Signals. In Proceedings of ACM MobiCom, 2013.

[31] T. Rahman, A. T. Adams, M. Zhang, E. Cherry,
B. Zhou, H. Peng, and T. Choudhury. BodyBeat: A
Mobile System for Sensing Non-speech Body Sounds.
In Proceedings of ACM MobiSys, 2014.

[32] L. G. Roberts. ALOHA Packet System with and
Without Slots and Capture. ACM SIGCOMM
Computer Communnications Review, 5(2):28–42, 1975.

[33] Y. Rubner, C. Tomasi, and L. J. Guibas. The Earth
Mover’s Distance as a Metric for Image Retrieval.
International Journal of Computer Vision,
40(2):99–121, 2000.

[34] R. A. L. S. Kullback. On Information and Su�ciency.
Annals of Mathematical Statistics, 1951.

[35] S. Salvador and P. Chan. Toward Accurate Dynamic
Time Warping in Linear Time and Space. Intelligent
Data Analysis, 11(5):561–580, 2007.

[36] L. Shangguan, Z. Yang, Z. Zhou, X. Zheng, C. Wu,
and Y. Liu. CrossNavi: Enabling Real-time Crossroad

153



Navigation for the Blind with Commodity Phones. In
Proceedings of ACM UbiComp, 2014.

[37] A. Stove and S. Sykes. A Doppler-based Automatic
Target Classifier for a Battlefield Surveillance Radar.
In Proceedings of IEEE RADAR, 2002.

[38] D. A. Tesch, E. L. Berz, and F. P. Hessel. RFID
Indoor Localization based on Doppler E↵ect. In
Proceedings of IEEE ISQED, 2015.

[39] How to measure exercise intensity.
http://www.weightwatchers.com/util/art/index_

art.aspx?tabnum=1&art_id=20971.
[40] J. Wang, D. Vasisht, and D. Katabi. RF-IDraw:

Virtual Touch Screen in the Air Using RF Signals. In
Proceedings of ACM SIGCOMM, 2014.

[41] Y. Wang, J. Liu, Y. Chen, M. Gruteser, J. Yang, and
H. Liu. E-eyes: Device-free Location-oriented Activity
Identification using Fine-grained WiFi Signatures. In
Proceedings of ACM MobiCom, 2014.

[42] C. Xu, S. Li, G. Liu, Y. Zhang, E. Miluzzo, Y.-F.
Chen, J. Li, and B. Firner. Crowd++: Unsupervised
Speaker Count with Smartphones. In Proceedings of
ACM UbiComp, 2013.

[43] A. Zhan, M. Chang, Y. Chen, and A. Terzis. Accurate
caloric expenditure of bicyclists using cellphones. In
Proceedings of ACM SenSys, 2012.

154




