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Abstract—Skyline is a primitive operation in multi-objective decision applications and there is a growing demand to support such
operations over a data federation, where the entire dataset is separately held by multiple data providers (a.k.a., silos). Data federations
notably increase the amount of data available for data-intensive applications such as commercial recommendation and location based
services. Yet they also challenge the conventional implementation of skyline queries because the raw data cannot be shared within the
federation and the secure computation cross silos can be two or three orders of magnitude slower than plaintext computation. These
constraints render existing solutions inefficient on data federation. In this work, we propose a novel local dominance based framework
for efficient skyline queries over a vertical data federation. We decompose the skyline query into plaintext local dominance
computations and secure result aggregations, which can perform as many computations in plaintext as possible without compromising
security. We further propose a dedicate private set intersection based algorithm to accelerate the query processing. Extensive
evaluations on both synthetic and real-world datasets show that compared with general-purpose secure multi-party computation
techniques, our solutions reduce the time cost by up to 35.4× and communication cost by two orders of magnitude respectively.

Index Terms—Skyline, Data Federation, Secure Multi-party Computation, Private Set Intersection.
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1 INTRODUCTION

Skyline queries are widely used to obtain preferred answers
from the database by providing the orderings of attribute
values [1], [2], [3]. The result of a skyline query consists of
input tuples for which there is no input tuple having better
or equal values in all the attributes and a better value in at
least one attribute. Such queries are crucial for various big
data applications such as location based services [3], multi-
objective decisions [3], commercial recommendation [4], etc.

Recently, there is an emerging trend to scale these ap-
plications from a single service provider (a.k.a., silo) to a
federation of multiple silos for better quality of service [5],
[6], [7]. Each silo in the federation holds one part of the entire
data (i.e., columns) for the same samples, and interact with
other silos without revealing its own raw data, and we call
such a federation as a vertical data federation. For example,
a bank and an insurance company want to make customer
recommendation collaboratively. The bank holds the deposit
information about customers, and the insurance company
holds the insurance records of these customers. Without
the data federation, the bank and insurance company can
only explore potential customers with their own data. For
example, the insurance company cannot learn the deposits
of their customers without the data federation. Thus, it can
only find potential customers based on its own insurance
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data. With a skyline query on a federation between them,
the insurance company can find customers that have large
deposits. Similarly, the bank can find potential customers
that have larger insurance orders but still not have many
deposits. Data federation creates this win-win situation.
However, since the information about customers is often
considered as commercial secrets, both the bank and the
insurance company will not share their raw data. They
needs to perform secure skyline queries over their own data,
without revealing extra information of their own dataset.

Providing efficient responses to skyline queries in these
applications faces two main challenges. (i) To perform sky-
line queries without revealing the information about silos’
individual data, the federation should utilize the secure
multi-party computation (SMC) techniques, which can be
two or three order of magnitude slower than plaintext
computations [6], [8]. Thus, an efficient skyline algorithm
over the data federation needs to reduce the number of
secure operations and improve the efficiency of them. (ii)
Existing secure skyline query processing methods mainly
focus on horizontal partitioned data, which allows to utilize
the additive property of skyline query to prune the dataset
beforehand [9], [10]. However, in case of vertical partitioned
data, all silos only hold a part of attributes of the entire
dataset. Such pruning is inapplicable without other silos’
information.

In this paper, we define the Vertical Federated Skyline
(VFS) problem and investigate efficient solutions to skyline
queries over a vertical data federation. We aim to find an
efficient and secure solution to execute a VFS query, which
holds potential for large-scale commercial recommendation
applications without revealing the individual information
about silos. At a high level, we optimize VFS query pro-
cessing from two aspects. (i) We design a local dominance
based framework which can decompose as plaintext local
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TABLE 1: Summary of major notations

Notation Description

S a data federation
D entire dataset of federation
A relation schema of federation
si i-th data silo of federation
Dsi local dataset of si
Asi relation schema held by data silo si
p a sample in federation S
p[Aj ] value of the j-th attribute of sample p

dominance computations and secure result aggregations.
This framework can reduce the number of secure operations
without compromising security. (ii) We propose a special-
ized private set intersection (PSI) emptiness protocol to
accelerate our local dominance based VFS query framework.

Our main contributions and results are as follows.

• We identify a novel skyline query processing prob-
lem, the Vertical Federated Skyline (VFS) problem,
and devise a local dominance based framework that
can perform as many computations in plaintext as
possible without compromising security, which leads
to a higher query efficiency.

• By reformulate the secure operations in our frame-
work as private set operations, we propose a new
private set intersection based algorithm to further
improve the query efficiency, which are implemented
with specialized high-efficiency secure primitives
rather than the general-purposed SMC libraries.

• Experiments on both synthetic and real-world
datasets show that compared with generic SMC
based solutions, our PSI based algorithm reduces the
time cost of a single VFS query by up to 35.4× and
communication cost by two orders of magnitude.

In the rest of this paper, we formulate the VFS problem
in Sec. 2, present our local dominance based framework in
Sec. 3, propose a baseline solution by generic SMC tech-
niques in Sec. 4, and devise an accelerated VFS solution by
PSI in Sec. 5. We present the evaluations in Sec. 6, review
related work in Sec. 7, and finally conclude in Sec. 8.

2 PROBLEM STATEMENT

This section introduces the relevant concepts and the formal
definition of the Vertical Federated Skyline (VFS) query. Tab. 1
summarizes the major notations.

Definition 1 (Silo). A silo, denoted by s, is an autonomous
institution holding its own dataset Ds. Each row of the dataset
corresponds to a sample, which is a ds-dimension vector. That is,
silo s holds ds attributes for each sample.

The attribute set of silo s can be regarded as the relation
schema of dataset Ds, denoted by As = {A1, · · · , Ads

}.
Each sample p possessed by silo s is a relation instance with
schema As.

Definition 2 (Vertical Data Federation). A vertical data fed-
eration consists of m silos, i.e., S = {s1, · · · , sm}. Each silo si
has its own dataset about the same n samples on dsi attributes,
where the corresponding attribute set Asi differs across silos, i.e.,
the attributes held by m silos are non-overlapping.

Let D be the dataset of the vertical data federation S,
which contains n samples on d =

∑m
i=1 dsi attributes. The

schema of D is denoted by A = ∪mi=1Asi . We consider
applications such as commercial recommendation [4] on
a vertical data federation. For convenience, we assume a
coordinator to receive a query, distribute its execution, and
return the query result to the requester. In practice, the
coordinator can be either one of the silos or a dedicated
entity.

Definition 3 (Dominance). In dataset D with schema A, the
dominance relationship between two samples pa and pb is denoted
by ≺A. pa dominates pb (denoted by pa ≺A pb), if (1) for all
Aj ∈ A, pa[Aj ] ≤ pb[Aj ], and (2) for at least one attribute
Aj ∈ A, pa[Aj ] < pb[Aj ], where pa[Aj ] is the value of the j-th
attribute of sample pa (1 ≤ j ≤ d). Formally,

pa ≺A pb ⇔
∧

Aj∈A
pa[Aj ] ≤ pb[Aj ] ∧

∨
Aj∈A

pa[Aj ] < pb[Aj ] (1)

Such dominance relationship is useful for instance prun-
ing in applications such as recommendation systems. If pa
dominates pb, it means pa outperforms pb in all the at-
tributes. Therefore, we can safely omit pb and only consider
pa for subsequent processing e.g., recommendation.

Definition 4 (Semi-honest Adversary Model). The semi-
honest (a.k.a., honest-but-curious) adversary model assume each
silo will honestly execute the required queries, but may attempt
to infer other silos’ data during query execution. This adversary
model allows up to m− 1 silos to collaboratively infer the data of
the remaining silo.

The semi-honest adversary model is widely used in
research on data federation [5], [6], [11]. In our context, a
silo si will not share its own dataset Dsi with other silos or
the coordinator. It may attempt to infer the dataset of other
silos, but will honestly execute the operations assigned by
the coordinator.

We now formally define the Vertical Federated Skyline
(VFS) query as follows.

Definition 5 (VFS Query). Given a data federation S with
dataset D and schema A, the vertical federated skyline query
aims to securely find the IDs of all samples pb ∈ D that are
not dominated by any other samples in D, i.e.,

V FS(D) = {b|pb ∈ D, ∄ pa ∈ D s.t. pa ≺A pb}, (2)

against the semi-honest adversary model. That is, each silo si can
only know the sample IDs of the query results without any other
information on the attributes of other silos.

VFS queries find samples that outperform others among
all attributes, which facilitate silos to provide more accurate
and effective recommendation without leaking information
about their own data.

Example 1. Tab. 2 shows a vertical data federation holding 4
samples across 3 silos. Each silo holds one attribute of the samples,
denoted by A1 A2, and A3, respectively. A VFS query asks the
sample IDs that cannot be dominated by any other samples. In this
example, sample p1 = (6, 3, 8) is dominated by p0 = (4, 3, 6),
while both sample p0 = (4, 3, 6) and p2 = (2, 7, 7) dominate
p3 = (7, 8, 7). Thus, sample ID #0 and #2 are the result of the
VFS query on this federation. Each silo can only get the sample
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TABLE 2: An example of VFS query and result (the result
IDs are marked in bold).

Silo #1

ID A1

0 4
1 6
2 2
3 7

Silo #2

ID A2

0 3
1 3
2 7
3 8

Silo #3

ID A3

0 6
1 8
2 7
3 7

Fig. 1: Overview of local dominance based execution frame-
work for VFS queries.

IDs of the query result, without knowing any other information
about these samples from other silos, e.g., the attribute values of
the returned sample IDs in other silos.

In this work, we aim at efficient and secure execution
of VFS queries, which enables large-scale user recommen-
dation with security guarantees against the semi-honest
adversary model.

3 LOCAL DOMINANCE BASED FRAMEWORK

This section introduces an efficient and secure VFS query
execution framework. The principle is to decompose a VFS
query into plaintext operations within silos and secure op-
erations across silos. Prior studies [6], [8] have shown that
plaintext computation can be two or three orders of mag-
nitude faster than secure multiparty computation (SMC).
Therefore, our objective is to decompose as many plaintext
operations as possible for high query efficiency without
compromising security.

Specifically, our idea is to decompose secure computa-
tion of dominance across silos, known as global dominance,
into plaintext local dominance checking within each silo and
then secure aggregation across silos, as shown in Fig. 1. The
key insight is to decompose the global dominance defined
on the entire schema A = ∪mi=1Asi , into the aggregation of
local dominance defined on individual schemas Asi . Such
decomposition involves two types of local dominance, as
defined below.

• Strict Local Dominance. It is defined the same as
Def. 3 expect that the scope is on schema Asi of silo
si rather than the entire schema A of federation D.
Specifically, sample pa strictly dominates sample pb
in silo si iff pa dominates pb on schema Asi , which
is denoted by:

pa ≺Asi
pb (3)

• Relaxed Local Dominance. It only satisfies condition
(1) in Def. 3 and is defined on each schemaAsi of silo
si. Specifically, the relaxed local dominance in silo si,
denoted as ⪯Asi

, is defined as follows.

pa ⪯Asi
pb ⇔

∧
Aj∈Ai

pa[Aj ] ≤ pb[Aj ] (4)

Given the two types of local dominance defined above, the
global dominance over the entire schema A = ∪mi=1Asi can
be reformulated as:

pa ≺A pb ⇔
∧

sj∈S

pa ⪯Asj
pb ∧

∨
si∈S

pa ≺Asi
pb (5)

Remarks. We make two notes on our local dominance based
framework for VFS query execution.

• The decomposition in Eq. (5) allows plaintext com-
putation i.e., Eq. (3)-(4), which results in a higher
query efficiency than the original definition of the
VFS query, which can only be executed with slow
SMC operations.

• The local dominance relationships only involves the
attributes held by the same silo. Hence plaintext com-
putation of local dominance does not leak data across
silos, as long as these local dominance relationships
are securely aggregated to generate the final results.

As next, we first introduce a baseline VFS algorithm that
directly implements the framework with generic SMC tech-
niques (Sec. 4), and then propose an accelerated algorithm
leveraging dedicated SMC protocols (Sec. 5).

4 BASELINE ALGORITHM WITH GENERIC SMC
This section presents a VFS query algorithm that directly im-
plements the local dominance based framework i.e., Eq. (5),
with general-purposed secure multiparty computation. We
first explain the secure aggregation protocol with existing
generic SMC operations, i.e., secret sharing (SS) in our case
(Sec. 4.1), and then introduce the end-to-end VFS query
execution algorithm (Sec. 4.2).

4.1 SS-based Secure Aggregation Protocol
Secret sharing [12] is a general-purposed SMC technique to
distribute a secret among multiple parties while the secrete
can only be reconstructed by aggregation among all parties.
Assume m silos and a number v held by silo si is a secret
to be sent to the coordinator. Silo si divides v into m shares,
subject to

∑m
j=1 vj = v. Since silo si will not disclose its

own share to other silos, the remaining m − 1 silos cannot
reconstruct v even if they collaborate to infer the secret.

We exploit secret sharing to enable secure aggregation at
the coordinator without each silo cannot infer the operand
values of other silos. Take the secure addition of two secrets
u and v as an example. The coordinator first requests the
two silos who hold u and v to distribute the secrets among
the silos. That is, silo sj will receive two shares uj and vj .
The coordinator will then ask each silo to perform addition
locally, i.e., uj + vj , and returns the results for aggregation.
In our context, the coordinator can be one of the silos. Hence
the silos can be aware of the result i.e., u+v. However, since



4

the silo holding u or v does not disclose its share of u or v,
the remaining m− 1 silos cannot infer the value of u or v.

Such secure computation between two secrets u and v
involves the local computation of shares uj , vj at silo sj and
the communications between any two silos si, sj with their
shares ui, vj . Thus, a single secure computation takes O(m2)
time and communication cost [13].

4.2 Baseline VFS Query Execution Algorithm

We now explain how to execute a VFS query by implement-
ing the local dominance framework with secret sharing.

Alg. 1 illustrates the overall procedure. The VFS query
result are initialized as an empty set in line 1. For each
sample pb (line 2), each silo first computes the strict and re-
laxed local dominance defined in Eq. (3) and Eq. (4) in plain-
text. Specifically, st-domsi(a, b) indicates whether sample pa
strict dominates pb in silo si (line 4), and re-domsi(a, b) indi-
cates whether sample pa relaxed dominates pb in silo si (line
5). Then the coordinator will ask the m silos to share their lo-
cal dominance results via secret sharing, i.e., make shares for
st-domsi(a, b) and re-domsi(a, b) (1 ≤ a ≤ n) and distribute
m− 1 shares to the other m− 1 silos (lines 6-7). Afterwards,
the coordinator will ask the m silos to securely computes
the global dominance dom(a, b) according to Eq. (5) (lines
8-9). Finally, sample pb is appended to the skyline result
if there are no sample pa that can dominate pb (lines 10-
11). Notice that only the final condition ∨a∈{1,··· ,n}dom(a, b)
can be revealed to the coordinator, all intermediate results
dom(a, b) should be computed and stored in secret.

Example 2. Back to Example 1, in the local dominance based
framework, to check whether pb is a skyline sample, each silo
will first compute the local dominance relationships of pb. For
example, when processing p1, the strict local dominance in
s1 is st-doms1(·, 1) = (1, 0, 1, 0), which means sample p0
and p2 are in strict local dominance to p1 in s1. The re-
laxed local dominance st-doms1(·, 1) = (1, 1, 1, 0), i.e., ex-
cept the strict dominating samples, p1 is in relaxed dominance
to itself. Similarly, the local dominance relationships of s2 are
st-doms2(·, 1) = (0, 0, 0, 0), st-doms2(·, 1) = (1, 1, 0, 0).
For silo s3, st-doms3(·, 1) = (1, 0, 1, 1), st-doms2(·, 1) =
(1, 1, 1, 1). With these local dominance relationships, we can
apply secure sharing to securely compute each dom(a, b) and
finally get the result of ∨a∈{1,··· ,n}dom(a, b) = 1, which means
pb is dominated by another samples in the federation. The whole
skyline result can be securely computed by this way.

Complexity Analysis. We only account for the time com-
plexity and communication cost of secure computations in
Alg. 1, because the plaintext computations (lines 3-5) are
more efficient and do not involve any communication cost.
Specifically, for each sample pb, as shown in Eq. (5), the
computation of dom(a, b) needs O(m) secure computations
(line 9), which takes O(m3) time and communication cost.
Similarly, both the time and communication cost of secure
computations in line 8 are also O(m3). Also, the time com-
plexity of line 9 in Alg. 1 is O(m3). Thus, both the total time
complexity and communication cost of Alg. 1 are O(n2m3).

Algorithm 1: Baseline algorithm with generic SMC
Input: vertical data federation S, the entire dataset

D and its schema A
Output: the skyline set of D

1 res← ∅
2 for pb ∈ D do

/* plaintext within silo */
3 for si ∈ S do
4 st-domsi(·, b)← strict local dominance of pb

according to Eq. (3)
5 re-domsi(·, b)← relaxed local dominance of

pb according to Eq. (4)

/* secure cross silos */
6 for si ∈ S do
7 share st-domsi(·, b) and re-domsi(·, b) to all

silos in secret
8 for a← 1 to n do
9 securely compute dom(a, b) according to

Eq. (5)

10 if ∨a∈{1,··· ,n}dom(a, b) is false then
11 res← res ∪ {b}

12 return res

5 ACCELERATED ALGORITHM WITH PSI
This section presents an accelerated VFS query algorithm
via a novel reformulation of the local dominance based
framework. The key idea is to convert the secure aggrega-
tion of local dominance from sample level to set level, by
designing a multi-party private set intersection (PSI) based
secure aggregation protocol. We first explain how to refor-
mulate the secure aggregation (Sec. 5.1), introduce a PSI-
based aggregation protocol (Sec. 5.2), and finally describe
the overall accelerated algorithm (Sec. 5.3).

5.1 Reformulation of Secure Aggregation
The ultimate objective of a VFS query is to check for each
sample pb whether there is another sample pa can dominate
pb over the entire schemaA, i.e., Eq. (1). The local dominance
based framework in Sec. 3 decomposes the process into
plaintext local check at each silo with schema Asi followed
by secure aggregation of the local dominance results, i.e.,
Eq. (5). The baseline algorithm in Alg. 1 naively aggregates
the local results on a per sample basis, i.e., securely aggregate
all values of dom(a, b) for a from 1 to n (lines 8-9). We argue
that an efficient alternative is to securely compute the global
dominance at set level, i.e., by securely checking whether the
intersection of local dominating sets is empty.

Specifically, we aggregate the per-sample local dom-
inance relationships into two local dominating sets: strict
dominating set and relaxed dominating set, which are defined
as follows.

Strictsi (b) = {a|a ∈ {1, · · · , n}, pa ≺Asi
pb} (6)

Relaxedsi (b) = {a|a ∈ {1, · · · , n}, pa ⪯Asi
pb} (7)

Recall from Eq. (5) that a sample pa dominating pb
requires relaxed dominance relationships for all silos sj ∈ S,
and at least one strict dominance in certain silo si ∈ S. Note
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that pa ≺Asi
pb implies pa ⪯Asi

pb. Hence a sample set that
(1) dominates pb and (2) strictly dominates pb at silo si can
be represented by a set intersection among strict dominating
sets in silo si and relaxed dominating sets in other silos
sj(j ̸= i). Thus, we can reformulate line 9 Alg. 1 as:

Domsi (b) =
( ⋂

j ̸=i

Relaxedsj (b)
)
∩ Strictsi (b) (8)

Afterwards, the total sample set that dominates pb (line
10 in Alg. 1) can be computed by the union of Domsi(b):

Dom(b) =

m⋃
i=1

Domsi (b) (9)

This way, we transform the n per-sample secure opera-
tions (lines 8-11 in Alg. 1) into check whether all the set in-
tersections Domsi(b) are empty, which can be implemented
more efficiently with a multi-party PSI emptiness protocol,
as presented next.

5.2 PSI-based Secure Aggregation Protocol
In this subsection, we first introduce two basic secure
primitives in Sec. 5.2.1, based on which we design a ded-
icated protocol for VFS query: multi-party PSI emptiness
(Sec. 5.2.2). Finally, Sec. 5.3 illustrates how to use the pro-
posed protocol to execute a VFS query.

5.2.1 Secure Primitives
Our dedicated protocol use two secure primitives as build-
ing blocks, ElGamal Encryption and Garbled Bloom Filter. The
former is for secure computations. The latter achieves secure
storage and communication.

ElGamal Encryption. ElGamal is a partial homomorphic
encryption scheme [14], which allows computations on en-
crypted data. It is defined over a cyclic group Gp of order p
with a generator g, where p is often a large prime number
and g is a primitive element of the group. It consists of
three components: key generation KGen(p, g), encryption
Enc(t, h) and decryption Dec((c1, c2), x).

• KGen(p, g): Generate a public key h and a private
key x. The private key x is a random integer uni-
formly drawn from Z∗

p = {1, · · · , p − 1}, and the
public key is h = gx.

• Enc(t, h): It encrypts a secret value t by public key h.
With a random integer r uniformly drawn from Z∗

p,
the ciphertext of t is represented as E(t) = (c1, c2),
where c1 = gr and c2 = t · hr.

• Dec((c1, c2), x): Given a ciphertext tuple (c1, c2), the
corresponding secret value t can be decrypted by
private key x, i.e., t = c2 · (c1x)−1.

The ElGamal encryption is multiplicative homomorphic, i.e.,
E(t1 · t2) = E(t1) · E(t2). We adopt a threshold variant [15]
of ElGamal for encryption and decryption cross m silos. It
allows the private key to be separated into m part x =∑m

i=1 xi and each silo si holds xi. The ciphertext (c1, c2)
can then be decrypted by Dec((c1, c2), x1, · · · , xm) = c2 ·
(c1x1 · · · c1xm)−1, where each silo si only provides c1xi .

Garbled Bloom Filter. The garbled bloom filter is a proba-
bilistic data structure that can implement secure key-value

store and communications cross silos [16]. With the garbled
bloom filter, other silos can only extract values from specific
keys, but cannot learn the values of other keys held by the
garbled bloom filer. It is defined by an array GBF[1..N ] and
a collection of hash functions H1, · · · ,Hk. For a given key
u, the value associated with u can be calculated by:

v =

k⊕
j=1

GBF[Hj(u)] (10)

where
⊕

is the exclusive-or operator. Given a set of key-
value pairs {(u, v)}, the garbled bloom filter can be built
with the following steps.

• Initialize all elements in array GBF[1..N ] as ⊥.
• For each key-value pair (u, v), find the positions
Hj(u) in GBF that have not been set, i.e.,

J = {Hj(u)|GBF[Hj(u)] =⊥} (11)

The procedure aborts if J = ∅. Otherwise, choose
random values for GBF[J ] subject to the lookup
equation in Eq. (10) equalling the desired value v.

• For any remaining GBF[j] =⊥, replace GBF[j] with
a randomly chosen value.

Unless this procedure aborts, it produces the desired key-
value mapping. The probability of aborting is the same as
the probability of false positive in plaintext bloom filter [16].
It has been proven [17] that by setting N = nk log2 e, the
probability of aborting is bounded by 2−k, where n is the
number of key-value pairs. The silos can achieve secure
communications by sending the mapping array GBF[1..N ].

5.2.2 Multi-party PSI Emptiness
Based on above secure primitives, we design a novel proto-
col that securely tests whether the multi-party set intersec-
tion is empty.

Basic Idea. Given m sets O1, · · · ,Om distributed among m
silos, we aim to check whether the intersection of these sets
is empty. For each silo si, it can associate each sample u a
value vsi(u), where vsi(u) = 1 for samples inOi, and vsi(u)
can be a random value r otherwise. Thus, the intersection
contains sample u if and only if

∏
si∈S vsi(u) = 1. It

can be securely computed by first encrypting each vsi(u)
with ElGamal and then multiplying them consecutively.
The next question is how a silo identifies the sample ID
of a ciphertext from other silos, which can be achieved by
the garbled bloom filter. It can transfer the ciphertext with
corresponding keys securely. Because all values stored in the
garbled bloom filter are ciphertext, such transmissions will
not reveal extra information about silos.

Algorithm Details. Alg. 2 illustrates our protocol to securely
check the emptiness of multi-party set intersection. It con-
tains five steps:

• Init. Firstly, all silos generate a public key h with the
threshold variant of ElGamal, where the secret key
x =

∏m
i=1 xi is divided into m parts for m silos (line

1). They share a common collection of hash functions
H1, · · · ,Hm (line 2).

• Encode. Without loss of generality, let silo s1 be the
coordinator. For any other silo si(2 ≤ i ≤ m) (line 3),
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Algorithm 2: Multi-party PSI Emptiness
Input: vertical data federation S, the sets

O1, · · · ,Om, a prime p and a generator g
Output: the indicator that whether the intersection is

empty
/* Step 1: Init */

1 (h, x)← KGen(p, g), where x is divided into m
parts x1, · · · , xm for m silos

2 {H1, · · · ,Hk} ← a collection of hash functions
/* Step 2: Encode */

3 for data silo si ∈ {s2, · · · , sm} do
4 build garbled bloom filter GBFsi [1..N ] based on

{(u, E(1))|u ∈ Oi}
5 send GBFsi [1..N ] to s1

/* Step 3: Product */
6 for data silo s1 do
7 for u ∈ O1 do
8 v(u)←

∏m
i=2

⊕k
j=1 GBFsi [Hj(u)]

9 send V ← {v(u)} to s2

/* Step 4: Shuffle */
10 for data silo si ∈ {s2, · · · , sm} do
11 receive V from si−1

12 compute v′(u) = v(u) · E(1)
13 V ′ ← random shuffle {v′(u)} and send it to si+1

/* Step 5: Decode */
14 for v′(u) ∈ V ′ do
15 t← Dec(v′(u), x1, · · · , xm)
16 if t = 1 then
17 return false

18 return true

it builds a garbled bloom filter GBFsi [1..N ] where
the key-value pairs are {(u, E(1))|u ∈ Oi} (line 4).
All silos send their own GBFsi to silo s1 (line 5).

• Product. In silo s1 (line 6), for each sample u ∈ O1,
it computes v(u) =

∏m
i=1 vsi(u), where vsi(u) is

obtained by Eq. (10) on the garbled bloom filter
GBFsi (lines 7-8).

• Shuffle. The encoded dataset {v(u)} is shuffled by
all m silos. When silo si receives {v(u)} (line 11), it
calculates v′(u) = v(u) · E(1) (line 12) and sends the
randomly shuffled {v′(u)} to the next silo (line 13).

• Decode. Finally, given the shuffled {v′(u)}, all silos
unite to decode them one by one (line 15). If there are
some Dec(v′(u), x) = 1, it means the intersection is
not empty (lines 16-17). Otherwise, the intersection is
empty (line 18).

Example 3. Fig. 2 shows a example of our multi-party PSI
emptiness protocol. Back to Example 2, assume we want to check
whether the intersection of sets Relaxeds1(1),Relaxeds2(1)
and Stricts3(1) is empty. In the init step, all silos agree p =
11, g = 8, h = 7 and two hash functions H1,H2. Each
silo si holds a private key xi, as shown in Fig. 2a. Next, s2
and s3 build their garbled bloom filters. For example, the set
of s2 only has one element 0. Thus, it generates a ciphertext
E(1) = (g2, 1 · h2) = (9, 5) for this element. Ant it sets

GBFs2 [H1(0)] as (1, 2), and GBFs2 [H2(0)] as (8, 7), subject
to (1, 2)

⊕
(8, 7) = (9, 5). The other values in GBFs2 are set

randomly. GBFs3 can be obtained similarly and both these two
arrays are sent to s1. In the product step, s1 receives GBFs2

and GBFs3 . It computes v(u) =
∏3

i=2

⊕2
j=1 GBFsi [Hj(u)]

for u1 = 0 and u2 = 2. The results are v(u1) = (3, 4) and
v(u2) = (2, 8). Then, it sends these two ciphertexts to s2 and
s3 for the shuffle step (Fig. 2d) and gets the shuffled ciphertext
(9, 3) and (8, 7). Finally, all silos united to decrypt these two
ciphertexts, which yields Dec((8, 7), 2, 3, 4) = 1. It means the
set intersection is not empty.

Complexity Analysis. The init step (lines 1-2) can be done
in O(1). In step 2, each silo builds a garbled bloom filter
GBFsi [1..N ] locally, which takes O(n) time (line 4). In step 3,
for each sample u in silo s1, the ciphertext v(u) is calculated
in O(m) time (line 8). Thus, the time complexity of step 3
is O(nm). In step 4, the ciphertext set {v(u)} is shuffled
by all silos, which needs O(nm) time in total. Finally, in
the decode step, each ciphertext v′(u) needs O(m) time
to decrypt. Thus, this step also takes O(nm) time. Hence,
the total time complexity of Alg. 2 is O(nm). As for the
communication cost, only step 2 (lines 3-5) and step 4 (lines
10-13) incur communication among all silos, which leads to
O(nm) communication cost.

5.3 Accelerated VFS Query Execution Algorithm
With the multi-party PSI protocol, we now explain how to
execute a VFS query efficiently.

Intuitively, whether Eq. (9) is empty can be checked
by independently running m multi-party PSI emptiness of
Domsi(b) i.e., Eq. (8). However, this method may impose se-
curity risks. Specifically, silo s1 will know whether attributes
in silo sj can strictly dominate pb in the computation of
Domsi(b). Hence, we need an alternative to get the final
answer without revealing the internal results of set intersec-
tions. Our solution is to merge the first three steps of Alg. 2
for all Domsi(b), i.e., compute the whole ciphertext set of all
Domsi(b), and then randomly shuffle these ciphertexts and
decode them unitedly (step 4 ∼step 5 in Alg. 2).

Alg. 3 illustrates our PSI based VFS algorithm. In line 1,
it first initializes the skyline result as an empty set. For each
sample pb, each silo first computes two local dominating sets
in lines 4-5. Then, they unite to execute the multi-party PSI
emptiness test. Specifically, they first execute the init and
encode step of Alg. 2, to get the garbled bloom filters for
two local dominating sets (lines 6-7). Then, silo s1 executes
the product step for each Domsi(b) and obtains the whole
ciphertext set V (lines 8-10). The silos in the federation then
shuffle V as V ′ and finally decrypt elements in V ′ to check
whether pb is a skyline sample (lines 11-13).

Example 4. Back to Example 2, when checking whether pb is
a skyline sample, each silo first builds two garbled bloom filters
for strict and relaxed dominating sets, as shown in Tab. 3. The
building of garbled bloom filter is similar to Example 3. Next, s1
executes the product step, as shown in Fig. 3. Tab. 3 shows the
execution of the 3rd intersection. All silos shuffle the ciphertext
and decrypt them one by one. The decrypted value of (4, 3) is 1,
which means the set intersection is not empty. Then, the procedure
returns false immediately, which means p1 is not a skyline sample.
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(a) Step 1: Init (b) Step 2: Encode (c) Step 3: Product (d) Step 4: Shuffle (e) Step 5: Decode

Fig. 2: Example of multi-party PSI emptiness.

TABLE 3: Example of garbled bloom filters in s2 and s3.

GBFs2

pos Relaxed Strict

0 (1,2) (3,6)
1 (8,7) (2,5)
2 (3,9) (5,5)
3 (9,2) (4,6)
4 (7,6) (1,8)

GBFs3

pos Relaxed Strict

0 (10,2) (2,7)
1 (2,5) (6,4)
2 (5,7) (5,2)
3 (6,6) (4,2)
4 (3,5) (2,10)

Fig. 3: Example of PSI based VFS algorithm.

There is no need to decrypt the remaining ciphertext. Finally,
Alg. 3 can securely get the whole skyline set.

Complexity Analysis. We focus on the complexity of secure
computations in Alg. 3. Lines 6-7 correspond to step 1 and
step 2 of Alg. 2, which take O(n) time and communication
cost. Lines 8-10 execute O(m) product step of Alg. 2, which
takes O(nm2) time. Similarly, both the time complexity and
the communication cost of line 11 are O(nm2) because it
needs to transfer O(nm) ciphertext across all silos. Lines 12-
13 decrypt all ciphertext in V ′, each of which takes O(m)
time. Thus, their time cost is also O(nm2). To summarize,
both the total time complexity and communication cost of
Alg. 3 are O(n2m2).

Security Analysis. The security of our PSI based accelerated
algorithm depends on the underlying secure primitives.
Assume a subset I ⊂ S bands together to infer the other
silos’ information. Let the simulator SIM have access to the
colluded silos’ input sets {Dsi}si∈I . As Alg. 3 executes,
the simulator SIM can only get the ciphertexts about other
silos {CPsi}si /∈I (garbled bloom filters from other silos).

Algorithm 3: PSI based VFS algorithm
Input: vertical data federation S, the entire dataset

D and its schema A
Output: the skyline set of D

1 res← ∅
2 for pb ∈ D do

/* plaintext within silo */
3 for si ∈ S do
4 Strictsi(b)← strict local dominating set of pb

according to Eq. (6)
5 Relaxedsi(b)← relaxed local dominating set

of pb according to Eq. (7)

/* secure cross silos */
6 all silos initialize the public key h and private

key x1, · · · , xm

7 each silo si builds garbled bloom filter for its
strict and relaxed dominating set respectively
and sends them to silo s1

8 V ← ∅
9 for i← 1 to m do

10 data silo s1 compute V ← V ∪ the ciphertext
set for Domsi(b)

11 V ′ ← random shuffled V by all data silos
12 if there is no element in V ′ decrepyted as 1 then
13 res← res ∪ {b}

14 return res

Since the encryption scheme ElGamal is semantically secure,
the ciphertexts {CPsi}si /∈I and their raw data {Dsi}si /∈I
are indistinguishable. Thus, the simulated view of SIM is
indistinguishable from the real world algorithm output. The
silos in I cannot learn any information about other silos.

6 EXPERIMENT STUDY

This section presents the evaluations of our methods.

6.1 Experimental Setup

Datasets. Following previous research [1], [9], [10], we ex-
periment with three synthetic datasets with different distri-
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Fig. 4: Performance of varying the silo number.
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Fig. 5: Performance of varying the data size.

butions and a real-world dataset about NBA players.

• Synthetic Datasets. We generate sample sets with
independent (IND), correlated (COR) and anti-
correlated (ANT) distribution. Specifically, the IND
dataset generates all values independently with a
uniform distribution. The COR dataset is generated
by first selecting a plane perpendicular to the line
from (0, · · · , 0) to (1, · · · , 1) using a normal distri-
bution (σ = 0.1) and then generating a point on such
line with another normal distribution (σ = 0.05). In
the ANT dataset, each sample is generated by a uni-
form distribution on the same plane perpendicular
selected by a normal distribution with small variance
(σ = 0.05).

• Real-world Dataset. To evaluate our skyline algorithms
in real-world applications, we collect the statistics

of 4000 NBA players from 2002 to 2022 [18], which
we call as the the NBA dataset. Each player has
20 attributes, including game played (GP), points
(PTS), field-goal percentage (FG), rebound (REB),
steals (STL), etc.

To simulate real-world skyline query applications, we vary
the size of data federation n (i.e., the number of samples)
from 100 to 4000. To vary the number of silos (m), we
equally split the samples to form multiple silos as in pre-
vious studies [5], [6], [19]. By default, each silo holds one
attribute. We vary the number of attributes held by one silo
(dimensions of a silo) from 1 to 5 to further evaluate the
efficiency of proposed algorithms. The parameter setting are
listed in Tab. 4. The default values are marked in bold.

Compared Algorithms. We compare the performance of the
following algorithms.
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Fig. 6: Performance of varying the number of dimensions in each data silo.

TABLE 4: Parameter settings (defaults are marked in bold)

Parameter Setting

dataset IND, COR, ANT, NBA
silo number m 2, 4, 6, 8, 10

data size n 100, 500, 1000, 2000, 4000
dimension of each data silo 1, 2, 3, 4, 5

• MP-SPDZ. The baseline VFS query execution al-
gorithm implemented by a state-of-the-art general-
purpose SMC library MP-SPDZ [13] (Alg. 1).

• MPSIC. Our accelerated VFS query execution algo-
rithm implemented with a state-of-the-art PSI cardi-
nality protocol [20].

• MPSIE. Our accelerated VFS query execution algo-
rithm implemented with our specialized multi-party
PSI emptiness protocol (Alg. 3).

Implementation. The experiments are conducted on a clus-
ter of up to 10 servers, each of which has four 3.10GHz
Intel(R) Xeon(R) Platinum 8269CY processors and 32GB
memory with Ubuntu 18.04 LTS. The network bandwidth
between machines is up to 6 GB/s. All of the algorithms are
implemented in GNU C++ with the GMP library [21] for
large integer computation. The security parameters are fixed
as follows: both the length of generator g in ElGamal and the
length of prime p are 1024 bits. The garbled bloom filter has
k = 20 hash functions, and the length of the garbled bloom
filter is set as N = 20n log2 e.

Metrics. We assess the query processing efficiency by two
metrics.

• Running time. It is the time cost from receiving the
VFS query to returning the query result.

• Communication cost. It is the total network commu-
nication among all silos for a VFS query.

All the experimental results are the average over 10 repeti-
tions.

6.2 Experimental Results

Impact of # silos m. Fig. 4 presents the results of varying
the number of silos m on the four datasets. The running
time of all skyline algorithms increases with the increase
of silo number (see Fig. 4a-4d). This is because a large silo
number involves more dimensions of samples and needs
more computations for a skyline query. MPSIE achieves
the smallest running time followed by MPSIC. MP-SPDZ
performs the worst. When there are more than 6 silos, it
fails to get results in 48 hours. MPSIE is up to 35.4× and
4.1× faster than MP-SPDZ and MPSIC, respectively. As for
the communication cost, the results of MPSIE and MPSIC
increase slightly as the silo number increases, since their
communication cost is linear to silo number. Compare with
MP-SPDZ, the PSI based algorithms significantly reduce
the communication cost. For example, in the NBA dataset
(Fig. 4h), the communication cost of MPSIE is up to 1224×
smaller than MP-SPDZ. The communication costs of MPSIE
and MPSIC are almost the same. It is because MPSIC is
implemented by plaintext bloom filters, while MPSIE uses
garbled bloom filters as building blocks, which achieves
more efficient key-value storage than the plaintext version
at the same communication cost.

Impact of # samples n. Fig. 5 illustrates the results of vary-
ing the number of samples n on the four datasets. Again, all
skyline algorithms take more time and communication cost
to perform a VFS query as the number of samples increases.
From Fig. 5a-5d, MP-SPDZ also performs the worst. MPSIE
is still the most efficient and MPSIC is the runner-up. In
terms of running time, MPSIE takes less than 21 hours to
perform a skyline query over 4000 samples. But MP-SPDZ
takes more than 2 days even for 2000 samples. Thus, we
omit the results of MP-SPDZ when there are 4000 samples.
Again, MPSIE is up to 13.7× and 2.5× faster than MP-SPDZ
and MPSIC, respectively. The communication cost of all sky-
line algorithms increases linearly. But the communication
cost of MP-SPDZ can be up to 295.8× higher than MPSIE
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and MPSIC.

Impact of # dimensions ds. Fig. 6 shows the results of
varying the number of dimensions in each silo ds. Due to
our local dominance based framework, the number of di-
mensions only has little impact on the results. For example,
in all four datasets, the running time and communication
cost of MP-SPDZ are relatively stable. Among the compared
algorithms, MPSIE has the smallest running time, which is
up to 73.5× and 2.5× lower than MP-SPDZ and MPSIC,
respectively. In terms of communication cost, MP-SPDZ
needs up to 293.6× higher cost than PSI based algorithms.

Impact of data distribution. We further study the im-
pact of different data distributions. In Fig. 4 and Fig. 5,
all algorithms have the similar trends on four datasets.
However, in Fig. 6, the performance of MPSIE and MPSIC
differs across the four datasets. Specifically, as shown in
Fig. 6a and Fig. 6c, for the independent and anti-correlated
data distribution, the running time of the two PSI based
algorithms MPSIE and MPSIC decreases as the number of
dimensions increases. On the contrary, for the correlated
distribution and the real-world NBA dataset, the running
time of all algorithms is relatively stable. This is because in
the correlated distribution, given a pb ∈ D, the size of the
set Stricts1(b) and Relaxeds1(b) (defined in Alg. 3) will be
stable as the dimension increases. And the NBA dataset is a
nearly correlated distribution. For the independent or even
anti-correlated distribution, as the number of dimensions
increases, the size of the set Stricts1(b) and Relaxeds1(b)
would become smaller, leading to a smaller size of Dom(b).
For example, in the anti-correlated distribution, when each
silo holds one dimension of samples, the average size of
Dom(b) is 1901. However, when each silo holds five dimen-
sion of samples, the size of Dom(b) is only 136 on average.
Thus, the two accelerated algorithms implemented with PSI
will take lower time cost to execute the VFS queries as the
number of dimension increases.

Summary. Our experimental findings are as follows.

• The running time our accelerated VFS algorithm im-
plemented by specialized PSI emptiness protocol is
significantly more efficient than the baselines. Specif-
ically, MPSIE can be up to 35.4× and 4.1× faster than
MP-SPDZ and MPSIC, respectively.

• The communication cost of PSI based algorithms is
low. For example, the communication cost of MPSIE
and MPSIC is 70.1GB on average. However, the com-
munication cost of MP-SPDZ can be over 40TB for a
single VFS query. The communication cost of our PSI
based VFS algorithms can reduce the communication
cost by two orders of magnitude.

• The PSI based algorithms are sensitive to the size
of dominating set in a VFS query. However, this is
often not an issue because there are the number of
samples is typically orders more than the size of the
dominating set in many real-world applications.

7 RELATED WORK

Our work is related to three categories of research: skyline
query processing, querying and analysis on data federation, and
multi-party private set intersection.

7.1 Skyline Query Processing
The notion of skyline operator was first introduced in [1]
with a well-known solution: block nested loop (BNL). After
that, a series of efficient skyline query processing techniques
are presented, including building indices [22], [23], utilizing
topological order [2], [24], splitting into buckets [25], etc.
More details can be found in [26], [27]. In [28], the authors
studied the skyline query processing on vertical partitioned
data and propose an algorithm based on the Fagin’s top-k
ranking framework [29]. However, it may leak the priorities
of tuples to all data owners.

Many variants of skyline queries have been studied,
such as group skyline [30], reverse skyline [31], k-dominant
skyline [32], etc. Recently, there are some studies about
secure skyline querying on the untrusted cloud platforms.
For example, Chen et al. [33] studied the verification of
skyline query result returned by malicious cloud servers.
Liu et al. [34] proposed a semantically secure method based
on a partial homomorphic encryption scheme named Pail-
lier. However, the method has low efficiency. By utilizing
a new order-revealing encryption scheme, Wang et al. [35]
can securely build indices on cloud platforms and answer
skyline queries more efficiently. Ding et al. [9] and Liu et
al. [36] further studied the secure skyline querying over
multiple horizontal partitioned data. All the aforementioned
methods require two non-colluding cloud platforms, and
the data owners need to upload their encrypted data to
cloud. However, such two cloud platforms are hard to find
in practice.

7.2 Querying and Analysis on Data Federation
As a new solution for data sharing, data federation can facil-
itate multiple data owners to collaboratively process queries
with SMC techniques [5], [6], [37]. SMCQL [5] is the first
data federation system based on a general garbled circuit
library ObliVM [38]. It can support secure SQL queries over
a federation with two data silos. Conclave [8] extend the
secure query processing to spark and can support up to
three data silos with a general secret sharing library Share-
mind [39]. However, because of the dependence of general
SMC libraries, these systems are still significantly slower
than plaintext querying methods. To improve the system
efficiency, SAQE [40] studies the secure approximate query
processing over data federation, and Hu-Fu [6] designs
several dedicate secure operators to accelerate querying on
spatial data federation. There are also some studies apply
differential privacy to data federation analysis [41], [42],
[43].

As an efficient dedicated SMC techniques, private set
intersection (PSI) has been used in certain query and anal-
ysis on data federation. Ge et al. [11] studied the functional
dependence discovery problem in data federation. It uses
PSI cardinality as a building block. In [44], the authors
proposed an efficient solution with linear complexity by
applying a circuit based PSI protocol to classic Yannakakis
join algorithm, to handle join-aggregate queries on a data
federation.

Overall, querying and analysis on data federation has
become a hot topic but there has been no study about secure
skyline querying on data federation.
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7.3 Multi-party Private Set Intersection

The multi-party PSI requires multiple parties to compute
the intersection of their own datasets without revealing any
additional information. The primary multi-party PSI pro-
tocols are based on oblivious polynomial evaluation (OPE)
technique [45], [46]. The main idea is to represent a dataset
as a polynomial with homomorhpic encryption scheme,
e.g., Paillier, which leads to a quadratic time complexity.
Some studies [47], [48] reduce the complexity of PSI to
linear under the honest majority assumption, where only
less than m/2 parties can be corrupted. Hazay et al. [49]
extends the idea of OPE [45] to a star network topology,
and achieves linear complexity with the threshold variant
of homomorphic encryption scheme. By introducing the
oblivious programmable pseudo random function (OPPRF),
Kolesnikov et al. [50] propose a protocol that does not rely on
any homomorphic encryption scheme. It has been proved
to be efficient, but it will reveal the items belonging to the
intersection set. However, in our problem setting, only the
emptiness of the intersection set should be revealed. In [20],
the authors proposed a plaintext bloom filter based pro-
tocol to compute the cardinality of multi-party PSI, which
involves large number of encryption operations.

8 CONCLUSION

In this paper, we formulate the VFS problem, which aims at
skyline queries over a vertical data federation. To enable
efficient processing of such queries, we propose a local
dominance based framework. Specifically, we decompose
the judgement condition of VFS query into two local domi-
nance relationships which can be executed within each silo
in plaintext. The federation then only needs execute secure
aggregation over these local dominance values to get the fi-
nal VFS query results. The framework allows a higher query
efficiency without compromising security. Furthermore, an
accelerated algorithm based on a dedicated PSI emptiness
protocol is proposed to improve the query efficiency. We
validate the efficiency of our solutions on both synthetic and
real-world datasets. Experiments show that compared with
the baseline algorithms, our PSI based VFS algorithm can
reduce the time cost by up to 35.4× and communication cost
by two orders of magnitude. The experimental results show
that the proposed accelerated VFS algorithm implemented
by specialized PSI emptiness protocol is fit for real-world
applications with large numbers of samples yet a small
dominating set.
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