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ABSTRACT
Cross-domain recommendation (CDR) is a widely used methodol-
ogy in recommender systems to combat data sparsity. It leverages
user data across different domains or platforms for providing per-
sonalized recommendations. Traditional CDR assumes user prefer-
ences and behavior data can be shared freely among cloud and users,
which is now impractical due to strict restrictions of data privacy.
In this paper, we propose a Deployment-friendly Cloud-Device
Collaboration framework for Cross-Domain Recommendation (De-
CoCDR). It splits CDR into a two-stage recommendation model
through cloud-device collaborations, i.e., item-recall on cloud and
item re-ranking on device. This design enables effective CDR while
preserving data privacy for both the cloud and the device. Exten-
sive offline and online experiments are conducted to validate the
effectiveness of DeCoCDR. In offline experiments, DeCoCDR out-
performed the state-of-the-arts in three large datasets. While in
real-world deployment, DeCoCDR improved the conversion rate
by 45.3% compared with the baseline.
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• Information systems → Recommender systems; Online
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Figure 1: Cloud-device collaboration paradigms for cross-
domain recommendation.

1 INTRODUCTION
The digital commerce is experiencing rapid growth, resulting in
large numbers of new or less explored user groups. Such sparse user
data imposes a major challenge for recommender systems, and has
stimulated the emergence of cross-domain recommendation (CDR)
[39]. By leveraging information from other domains e.g., search
engine [29], short-video [13], online shopping [12], cross-domain
recommendation can offer relevant suggestions for new or less
explored areas of interest for users. This approach has already been
successfully implemented in various applications, including news
[11], e-shopping [20], online video streaming[13], among others.

Traditional CDR relies on a cloud server to facilitate data sharing
across domains [5, 21, 39], which is challenged by the increasing
concerns on data privacy [5, 14]. Since data from multiple domains
of the same user is often accessible on edge devices e.g., different
apps on one’s smartphone, a promising alternative is to harness
these edge devices for cross-domain data sharing, known as cloud-
device collaboration [18, 21, 24, 27, 36, 37]. In these solutions, the
cloud and devices collaboratively learn cross-domain knowledge
without accessing the raw data via federated learning [18, 21, 27] or
model distillation [33, 34, 36], where the trained model is then de-
ployed to the devices for inference (upper figure in Fig. 1). Despite its
effectiveness in training, such collaborative-training-local-inference
paradigm is unfavorable for practical deployment of recommender
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systems. (i) Since a recommender system e.g., e-shopping, may rank
millions of items during inference [6], such overhead would easily
overwhelm the memory and computation of edge devices. (ii) Local
inference implicitly assumes the item pool is also deployed to edge
devices, which may be forbidden since the item pool is sometimes
considered as the asset of the cloud [19, 30].

In this paper, we propose a Deployment-friendly Cloud-Device
Collaboration framework for Cross-Domain Recommendation (De-
CoCDR). As shown in the bottom figure of Fig. 1, the major dis-
tinction from previous efforts is that the cloud and the device also
collaborate in inference, where the recommender system is split
into two parts: on-cloud item recall and on-device re-ranking. Specifi-
cally, the on-cloud recall model extracts user’s potentially interested
items. These recalled items are then sent to device for personalized
re-ranking based on local data from other domains. Such a model-
split deployment has the following advantages. (i) The large item
pool remains on the cloud, which aligns with the business logic in
practice. (ii) Compared with the million-scale item candidates, the
recalled item candidates are often at hundred scale [8, 35], which
is more manageable for re-ranking on resource-limited devices.
(iii) The subsequent on-device re-ranking can naturally utilize the
cross-domain data from the same user to improve recommendation
accuracy without compromising privacy.

While being more practical for inference, the two-stage model is
more difficult to train since the inter-user knowledge (of the same
domain) and inter-domain knowledge (of the same user) no longer
interact freely, but via the highly compressed item recall list. This
constraint exaggerates the data sparsity problem in model training.
(i) To train the on-device re-ranking model, only the user’s own
local (intra- and inter-domain) data can be utilized. Even worse,
most items in the recalled item list are new to the user due to limited
interactions with the cloud. (ii) To train the on-cloud item recall
model, the cloud has to rely on the limited historical interactions
with the user. More importantly, the cloud cannot easily obtain
other effective features due to inaccessibility of the local inter-
domain data. These restrictions prohibit effective learning of user
preferences on the cloud.

To this end, private data constraints lead to the design of separate
learning strategies for the device and the cloud side.

• On-device re-ranking: To combat the data sparsity on de-
vice, we propose a metric-based meta-learning re-ranking
model. It first adopts a generalized feature encoder to learn
robust user preferences from limited cross-domain data from
a single user. The key is to learn from both the positive and
negative samples via a pair-wise variational autoencoder. We
also utilize metric-based meta learning to further improve
the model generalization to unseen items.
• On-cloud recall: Exploiting overlaps in the recalled and re-
ranked lists as the bridge, a meta recall model is designed
to determine accurate item recall list. First, users are en-
coded with recommended items upon generalized feature
embeddings. Then a latent vector is placed to fine-tune the
previous results based on positional differences between re-
called and re-ranked lists. Through this design, the impact
of the inaccessible inter-domain data on item re-ranking can
be captured on cloud.

We evaluate DeCoCDR via extensive offline and online experi-
ments. In offline experiments, DeCoCDR achieves the best perfor-
mance compared with the state-of-the-arts [11, 16, 21, 25, 27] on
three large datasets. We also deployed DeCoCDR for a three-week
online A/B test. Compared with the baseline without utilizing lo-
cal inter-domain data, DeCoCDR achieves 45.3% improvement in
conversion rate (CVR) of product advertising.

The contributions of this work are summarized as follows:

• To the best of our knowledge, we are one of first attempts on
a cross-domain recommendation framework that complies
with commercially practical data privacy constraints.
• We propose DeCoCDR, a new two-staged cross-domain rec-
ommender system into via cloud-device collaborations. Its
design effectively tackles the data sparsity problem in on-
device re-ranking and on-cloud item-recall.
• In offline experiments, DeCoCDR outperforms the state-of-
the-arts [11, 16, 21, 25, 27] in three large datasets. DeCoCDR
is also deployed in real-world applications. In online product
advertising test, DeCoCDR improves CVR by 45.3% com-
pared with the baseline.

2 RELATEDWORK
Cloud-based CDR. In cloud-based CDR, data from different do-
mains are gathered and utilized at the central server [3, 5, 11, 15–
17, 20, 29, 40, 41]. For example, Hu et al. [11] propose a collabo-
rative cross-network for effective knowledge transfer across do-
mains. Ouyang et al. [29] design a mixed neural network to model
long-term and short-term user interest in different domains for
click-through rate prediction. Zhu et al. [41] adopt meta learning to
construct a personalized knowledge transfer module for each user
for interest prediction. However, sharing cross-domain data with
the central server is challenged by the data privacy regulations.
Collaborative CDR. Collaborative CDR avoids direct data access
to other domains during the training of cross-domain recommenda-
tion models [21–23, 27, 36]. For instance, Liu et al. [21] adopt feder-
ated transfer learning to extract knowledge from other domains.Wu
et al. [27] introduce personal and transfer modules to adapt to the
heterogeneous data for rate prediction. Yao et al. [36] utilize model
distillation to realize cross-domain recommendation. Although col-
laborative CDR enables privacy-preserving model training, existing
solutions assume the trained model is entirely deployed to the edge
device. Consequently, the whole (million-scale) item pool should
be either transmitted or ported to the device for model inference,
which is impractical due to commercial reasons and the limited
resources on edge devices. To address this drawback, we formulate
a new collaborative CDR framework, as explained below.

3 DECOCDR FORMULATION
This section introduces a new cloud-device collaboration formula-
tion for cross-domain recommendation. For ease of presentation,
we assume a single cloud 𝐶𝑖 and a single device 𝑑 .

• Cloud𝐶𝑖 : It is a public service provider, e.g., online shopping
App, that stores data from large numbers of users (devices)
in the same domain, i.e., public data such as browsing logs,
item clicks, bought history, etc. within the same App. Let
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Figure 2: The design of DeCoCDR, which consists of a meta recall model (MetaRM) on cloud and ameta cross-domain re-ranking
model (MetaCDR) on device. On cloud, MetaRM determines the item candidates sent to the device by learning from in-domain
data on cloud and feedback from device. The recalled items are further re-ranked by MetaCDR based on local data on device.

these collected samples be 𝑺𝐶𝑖 = {{𝑠𝐶𝑖 ,0}, ..., {𝑠𝐶𝑖 ,𝑛}}, where
{𝑠𝐶𝑖 ,𝑑 } denotes the sample set collected from device𝑑 , which
contains features of user’s and items’. 𝐶𝑖 leverages these
samples to train models to recommend items for each user,
where total item candidates 𝒂𝐶𝑖

𝑡𝑜𝑡𝑎𝑙
= {𝑎𝑖 }𝑁𝑖=1 are stored at

the cloud. Only a few top items of recommendation can be
impressed due to limited impression space on edge devices.
As business practices, the item candidates 𝒂𝐶𝑖

𝑡𝑜𝑡𝑎𝑙
cannot be

shared with other clouds or devices [19, 30].
• Device 𝑑 : Following the typical CDR setup [39], there are
limited interactions between device 𝑑 and 𝐶𝑖 , i.e., |𝑠𝐶𝑖 ,𝑑 | is
small. However, there are other Apps (domains) installed
on device 𝑑 . Let the corresponding clouds of these Apps be
{𝐶 𝑗 }, and the interactions between 𝑑 and {𝐶 𝑗 } as {𝑠𝐶 𝑗 ,𝑑 }.
Device 𝑑 has access to the all {𝑠𝐶 𝑗 ,𝑑 } across Apps, but 𝑠𝐶 𝑗 ,𝑑

is inaccessible by𝐶𝑖 for 𝑖 ≠ 𝑗 due to privacy regulations [14].
Cloud 𝐶𝑖 cannot retrieve 𝑠𝐶 𝑗 ,𝑑 from cloud 𝐶 𝑗 either [21, 41].

DeCoCDR Workflow. DeCoCDR is a two-stage recommender
system deployed to cloud 𝐶𝑖 and device 𝑑 , which consists of an
on-device re-ranking model and an on-cloud item recall model (see
Fig. 2). It operates as follows. First, item candidates for𝑑 are selected
by cloud 𝐶𝑖 , as indicated by the blue arrow in Fig. 2. At most a
few hundreds items are selected from the million-scale item pool
[8, 35]. This complies with the privacy of 𝐶𝑖 and decreases the
computation overhead for on-device re-ranking. On the device side,
inter-domain data are used to re-ranked the recalled items to user
preferences. Then the interacted re-ranked list is returned to 𝐶𝑖 ,
which corresponds to the orange arrow in Fig. 2. This closes the
loop of the workflow. The concrete formulations of the on-device
and on-cloud models are as follows.

• On-cloud Item Recall Model 𝑀𝐶𝑖 : Given the previous
definitions, the output of𝑀𝐶𝑖 can be expressed as:

𝑃𝑟𝐶𝑖 (𝑎𝑘 |𝑑) = 𝑀𝐶𝑖 (𝑓𝐶𝑖
𝑎 (𝑎𝑘 ), 𝑓𝐶𝑖

𝑢 (𝑑)) (1)

where 𝑃𝑟𝐶𝑖 (𝑎𝑘 |𝑑) is the predicted CTR/CVR of item 𝑎𝑘 for
device 𝑑 . 𝑓𝐶𝑖

𝑎 and 𝑓𝐶𝑖
𝑢 denote the embeddings for items and

users separately. Typically, 𝐶𝑖 performs Eq. (1) on all item
candidates. Given limited resources on edge devices, typ-
ically only several hundreds of top items are sent to the
devices [8, 35]. We define the number of selected items as
K. The objective is to rank item candidates such that users’
preferred ones appear in top K as many as possible, i.e.,

max
∑︁

∀𝑎∈𝒂𝐶𝑖 ,𝑑
𝑟𝑒𝑐

𝑦𝑑 (𝑎) s.t. |𝒂𝐶𝑖 ,𝑑
𝑟𝑒𝑐 | = 𝐾 (2)

where 𝑦𝑑 (𝑎) is the label of item 𝑎 for 𝑑 and 𝒂𝐶𝑖 ,𝑑
𝑟𝑒𝑐 denotes the

recalled items.
• On-device Re-ranking Model𝑀𝑑 : Similar to𝑀𝐶𝑖 , its out-
put is also the predicted probability of items, i.e.,

𝑃𝑟𝑑 (𝑎𝑘 ) = 𝑀𝑑 (𝑓 𝑑𝑎 (𝑎𝑘 ), 𝐹𝑑𝑢 (𝑠𝐶𝑖 ,𝑑 , {𝑠𝐶 𝑗 ,𝑑 })) (3)

where 𝑓 𝑑𝑎 (·) is the encoded feature embeddings for items.
𝐹𝑑𝑢 is the feature learning function to transfer knowledge
from inter-domain data on device 𝑑 . Let the re-ranked list
be 𝒂𝐶𝑖 ,𝑑

𝑟𝑒−𝑟𝑎𝑛𝑘 = {𝑎′
𝑘
∈ 𝒂𝐶𝑖 ,𝑑

𝑟𝑒𝑐 |𝑃𝑟𝑑 (𝑎′𝑘 ) ≥ 𝑃𝑟𝑑 (𝑎𝑘 ′+1)}. The
objective is to re-rank the recalled list 𝒂𝐶𝑖 ,𝑑

𝑟𝑒𝑐 such that future
clicked/converted ones are ranked as top as possible, i.e.,

min
∑︁

∀𝑎∈𝒂𝐶𝑖 ,𝑑
𝑟𝑒𝑐

𝑅𝑎𝑛𝑘 (𝑎 |𝑃𝑟𝑑 (𝑎)) · 𝑦𝑑 (𝑎),

s.t. 𝑥
𝐹𝑑𝑢
∈ {𝑠𝐶,𝑑 }, 𝑎 ∈ 𝒂𝐶𝑖

𝑡𝑜𝑡𝑎𝑙

(4)

where 𝑅𝑎𝑛𝑘 is the impressed position and 𝑥
𝐹𝑑𝑢

denotes the
input of 𝐹𝑑𝑢 .

Challenges. Realizing such a two-stage CDR framework involves
optimizing Eq. (2) and Eq. (4), which faces two challenges.

• On-cloud: It is difficult to learn 𝑓𝐶𝑖
𝑢 (𝑑) from a few historical

in-domain samples 𝒔𝐶𝑖 ,𝑑 . Evenworse, wemust update 𝑓𝐶𝑖
𝑢 (𝑑)
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given 𝒂𝐶𝑖 ,𝑑

𝑟𝑒−𝑟𝑎𝑛𝑘 without access to inter-domain data {𝑠𝐶 𝑗 ,𝑑 }.
The sub-optimal 𝑓𝐶𝑖

𝑢 (𝑑) restricts the optimization of Eq. (2).
• On-device: Since most recalled items are new, the feature
embeddings 𝑓 𝑑𝑎 for these items cannot be directly obtained
from historical data. In addition, the sparsity and complex
distributions of local inter-domain data makes it difficult to
derive the feature learning function 𝐹𝑑𝑢 . Without two these
parameters, solving Eq. (4) becomes non-trivial.

As next, we propose separate model designs to address the two
challenges to realize DeCoCDR. For ease of presentation, we start
with the on-device model.

4 ON-DEVICE RE-RANKING MODEL
We propose a meta-learning based cross-domain recommendation
network (MetaCDR) for on-device item re-ranking (right part of
Fig. 2) given the recalled items from the cloud. As mentioned in
Sec. 3, the on-device model should (i) learn from (inter-domain) data
of a single user, and (ii) rank the recall list with unseen items. Accord-
ingly, we design a generalized feature encoder (Sec. 4.1) to learn
robust inter-domain feature representations, and adopt a metric-
based meta re-ranking model (Sec. 4.2) for few-shot adaptation to
unseen items.

4.1 Generalized Feature Encoder (GFE)

Basic Idea. To learn user feature embeddings 𝑓 𝑑 from inter-domain
data, we leverage variational autoencoder (VAE) for its ability to
extract feature representations from different distributions [31]. As
the inter-domain data contain limited positive samples, it is crucial
to also exploit the negative samples. Therefore, unlike the vanilla
VAE, we design a pairwise variational autoencoder (Pair-VAE) as
the core of the encoder. A new pairwise loss is used to harness both
positive and negative samples.
Learn User Feature Embeddings via VAE. Recall the working
process of VAE, it contains an encoder to compress the raw input
and a decoder for reconstruction.
• Encoder 𝑞𝜙 (𝑧 |𝑣): We first use an identical embedding dict
to get the embedded vector of sample 𝑠𝐶𝑖 ,𝑑

𝑘
, i.e., 𝑣𝑑

𝐺
(𝑠𝐶𝑖 ,𝑑

𝑘
).

Following [7], we also use generalized features as the entries
of embedding dict, e.g., categories, visit times, tags etc., as in
the recalled items from cloud. We will use 𝑣 in the following
for simplicity. Each 𝑣 is a sample from a Gaussian 𝑁 (𝑧, 𝜎2),
with mean 𝑧 and variance 𝜎 . As in [1, 31], 𝑧 is also treated
as the feature embedding of user preferences.
• Decoder 𝑝𝜃 (𝑣 |𝑧): It reconstructs the input 𝑣 from the encoded
vector 𝑧. Instead of directly building 𝑣 from 𝑧, it aims to build
𝑧 from 𝑁 (𝑧, 𝜎2).

The VAE can be trained via the Evidence Lower BOund (ELBO):

L𝜃,𝜙 (𝑣) = E𝑧∼𝑞𝜙 [ln𝑝𝜃 (𝑣 |𝑧)] − 𝛽𝐾𝐿(𝑞𝜙 |𝑝𝜃 ) (5)

where 𝐾𝐿(𝑞𝜙 |𝑝𝜃 ) is the KL-divergence and 𝛽 is the weight factor.
Harness Both Positive and Negative Samples via Pair-VAE.
Directly training the vanilla VAE following Eq. (5) is ineffective due
to the sparse positive samples on device. Hence, we improve the
vanilla VAE in two aspects.

Algorithm 1: Training MetaCDR
Input: Historical samples on device 𝑑 , initial parameters
Output: Trained MetaCDR

1 Step 1: Training Generalized Feature Encoder
2 while Eq. (6) is not converged do
3 Sample positive samples: {𝑠𝐶,𝑑

𝑘
};

4 Sample negative samples: {𝑠𝐶,𝑑
𝑘 ′
};

5 foreach each masked pair {𝑠𝐶,𝑑
𝑘,𝑖

, 𝑠
𝐶,𝑑

𝑘 ′
} in the batch do

6 Calculate L𝐺𝐹𝐸 ;
7 Update network parameters 𝜃 , 𝜙 etc.
8 end
9 end

10 Step 1 output: trained GFE and 𝒛;
11 Step 2: Training Meta Re-ranking Model
12 Initialize the model with 𝑣𝑑

𝑖𝑛𝑖𝑡
and 𝑣𝑑𝑤𝑎𝑟𝑚

13 Training MRM separately with 𝑣𝑑
𝑖𝑛𝑖𝑡

and 𝑣𝑑𝑤𝑎𝑟𝑚

14 while Not converged do
15 Update𝜓𝒘 through Eq. (8)
16 end
17 Insert𝜓𝒘 for 𝑣𝑑

𝑖𝑛𝑖𝑡
in MRM

18 while Eq. (11) is not converged do
19 Sample {𝑠𝐶,𝑑 , 𝑦 (𝑎) |𝑎 ∈ 𝑠𝐶,𝑑 } from local data
20 Derive 𝑃𝑟 (𝑎) based on 𝒛 and MRM
21 Calculate L𝑀𝑅𝑀 and update MRM parameters
22 end
23 Step 2 output: trained MRM

• Sample Masking. By masking some raw features of input,
we extend a single sample 𝑠𝐶,𝑑

𝑘
to a set of masked samples

𝑠
𝐶,𝑑

𝑘
→ {𝑠𝐶,𝑑

𝑘,0 , 𝑠
𝐶,𝑑

𝑘,1 , ..., 𝑠
𝐶,𝑑

𝑘,𝑛
}. This makes the learned feature

encoder more robust [9] and achieves higher re-ranking
accuracy. We use 𝑣𝑖 to denote one of 𝑣 ’s masked vectors.
• Pair-wise Loss. We utilize the negative samples to help the
encoder learn user’s preferences more accurately. Let the
vector of negative samples be 𝑣 . We modify Eq. (5) into a
pair-wise loss function as follows.

L𝐺𝐹𝐸 = − 1
𝑁

∑︁
∀(𝑣𝑖 ,𝑣)

L𝜃,𝜙 (𝑣𝑖 ) + L𝜃,𝜙 (𝑣) − 𝜆 |𝑧𝑖 − 𝑧 |2 (6)

where (𝑣𝑖 , 𝑣) is a randomly sampled pair and 𝜆 is the loss
weight for 2-norm between 𝑧𝑖 and 𝑧. We introduce |𝑧𝑖 −𝑧 |2 to
discriminate the reconstructed vectors between positive and
negative samples for more accurate feature learning. Solving
Eq. (6) gives us the representations of user’s preferences, i.e.,
𝑁 (𝑧, 𝜎). For further utilization in re-ranking, we use 𝒛 = {𝑧}
to represent user preferences where 𝒛 is derived through
modeling them as a multi-nominal Gaussian distribution.

4.2 Meta Re-ranking Model (MRM)
Basic Idea. To re-rank (unseen) recalled items, we leverage a
metric-based meta-learning method. It starts with a meta embed-
ding learner, which encodes recalled items using their generalized
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Figure 3: The calculation process ofMeta-Embedding Learner.
The 𝑣𝑑

𝑖𝑛𝑖𝑡
of samples in𝐶𝑖 and𝐶 𝑗 are first updated by𝜓𝒘 . The

updated vectors 𝑣𝑑
𝜓
are then passed to calculate weighted loss

with 𝑣𝑑𝑤𝑎𝑟𝑚 . Gradients are backpropagated to update𝜓𝒘 .

features and then warms up by local samples. Then a metric-based
re-ranking mechanism is applied to score the recalled items based
on the warmed-up embeddings. Typically, the similarity between
the input and the support set is used as the metric [10]. Here we uti-
lize the learned user embeddings from GFE as the support vectors
for its effectiveness to represent user preferences.
Meta-Embedding Learner (MEL). It derives the embeddings for
recalled items based on existing in-domain and inter-domain sam-
ples. We train this module in two steps: (i) initialize the embeddings
through their generalized features, and (ii) warm up the initial ones
with existing samples.

Step 1: Initialization. We follow [7, 8] to obtain initial embed-
dings from two feature types. (i) Statistic Features: They are from
the cloud when items are sent to the device, e.g., the item rank
in the same category, whether the item is ’hot’, the number of
watched/clicked/bought users, etc.. (ii) Attribute Features: They are
determined by the item attributes which are not affected by users’
interactions. Such features are the price, category, brand, tag, etc..
If the entry of aforementioned feature doesn’t exist, we leave it
blank. We use mini-batch of samples in domain {𝐶 𝑗 } with similar
size to that of 𝐶𝑖 to get the initial embeddings. Let 𝑣𝑑

𝑖𝑛𝑖𝑡
(·) be the

initial embeddings.
Step 2: Warm-Up. We repeat the same process but add extra

features e.g., features from user interactions to train the model. All
local samples are included for training. We use 𝑣𝑑𝑤𝑎𝑟𝑚 (·) to denote
their embeddings. Let the warming-up function be 𝜓𝒘 (·), which
projects the embedding from 𝑣𝑑

𝑖𝑛𝑖𝑡
to 𝑣𝑑𝑤𝑎𝑟𝑚 . For each step, the

updated embeddings can be expressed as:

𝑣𝑑
𝜓,𝑘
(𝑎𝐶 ) = 𝜓𝒘 (𝑣𝑑𝑖𝑛𝑖𝑡,𝑘−1 (𝑎

𝐶 ) (7)

where 𝑣𝑑
𝑖𝑛𝑖𝑡,𝑘−1 is the projected embeddings in 𝑘−1-th iteration and

𝑣𝑖𝑛𝑖𝑡,0 (𝑎𝐶 ) = 𝑣𝑖𝑛𝑖𝑡 (𝑎𝐶 ). For Eq. (7), we denote the loss of projection
in 𝑘-th iteration as: 𝑙 (𝑎𝐶 ) = |𝑣𝑑

𝑤𝑎𝑟𝑚,𝑘
(𝑎𝐶 ) − 𝑣𝑑

𝜓,𝑘
(𝑎𝐶 ) |2. Then 𝜓𝒘

is updated as follows:

𝜓𝒘,𝑘 ← 𝜓𝒘,𝑘−1 + 𝑙𝑟 [
𝛼

𝑁 (𝐶 𝑗 )
∑︁
∀𝑎𝐶𝑗

𝜕𝑙 (𝑎𝐶 𝑗 )
𝜕𝒘

+ 1 − 𝛼
𝑁 (𝐶𝑖 )

∑︁
∀𝑎𝐶𝑖

𝜕𝑙 (𝑎𝐶𝑖 )
𝜕𝒘

]

(8)
where 𝑙𝑟 is the learning rate and 𝛼 is the weight factor. After train-
ing,𝜓𝒘 gives the embeddings of the recalled item 𝑎

𝐶𝑖

𝑘
, i.e., 𝑣𝑑

𝜙
(𝑎𝐶𝑖

𝑘
).

Metric-based Re-ranking (MRM). A metric-based re-ranking
mechanism is proposed for re-ranking the items. To calculate the
similarities with the user’s embeddings, 𝑣𝑑

𝜙
(𝑎) is first passed to a

transfer unit, i.e., TransGate, for alignment. To achieve this goal, we
use a multi-head attention mechanism, i.e.,

𝑣𝑑 (𝑎) = 𝑐𝑜𝑛𝑐𝑎𝑡{𝑣𝑑 (𝑎)0, 𝑣𝑑 (𝑎)1, ..., 𝑣𝑑 (𝑎)𝑛}

𝐴𝑡𝑡 (𝑣𝑑 (𝑎) 𝑗 ) = softmax(
𝑣𝑑 (𝑎) 𝑗𝐾𝑇𝑀𝑅𝑀√︁

𝑑𝑀𝑅𝑀

)𝑉𝑀𝑅𝑀

𝑣𝑑 (𝑎)𝐴𝑡𝑡 =
∑︁
∀ 𝑗
𝐴𝑡𝑡 (𝑣𝑑 (𝑎) 𝑗 )

𝑣𝑑 (𝑎 → 𝑧) = 𝑣𝑑 (𝑎)𝐴𝑡𝑡𝑊 |𝑣
𝑑 (𝑎)𝐴𝑡𝑡 |× |𝑧 |

(9)

where 𝐾𝑀𝑅𝑀 , 𝑉𝑀𝑅𝑀 are key and value matrix, and𝑊 is the pro-
jection matrix to align 𝑣𝑑 (𝑎)𝐴𝑡𝑡 with 𝑧. Then the similarity score
can be derived as the mean posterior from 𝒛, i.e.,

𝑃𝑟𝑑 (𝑎) = 1
𝑁

∑︁
∀𝑧∈𝒛

exp(−(𝑣𝑑 (𝑎 → 𝑧) − 𝑧)2/2𝜎2)
√
2𝜋𝜎

(10)

The loss for the re-ranked items can be derived as:

𝐿𝑀𝑅𝑀 = − 1
𝑁

∑︁
∀𝑎
[𝑦 (𝑎) log 𝑃𝑟𝑑 (𝑎) + (1 − 𝑦 (𝑎)) log (1 − 𝑃𝑟𝑑 (𝑎))]

(11)
where 𝑦 (·) is the label. Alg. 1 illustrates the overall training process
of MetaCDR. When model is trained, replacing 𝑎 in Eq. (10) with
𝑎 ∈ 𝒂𝐶𝑖 ,𝑑

𝑟𝑒𝑐 gives the final 𝒂𝐶𝑖 ,𝑑

𝑟𝑒−𝑟𝑎𝑛𝑘 .

5 ON-CLOUD RECALL MODEL
We propose a meta recall model (MetaRM) to select 𝒂𝐶𝑖 ,𝑑

𝑟𝑒𝑐 on the
cloud (see left part of Fig. 2). It learns user preferences with limited
historical interactions and without access to inter-domain data by
utilizing the public collected list pairs, i.e., recalled list 𝒂𝐶𝑖 ,𝑑

′
𝑟𝑒𝑐 and

re-ranked list 𝒂𝐶𝑖 ,𝑑
′

𝑟𝑒−𝑟𝑎𝑛𝑘 as the bridge.
Basic Idea. We leverage the overlapped item lists as the bridge to
combat sample sparsity and learn inaccessible inter-domain data.
First, raw recalled items for each user are derived through gener-
alized features based on in-domain samples. Then a latent vector
is introduced to reorder the raw recalled items based on historical
re-ranked lists. In this two-step ranking, clicks/conversions are
used as the labels in the first step, while positional differences of
items in those two lists are for the second step.
Step 1: get raw ranking results. Its input is 𝑠𝐶𝑖 ,𝑑

′
= (𝑎, 𝑑′) and

corresponding 𝑦 (𝑠𝐶𝑖 ,𝑑
′ ) = 𝑦 (𝑎). Here 𝑑′ refers to one of devices

covered by𝐶𝑖 . Given some of them have limited interactions, we use
(general) in-domain features for their embedding dict, such as age,
gender, preferred categories, clicked items and etc. collected from
interactions. Concatenated with item candidates, the embeddings
are passed to the upper ranking subnetwork A for first ranking, i.e.,

𝑃𝑟
𝐶𝑖

𝐴
(𝑎 |𝑑′) = 𝐹𝐴 (𝑣𝐶𝑖

𝑐𝑜𝑛𝑐𝑎𝑡 (𝑎, 𝑑
′)) (12)
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where 𝐹𝐴 denotes the multi-layer perceptrons with an activation
function. We use logloss as the loss function for step 1, i.e.,

𝐿
𝐶𝑖
𝐴

= − 1
𝑁

∑︁
∀𝑎∈𝒂𝐶𝑖

𝑡𝑜𝑡𝑎𝑙

[𝑦 (𝑎) log𝑃𝑟𝐶𝑖
𝐴
(𝑎 |𝑑 ′ ) + (1 − 𝑦 (𝑎) ) log(1 − 𝑃𝑟

𝐶𝑖
𝐴
(𝑎 |𝑑 ′ ) ) ]

(13)
When trained, step 1 outputs the raw ranked list 𝒂𝐶𝑖 ,𝑑

′
𝑟𝑎𝑤 for each 𝑑′.

Step 2: learn differences between 𝒂𝐶𝑖 ,𝑑
′

𝑟𝑎𝑤 and 𝒂𝐶𝑖 ,𝑑
′

𝑟𝑒−𝑟𝑎𝑛𝑘 . At step
2, we device a item position dict to encode the item 𝑎 in 𝒂𝐶𝑖 ,𝑑

′
𝑟𝑎𝑤 .

The dict is indexed by item ID and its ranking position. For item
𝑎 in 𝒂𝐶𝑖 ,𝑑

′
𝑟𝑎𝑤 , we denote its embedded vector as 𝑣𝐶𝑖

𝑎,𝑝𝑜𝑠 (𝑎, 𝑅𝑎𝑛𝑘 (𝑎)).
In addition, a latent vector dict is also placed in the model for
learning users’ preferences from re-ranked lists. User’s latent vector
is derived from its ID and used for tune the final ranking positions
of 𝒂𝐶𝑖 ,𝑑

′
𝑟𝑎𝑤 . We use 𝑣𝐶𝑖

𝑙𝑎𝑡
(𝑑′) to denote the vector for 𝑑′. Using those

two embeddings as input, a multi-head attention unit is applied
to derive the final embeddings for ranking subnetwork B. The
calculation process follows Eq. (9) and we use 𝑣𝐶𝑖

𝐴𝑡𝑡
(𝑎, 𝑑′) to denote

the output of the attention unit. In subnetwork B, the prediction
result 𝑃𝑟𝐶𝑖

𝐵
(𝑎 |𝑎 ∈ 𝒂𝐶𝑖 ,𝑑

′
𝑟𝑎𝑤 ) is calculated as:

𝑃𝑟
𝐶𝑖

𝐵
(𝑎 |𝑎 ∈ 𝒂𝐶𝑖 ,𝑑

′
𝑟𝑎𝑤 ) = 𝐹𝐵 (𝑣𝐶𝑖

𝐴𝑡𝑡
(𝑎, 𝑑′)) (14)

where 𝐹𝐵 denote the multi-layer perceptrons with an activation
function used in subnetwork B. Different from step 1, the learning
objective in step 2 is to make the top K items of 𝑎 ∈ 𝒂𝐶𝑖 ,𝑑

′
𝑟𝑎𝑤 the same

as those in 𝒂𝐶𝑖 ,𝑑
′

𝑟𝑒−𝑟𝑎𝑛𝑘 . For this objective, we use 𝑦𝑝𝑜𝑠 to denote the
label of 𝑎 ∈ 𝒂𝐶𝑖 ,𝑑

′
𝑟𝑎𝑤 , i.e., 𝑦𝑝𝑜𝑠 (𝑎) = 1 if 𝑅𝑎𝑛𝑘 (𝑎) ≤ 𝐾 . Accordingly,

the positional loss can be defined as:

𝐿
𝐶𝑖
𝐵

= − 1
𝑁

∑︁
∀𝑎∈𝒂𝐶𝑖 ,𝑑

′
𝑟𝑎𝑤

[𝑦𝑝𝑜𝑠 (𝑎) log𝑃𝑟𝐶𝑖
𝐵
(𝑎) + (1 − 𝑦𝑝𝑜𝑠 (𝑎) ) log(1 − 𝑃𝑟

𝐶𝑖
𝐵
(𝑎) ) ]

(15)
The training process ofMetaRM is illustrated inAlg.2.When trained,
top-K items of reordered 𝒂𝐶𝑖 ,𝑑

𝑟𝑎𝑤 are selected as 𝒂𝐶𝑖 ,𝑑
𝑟𝑒𝑐 for device 𝑑 .

6 EVALUATION
6.1 Experiment Setup
6.1.1 Datasets. We experimented with three datasets: Amazon,
Tenrec, and InsureData. Both Amazon and Tenrec are publicly ac-
cessible, whereas InsureData is a private dataset. Amazon [28],
derived from various product reviews on Amazon, includes labeled
data where conversion words such as bought indicate a positive
interaction (label 1), while other samples are labeled as 0. Tenrec
[38], collected from a Tencent application, comprises 1.32 million
users and 220k items. It also contains user-item interactive features
to differentiate between positive samples (user clicks) and negative
samples (impressions without clicks). InsureData [16], collected
from an online insurance platform, is an encrypted dataset contain-
ing about 10 million impression-to-conversion samples, along with
diverse user behavioral data such as video watch and search.

We configure the target domain (the one accessible to the cloud)
and the local domains (those accessible by each device) for the three
datasets as follows. In Amazon, we use Movie as the target domain
while Books, Digital Music and Clothing, Shoes and Jewelry as the
local domains. In Tenrec, we use QK-article as the target domain

Algorithm 2: Training MetaRM
Input: Historical interaction samples and ranked list pairs

𝒂𝐶𝑖 ,𝑑
′

𝑟𝑒𝑐 , 𝒂𝐶𝑖 ,𝑑
′

𝑟𝑒−𝑟𝑎𝑛𝑘 for 𝑑′ on cloud
Output: Trained MetaRM

1 Step 1: Getting 𝒂𝐶𝑖 ,𝑑
′

𝑟𝑎𝑤

2 while Eq. (13) is not converged do
3 Get samples 𝑠𝐶𝑖 ,𝑑

′ (𝑎𝑘 , 𝑑′), 𝑦 (𝑠𝐶𝑖 ,𝑑
′ )

4 Calculate the logloss and update the left part of
MetaRM(Fig. 2)

5 end
6 Step 1 output: Get 𝒂𝐶𝑖 ,𝑑

′
𝑟𝑎𝑤 for each 𝑑′

7 Step 2: learning from 𝒂𝐶𝑖 ,𝑑
′

𝑟𝑎𝑤 and 𝒂𝐶𝑖 ,𝑑
′

𝑟𝑒−𝑟𝑎𝑛𝑘
8 Initialize latent vector embedding dict
9 Insert𝜓𝒘 for 𝑣𝑑

𝑖𝑛𝑖𝑡
in MRM

10 while Eq. (15) is not converged do
11 Sample batches from {𝑑′, 𝒂𝐶𝑖 ,𝑑

′
𝑟𝑎𝑤 }

12 foreach 𝑑′ in the batch do
13 Get 𝒂𝐶𝑖 ,𝑑

′

𝑟𝑒−𝑟𝑎𝑛𝑘 and calculate Eq. (15)
14 Update the right part of MetaRM (Fig. 2)
15 end
16 end
17 Step 2 output: trained MetaRM

while other three as the local domains. For InsureData, we use the
main page product recommendations as the target domain while
the rest as local domains.

6.1.2 Baselines andMetrics. We compare DeCoCDRwith the meth-
ods below.
• LR [26]: logistic regression algorithm, which is widely used
in the industry.
• CoNet [11]: a collaborative CDR method where the upper
layers are crossed to harness data from other domains.
• MMoE [25]: a multi-task recommendation framework with
Mixture-of-Experts (MMoE), where sub-networks capture
user preferences from different sub-spaces.
• SAMN [16]: a multi-task recommendation framework for on-
line insurance recommendation, where a selective attentive
scheme is used to extract knowledge from the raw data.
• FedCDR [27]: a cloud-device federated CDR scheme built
upon across domains. We implemented up to three domains.
• FedCT [21]: a cloud-device federated CDR scheme with de-
centralized user encoder, where the local feature represen-
tation is trained upon the received encoders from different
domain servers.

These baselines are categorized into two types: cloud-based and
collaborative. For cloud-based methods [11, 16, 25], we use data
from the target domain to train the model and make predictions.
While for collaborative methods [21, 27], we implement them on
Flower [2] with two connected servers, i.e., 𝑆𝑒𝑣𝑒𝑟𝐴 and 𝑆𝑒𝑟𝑣𝑒𝑟𝐵, to
simulate the cloud and client(s). Up to 100 processes are forked on
𝑆𝑒𝑟𝑣𝑒𝑟𝐵 to simulate the nodes in federated learning, where all nodes
share the same portion of data. Since client coverage has a great
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Figure 4: Recontrunction loss comparison between basic VAE and GFE in DeCoCDR. Through sample augmentation and
pairwise loss design, GFE outperforms basic VAE in reconstructing the embedding vectors of positive input samples.
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Figure 5: Re-ranking performance comparison between MetaRM and NaiveRank. With more effective design, MetaRM outper-
forms NaiveRank in all three datasets.

impact on federated recommendation methods [4], we evaluate
them with different portions of participated nodes.

We focus on evaluating the performance of selected models in
predicting users’ favourite items, i.e., clicks or conversions. Accord-
ingly,𝐺𝐴𝑈𝐶 , 𝑁𝐷𝐶𝐺@𝑁 and 𝑅𝑒𝑐𝑎𝑙𝑙@𝑁 are selected as evaluation
metrics. By default, we treat each independent user as a group.

6.2 Validation Test
6.2.1 Evaluating the model on device. First we examine the perfor-
mance of generalized feature encoder on device. For comparison,
we select vanilla variantional autoencoder(VAE) as the benchmark,
which is trained through point-wise ELBO on positive samples. To
validate their performance, we focus on reconstruction loss of posi-
tive samples The changing process of loss for those two methods
is shown in Fig. 4. Since negative samples are introduced, the loss
of GFE is higher at first. But with more sample pairs trained, the
normalized reconstruction loss of GFE degrades faster than that
of VAE. This is because the negative samples greatly increase the
diversity of user features learned by the encoder. Accordingly, the
encoder is more powerful in reconstructing 𝑣𝑑 from learned 𝑧.

Then we evaluate the performance of MRM on device. Compared
with KNN used in basic metric-based meta-learning methods [10],
the major difference is that vectors 𝑧 of GFE is used to classify the
target sample instead of randomly selected samples. Different sizes
of support set (random samples and 𝑧) are tested and the results are
shown in Table 1. As illustrated, we can see MRM outputformed
the benchmark in all three datasets with different sizes of support

Table 1: Peformance comparison between KNN and MRM in
DeCoCDR. Acc(n) refers to average accuracy with n support
samples. Each size is tested with multiple trials.

Data KNN (Metric-based) MRM
Acc(10) Acc(50) Acc(100) Acc(10) Acc(20) Acc(50)

InsureData 0.345 0.675 0.776 0.765
(+121.7%)

0.814
(+20.6%)

0.831
(+7.1%)

Tenrec 0.195 0.371 0.504 0.315
(+61.5%)

0.497
(+34.0%)

0.587
(+16.5%)

Amazon 0.212 0.412 0.574 0.364
(+71.7%)

0.529
(+28.4%)

0.624
(+8.7%)

set. Based on the vectors provided by GFE, the results demonstrate
the effectiveness of MRM design in ranking unseen items.

6.2.2 Evaluating the model on cloud. For comparison, we only use
left part of MetaRM for predicting the final re-ranked lists, where
only logloss is utilized. We denote this method as NaiveRank, which
is evaluated on different portions of samples. As shown in Fig. 5, we
can see that MetaRM outperforms NaiveRank in all three datasets.
Though the gap is narrowedwhen the trained samples are increased,
the recall performance of MetaRM is still over NaiveRank. This is
because the design of two-step learning process not only enables
learning in-domain samples more thoroughly, but also captures
more effective representations of inaccessible inter-domain data,
which further improve the accuracy in item recall.

6.2.3 Overall performance. Then we also examine the overall per-
formance of DeCoCDR in comparisonwith baselines in three datasets.
The results are shown in Table 2. As illustrated, DeCoCDR achieves
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Table 2: Results of overall performance evaluation. For FedCT [21] and FedCDR [27], different portions of participated nodes
are tested. For DeCoCDR, K denotes the number of recalled items on cloud, which are then re-ranked on device.

Model Type InsureData Tenrec Amazon
GAUC Recall@10 NDCG@10 GAUC Recall@10 NDCG@10 GAUC Recall@10 NDCG@10

LR

Cloud-based

0.5967 0.2742 0.3142 0.5794 0.1435 0.1845 0.5902 0.1674 0.1956
CoNet 0.6245 0.2954 0.3495 0.5921 0.1675 0.2037 0.6043 0.1795 0.2032
MMoE 0.6359 0.3259 0.3674 0.6034 0.1835 0.2312 0.6117 0.1941 0.2343
SAMN 0.6395 0.3312 0.3845 0.6075 0.1901 0.2359 0.6189 0.1992 0.2391
FedCT(10% nodes)

Collaborative

0.5134 0.0459 0.0842 0.5002 0.0245 0.0579 0.5075 0.0532 0.0842
FedCT(50% nodes) 0.6845 0.3945 0.4234 0.6432 0.2762 0.3142 0.6732 0.3146 0.3415
FedCT(100% nodes) 0.7342 0.5574 0.5892 0.6845 0.3147 0.3461 0.7145 0.3532 0.3924
FedCDR(10% nodes) 0.5195 0.0519 0.0931 0.5040 0.0265 0.0601 0.5010 0.0317 0.0541
FedCDR(50% nodes) 0.6749 0.3765 0.4095 0.6217 0.2431 0.2841 0.6631 0.2931 0.3256
FedCDR(100% nodes) 0.7142 0.5211 0.5527 0.6962 0.3309 0.3582 0.6941 0.3299 0.3610
MetaCD2R(K=10)

Collaborative 0.7431
0.3671 0.3961

0.7043
0.2455 0.2890

0.7195
0.2841 0.3093

MetaCD2R(K=20) 0.5362 0.5675 0.3294 0.3544 0.3341 0.3756
MetaCD2R(K=50) 0.5645 0.5946 0.3401 0.3698 0.3702 0.4013

the best results among all candidates. In comparison, we also notice
that the centralized recommendation methodologies have clear per-
formance bottleneck in the practical scenario with data restrictions.
Though GAUC/Recall/NDCG are improved with more complex
network architectures, they still fall behind collaborative method-
ologies. While for federated implementations, we also notice that
their performance are closely related to the portions of participated
nodes. When the portion of participated nodes is small, e.g., 10%,
the overall performance is poor, i.e., the GAUC is very close to
0.5. When it increases to 50%, the performance of both methods is
significantly improved since more data can be utilized. However,
such requirement is often difficult to be achieved in practice, e.g.,
nodes may face unstable networks or unwilling to participate in the
training due to heavy energy cost of communication [32]. While for
DeCoCDR, we also notice that different settings of K have different
impacts on its Recall/NDCG. For example, Recall@10 is improved
from 0.3671 to 0.5645 for InsureData when K is increased from 10 to
50. This is because the more items recalled, the higher probability
the recalled items have for covering users’ preferences. But more
items also means more communication and computation cost for
the device. So for balancing between performance and cost, we set
K=50 for online tests.

6.3 Case Study of Results On-device
For better understanding how DeCoCDR affects the recommen-
dation results, we use a representative user in Amazon dataset as
the example. In Fig. 6, we show two re-ranked results, i.e., with
and without DeCoCDR. Without utilizing DeCoCDR, the cloud
recommendation model can only rely on user’s watch history of
movie/TV, where love films and feature films take majority and
only one is cooking film. Naturally, the types of recommended list
from cloud are also love and feature. However, we can see that the
user is really interested in cooking based on its bought history of
books. Many of them are for cooking, e.g., Braises and Stews: Ev-
eryday Slow-Cooked Recipes. By learning from the bought history
of books, DeCoCDR is able to learn users’ potential interests on
cooking and thus, re-ranking the cooking related movies/TV to the
first places (bottom part of Fig. 6). In fact, the first two results are
finally bought by the user. The re-ranked lists and user’s action, i.e.,

User's movie/TV watched history 

Cloud ranked result (C)

……

TopK impression

0.024 0.012 0.019

0.37 0.31 0.24

…… ……

0.15

User's movie/TV watched history 

Cloud ranked result (C)

……

TopK impression

0.024 0.012 0.019

0.46(+) 0.41(+) 0.35(+)

…… ……

0.19(-)

Re-ranking

User's Book bought history 

Without MetaCDR

With MetaCDR

MetaCDR

{zcooking,zlove film,zothers}

Bought!

Figure 6: A case from Amazon by DeCoCDR. Compared with
ranked results from cloud, the re-ranked results capture user
preferences from local data more accurately.

clicks/conversions, will then be returned to the cloud to update the
recall strategy. In a word, the case demonstrates that inter-domain
data used in DeCoCDR improves the accuracy of recommendation.

6.4 Online Test
We also conduct three-week online test to evaluate the performance
of DeCoCDR. Apart from the main service provider 𝐶1, i.e., the
insurance platform, we also cooperate with another large service
provider 𝐶2 to realize DeCoCDR. The service provider 𝐶2 covers
three domains of users’ interaction data, i.e., 𝐷1(conversion data),
𝐷2(clicks/browsing) and 𝐷3(static features of 𝐶2). To evaluate the
performance of DeCoCDR, we progressively include each of three
domains into the on-device model. With the evolved on-device
model, the model on cloud is also fine-tuned to be adapted to the
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Figure 7: Results of three-week online AB-test. By uti-
lizing more inter-domain data, the performance of De-
CoCDR is greatly promoted. Compared with the baseline,
it achieves 45.3% CVR improvement when 𝐷1(conversion
data), 𝐷2(clicks/browsing) and 𝐷3(static features of𝐶2) are all
utilized.

model change. In addition, a cloud-based DNN method is preserved
as the baseline for comparison. The results are shown in Fig. 7. As
shown, the conversion rate (CVR) is significantly increased when
the model on device is activated. In addition, CVR of impressed
items is further increased when more data from𝐶2 is included. The
results coincide with the performance of DeCoCDR in offline tests.
In addition, we also notice that different inter-domain data have
different impacts on the performance of DeCoCDR. Adding 𝐷1
outputs over 26% of the improvement, while including 𝐷2 and 𝐷3
only generates 16.5% and 2.8% extra CVR improvement in average.
We guess this is because they have different coverage and quality
in terms of TGI, which affect their abilities in representing users’
preferences. Due to time limit, we are unable to perform other tests
when on-device model starts from 𝐷2 and 𝐷3. But we argue that
efforts should be put in analyzing cross-domain data selection for
achieving the best results, when not all data can be included given
limited resources. We leave this open question in our future work.

To further reveal how DeCoCDR affects the recommendation
results upon the data provided by𝐶2, we conduct fine-grained anal-
ysis on the distribution of item impression and conversion. The
results are shown in Fig. 8. For comparison, we classify the im-
pressed insurance items into five groups according to their feature,
i.e., Medical, Ill, Accident, Life and Annuity. Without the utilization,
we can see that over 90 percent of impression is taken by accident
items, while the rest goes to medical and ill insurance items. No im-
pression is spared for life and annuity products. This phenomenon
indicates that the only utilizing the data in the origin domain is
often not enough to realize effective and diverse recommendation
when users’ interactions are sparse. This could greatly limit the
future expansion of the commercial platform. When more data is
included, i.e., data from 𝐷1 to 𝐷3 is included in the model on device,
we can see that the diversity of recommended is greatly increased.
In addition, we can also see that the impressed items in Life and
Annuity also have acceptable conversions.

In a word, the design of DeCoCDR is a practical solution for real-
izing CDR with data restrictions. As demonstrated in the real-world
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Figure 8: The diversity of conversed items in online test.
Impressed items are classified into five classes: Medical, Ill,
Accident, Life and Annuity. By utilizing more inter-domain
data, DeCoCDR increases the diversity of conversed items.

tests, the performance of DeCoCDR is validated and the recom-
mended items are more diversified. This is of great importance to
the fast expanding commercial platforms.

7 CONCLUSION
In this paper, we propose a Deployment-friendly Cloud-Device
Collaboration framework for Cross-Domain Recommendation (De-
CoCDR). DeCoCDR addresses the restrictions of data privacy by
splitting ideal CDR into a two-stage recommendationmodel through
cloud-device collaborations. On cloud, a novel meta recall model is
proposed to combat sample sparsity. The key innovation is we use
overlapped item lists as the bridges to share feature representations
among different users. Further, the impact of inaccessible inter-
domain data can be also captured by learning positional differences
from re-ranked lists. On device, we propose a metric-based meta-
learning network to realize item re-ranking. To alleviate sample
sparsity, our key insight is to utilize both positive and negative
samples in learning users’ preferences. Upon the learned prefer-
ences, a generalized metric-based algorithm is designed for ranking
both seen and unseen items. We conduct both offline and online
experiments to validate the design of DeCoCDR. DeCoCDR outper-
formed the-state-of-the-arts in three large datasets. In real-world
experiments, DeCoCDR achieved 45.3% CVR improvement com-
pared with the baseline. The effective results offer promising future
directions of applying DeCoCDR in other scenarios.
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