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Abstract—Data federation has emerged as a novel database
system enabling collaborative queries across mutually distrusted
data owners. Federated equi-join, a commonly used operation
in data federation, combines relations from distinct data owners
while preserving their data privacy. Due to the wide applications
of this query, many solutions to federated equi-joins have been
proposed. However, it is still challenging for practitioners to
choose the most appropriate algorithm due to various reasons,
including incomplete evaluation protocols (e.g., lack of evaluating
multi-way equi-joins), under-explored performance metric (main
memory usage), and absence of a standardized comparison.
Motivated by this reason, this paper conducts a comprehensive
experimental study and builds a new benchmark, called FEJ-
Bench, for federated equi-joins. The experimental study and the
benchmark consist of eight state-of-the-art algorithms and five
datasets. Our evaluation reveals the query efficiency ranking, its
impact factors, and potential research opportunities. Finally, we
open-source FEJ-Bench on GitHub, which is the first benchmark
for federated equi-joins. Our findings aim to guide researchers
and practitioners in deploying federated equi-joins in practice.

Index Terms—Equi-join, data federation, secure multi-party
computation, benchmark.

I. INTRODUCTION

N today’s data-driven world, the demand for efficient data

collaboration services across multiple data owners has
become increasingly crucial. However, in the real world, these
data owners often experience a state of mutual distrust, stem-
ming from factors such as safeguarding data confidentiality
and adhering to legal and regulatory compliance requirements
(e.g., GDPR). Consequently, it becomes imperative for the
service providers to prioritize the security of these data owners
while facilitating their collaborative queries and analytics.

To enable such services, a novel type of database system
called “data federation” [1]-[3] has emerged as a potential so-
lution in recent years. A data federation can be perceived as a
union of datasets held and autonomously managed by mutually
distrustful data owners. When querying the data federation,
often referred to as a federated query [3], it necessitates secure
and efficient processing that is jointly conducted by the data
owners over their respective datasets.

The federated equi-join is commonly used in a data fed-
eration [1], [3]. It enables the combination of two or more
relations held by distinct data owners, depending on the
equality of attribute values specified in the join condition.
Moreover, the query user remains unaware of any information
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(c) Example of federated multi-way equi-join
Fig. 1: Federated equi-join query over a data federation.

beyond the query result itself or any details that can be directly
inferred from it. Similarly, any data owner is limited to the
knowledge of his own input and output, and has no clue about
the others’ sensitive data. Federated equi-joins have been ap-
plied in several real-world applications [4], such as passenger
watch-list verification and cross-platform investigation. A toy
example of such a query is as follows.

Example 1: Fig. 1 illustrates a simplified application sce-
nario of federated equi-joins. In this scenario, the tax bureau
plans to investigate an insurance company and particularly
checks the payments of its insured patients. This investigation
involves three tables R, S, and 7 from the insurance company,
hospital, and bank, respectively. The first rows of the tables in
Fig. 1a represent the attributes of these relations. Two instances
of the federated equi-joins, which involve different numbers
of tables, are depicted in Fig. 1b and 1c, respectively.

Many existing studies have designed novel solutions to
answer a federated equi-join, and their proposed solutions can
be classified into four categories. The first three are inspired
by the seminal ideas of equi-joins over plaintext data: nested-
loop based federated equi-joins [1], [5], [6], sort-merge based
federated equi-joins [4], [7], and hash based federated equi-
joins [8]. The other line of research [9], [10] leverages the rich
techniques of private set intersection (PSI) [11] that securely
computes the intersection of two attribute sets (e.g., primary
keys) from different data owners.

Motivation. Despite the research attention, it is still hard for
practitioners to select a proper solution due to these reasons.

o Incomplete evaluation protocols. The previous evalu-
ations mainly focused on the impact of the input size
while ignoring other crucial factors, such as data dis-
tribution (e.g., join selectivity) and query types (e.g.,
equi-joins over primary keys PK or foreign keys FK).
Moreover, most of these studies [1], [5], [7], [8], [10]
solely evaluated the equi-joins over two relations (i.e.,
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federated binary equi-joins), overlooking the assessment
of federated multi-way equi-joins. However, these factors
are common in real-world applications and have been
extensively tested in joins over plaintext data [12], [13].
o Under-explored performance metric. Most previous
empirical studies primarily evaluate the query process-
ing time and communication cost, overlooking the main
memory usage. Only [6] reported an instance, where their
evaluated method ran out of main memory with just 30k
tuples in a relation. This issue remained unnoticed in
other evaluations, since the tested queries may involve
additional selection or aggregation operations over equi-
joins, resulting in a limited intermediate table size for
joins that were not as large as the input size. Notice
that, secure computations usually require high memory
usage. According to the example in [14], a long integer,
which normally takes 8 bytes of main memory in plain-
text, requires 8192 bytes by using the prevalent secure
protocol, garbled circuit [11]. Thus, the memory usage is
also crucial in assessing the overall query performance.
o Absence of a standardized comparison. Previous meth-
ods lack a unified comparison within the same experimen-
tal benchmark. One reason is that their implementations
are either unavailable or non-uniform (see Table I). More-
over, their methods are evaluated on nearly completely
different datasets. For example, the TPC-H [15] is the
only public dataset shared between these studies [4], [9].

Contribution. To overcome these limitations, we conduct
comprehensive evaluations by comparing 8 federated equi-join
algorithms on 4 real datasets and 1 benchmark dataset TPC-H,
and make the following observations and contributions:

(1) In general, the efficiency ranking we have observed
is “PSI > hash > sort-merge > nested-loop” (from best to
worst). Here, the PSI based methods only support primary-
key-to-primary-key federated equi-joins, where the join con-
dition assumes unique attribute values. For most of the other
cases, the hash based method [8] is the optimal choice.

(2) Join selectivity, which has been overlooked by pre-
vious evaluation protocols, can overthrow this efficiency
ranking. Specifically, when the federated equi-join involves
foreign keys and takes a high selectivity, the nested-loop based
[6] and sort-merge based [7] methods can outperform the
hash based method [8] for federated binary equi-joins and
federated multi-way equi-joins respectively, and hence change
the optimal choice.

(3) We have demonstrated the join order optimization
can potentially improve the efficiency of federated multi-
way equi-joins by a large margin. In our experiment, the
query processing time of hash based and sort-merge based
methods can be notably reduced by 27% to 62% when re-
placing with the optimal join order. Thus, we identify the join
order optimization as a promising future research opportunity,
although previous work [9] feels opposite.

(4) The memory usage, which is under-explored in
existing work, can become the efficiency bottleneck for
most algorithms. For example, when processing federated
equi-joins with foreign keys over the real dataset Amazon
[16] that has 120k and 30k tuples for two relations, the main

memory usage of all the nested-loop based algorithms exceed
1TB, while the other methods take over 150GB. In contrast,
the plaintext nested-loop based equi-join only takes 2GB.

(5) We have built an open-sourced Benchmark for

Federated Equi-Joins, called FEJ-Bench. To foster future
research studies, we have made both code and datasets public
on GitHub [17]. This benchmark is the first of its kind for
federated equi-joins, to the best of our knowledge.
Road Map. In the rest of this paper, we first present the
definition of the federated equi-join and related secure primi-
tives in Sec. II. Next, we introduce existing federated equi-join
algorithms in Sec. III. Then, we present our experimental setup
in Sec. IV and evaluation result in Sec. V. Finally, we identify
future direction in Sec. VI and conclude in Sec. VII.

II. PRELIMINARY

This section introduces the query and secure primitives.

A. Problem Statement

Definition 1 (Data Owner): A data downer (a.k.a. data silo
[18]), denoted by o, holds a relational table 7, with n tuples
as their own dataset.

Based on the definition of a data owner, a data federation
can be defined as follows.

Definition 2 (Data Federation [1], [19]): The data federa-
tion F is a collection of m data silos F' = {01,092, - ,0m},
each of whom holds and manages a relational table 7,,.

In Def. 2, the federation has m different relational tables
Toys--+,7To,, and also knows the schema of these tables in
advance. Equi-joins over two relations under a data federa-
tion are abbreviated as federated binary equi-join by us and
also known as oblivious equi-joins in existing work [4], [7].
According to the number of relations involved in the query,
federated equi-joins include federated binary equi-joins and
federated multi-way equi-joins, which are defined as follows.

Definition 3 (Federated Binary Equi-Join): Given a data
federation F' of two tables R and S held by the data owners
o; and o; (i.e., R =7, and § = 7,,), and a join condition
R.A = S.B over specific attributes A on table R and
attributes B on table S, the federated binary equi-join R 1 S
aims to retrieve all pairs of tuples » € R and s € S that have
equal values in their attributes r.A and s.B:

RS ={(r,s) | reR,seS,rA=sDB}

and meet the following security requirement:

o Attacker Model. Each data owner is a semi-honest (a.k.a.
honest-but-curious) adversary attacker [11]. That is, each
data owner will honestly execute the pre-specific query
processing protocol but may attempt to infer the other’s
sensitive data during the query processing.

o Security Constraint. The query user can only know the
join result (or any information can be directly deduced
from the join result). Each data owner can only know
their own input/output during the query processing.

Definition 4 (Federated Multi-Way Equi-Join): Given a

data federation F' of m tables 7y,---,7,, held by the data
owners oy, - - - , 0m, and a collection C' of equi-join conditions
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{T:.A; = T;.B;} over specific attributes A; on table 7; and
attributes B; on table 7;, the federated multi-way equi-join
Ti >4 -+ 1 T, aims to retrieve all combinations of tuples
(t1,- -+ ,tn,) that satisfy all the equi-join conditions in C:

7—1 D - NTm - {(th atm) | V(’L,j) € CvtlAl = t]BJ}

and meet the same security requirement in Def. 3.

Based on the above definitions, a federated multi-way equi-
join can be decomposed into a series of federated binary equi-
joins without leaking the intermediate results of those binary
equi-joins to either the query user or the data owners.
Remark. The attackers in federated equi-join queries are semi-
honest, which is a commonly used assumption in existing
work [1], [4]-[9]. The other type of attacker model is the
malicious model [11] that assumes the corrupted data owners
of the attacker can deviate from the pre-specified query pro-
cessing procedure (e.g., by changing their inputs). Although
the malicious attacker model is often more challenging than
the semi-honest attacker model, only a few work [20], [21]
has studied the federated equi-joins under this setting. Thus,
we mainly consider the semi-honest attacker in this work.

B. Secure Multi-Party Computation Primitive

To compute the query result, secure multi-party computation

(SMC) techniques have been widely applied in existing work
to meet the security requirement. To better understand existing
work, we introduce related SMC primitives in the following.
Garbled Circuit. Garbled Circuit (GC) is probably the most
famous technique of SMC [11]. A GC protocol usually aims
to securely evaluate a function F'(z,y) based on the private
inputs z and y from two mutually distrusted parties. In the
seminal Yao’s millionaire problem [11], the function F'(z,y)
is to compare whether z is no smaller than y without leaking
the values of x and y, where = and y denote the actual wealth
of the millionaires, Alice and Bob. To solve this problem,
Yao’s GC protocol [11] has been widely studied. A typical
usage of Yao’s GC protocols in federated equi-joins is to check
the join condition by the equality of the involved attribute
values. Notice that, Yao’s GC protocol is highly generic, since
it supports all the discrete functions F' that can be converted
into a fixed-size circuit [11].
Private Set Intersection. By contrast, private set intersection
(PSI) is one of the specific functionalities that require a tailored
protocol. Intuitively, PSI usually computes the intersection
of two sets X and Y with unique elements from Alice and
Bob, respectively. In the end, Alice receives the computation
result X N'Y, and Bob knows nothing except for his input
Y. Moreover, recent work on PSI focuses on the problem of
circuit-PSI. In a circuit-PSI, the result of XNY is secret-shared
between Alice and Bob, while neither Alice nor Bob knows
the actual output. The circuit-PSI protocols (e.g., OPPRF-PSI
[22]) have been used in secure join processing [9], [20] to
improve the query efficiency (see Sec. III-E for more details).
SMC Implementation Tools. There are two ways to imple-
ment and apply previous SMC protocols in a federated equi-
join algorithm, i.e., using a SMC library or SMC compiler.

o SMC Library. A SMC library encapsulates many basic

protocols, such as Yao’s garbled circuits, and provides a
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Fig. 2: Taxonomy of federated equi-join algorithms.
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user-friendly API interface. A typical SMC library, which
has been commonly used in secure query processing, is
ABY [23]. The SMC library of ABY is open-sourced and
mainly supports secure computations across two parties.
e SMC Compiler. A SMC compiler first defines its high-
level programming language, then uses this language to
code secure computations, and finally behaves like a
compiler to generate the executable program. ObliVM
[24] and Obliv-C [25] are two popular SMC compilers
based on the Java/C-like programming language, and
have been used in federated equi-join algorithms [1], [6].
By contrast, the benefit of a SMC compiler is enabling users
to code without caring about protocol details, while a SMC
library is more likely to achieve the expected efficiency. To
ensure a uniform and fair comparison, we use the SMC library
ABY [23] to implement the following methods.

III. FEDERATED EQUI-JOIN ALGORITHM OVERVIEW

In this section, we first introduce our taxonomy and a
general framework of existing solutions. Next, based on this
taxonomy, we review existing federated binary equi-join so-
lutions from four categories, i.e., nested-loop based, sort-
merge based, hash based, and PSI based methods. Then, we
present extensions to federated multi-way equi-joins. Finally,
we provide a comparison of these solutions.

A. Taxonomy and General Framework

Taxonomy. Equi-joins (over plaintext data) have been exten-
sively studied in the field of databases [12]. The text books
commonly classifies equi-join algorithms into three kinds:
nested-loop join, sort-merge join, and hash join [26]. In fact,
many federated equi-join algorithms are designed based on
these principles. Additionally, recent developments on Pri-
vate Set Intersection (PSI) protocols have inspired another
algorithm category to process federated equi-joins at scale.
Therefore, as shown in Fig. 2, we classify existing federated
equi-join algorithms into four categories: nested-loop based,
sort-merge based, hash based, and PSI based methods. We
also indicate the specific algorithms, such as SMCQL [1] and
Conclave [6], that fall under each category.

General Framework. Although existing methods are inspired
by different ideas, their processing workflows share several
common steps and hence can be represented by the general
framework depicted in Fig. 3. Specifically, a query user
submits their query request to the service provider (a.k.a.
data broker in [1]). The service provider then acts as a query
coordinator to assist the data owners in the query processing,
which generally consists of the following steps:
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Fig. 3: General framework of federated equi-joins.

(1) Each data owner locally performs plaintext operations over
their dataset, so no privacy leakage occurs at this step.

(2) The data owners collaboratively perform secure operations
over their datasets, and data security needs to be carefully
preserved at this step.

(3) The data owners generate the join result and send it back
to the query user through the service provider.

Remark. In practice, there are cases where the result of joining
two relations is regarded as an intermediate result and cannot
be directly revealed to the query user due to the security
requirement. Instead, the intermediate join result is kept in
a secret-shared form among the data owners [9].

Based on these categories, we will now proceed to review
existing solutions in the following subsections.

B. Nested-Loop based Federated Binary Equi-Joins

Main Idea. There are no plaintext operations at the first step.
The main idea of the second step is to securely compare
all pairwise tuples (r, s) based on their attributes in the join
condition using a nested-loop. The last step appends a tuple
pair (either (7, s) or a dummy tuple) to the join answer based
on the comparison result.

Basic Algorithm. Alg. 1 illustrates an example of this kind,
namely SMCQL [1]. In line 4, SMCQL implements a garbled
circuit based protocol for the secure equality comparison. If
the compared attribute values are equal, SMCQL concatenates
the attribute values of tuples r and s, eliminate the repeated
attributes, and append this tuple to the result Res that is stored
in the oblivious RAM (ORAM) [11] in lines 5-6. ORAM is
a cryptographic primitive that simulates the Random Access
Memory (RAM) model and conceals the access pattern of
sensitive data, such as the join result Res. Finally, dummy
tuples are padded into the join result Res in line 7. The
padding of dummy tuples fulfills the security requirement
(a.k.a. obliviousness [27] in this context).

Variant Method. Conclave [6] is also designed based on
the nested-loop in lines 2-3. However, there are two major
differences between Conclave and SMCQL.: (1) in Conclave,
a dummy tuple will be appended to the query result if the
attributes in line 4 are unequal, and (2) the join result is stored
using a circuit model rather than the ORAM model.

Algorithm 1: Nested-loop based method SMCQL [1]

Input: Two data owners with relations R and S
Output: The join result Res = R Xig. a—s.5 S

1 k<+ 0

2 foreach ruple r in R do

3 foreach ruple s in S do

4 if attributes r.A (securely) equal to s.B then

5 ORAM Res[k] + CONCAT(r, s);

6 L k+—k+1,

7 append (|R| - |S| — k) dummy tuples to ORAM Res;

Remark. The time complexity of a nested-loop based fed-
erated binary equi-join algorithm is typically O(n?(Tepm, +
Tres)), where Ti.,, and T,., denote the time cost of lines
4 and 5 respectively, and n is the number of tuples in each
relation. In the ORAM model, T}, is O(log3 n) [1], whereas
in the circuit model, it is often assumed to be O(1) [6].

C. Sort-Merge based Federated Binary Equi-Joins

Compared with nested-loop based methods, sort-merge

based methods can reduce the number of secure comparisons.
Main Idea. In the first step of our general framework, both
relations R and S are sorted based on the attributes in the
join condition. Next, by merging the two sorted tuples using
a similar procedure in merge sort, we reduce the number of
secure comparisons at the second step of our framework.
Routine Method. Alg. 2 presents a federated binary equi-join
algorithm SMJ based on the routine of sort-merge join [26].
The algorithm begins by locally sorting the relations R and S
by the data owners. Then, in line 4, it securely compares the
attributes values of R[i] and S[j]. If they are equal in line 5,
SMJ enumerates all tuples in S that share the same attribute
value in the join condition (lines 6-9). In case of inequality,
a dummy tuple is appended to the join result Res to fulfill
the security requirement. The algorithm proceeds by moving
to the next tuple in either R or S based on the result eq of
the secure comparison (lines 12-15). When retrieving a tuple
from one relation, SMJ also pulls a dummy tuple from the
other relation to prevent any potential inference of sensitive
information based on the tuple access in R and S.
Variant Method. Krastnikov ef al. [7] also propose a sorting
based federated equi-join algorithm (named as SFD20 in our
paper, as it lacks a designated name). The main idea of SFD20
is to create two expanded relations R’ and S’ from the original
relations R and S, respectively. This construction enables a
simple row-to-row join (i.e., concatenation) to produce the
join result. The key step is securely computing the expanding
numbers «; and « for each tuple ¢ € R and s € S. Here,
« denotes the number of tuples in S that share the same
attribute values in the join condition with the tuple ¢, while
a is defined in a similar way. To compute these numbers,
SFD20 employs a sorting network [28] to securely sort all
the tuples in R and S based on their attribute values in the
join condition. Finally, when aligning the expanded tuples and
concatenating them to generate the join result, an additional
sort is applied to the union of expanded tuples.
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Algorithm 2: Sort-merge based method SMJ [4]

Algorithm 3: Hash based method PPM20 [8]

Input: Two data owners with relations R and S
Output: The join result Res = R Xig a—s.5 S
1 locally sort R and S based on R.A and S.B;
294 0,7 0;
3 while ¢ < n and j < m do

4 eq < compare R[i].A and S[j].B, k < j;

5 if eq is O (i.e., equal) then

6 while eq is 0 do

7 append CONCAT(R][i], S[k]) to Res;

8 k < k+ 1, pull a dummy tuple from R;
9 eq < compare R[i|.A and S[k].B;

10 else

11 append a dummy tuple to Res;

12 if eq < 0 then

13 L i <1+ 1, pull a dummy tuple from S;
14 else

15 | j«j+1, pull a dummy tuple from R;

Remark. The complexity of this algorithm category is closely
tied to the complexity of the underlying sort. For example,
since the bitonic sort [28] takes O(N 1og2 N) time for N
elements, SFD20 [7] take O(Nlog2 N) time, where N is
the sum of output size and input size. SMJ [4] has the same
worst-case time complexity with SFD20.

D. Hash based Federated Binary Equi-Joins

Hash is also used to avoid unnecessary secure comparisons.
Main Idea. The main idea is to partition the tuples of one
relation R into buckets that have the same hash value on the
join attributes. Then, each tuple of the other relation S only
needs to compare with a subset of tuples in R with the same
hash value, which saves a large amount of secure comparisons.
Algorithm Sketch. Mohassel et al. [8] proposed an efficient
algorithm (denoted as PPM20 by us due to the lack of algo-
rithm name) based on the seminal hash join [26]. Specifically,
when attribute values in the join condition are complex, each
data owner locally performs randomized encodings for the
attribute values in line 1. For secure operations, one data owner
employs a cuckoo hash table [29] in a secret-shared form to
guarantee that tuples in R with different join attributes appear
in the same bucket with very low probability. The other data
owner enumerates each tuple s € S and securely retrieve all
the tuples » € R that have the same hash value with s, i.e.,
Hash[s.B] in lines 3-4. If the comparison between r and s
is equal, we append CONCAT(r, s) to the join result Res.
Otherwise, we append a dummy tuple to Res.

Remark. According to the complexity analysis in [8], both
the time complexity and communication cost of PPM20 are
O(N), where N is the sum of input size and output size.

E. PSI based Federated Binary Equi-Joins

Beyond the previous categories that are commonly seen in
the text books, one of the most popular and useful SMC prim-
itives, Private Set Intersection (PSI), has also been leveraged
to answer federated equi-joins.

Input: Two data owners with relations R and S
Output: The join result Res = R <z a—s.5 S
1 perform encodings for R.A and S.B;
2 build a secure Cuckoo hash Hash based on R.A;
3 foreach ruple s in S do

4 | foreach wple r in Hash[s.B] do

5 if attributes r.A (securely) equal to s.B then
6 | append CONCAT(r, 5) to Res;

7 else

8 | append a dummy tuple to Res;

Algorithm 4: PSI based method VOLE-PSI [10]
Input: Two data owners with relations R and S
Output: The join result Res = R <Ig. a—s.5 S

1 primary keys X and payloads PX < encode R.A;

2 primary keys Y and payloads PY < encode R.B;
3 securely compute Z <— X NY by a PSI protocol;
4 Res + {CONCAT(z,PX,,PY.) |Vz€ Z};

Main Idea. PSI allows two parties who hold the sets X
and Y respectively, to compute their intersection X NY
without revealing any information about the sets themselves.
Accordingly, if the join condition only includes attributes with
unique values (e.g., primary keys X in R and Y in S), the
PSI result X N'Y will also indicate the joinable tuples.
Algorithm Sketch. As shown in Alg. 4, a primary-key-to-
primary-key (PK-PK) federated binary equi-join is used to
illustrate this algorithm family. Then, the sets X and Y rep-
resent collections of the people’s names in the relation R and
S, respectively. The other attributes are usually called as the
“payload” [10], and each element in the set is associated with
a payload. To prepare the sets, each data owner first encodes
their join attributes as the set elements and the corresponding
payloads at the first step of our general framework. Then, a
PSI protocol securely computes the intersection of both sets.
Finally, the join result is generated by concatenating each
intersected element and their payloads in X and Y.
Application Scope. PSI based methods are mainly used to
answer primary-key-to-primary-key (PK-PK) federated equi-
joins, and can hardly process join conditions with duplicated
attribute values, such as the foreign keys. This is because the
sets in PSI protocols usually assume no duplicated elements.
Remark. We mainly consider two circuit-based PSI protocols
(OPPRF-PSI [22] and VOLE-PSI [10]) that encapsulate the
intersection result in a secret-shared form. The OPPRF-PSI
[22] has been applied in the federated equi-join algorithm
SecYan [9]. By contrast, VOLE-PSI has the state-of-the-art
performance. Both methods take linear time.

F. Extension to Federated Multi-way Equi-Joins

General Idea. The query processing of federated multi-
way equi-joins is built upon the aforementioned algorithms.
Specifically, based on the specific join order from the query
coordinator, a federated multi-way equi-join is decomposed
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TABLE I: Comparisons on federated equi-join algorithms (n is the input size and N is the sum of output size and input size).

Time Complexity

Equi-Join Type Implementation

Category Algorithms S ary equijoins)  T0Ata OWners)  pi b PR FK - FK-FK  Original  Ours
Nested-loop based ~ SMCQL [1] O(n2log®n) 2 v v v Java C++
Nested-loop based Conclave [6] O(n?) 3 v v v Python C++
Nested-loop based ~ Shrinkwrap [5] O(n?%log®n) m v v v Unavailable  C++
Sort-merge based SFD20 [7] O(Nlog2N) 2 v v v C++ C++
Sort-merge based SMJ [4] O(Nlog®N) m v v v Unavailable  C++

Hash based PPM20 [8] O(N) 2 v v v Unavailable ~ C++

PSI based SecYan [9] O(n) 2 v X X CH+ CH+

PSI based VOLE-PSI [10] O(n) 2 v X X C++ C++

into multiple federated binary equi-joins. For each interme-
diate join, two relations are joined together to produce an
intermediate result by using the aforementioned algorithm.
Moreover, the intermediate result is often kept as secret-shares
among the data owners to prevent information leakage. In the
end, only the final join result is published to the query user.
Challenge: Excessive Dummy Tuples. In previous federated
equi-join algorithms, padding dummy tuples in the join result
is frequently used to guarantee the security. Take Alg. 1 [1] as
an example. As shown in line 7, when the join selectivity is
very low (i.e., k is small), the intermediate result stored in the
ORAM needs to be padded into O(n?) tuples, where n is the
number of tuples in each relation. Similarly, when c tables are
joined together, SMCQL needs to insert O(n°) dummy tuples
in the worst case, which deteriorates the query efficiency.
Optimization: Shrink Dummy Tuples based on Differen-
tial Privacy. To eliminate redundant dummy tuples while
still keeping the privacy, Bater et al. [5] proposed a resize
mechanism in their algorithm Shrinkwrap under differential
privacy (DP), which is the “de facto standard privacy notion”
[30]. This DP mechanism first generates a truncated Laplacian
noise 71 (i.e., n > 0). Then, the number of dummy tuples can
be shrunk from the size O(n?) to the size k + 7, where n is
the input size and k is the output size. This resize operation is
recursively executed right after getting each intermediate result
of federated binary equi-joins. Moreover, Bater et al. [5] also
introduced a new cost model that indicated the overall I/O cost
and could be helpful to determine the optimal join order.

G. Summary and Discussion

Table I presents an overall comparison of federated equi-join
algorithms in terms of several aspects: the time complexity,
number of data owners (m denotes an arbitrary number)
in their original implementations, supported equi-join types
and original implementations. For example, nested-loop based
solutions usually have at least quadratic time complexity, while
hash based solutions and PSI based solutions tend to have
linear time complexity. As for equi-join types, PSI based
solutions usually support join conditions that have involve
primary keys (PK). Due to this reason, the time complexity
O(n) of the PSI based method is asymptotically equal to
that (O(NN)) of PPM20 [8] when answering PK-PK federated
equi-joins, where n is the input size and N is the sum of output
size and input size. Moreover, Table I demonstrates that there
is no uniform implementation on the existing algorithms, and
our benchmark FEJ-Bench aims to address this limitation.

TABLE II: Real datasets.

FK-FK Dataset Slashdot Jokes Amazon
Input Size 2.5kx 2.5k 15k x 15k 120k x 30k
#(Attributes) 2x2 2x2 2x2
FK-FK Result Size 3k 20k 100k
PK-FK/PK Dataset IMDB-small IMDB-medium IMDB-large
Input Size 2.5kx 1.5k 15k x5k 200k x 10k
#(Attributes) 9%x9 9%x9 9%9
PK-FK Result Size 2.5k 15k 200k
PK-PK Result Size 1k 4k 10k

Although this paper primarily focuses on the federated equi-
joins, existing work has studied other types of join queries
over a data federation, such as theta-joins [1], [5], [6], join-
aggregate queries [9], and spatial joins [18]. The idea of
nested-loop based joins can be directly used to process these
queries [1], [5], [6], [18]. The sort-merge based method, SMJ
[4], can be also extended to process theta-joins, and the
PSI based method SecYan [9] can be used to process join-
aggregate queries. Since theta-joins are closely related to equi-
joins, we have also evaluated the extensions of SMCQL [1],
Conclave [6], and SMJ [4] to theta-joins. Due to the page
limitation, please refer to our appendix [17] for more details.

IV. EXPERIMENTAL SETUP

This section introduces the setup of our experimental study
and the proposed benchmark FEJ-Bench.

A. Dataset

Our experiment study consists of five datasets that have been
widely used in existing research, as shown in Table II.

« Slashdot dataset [31]. This dataset is collected by Slash-
dot, a technology news website with friend/foe links
between users.

o Jokes dataset [32]. The Jokes dataset contains anony-
mous ratings of jokes by different users of the recom-
mender system Jester [32] developed by UC Berkeley.

« Amazon dataset [16]. This dataset records the frequently
co-purchased products on Amazon’s website.

« IMDB dataset [33]. Two tables from the original IMDB
dataset [33] are used: “title.basics” and “name.basics”.
The first table contains information about movies, such as
their titles. The second table contains information about
actors, such as their representative movies’ names.

o TPC-H dataset [15]. The TPC-H dataset is a commonly-
used benchmark dataset. We have used six tables in
the TPC-H dataset: PART, PARTSUPP, CUSTOMER,
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TABLE III: Parameter settings.

Query Parameter Setting
. Left Table: 1k, 4k
Federated Data Size Right Table: 1k, 2k, 4k, 8k
inary
Equi-Join Join Selectivity 0.5k, 1k, 5k, 10k, 50k
Data Skewness (Zipf factor) 0.1, 0.3, 0.5, 0.7, 0.9
Federated Data Size All: 0.05k, 0.1k, 0.2k, 0.5k
Multi-W:
E:util—Joi? Join Selectivity 0.05k, 0.1k, 0.2k, 0.5k

NATION, LINEITEM, and ORDERS. They have 9, 5,
8, 4, 16, and 9 attributes, respectively.

Data Partition. We consider two ways to determine the
partitioned data of the above datasets in each owner.

o Horizontal Partition [34]. Since the Slashdot, Jokes, and
Amazon datasets contain only one table, we randomly
separate the tuples into two relations R and S that have
the same schema but are held by different data owners.
This kind of data federation is also known as a horizontal
data federation in existing work [1], [5], [35].

« Vertical Partition [36]. By contrast, the IMDB and TPC-
H datasets have more than one table. Thus, following
a vertical partition in existing work [6], [9], each data
owner holds a complete and different table, and these
data owners consist a vertical data federation.

B. Query Workload

We follow existing work [13] to generate the query work-
load of federated equi-joins for each real-world dataset. Specif-
ically, such a query retrieves indirectly connected pairs of
users on the Slashdot dataset. This query can find users
who rated the same jokes with the same rating on the Jokes
dataset, and potential products that can be co-purchased on the
Amazon dataset. As for the IMDB dataset, a federated equi-
join query connects information on actors with their famous
movies. For the TPC-H dataset, we modify the TPC-H query
Q10 to generate the query workload. Moreover, as shown in
Table II, the Slashdot, Jokes, and Amazon datasets only have
FK-FK federated equi-joins, since their query attributes have
duplicates. The IMDB dataset can support PK-FK and PK-PK
federated equi-joins, while the TPC-H dataset can support all
three equi-join types.

C. Parameter Settings

We evaluate the impact of several parameters, including the
data size, join selectivity, and data skewness.

o For the real datasets, the only variable parameter is the
data size. Thus, we divide the IMDB dataset into three
different scales, and the scales of the Slashdot, Jokes, and
Amazon datasets generally reflect different data sizes for
answering FK-FK federated equi-joins.

o For the TPC-H dataset, we vary all the parameters based
on its benchmark generator. For the federated multi-way
equi-joins, we also vary the join orders.

As for the privacy parameters in Shrinkwrap, we follow the
original paper [5] to set e = 0.5 and § =5 x 1075,

D. Evaluated Algorithms

Our benchmark includes all the existing algorithms that
have been introduced in Sec. III, including nested-loop based
methods [1], [5], [6], sort-merge based methods [4], [7], hash
based method [8] and PSI based methods [9], [10]. Besides,
following the existing work [1], we also include a plaintext
baseline Plain-NLJ based on the nested-loop join.

To ensure a fair comparison, we implement all algorithms
from scratch with a well-known SMC library ABY [23],
and the symmetric security parameter are set to 128. These
algorithms are programmed with C++ and compiled using
GNU G++ 9.4.0. We leverage a data structure, called oblivious
stack [11], to implement SMJ [4]. For the hashing based
solution, PPM20 [8], we construct the hashing table by
directly using the plaintext join keys instead of its randomized
encoding, since the attributes in our datasets are relatively
simple. Moreover, since PPM20 primarily considers PK-FK
and PK-PK federated equi-joins only, we utilize the extension
method in the Appendix A of [8] to make it also support FK-
FK federated equi-joins.

E. Evaluation Metrics

We evaluate the performance of previous algorithms by
three metrics: running time, communication cost, and memory
usage. Here, the running time is the total time for getting the
join result, the communication cost is the total size of data that
are transferred via the network, and the memory usage denotes
the peak main memory usage during the query processing.
Following the settings in [18], [37], [38], the average results
for answering 50 queries are reported.

F. Experimental Environment

We conduct the experiments on multiple machines, which
act as the data owners of the data federation. Each machine
is equipped with 24 2.40GHz Intel(R) Xeon(R) Gold 6240R
CPU processors, 1TB main memory, and CentOS 7.9 OS.

V. EVALUATION RESULTS AND ANALYSIS

This section presents our experimental evaluations and
analysis on existing federated equi-join algorithms.

A. Evaluation on Federated Binary Equi-Joins

This subsection presents our evaluations and analysis on
federated binary equi-joins when varying the equi-join types,
data size, join selectivity, and data skewness. Notice that, since
Shrinkwrap is designed for optimizing federated multi-way
equi-joins and has the same result as SMCQL for federated
binary equi-joins, Shrinkwrap is ignored in this subsection.

1) Results on Varying Query Types: Fig. 4 shows the
results on real datasets with different equi-join types: Primary-
Key-to-Primary-Key (PK-PK), Primary-Key-to-Foreign-Key
(PK-FK), and Foreign-Key-to-Foreign-Key (FK-FK).
Primary Key Only: PK-PK Federated Equi-Joins. Fig. 4a
presents the evaluations on the query type that involves
primary keys over different scales of the real-world dataset
IMDB. In terms of the running time, existing algorithms can be
ranked from the fastest to the slowest as follows: VOLE-PSI,
SecYan, PPM20, SFD20, SMJ, Conclave, and SMCQL.
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Fig. 4: Evaluations on different query types of federated binary equi-joins on real datasets. “X”” denotes that an algorithm does
not support this query type. “M” denotes that an algorithm is crashed due to the usage of excessive memory.

Among these algorithms, Conclave and SMCQL are notably
slower than the others, since they both need a large number
(O(mn)) of secure comparisons that take high time cost.
The improvement of VOLE-PSI and SecYan over the others
demonstrate that PSI is effective to alleviate the time cost lead
by secure computations. Moreover, all the secure algorithms
can be significantly slower than plaintext baseline Plain-
NLJ by at least 4.6x. As for the communication cost, the
performance of nested-loop based methods is worse than the
other three algorithm categories, and the PSI based methods
tend to take lower communication than the others. The total
communication cost of existing algorithms can be at least
31.5x higher than that of Plain-NLJ. In terms of the memory
usage, SMJ, Conclave, and SMCQL are crashed due to the
usage of excessive memory, since they have to allocate a large
memory space for the join result to ensure obliviousness. By
contrast, the other algorithm does not suffer from the high
memory cost for this query type.

Foreign Key Involved: PK-FK & FK-FK Federated Equi-
Joins. Fig. 4b and Fig. 4c illustrate the experimental results
of PK-FK and FK-FK federated equi-Joins on real datasets,
respectively. Since VOLE-PSI and SecYan do not support
these query types, we do not report the results. Among
the other secure algorithms, PPM20 is the fastest in the
metric of running time, but still can be up to 2 orders of
magnitude slower than the plaintext equi-join Plain-NLJ. SMJ
is the runner-up in the running time, while the other secure

algorithms consume too much main memory space (> 1TB)
to be terminated when meeting the large data size (i.e.,
IMDB-large and Amazon datasets). The result patterns of the
communication cost are similar to those of PK-PK federated
equi-join. For instance, PPM20 has the lowest communication
cost, while SMCQL takes the highest. In terms of the memory
usage, SMJ is the lowest, which still requires over 150GB
main memory space on the Amazon dataset.

Comparisons Across Different Query Types. As illustrated
in Fig. 4, existing federated equi-join algorithms are more
efficient to process the PK-FK type than the FK-FK type
by taking 1.5-10.8x shorter time and 1.6-14.3x lower com-
munication. One possible reason is that foreign keys involve
duplicated attribute values that tend take extra cost in the query
processing. The comparisons across different equi-join query
types also indicate that FK-FK federated equi-join may be
even more challenging than the other two types.

2) Results on Varying Data Size: In Fig. 5 and Fig. 6, we
present an evaluation on different sizes of the left relation R
and right relation S. Due to the page limitation, please refer to
our full paper [17] for the results of FK-FK federated binary
equi-joins, which have similar patterns with Fig. 6.

Increase Right Table Size. When the right table size |S]
increases by 8x, the running time and communication cost
of secure algorithms queries notably increase by 3.6-64 x and
5.1-60x on PK-FK queries. Similarly, the metrics increase
1.7-64x and 3.1-59x on PK-PK queries. The efficiency of
SMCAQL is much more sensitive to |S| than the others, which
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Fig. 5: Evaluation on varying input table sizes of PK-PK federated binary equi-joins on the TPC-H dataset.

SMCQL —A— Conclave SMJ

S

Running Time (s)
5 5
X\
Communication Cost (MB)
5 5
1‘
|
>
i
Memory Usage (GB)
5 &

10"9”’_9/6‘/9

8k 1k

oo —o—=

2k 4k 8k 1k 2k 4k 2k 4k
Right Table Size Right Table Size Right Table Size

(a) Results when the left table size is 1k

-©- SFD20 PPM20 —&- Plain-NLJ
107 g 10% 102
— = @
0 =
e g0 °
£ 10%- Lé o 10!
E St g—e——=_—= 1 @/e""e"'e
= 10"—A,,-—.ﬁl—"‘ﬁr_—’A g 2 140
E o—6—o—9° 5w g 1
z E o
10
10° -
e— o238 o o o o ¥ w
Tk 8k 1k 8k Tk 8k

2k 4k 2k 4k 2k 4k
Right Table Size Right Table Size Right Table Size

(b) Results when the left table size is 4k

Fig. 6: Evaluation on varying input table sizes of PK-FK federated binary equi-joins on the TPC-H dataset.
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Fig. 7: Evaluation on varying join selectivity of federated binary equi-joins on the TPC-H dataset.

is aligned with its high complexity in Table I. By contrast,
VOLE-PSI, SecYan, SFD20 and PPM20 are relatively less
sensitive to the table size. Moreover, PPM20 is always the
most efficient solution in PK-FK join, while VOLE-PSI is
always the most efficient one in PK-PK join.

Increase Left Table Size. By comparing the results between
Fig. 6a and Fig. 6b, we can observe federated equi-join
algorithms are also sensitive to the left table size |R|. For
the secure algorithms, their degrees of sensitivities to |R| are
generally similar to those to |S|.

Increase Both Table Sizes. When increase sizes of both tables
from 1% to 4k in the PK-FK join, the running time of SMCQL,
Conclave, SMJ, SFD20, and PPM20 increases by 237, 15,
5, 9, 8x, respectively. Their communication cost and memory
cost also get higher by 5-210x and 3-17Xx, respectively. By
contrast, the running time of the plaintext baseline Plain-NLJ
only increases by 30%. This pattern proves that federated equi-
joins are much more sensitive to the dataset scalability than
plaintext equi-joins.

3) Results on Varying Join Selectivity: Fig. 7 shows the
experimental results of PK-FK and FK-FK federated equi-
joins when the join selectivity increases from 0.0125% to
1.25%. Due to the page limitation, please refer to [17] for
our results of PK-PK federated binary equi-joins.

PK-FK Federated Equi-Joins. As shown in Fig. 7a, only
SFD20 and SMJ show a slightly upward trend on the running
time and communication cost when the join selectivity goes
up. As for the communication cost, all algorithms remain
relatively stable. In terms of memory usage, SFD20 still
shows a slightly rise trend, while SMJ requires up to 5x more
space when the join selectivity raises from 0.0125% to 1.25%.

FK-FK Federated Equi-Joins. As shown in Fig. 7b, all
the federated equi-join algorithms except for SMCQL and
Conclave show obvious changes. Specifically, SMJ, SFD20,
and PPM20 take 22-90x longer running time and 21-72x
higher communication cost when the join selectivity increases
from 0.025% to 1.25%. Meanwhile, Conclave transforms
from being the fourth most efficient method to becoming the
most efficient one among all secure algorithms. Besides, by
comparing the changes in Fig. 7a and Fig. 7b, we also observe
that the efficiency of existing algorithms are more likely to be
affected by the selectivity of FK-FK federated equi-joins than
PK-FK federated equi-joins.

4) Results on Varying Data Skewness: The data skewness
of the TPC-H dataset is usually varied by changing the Zipf
factor to adjust the foreign keys [12]. Thus, the primary keys
(PK) are not affected, and we only evaluate PK-FK and FK-FK
federated equi-joins under this parameter setting.
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Fig. 8: Evaluation on varying data skewness of federated binary equi-joins on the TPC-H dataset.
TABLE IV: Ranking of federated binary equi-join algorithms in the query processing time.

Federated Equi-Join Types Join Selectivity

Ranking by Running Time

Primary-Key-to-Primary-Key (PK-PK) Any
Primary-Key-to-Foreign-Key (PK-FK) Any

. . Low
Foreign-Key-to-Foreign-Key (FK-FK) High

VOLE-PSI < SecYan < PPM20 < SFD20 < SMJ < Conclave < SMCQL

PPM20 < SFD20 < SMJ < Conclave < SMCQL
PPM20 < SFD20 < SMJ < Conclave < SMCQL
Conclave < PPM20 < SFD20 < SMJ < SMCQL

TABLE V: Ranking of federated binary equi-join algorithms in the total communication cost.

Federated Equi-Join Types Join Selectivity

Ranking by Communication Cost

Primary-Key-to-Primary-Key (PK-PK) Any
Primary-Key-to-Foreign-Key (PK-FK) Any

. . Low
Foreign-Key-to-Foreign-Key (FK-FK) High

VOLE-PSI < SecYan < PPM20 < SMJ < Conclave < SFD20 < SMCQL

PPM20 < SMJ < Conclave < SFD20 < SMCQL
PPM20 < SMJ < Conclave < SFD20 < SMCQL
Conclave < PPM20 < SMJ < SFD20 < SMCQL

PK-FK Federated Equi-Joins. As shown in Fig. 8b, all the
algorithms remain a relatively stable performance in terms of
running time, communication cost, and memory usage. This is
because the primary keys are unchanged such that the overall
join result size (i.e., join selectivity) remains stable.

FK-FK Federated Equi-Joins. However, when conducting
this experiment on FK-FK federated equi-joins, hashing based
solution PPM20 shows an upward trend when the data
skewness increases. This might because the underlying hash
functions encounter more collisions when data gets skewed
and eventually leads to extra time cost. For instance, when the
Zipf factor varies from 0.1 to 0.9, the rank of PPM20 in any
of these metrics (from the most efficient to the least efficient)
decreases from the first to the fourth. The pattern indicates
that hashing based solutions are sensitive to data skewness for
FK-FK federated equi-joins. By contrast, the other algorithms
are not influenced by the data skewness.

5) Experimental Observations and Analysis: Based on the
previous experimental results, we present our overall rankings
of existing federated equi-join algorithms in Table IV-VI. The
order is based on the average rank of these algorithms in pre-
vious experiments. Based on these experimental observations,
we have made the following in-depth analysis.

Observation #1: in most cases, the ranking by running time
or communication is “PSI < hash < sort-merge < nested-
loop”. As shown in Table IV and Table V, the hash based
method PPM20 takes shorter time and communication cost
than the sort-merge based solutions (SFD20 and SMJ), while
at least one sort-merge based method often performs better
than the nested-loop based solutions (SMCQL and Conclave).
Moreover, when answering PK-PK equi-joins, the PSI based
solutions VOLE-PSI and SecYan are always more efficient

than the others.

Observation #2: join selectivity can have a notable impact
on the query efficiency for most algorithms. Both the
time and communication cost of hash based and sort-merge
based methods notably increase as the join selectivity rises.
Consequently, the overall ranking for FK-FK federated equi-
joins can be changed when encountering a high join selectivity.
As shown in Table IV and V, the nested-loop based method
Conclave becomes the most efficient in this scenario.
Observation #3: main memory usage can be also an
overlooked efficiency bottleneck in existing work. As shown
in Table VII, on the Amazon dataset, all secure algorithms
consumed hundreds of gigabytes of main memory and some
(SMJ, Conclave, and SMCQL) even exceeded 1TB, while
the plaintext method Plain-NLJ took only 2GB main memory.
In contrast, when answering PK-PK federated equi-joins,
the memory usages of PSI based solutions (VOLE-PSI and
SecYan) and hash based method (PPM20) are comparably
normal. The results indicate that a large memory cost may
need to be paid for federated equi-joins over foreign keys.

B. Evaluation on Federated Multi-way Equi-Joins

This subsection evaluates the federated multi-way equi-
joins when varying the data size and join orders. We exclude
VOLE-PSI and SecYan from this evaluation, since a federated
multi-way equi-join easily involves foreign keys in the join
condition, which cannot be supported by PSI based methods.

1) Results on Varying Data Size: Fig. 9 presents the
experimental results when varying each table size at different
levels of the join selectivity.

Results When Join Selectivity is Low. As shown in Fig. 9a,
when each table size increases from 50 to 500 at low join se-
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TABLE VI: Ranking of federated binary equi-join algorithms in the main memory usage.

Federated Equi-Join Types Join Selectivity

Ranking by Memory Usage

Primary-Key-to-Primary-Key (PK-PK) Any
Primary-Key-to-Foreign-Key (PK-FK) Any

. . Low
Foreign-Key-to-Foreign-Key (FK-FK) High

VOLE-PSI <SecYan < PPM20 < SFD20 < SMJ < Conclave = SMCQL

PPM20 < SFD20 < SMJ < Conclave = SMCQL
SFD20 < PPM20 < Conclave = SMCQL < SMJ
Conclave = SMCQL < PPM20 < SFD20 < SMJ

TABLE VII: Maximum main memory usage for federated binary equi-joins.

Dataset Relation Size  Equi-Join Type  Plain-NLJ ~ VOLE-PSI  SecYan PPM20 SFD20 SMJ Conclave ~ SMCQL
IMDB-large 200k x 10k PK-PK 0.8GB 1.8GB 3GB 4GB 32GB 238GB >1TB >1TB
IMDB-large 200k x 10k PK-FK 1GB N/A N/A 7GB 44GB 368GB >1TB >1TB

Amazon 120k x 30k FK-FK 2GB N/A N/A 201GB 158GB >1TB >1TB >1TB
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Fig. 9: Evaluation on varying each table size of federated multi-way equi-joins on the TPC-H dataset.

lectivity, PPM20 still has the shortest running time and lowest
communication, followed by SFD20, SMJ and Conclave. By
contrast, SMCQL and Shrinkwrap are notably less efficient
than the others. Moreover, when each relation size is expanded
by 10x, the running time of PPM20, SFD20, SMJ, and
Conclave has increased by 10.8, 9.2, 12.6, 651.2x, respec-
tively. The other algorithms, SMCQL and Shrinkwrap take
2-5 orders of magnitude longer running time, which is more
sensitive to data size than the aforementioned methods. This is
because SMCQL need O(n2log®n) secure computations, and
Shrinkwrap needs fewer secure computations than it due to
the usage of differential privacy in truncating the cardinality
of intermediate results.

Results When Join Selectivity is High. By comparing the
results in Fig. 9a with those in Fig. 9b, we observe the runtime
of PPM20, SFD20, and SMJ increases by up to 339, 99,
45x respectively, when the join selectivity gets high. At the
same time, their communication cost increases by up to 327,
106, 73 x, respectively. By contrast, the changes of Conclave,
Shrinkwrap, and SMCQL are relatively stable. Moreover,
we can also observe that the main memory usage of all the

algorithms increases with the expansion of the input data sizes.
Eventually, when there are 500 tuples in each relation, PPM20
takes the lowest memory cost.

Result Breakdown. We also use different hatching patterns
on the bars to indicate the breakdowns at different stages of a
federated multi-way equi-join over three tables. The bottom
part, which is filled with slashes, indicates the cost when
joining the first two tables (i.e., stage 1). The upper part, which
is filled with dots, indicates the cost when joining the last
table with the intermediate results of the first two tables (i.e.,
stage 2). Based on the breakdowns, we can observe that for
SMCAQL, Shrinkwrap, and Conclave, most of the running
time is consumed during the second stage. This is because
the input in the second stage involves the Cartesian product
of two input tables, which is much larger than the input in
the first stage. Moreover, in Fig. 9a, the time, communication,
and memory costs of PPM20, SFD20, and SMJ at the second
stage are close to those at their first stage. However, as the join
selectivity increases, the overall costs of these three algorithms
at the second stage significantly surpass those at the first stage.
This difference arises due to the larger size of intermediate
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TABLE VIII: Ranking of federated multi-way equi-join algorithms in the running time.

Join Selectivity

Ranking by Running Time

Low PPM20 < SFD20 < SMJ < Conclave < Shrinkwrap < SMCQL
High SFD20 < Conclave < PPM20 < SMJ < Shrinkwrap < SMCQL
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Fig. 10: Evaluation on varying join orders of federated multi-
way equi-joins on the TPC-H dataset.

results in Fig. 9b compared to that in Fig. 9a.

2) Results on Varying Join Orders: We modify the query
template Q10 in the TPC-H benchmark to test the impact of
join orders as follows.

SELECT 1_partkey, 1l_orderkey, o_custkey,
c_nationkey, n_regionkey
LINEITEM, ORDERS, CUSTOMER, NATION
1_orderkey = o_orderkey and
c_custkey = o_custkey and
c_nationkey = n_nationkey
Parameters. The relation sizes are set to be |LINEITEM| =
400, |ORDERS| = 100, |CUSTOMER| = 10, |NATION| =
25. The data size is set to be small, since some methods have
already taken over 50 hours and we tend to get results for
all methods. Based on the relational algebra expression, this
query has five different join orders as follows.

FROM
WHERE

Plan 1 : ((LINEITEM <t ORDERS) <t CUSTOMER) it NATION
Plan 2 : (LINEITEM 1 ORDERS) 1 (CUSTOMER <1 NATION)
Plan 3 : (LINEITEM < (ORDERS <t CUSTOMER)) 1 NATION
Plan 4 : LINEITEM < ((ORDERS <t CUSTOMER) p<1 NATION)
Plan 5 : LINEITEM i (ORDERS <i (CUSTOMER <1 NATION))

Results. Since the results of the compared algorithms lie in
quite different scales, we use the ratio of changes over the
result of the first join order to demonstrate the impact of
different join orders. As shown in Fig. 10, only SMCQL and
Shrinkwrap remain stable when varying the join orders. The
running time and communication cost of all the others are
obviously affected by the join orders, including Conclave that
is tested to remain stable when varying several parameters of
federated binary equi-joins. Moreover, we can also observe
that different methods have different optimal join orders. For
example, the running time of PPM20, SFD20 and SMJ
can be reduced by 27%, 61% and 57% respectively, when
replacing with their optimal join orders.

3) Experimental Observations and Analysis: Because fed-
erated binary equi-joins are essentially building blocks of
federated multi-way equi-joins, we expect that the major
observations from federated binary equi-joins would generally
remain for federated multi-way equi-joins (i.e., the following
observations #1-#3). Moreover, we have also summarized our
observation from the evaluation of different join orders.

Fig. 11: Recommendations of federated equi-join methods.

Observation #1: when the join selectivity is low, the rank-
ing by running time or communication cost still follows the
order of “hash < sort-merge < nested-loop”. Table VIII and
Table IX present the performance ranking of all the algorithms
based on their running time and communication cost. When
the join selectivity is low, the hash based method PPM20 has
the shortest running time and the lowest communication cost,
with the sort-merge based method SFD20 as the runner-up.
Observation #2: the join selectivity continues to impact
query efficiency. When the join selectivity is high, the running
time of the hash based method PPM20 exceeds that of
the sort-merge based method SFD20 and nested-loop based
method Conclave. Additionally, the communication cost of
the nested-loop based method Conclave is lower than that of
the sort-merge based methods, SFD20 and SMJ.
Observation #3: the memory usage of existing methods
remains an important consideration. As depicted in Table X,
we present the maximum main memory usage during the query
processing of federated multi-way equi-joins over three tables,
each with only 500 tuples. Notably, when the join selectivity is
high, the memory usage can exceed 19GB. Even when the join
selectivity gets low, the space cost of any algorithm is over
0.6GB, which is much higher than the raw data size (21KB).
Observation #4: the efficiency of most algorithms is easily
affected by join orders and the optimal join order varies
across different methods. In fact, our evaluation resolves
contradicted ideas in existing research on federated multi-
way equi-joins. For instance, some existing work [9] assumed
“all the cost-based query optimization techniques useless” in
processing a federated equi-joins. However, others argue that
“one potential solution for scaling SMCQL - - - would require
an analytical cost model” [1]. Since join order optimization
is a typical cost-based query optimization technique [26], our
results demonstrate that this technique (1) remains meaningful
for hash based and sort-merge based methods, and (2) may be
relatively meaningless for nested-loop based methods.

C. Experimental Takeaways

The lessons we have learned are summarized as follows.

o In most cases, the overall efficiency ranking from best
to worst is “PSI > hash > sort-merge > nested-loop”.
Based on the pros/cons of these evaluated algorithms,
we provide our recommendations for the best solution to
federated equi-joins under different scenarios in Fig. 11.
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TABLE IX: Ranking of federated multi-way equi-join algorithms in the communication cost.

Join Selectivity

Ranking by Communication Cost

Low
High

PPM20 < SFD20 < SMJ < Conclave < Shrinkwrap < SMCQL
PPM20 < Conclave < SMJ < SFD20 < Shrinkwrap < SMCQL

TABLE X: Maximum main memory usage for federated multi-way equi-joins.

Dataset ~ Each Relation Size  Join Selectivity =~ PPM20  SFD20 SMJ Conclave  Shrinkwrap ~ SMCQL
TPC-H 500 Low 0.6GB 2.6GB 16.5GB 102.5GB 75.4GB 102.5GB
TPC-H 500 High 19.8GB  52.7GB  813.3GB 102.5GB 75.4GB 102.5GB

« High join selectivity can change the overall efficiency
ranking. Either the nested-loop based method Conclave
or the sort-merge based method SFD20 can become the
most efficient when the join selectivity is high.

« Since an optimal join order can significantly improve
the query efficiency of most efficient algorithms, it can
be a research direction that deserves more attention.

+« Memory usage can potentially be a performance bot-
tleneck even when the dataset gets large. For example,
when two relations have 120k x 30k tuples on the Amazon
dataset, the evaluated methods require over 150GB of
main memory, while the plaintext method takes 2GB.

VI. FUTURE DIRECTION

In this section, we introduce the challenges and opportuni-
ties in the future study of federated equi-joins.
Boosting Scalability and Robustness. It is important to fur-
ther boost the scalability and robustness, because (1) existing
federated equi-join algorithms are much less scalable than the
plaintext nested-loop equi-join, and (2) most of these methods
are easily affected by factors like join selectivity. One poten-
tial direction is to use dedicated hardware, such as Trusted
Execution Environments (TEEs) [11]. Maliszewski et al. [33]
conducted an evaluation study on how plaintext binary equi-
join algorithms will perform in TEEs. Although their problem
setting is different from us, their primary results demonstrate
that rethinking existing federated equi-join algorithms from the
perspective of the hardware-software co-design is important to
boost the scalability by a large margin.
Malicious Security. At this present, most of the existing
solutions to federated equi-joins assume the attackers are semi-
honest. In other words, each data owner and the query coor-
dinator will strictly follow the pre-specified query processing
procedure and try to infer the sensitive information during the
computations across multiple parties. By contrast, another type
of attackers, i.e., malicious attackers, can corrupt the other
parities in the data federation. Moreover, the corrupted parties
can also deviate from the pre-specified query processing pro-
cedure, e.g., changing the input or output of the intermediate
computations. For example, when answering federated binary
equi-joins in our Example 1 with an extra condition “Disease
= Flu” in the predicate , a malicious attacker can corrupt the
data owner the table S and make him input the records with
“Disease = Cancer” to infer more information from the table
‘R. Existing work [21] has started to explore this problem, but
it is still open to design a scalable solution that can overcome
more than 1 corrupted party.

Federated Join Order Optimization. When dealing with
federated multi-way equi-joins, the selection of the optimal
join order has been demonstrated to be crucial to the query
efficiency in our experiments. Existing solutions to the join
order optimization problem usually assume that the under-
lying data is public, and hence cannot be directly used in
our problem setting. By contrast, a data federation usually
considers the private/sensitive data that is distributed among
several data owners. Thus, to determine the optimal join order,
it is important and challenging to securely build accurate
cost models (i.e., an estimation of the query latency) without
leaking sensitive information about the private datasets.

VII. CONCLUSION

In this paper, we conduct a comprehensive experimental
study on federated equi-joins, and introduce the first bench-
mark called FEJ-Bench for this type of queries. This eval-
uation study comprises five datasets from diverse application
scenarios and eight state-of-the-art methods, all implemented
with a uniform programming framework by us. We also
conduct standardized and comprehensive comparisons on these
methods under various parameters. The experimental results
reveal the pros/cons of these methods, indicating that no single
algorithm can completely dominate the others in terms of the
query efficiency. Thus, we have also made our benchmark
publicly available, and expect that it will enrich future research
for more researchers and practitioners on data federation.
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