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Abstract—Federated Trajectory Matching (FTM) is gaining
increasing importance in big trajectory data analytics, supporting
diverse applications such as public health, law enforcement,
and emergency response. FTM retrieves trajectories that match
with a query trajectory from a large-scale trajectory database,
while safeguarding the privacy of trajectories in both the query
and the database. A naive solution to FTM is to process the
query through Secure Multi-party Computation (SMC) across
the entire database, which is inherently secure yet inevitably slow
due to the massive secure operations. A promising acceleration
strategy is to filter irrelevant trajectories from the database based
on the query, thus reducing the SMC operations. However, a
key challenge is how to publish the query in a way that both
preserves privacy and enables efficient trajectory filtering. In
this paper, we design GIST, a novel framework for efficient
Federated Trajectory Matching. GIST is grounded in Geo-
Indistinguishability, a privacy criterion dedicated to locations. It
employs a new privacy mechanism for the query that facilitates
efficient trajectory filtering. We theoretically prove the privacy
guarantee of the mechanism and the accuracy of the filtering
strategy of GIST. Extensive evaluations on five real datasets show
that GIST is significantly faster and incurs up to 2 orders of
magnitude lower communication cost than the state-of-the-arts.

Index Terms—trajectory matching, data federation, location
privacy

I. INTRODUCTION

The emergence of big trajectory data, powered by diverse
sensors such as GPS, surveillance cameras, and proximity
sensors, has revolutionized our ability to capture and analyze
movement patterns. This data, often collected by various
entities ranging from tech companies to government agencies,
offers a multifaceted view of human mobility and urban
activities. However, the distributed nature of data ownership,
coupled with the inherent sensitivity of trajectory data [1], [2],
necessitates paradigms that respect privacy constraints while
enabling effective analysis across different data owners.

Of our particular interest is Federated Trajectory Matching
(FTM), a primitive in privacy-preserving trajectory analysis
across distributed data owners. FTM retrieves trajectories in a
large-scale private dataset, held by a distinct data owner, that
match with a query trajectory. Importantly, this query process
should safeguard two categories of trajectory privacy: (i) the
exact spatiotemporal information in the query trajectory; and
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(ii) any trajectories in the database other than the query result.
We illustrate the use cases of Federated Trajectory Matching
query via the following real-world applications.

Example 1 (Tracing Infections in Epidemics [3]): During
a contagious disease outbreak, health officials often face the
task of tracing infection paths from a limited location history.
They may turn to the trajectory database of the map service
providers. However, the raw location history is confidential, as
its disclosure might induce panic. Likewise, it is crucial for the
map service providers to prevent the trace of the uninfected
individual from leakage.

Example 2 (Tracking Criminal Suspects [4]): The police
often locate a criminal suspect by analyzing trajectory data
from surveillance cameras or witnesses. They can improve the
tracking by collaborating with map service providers via the
dense GPS trajectories. However, regulations strictly limit the
sharing of sensitive trajectory data with law enforcement [5]–
[7], and the police are equally constrained from providing the
raw query trajectory to map service providers, as these may
contain confidential information.

A central challenge in FTM is to attain high query efficiency
over large-scale data. While Secure Multi-party Computation
(SMC) effectively ensures privacy, it falls short in terms of
efficiency. As our empirical study (Sec. V-B) shows, process-
ing a single FTM query on a database containing 3.2 million
trajectories using SMC techniques [8], [9] can take as long as
89 hours. Such processing times are impractical in situations
where swift responses are critical, such as in managing public
health emergencies or conducting criminal investigations.

Considering that only a small portion of trajectories in the
database matches the query, a natural acceleration strategy is
to filter trajectories unlikely to match the query and reduce
the number of SMC operations, avoiding scanning the whole
trajectory database. Realizing this strategy, however, is non-
trivial. The two main challenges are: (i) designing a privacy
mechanism that enables accurate trajectory filtering, and (ii)
developing an effective filtering scheme that operates on
perturbed query trajectories. Although several privacy mecha-
nisms in spatial/trajectory data have been proposed [10]–[12],
they are not primarily designed for trajectory filtering, which
can incur high retention rate (See Sec. V-D).

To this end, we present GIST (Geo-I accelerated SMC
based method for federated Trajectory matching), an effi-
cient framework for FTM queries. GIST is grounded in
Geo-Indistinguishability [10], a recognized differential pri-
vacy standard for location data. It incorporates novel privacy
mechanisms and trajectory filtering strategies tailored to FTM.
Specifically, the query trajectory is perturbed using a newly
devised Bounded Planar Laplace (BPL) mechanism and then
shared with the data owner at a grid level, allowing the data



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 2

owner to conduct effective trajectory filtering. The trade-off
between the trajetory filtering granularity and the privacy
parameters is analyzed theoretically. Moreover, we devise a
data partition scheme along with a reference trajectory based
pruning strategy to further improve the query efficiency.

Our major contributions are summarized as follows:
• We define Federated Trajectory Matching (FTM), an

emerging problem in privacy-aware big trajectory data
analysis that has various real-world applications.

• We propose GIST, a framework to accelerate FTM on
large-scale data while accounting for privacy. The key is
to reduce the number of secure operations for trajectory
matching via Geo-Indistinguishability. To the best of our
knowledge, this is the first work that adopts this strategy
to trajectory matching.

• We develop a novel grid-level query trajectory publishing
method which ensures both privacy guarantee and tra-
jectory filtering efficiency. We theoretically analyze the
trade-off between privacy level and filtering efficiency.

• Extensive experiments on five real datasets show that our
solution outperforms the state-of-the-arts [8], [10]–[12]
by a large margin.

The rest of paper is organized as follows. In Sec. II, we
present the problem definition and related concepts. Then,
we introduce the overall framework in Sec. III and elaborate
on the technical details in Sec. IV. Finally, we conduct the
experimental evaluation in Sec. V, review existing studies in
Sec. VI, and conclude in Sec. VII.

II. PRELIMINARIES

This section presents the problem definition (Sec. II-A) and
some prerequisites on Geo-Indistinguishability (Sec. II-B).

A. Problem Definition

Definition 1 (Point [13]): Each point p is denoted by a
timestamp p.ts and the geo-location p.loc at this timestamp.

For any two points p, q, the Euclidean distance function
d(p, q) computes the distance between p and q.

Definition 2 (Trajectory [13]): A trajectory T is defined as
a sequence of |T | points, i.e., T = ⟨p1, p2, . . . , p|T |⟩.

In practice, points in a trajectory can be simplified as a
piecewise linear function of the timestamp [14] and each piece
of the function is defined as a segment in the following.

Definition 3 (Segment [14]): A segment s = ⟨o, d⟩ is
represented by a pair of points. The points o and d represent
the origin and destination points of the segment, and satisfy
the timestamp condition o.ts ≤ d.ts. The movement between
o and d is considered as linear.

Linear interpolation can be employed to derive the loca-
tion of a segment s at any timestamp [14]. Specifically, we
calculate the velocity of the segment as v = d.loc−o.loc

d.ts−o.ts and
estimate the location of s at timestamp ts′ as locs(ts

′) =
o.loc+(ts′−o.ts)·v. In addition, the location of a trajectory T
at timestamp ts′ is computed as locT (ts

′) = locs(ts
′), where

s is a segment in T and satisfies ts′ ∈ [s.o.ts, s.d.ts].
Example 3: Consider trajectory T0 = ⟨p1, p2, p3, p4⟩ in

Fig. 1, where p1.loc = (2, 1), p1.ts = 0, p2.loc = (1, 2),

Fig. 1: The example of trajectory match.

p2.ts = 2, p3.loc = (4, 5), p3.ts = 5, p4.loc = (6, 1),
p4.ts = 7. Trajectory T0 can be seen as a sequence of segments
⟨s1, s2, s3⟩, where s1 = ⟨p1, p2⟩, s2 = ⟨p2, p3⟩, s3 = ⟨p3, p4⟩.
We apply linear interpolation to segment s2 to estimate the
location of T0 at timestamp 4. Namely, v = ((4,5)−(1,2))

5−2 =
(1, 1), locT0

(4) = (1, 2) + (4− 2) · v = (3, 4).
Definition 4 (Trajectory Matching): Given a distance thresh-

old τ and a trajectory TQ, a trajectory Ti is considered to be
matched with TQ, denoted as matchτ (Ti, TQ) = true, if for
every point q ∈ TQ:

d(q.loc, locTi(q.ts)) ≤ τ (1)

where locTi
(q.ts) represents the location of trajectory Ti with

the same timestamp as point q.
In practice, trajectory matching requires that each location

in TQ has a corresponding location in Ti that is sufficiently
close (i.e., ≤ τ ). The definition is akin to the frequently-
used spatiotemporal distance measure STED [15], [16], and
the requirement that each location in the query trajectory be
matched makes it more suitable for our application scenario.

Example 4: Consider trajectory T0 and TQ in Fig. 1. The
query trajectory TQ = ⟨q1, q2⟩, where q1.loc = (3, 3), q1.ts =
4, q2.loc = (4, 2), q2.ts = 6. We set the distance threshold
τ = 1.5. According to the definition, we examine timestamps
4 and 6, computing locT0(4) = (3, 4) and locT0(6) = (5, 3).
Because d(q1.loc, locT0

(4)) =
√
02 + 12 = 1 < 1.5 and

d(q2.loc, locT0
(6)) =

√
12 + 12 =

√
2 < 1.5, we conclude

that T0 can be matched with TQ.
Definition 5 (Trajectory Data Federation): The trajectory

data federation comprises one or more data owners, each au-
tonomously managing their local trajectory data. When a user
submits a query, data owners and the query user collaborate
to execute the queries [17]–[19]. Due to the high sensitivity of
trajectory data [1], [2], trajectories other than the query result
cannot be leaked to the query user or other data owners during
the query execution.

Definition 6 (Federated Trajectory Matching (FTM)): Given
a trajectory data federation TD containing a large amount of
trajectories, a query trajectory TQ, and a distance threshold
τ , the query FTM(TD, TQ) aims to securely retrieve all
trajectories in TD that match with TQ:

FTM(TD, TQ) = {Ti|Ti ∈ TD ∧matchτ (Ti, TQ) = true}

It is required that the FTM query procedure prevents the
leakage of spatiotemporal information about points in TQ
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to the data owner. Besides, information about unmatched
trajectories in TD cannot be disclosed to the query user.

B. Geo-Indistinguishability for Protecting Location Privacy

Geo-Indistinguishability (Geo-I) [10] extends the de facto
standard notion of privacy protection, i.e., ϵ-differential privacy
(ϵ-DP) [20], to spatial data. Geo-I is widely adopted in the
location-based systems and can be utilized to safeguard privacy
in FTM. A mechanism M operates as a probabilistic function,
taking any location within X as input and mapping it into a
location within Y as output.

Definition 7 (Geo-Indistinguishability (ϵ-Geo-I) [10]): A
mechanism M satisfies ϵ-Geo-Indistinguishability (ϵ-Geo-I) iff
for all x, x′ ∈ X and all Y ⊆ Y:

Pr[M(x) ∈ Y ] ≤ eϵd(x,x
′)Pr[M(x′) ∈ Y ] (2)

Planar Laplace Mechanism. Geo-Indistinguishability is usu-
ally achieved by introducing planar Laplacian noise [10],
which can be generated through independent sampling of the
radial distance r and polar angle θ in the plane polar coor-
dinates. The radius r depends on the cumulative distribution
function (CDF) Cϵ(r):

Cϵ(r) = 1− (1 + ϵr)e−ϵr (3)

To derive the radius r from a given probability p, we can
use the inverse function of p = Cϵ(r), denoted as C−1

ϵ (p):

C−1
ϵ (p) = −1

ϵ

[
W−1

(
p− 1

e

)
+ 1

]
(4)

where W−1 represents the Lambert W function’s −1 branch.
When generating the planar Laplacian noise, we first ran-

domly pick p from the uniform distribution within [0, 1] and
then obtain r = C−1

ϵ (p). After that, we choose θ ∈ [0, 2π] uni-
formly at random, and compute the noise as (rcosθ, rsinθ).

III. FRAMEWORK OVERVIEW

Fig. 2: Geo-I accelerated SMC based method for federated
Trajectory matching (GIST).

To alleviate the high time cost of SMC in FTM query, we
design a novel framework called Geo-I accelerated SMC
based method for federated Trajectory matching (GIST),
which comprises the following two phases:

TABLE I: Summary of major notations.

Notations Description
TD, TC trajectory database and candidate trajectory database
TQ, τ query trajectory and distance threshold
ϵ, δ privacy budget and failure probability

GQ, GI published grid sequence and grid index
L,R grid size and radius of noise circle
p probability of successfully perturbing a single location

PN, rt partition and its reference trajectory
α,m partition parameter and maximum size of partition

• Geo-I based Filtering: Initially, the user processes the
query trajectory TQ and publish it at a grid level (GQ in
Fig. 2). The procedure of trajectory publishing complies
with the privacy constraint of (ϵ, δ)-Geo-I, a relaxation
of standard Geo-I. Subsequently, the data owner utilizes
GQ to locally filter the database TD and obtain a
reduced database TC, with the grid index accelerating
the computation.

• SMC based Verification: Following the filtering phase,
both the query user and the data owner securely verify
trajectories within TC to identify all trajectories that
match TQ. We devise a data partition scheme along with
a reference trajectory based pruning strategy to further
improve efficiency.

We focus on the scenario with a single data owner, since
the FTM in a data federation with multiple data owners can be
addressed by executing the FTM query with each data owner
in parallel (see Sec. V-E). The major notations used in the
paper are listed in Table I.

IV. ALGORITHM DESIGN

This section introduces the algorithm designs of our
framework GIST from two aspects: Geo-I based Filtering
(Sec. IV-A) and SMC based Verification (Sec. IV-B).

A. Geo-I based Filtering

In the following, we first introduce a location privacy
definition named (ϵ, δ)-Geo-I and propose a mechanism to
achieve it. Then, we provide a detailed explanation of how
to filter candidate answers from TD based on the privately
published query trajectory. Finally, we theoretically derive the
appropriate grid size used in the filtering process.

1) (ϵ, δ)-Geo-Indistinguishability and Bounded Planar
Laplace Mechanism: To pursue a promising query perfor-
mance, we propose a new definition of location privacy based
on ϵ-Geo-I and achieve it with a mechanism named Bounded
Planar Laplace (BPL).
Motivation. In ϵ-Geo-I, the spatial range of the injected
noise is usually unbounded under Planar Laplace mechanism,
meaning that the original location can be perturbed to an
arbitrarily distant location. In practice, this feature may lead
to unexpected result: a perturbed location too far away from
the original one may seriously compromise the usability (i.e.,
query performance in our case). Thus, we aim to design a
new privacy mechanism, which can not only restrict the upper
bound of noise in the spatial area, but also generally follows
the concept of ϵ-Geo-I.
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Algorithm 1: Bounded Planar Laplace (BPL)
input : location x, privacy parameters ϵ, δ
output: perturbed location x′

1 Find ∆ that satisfies ∆ = (πδ − 1
2ϵ

2)[C−1
ϵ (1−∆)]2;

2 R← C−1
ϵ (1−∆);

3 Choose p ∈ [0, 1] uniformly at random;
4 if p ≤ 1−∆ then // planar Laplacian noise
5 r ← C−1

ϵ (p);

6 else // uniform noise in noise circle
7 Choose r s.t. r2 is uniformly sampled in [0, R2];

8 Choose θ ∈ [0, 2π] uniformly at random;
9 x′ ← x+ (rcosθ, rsinθ);

10 return x′;

Definition of (ϵ, δ)-Geo-I. Motivated by the generalization
of (ϵ, δ)-DP (a.k.a., approximate DP) from ϵ-DP (a.k.a., pure
DP) [21], we introduce an approximate version of Geo-I in
Definition 8, allowing a small probability δ of failing to reach
ϵ-Geo-I.

Definition 8 ((ϵ, δ)-Geo-I): A mechanism M satisfies (ϵ, δ)-
Geo-Indistinguishability ((ϵ, δ)-Geo-I) iff for all x, x′ ∈ X and
all Y ⊆ Y:

Pr[M(x) ∈ Y ] ≤ eϵd(x,x
′)Pr[M(x′) ∈ Y ] + δ (5)

Post-processing is a crucial property for differential privacy
[21]. Similarly, we can prove in Lemma 1 that this property
holds true for (ϵ, δ)-Geo-I as well.

Lemma 1 (Post-processing): Give mechanism M that satis-
fies (ϵ, δ)-Geo-I, then for any algorithm f , the composition of
M and f , i.e., f(M(·)) satisfies (ϵ, δ)-Geo-I.

Proof: We first prove the result for any deterministic
function f . The lemma then follows as any randomized
mapping can be decomposed into a convex combination of
deterministic functions [21]. Define the output domain of f as
Z. For any x, x′ ∈ X, and any Z ⊆ Z, we prove this lemma
as follows:

Pr[f(M(x)) ∈ Z] = Pr[M(x) ∈ Y ]

≤ eϵd(x,x
′)Pr[M(x′) ∈ Y ] + δ

= eϵd(x,x
′)Pr[f(M(x′)) ∈ Z] + δ

where Y = {y ∈ Y|f(y) ∈ Z}.
Privacy Mechanism: Bounded Planar Laplace. We devise
the Bounded Planar Laplace (BPL) mechanism to achieve
(ϵ, δ)-Geo-I. The main advantage of the BPL mechanism lies
in its ability to constrain the maximum value of noise. In other
words, the distance between the perturbed location and the
original location cannot exceed R. For conciseness, we refer
to the circle with a radius of R as the noise circle.

Algorithm 1 illustrates the detailed procedure of the
Bounded Planar Laplace (BPL) mechanism. It begins by
computing the radius of the noise circle R based on the privacy
parameters ϵ and δ in lines 1-2. Then, a random p is uniformly
chosen from [0, 1]. If p is less than a threshold 1−∆, a noise
is generated using p, following the standard Planar Laplace

mechanism (Equation (4)), as shown in lines 4-5. However,
if p exceeds the threshold, it implies that the size of noise
generated by the standard Planar Laplace mechanism exceeds
R. In such cases, a uniform noise within the noise circle is
selected, as demonstrated in lines 6-7. Finally, in lines 8-10,
a random angle θ is chosen, and the noise (rcosθ, rsinθ) is
used to perturb x and obtain x′. The privacy guarantee of the
BPL mechanism is proven in Lemma 2.

Lemma 2: The Bounded Planar Laplace (BPL) mechanism
satisfies (ϵ, δ)-Geo-Indistinguishability.

Proof: We consider the probability p when perturbing the
location x:

(1) If p ≤ 1−∆, a standard planar Laplacian noise is added
to the location x, which satisfies ϵ-Geo-I [10].

(2) If p > 1 −∆, lines 6-7 fail to guarantee ϵ-Geo-I with
probability ϵ2

2π + ∆
πR2 = ϵ2

2π + 1
π (πδ −

1
2ϵ

2) = δ, where ϵ2

2π is
the maximal probability of location when applying the planar
Laplacian mechanism, and ∆

πR2 is the additional probability
incurred by the uniform distribution in the noise circle.

Therefore, the BPL mechanism satisfies (ϵ, δ)-Geo-I.

Fig. 3: The probability density function (pdf) of: (a) planar
Laplacian noise; (b) bounded planar Laplacian noise; (c)
uniform noise in the noise circle; (d) uniform noise in the
circumscribed square of the noise circle.

Fig. 3(a) and (b) show the standard planar Laplacian noise
and the bounded planar Laplacian noise, respectively. The BPL
noise is rigorously constrained within a size of R, leading to
improved query performance based on our experiments.

2) Our Filtering Algorithm: The filtering performs at a
grid level. Both the query user and the data owner divide the
spatial region into equal-sized square grids and utilize grid
representations of trajectories for filtering. Initially, the query
user publishes trajectory TQ in the form of a grid sequence,
denoted by GQ. Then, the data owner utilize GQ to locally
filter TD, and employs grid index to accelerate the filtering
process. The grid size should be selected carefully to ensure
compliance with (ϵ, δ)-Geo-I, as discussed in Sec. IV-A3.

Query Trajectory Publishing. Based on the Bounded Pla-
nar Laplace mechanism, we develop a novel approach
for publishing query trajectory which ensures (ϵ, δ)-Geo-
Indistinguishability. The publishing algorithm involves two
core operations: Perturbation and Grid-Selection. Perturbation
obtains a perturbed location x′ by adding the BPL noise to the
original location, while Grid-Selection determines the grid in
which x′ is located.

As shown in Algorithm 2, for each location x ∈ TQ,
Perturbation is executed in line 4, followed by Grid-Selection
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Algorithm 2: (ϵ, δ)-Geo-I based Filtering
input : trajectory database TD, query trajectory TQ,

privacy parameters ϵ, δ, publishing rate ρ
output: candidate trajectory database TC

1 Choose grid size L according to ϵ, δ, ρ;
// Query user’s protocol;

2 cand← ϕ;
3 foreach location x ∈ TQ do
4 x′ ← BPL(x, ϵ, δ);
5 g′ ← grid No. of x′;
6 if g′ = grid No. of x then
7 Add g′ to cand;

8 Select ⌊ρ · |TQ|⌋ grids from cand into GQ, and
eliminate repetitive grids in it;

9 Send GQ to the data owner;
// Data owner’s protocol;

10 Construct the grid index GI using TD;
11 Upon receiving GQ, compute TC =

⋂
g∈GQ

GI[g];
12 return TC;

in line 5. Subsequently, in lines 6-7, we check whether the
perturbed location x′ and the original location x are located
in the same grid. We add the grid to the candidate list cand
only when they are located in the same grid, ensuring that the
published grids can be precisely used for filtering. Finally, in
lines 8-9, we pick ⌊ρ · |TQ|⌋ grids from cand for publishing,
where ρ is a ratio specified by the query user. We prove in
Theorem 1 that our publishing method satisfies the privacy
constraint of (ϵ, δ)-Geo-I.

Filtering Strategy. We introduce the notion of traversal grids
before detailing the process of filtering the trajectory database.

Definition 9 (Traversal Grids): The traversal grids of a tra-
jectory T under distance threshold τ , denoted as Gτ (T ), con-
tain all the grids covered by a set of circles {circle(x, τ)|x ∈
T.locs}. Here circle(x, τ) denotes a circle centered at location
x and with a radius of τ , and T.locs represents all the
locations in trajectory T , including intermediate locations on
each segment.

Example 5: Consider trajectory T1 = ⟨p1, p2, p3⟩ in Fig. 4.
Segment s1 = ⟨p1, p2⟩ traverses grids 5, 6, 7, 11, 12, and seg-
ment s2 = ⟨p2, p3⟩ traverses grids 12, 8. Besides, circle(p1, τ)
covers grid 1, and circle(p4, τ) (p4 is a location in segment
s1) covers grid 10. Thus, the traversal grids of T1 under τ ,
Gτ (T1) = {1, 5, 6, 7, 8, 10, 11, 12}.

Using the concept of the traversal grids, we formulate the
filtering strategy as follow: the data owner filters TD by
retaining only trajectories whose traversal grids encompass all
the grids in GQ. The correctness of the strategy is proven in
Lemma 3.

Example 6: In Fig. 4, the query user publishes TQ at a grid
level for filtering. GQ is a grid sequence generated by TQ and
more specifically, TQ’s subtrajectory T ′

Q. When receiving GQ,
the data owner filters TD according to the traversal grids of
each trajectory. In our example, T1 is filtered out while T2 is
not, since GQ ̸⊆ Gτ (T1) and GQ ⊂ Gτ (T2).

Fig. 4: An illustration of Geo-I based Filtering.

Indexing. Considering the substantial amount of trajectory
data in the database TD, we introduce a grid index to
accelerate our filtering strategy. The grid index GI is con-
structed during the offline stage. For each trajectory in TD, we
calculate its traversal grids and insert all the mapping relations
from grid ID to trajectory ID into GI . During the online
stage, we can efficiently obtain the candidate database TC
by computing the intersection of GI[g] for all g ∈ GQ. The
time for index construction is excluded from the complexity
analysis since it can be finished before the query execution.
Correctness of Our Filtering. The correctness of the filtering
strategy is proven in Lemma 3.

Lemma 3: If the query user publishes the grid sequence
GQ using trajectory TQ, then GQ ⊆ Gτ (Ti) is a necessary
condition for matchτ (Ti, TQ) = true.

Proof: Suppose there is a grid g ∈ GQ such that g ̸∈
Gτ (Ti). Then the point q that generates grid g, can never
be matched by any locations in Ti, even when disregarding
timestamps. This implies that matchτ (Ti, TQ) should always
be false in such cases, thereby completing our proof.
Privacy of Query Trajectory Publishing. We prove the
privacy guarantee of query trajectory publishing in Theorem 1.

Theorem 1: The query trajectory publishing algorithm sat-
isfies (ϵ, δ)-Geo-Indistinguishability.

Proof: We analyse the two core operations, Perturbation
and Grid-Selection, respectively. According to Lemma 2, Per-
turbation satisfies (ϵ, δ)-Geo-I. Grid-Selection can be viewed
as a post-processing after perturbation since the grid number
is determined only based on x′ and does not rely on x.

Lemma 1 has proven that post-processing does not impact
the privacy guarantee. Thus, publishing location x as g′

satisfies (ϵ, δ)-Geo-I. Suppose GQ is generated by T ′
Q, a

subtrajectory of TQ, then the procedure of publishing T ′
Q as

GQ preserves (ϵ, δ)-Geo-I, which completes our proof.
After the query is published, the data owner conducts

local filtering utilizing the published trajectory (line 10 in
Algorithm 2). Since the filtering avoids any interaction with
the query user, the Geo-I filtering also complies with the
privacy constraint of (ϵ, δ)-Geo-I.
Complexity Analysis. Given that each entry in grid index GI
is sorted, the time complexity of filtering with the grid index is
O(

∑
q∈GQ

|GI[q]|), where GQ is the published grid sequence.
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3) Selection of Grid Size: As indicated in Algorithm 2, the
grid size is closely related to the privacy level and the query
performance. Therefore, it is crucial to derive a proper filtering
granularity that can achieve the specified privacy level. To this
end, we theoretically analyse the relation between the grid size
and the privacy parameter in Theorem 2.
Basic Idea. To determine the grid size, we need to establish a
connection between the probability of successfully perturbing
one location p, the radius of the noise circle R and the grid
size L. Given R and L, we can estimate p by considering the
probability that both location x and its perturbation x′ fall in
the same grid. Our analysis is based on the success probability
in three different types of areas in a grid: center area, side
area, and corner area, as shown in Fig. 5.

Fig. 5: Division of a grid into three types of areas. A grid is a
square with a side length of L. The radius of the noise circle
is denoted as R (R ≤ L

3 ).

Upper Bound for Grid Size L. We use pcenter, pside, pcorner
to denote the probability of successful perturbation in three
types of area, then the following equation holds:

L2p = (L−2R)2pcenter+4R(L−2R)pside+4R2pcorner (6)

We note that pcenter = 1, as for any location in the center
area, the distance from the location to the grid boundary
consistently exceeds R, the maximum size of the BPL noise.

We then proceed to analyse pside and pcorner. Considering
the complexity of the planar Laplace distribution, we use
an approximation to simplify the analysis. Specifically, we
replace the BPL noise (Fig. 3(b)) with the uniform noise in
the circumscribed square of the noise circle (Fig. 3(d)). The
feasibility of this replacement will be discussed in Lemma 4
and Lemma 5.

Theorem 2: Suppose p represents the success probability of
perturbing a single location, then a grid size L = R

2(1−√
p0)

can ensure p ≥ p0.
Proof: According to Lemma 4 and Lemma 5, replacing

the BPL noise with the uniform noise in the circumscribed
square of the noise circle reduces the probability of successful
perturbation. Thus, we can derive the lower bounds for pside
and pcorner:

(1) Consider the blue point in Fig. 6, pside satisfies:

pside ≥
∫ R

0

1

4R2
· 2R(2R− z)dz =

3

4

(2) Consider the red point in Fig. 6, pcorner satisfies:

pcorner ≥
∫ R

0

∫ R

0

1

4R2
[(2R− x)(2R− y)] dxdy =

9

16

Fig. 6: Using the approximation to obtain lower bounds for
pside and pcorner. The noise is uniformly sampled in the
circumscribed square of the noise circle, which is the square
with a side length of 2R. The noise in the grey area ensures
the successful perturbation.

Substituting pcenter = 1, pside ≥ 3
4 , pcorner ≥

9
16 into

Equation (6), we obtain:

L2p ≥ (L− 2R)2 +
3

4
· 4R(L− 2R) +

9

16
· 4R2

⇒ p ≥ (1− R

2L
)2

Thus, L = R
2(1−√

p0)
can ensure that p ≥ p0.

Lemma 4 and Lemma 5 prove the feasibility of the replace-
ment by leveraging the uniform noise in the noise circle (Fig. 3
(c)) as an intermediate.

Lemma 4: Replacing the bounded planar Laplacian noise
with the uniform noise in the noise circle reduces the proba-
bility of successful perturbation.

Proof: We denote the probability of generating a BPL
noise of size x as g(x), and the probability of generating a
uniform noise of size x as u(x). Then we have:∫ R

0

u(x)xdx =

∫ R

0

g(x)xdx = 1 (7)

We can observe that u(x) ≡ 2
R2 , and g(x) is monotonically

decreasing in [0, R]. Then we use f(x) to represent the average
probability of successful perturbation when the noise size
is x. This function is monotonically decreasing in [0, R],
as a larger noise reduces the success probability. Based on
the monotonicity of f(x) and g(x), we observe that for all
x, y ∈ [0, R], x ̸= y, [f(x)−f(y)][g(x)−g(y)] > 0, indicating
that [f(x)− f(y)][g(x)− g(y)]xy ≥ 0, hence:

0 ≤
∫ R

0

∫ R

0

[f(x)− f(y)][g(x)− g(y)]xydxdy

=

∫ R

0

f(x)g(x)xdx

∫ R

0

ydy +

∫ R

0

f(y)g(y)ydy

∫ R

0

xdx

−
∫ R

0

∫ R

0

f(x)g(y)xydxdy −
∫ R

0

∫ R

0

f(y)g(x)xydxdy

According to the symmetry under double integral inter-
change,

∫ R

0

∫ R

0
f(x)g(y)xydxdy =

∫ R

0

∫ R

0
f(y)g(x)xydxdy,

thus,

0 ≤ R2

2
·
∫ R

0

f(x)g(x)xdx+
R2

2
·
∫ R

0

f(y)g(y)ydy

− 2 ·
∫ R

0

∫ R

0

f(x)g(y)xydxdy
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(a) Inside Circle (b) Outside Circle

Fig. 7: The orange point denotes the upper right point of a
grid, and is located within the dash box. C∩ denotes the size
of the grey area (intersection between the noise circle and the
orange rectangle), and C denotes the size of the noise circle.
S∩ denotes the size of the orange rectangle, and S denotes
the size of the large square.

⇒ R2

2
·
∫ R

0

f(x)g(x)xdx ≥
∫ R

0

∫ R

0

f(x)g(y)xydxdy

=

∫ R

0

f(x)xdx

∫ R

0

g(y)ydy

since Equation (7) indicates that
∫ R

0
g(y)ydy = 1 and u(x) ≡

2
R2 , we can obtain:∫ R

0

f(x)g(x)xdx ≥ 2

R2

∫ R

0

f(x)xdx =

∫ R

0

f(x)u(x)xdx

where
∫ R

0
f(x)u(x)xdx is the success probability using the

uniform noise, and
∫ R

0
f(x)g(x)xdx is the success probability

using the BPL noise, thus Lemma 4 holds true.
Lemma 5: Replacing the uniform noise in the noise circle

with the uniform noise in the noise circle’s circumscribed
square reduces the probability of successful perturbation.

Proof: As shown in Fig. 7, we use the orange point and
the grey circle to represent the relative location between the
grid and the noise circle. Then we can prove Lemma 5 by
deriving the following inequation:

C∩

C
≥ S∩

S
(8)

where C∩
C is the successful probability using the noise in the

noise circle, and S∩
S is the successful probability using the

noise in the circumscribed square.
(1) If the random location lies inside the noise circle (i.e.,

a2 + b2 ≤ R2), as shown in Fig. 7(a):

C∩ =
πR2

4
+ ab+

1

2
(a
√
R2 − a2 + b

√
R2 − b2)

+
R2

2
(arcsin

a

R
+ arcsin

b

R
)

(2) If the random location lies outside the noise circle (i.e.,
a2 + b2 > R2), as shown in Fig. 7(b):

C∩ = a
√
R2 − a2+ b

√
R2 − b2+R2(arcsin

a

R
+arcsin

b

R
)

Besides, we have S∩ = (R+a)(R+b), C = πR2, S = 4R2.
It can be confirmed that for all a, b ∈ [0, R], Equation (8) holds
true, which completes our proof.

B. SMC based Verification
After filtering, we reduce the search space to a smaller

candidate database TC, where each trajectory traverses all
grids in the published grid sequence GQ. However, as SMC
operations are typically slower than their plaintext counterparts
[9], performing SMC over the potentially large TC is time-
consuming. Thus, we introduce a data partition scheme along
with a reference trajectory based pruning strategy to further
improve efficiency.

Fig. 8: An illustration of SMC based Verification.

Basic Idea. The idea of SMC based verification is illustrated
in Fig. 8. We devide the candidate database TC into multiple
data partitions PNi based on the spatiotemporal character-
istics of trajectories. For each partition PNi, we generate a
special trajectory, termed the reference trajectory rt, which
encapsulates the spatiotemporal features of all trajectories in
PNi. We then apply Lemma 6 to prune partitions where none
of the trajectories can match TQ, avoiding the need to validate
each trajectory in TC through SMCs.
Data Partition. Based on the spatiotemporal information
of trajectories, we divide the database TC into multiple
partitions, each containing no more than m trajectories. We
consider trajectories that traverse a grid in an approximate
time range as similar and group them into the same partition.
Specifically, the data partition is performed as follows. We
begin by grouping all trajectories in TC into a single partition.
Subsequently, this partition is split recursively until each
resulting partition reaches a size smaller than m. The splitting
operation can divide one partition into two, while ensuring that
trajectories within each resulting partition exhibit relatively
similar spatiotemporal characteristics.

The splitting operation for PN is based on the timespan of
the trajectories within it. We select the grid with the longest
timespan as the splitting criterion, denoted as gsplit. This
means trajectories in PN are separated into different partitions
based on when they traverse grid gsplit. Then the splitting
value, vsplit, is set to be the median of the ending times for
all trajectories in partition PN . As a result, PN can be divided
into two partitions of equal sizes or sizes differing by 1.

Example 7: As shown in Fig. 9, we set m = 3 and start
with the partition with 7 trajectories. At first, we identify q2
as the splitting criteria, since it has the longest timespan of
[3, 36]. Then we determine the splitting value as 23, which
is the median in list [12, 27, 36, 10, 11, 29, 23]. After that, we
split the whole partition into two partitions, PN1 with 3
trajectories, and the other with 4 trajectories, which is then
split into PN2 and PN3 using q3 as the splitting criterion.
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Algorithm 3: SMC based Verification
input : candidate trajectory database TC,

query trajectory TQ, distance threshold τ ,
grid size L

output: all trajectories that matches TQ

1 result← ϕ;
2 Partition TC with m← ⌊α

√
|TC|⌋ to obtain PNs;

3 foreach partition PN ∈ PNs do
4 Generate rt as the reference trajectory of PN ;

// Pruning
5 matchrt ← Secure-Verify(rt, T ′

Q, τ +
√
2L);

6 if matchrt is false then
7 continue;

// Final Validation
8 foreach trajectory t ∈ PN do
9 matcht ← Secure-Verify(t, TQ, τ);

10 if matcht is true then
11 Add t to result;

12 return result;

13 Function Secure-Verify(T , TQ, τ):
14 N ← 0;
15 foreach point q ∈ TQ do
16 matchq ← 0;
17 foreach segment s ∈ T do
18 Compute locs(ts), which derives the

location of s at timestamp ts;
19 dis← d(q.loc, locs(q.ts));
20 if dis ≤ τ and q.ts ∈ [s.o.ts, s.d.ts] then
21 matchq ← 1;

22 N ← N +matchq;

23 match← N = |TQ|;
24 return match;

Pruning with Reference Trajectory. We use the reference
trajectory within each partition for pruning. The reference tra-
jectory of partition PN is generated by scanning all trajectory
points of PN that located within grid g for each g ∈ GQ. The
point with the smallest timestamp is selected as the original
point o, and the one with the largest timestamp is selected as
the destination point d. The segment formed by o and d is
added to the reference trajectory rt. This process is repeated
for each grid g ∈ GQ, resulting in a reference trajectory with
|GQ| segments. Then rt can be used for pruning according to
Lemma 6.

Algorithm Details. The procedure of SMC based verification
is presented in Algorithm 3. In line 2, data partition is
performed on the candidate trajectories TC, with the partition
size limited to ⌊α

√
|TC|⌋. The parameter α is adjustable

and discussed in Section V-D. Subsequently, in line 4, a
reference trajectory rt is generated for each partition, and
lines 5-7 utilize it for pruning based on Lemma 6. If rt
does not match TQ′ under the threshold of

√
2L + τ , all

Fig. 9: Divide database TC = {T1, ..., T7} into 3 partitions.
All the trajectories in TC traverse grids q1, q2 and q3.

trajectories in its partition are pruned. Following pruning,
every trajectory in the remaining partitions undergoes final
validation via Secure-Verify to ascertain whether they
match TQ, as shown in lines 8-11.

The Secure-Verify function in Algorithm 3 securely
verify whether a trajectory T matches TQ based on Defini-
tion 4. In lines 15-17, each point q ∈ TQ is iterated through
to check if it can be matched by at least one segment in T .
For each segment s, the data owner locally derives a function
locs(ts) for estimating the location of s at timestamp ts (line
18). In line 19, the Euclidean distance dis between q.loc and
its corresponding point in s is securely computed. If dis is
less than τ and the sequential order of timestamps is satisfied,
matchq is set to 1, indicating that q can be matched by s
(lines 20-21). If at least one segment matches q, the total
matching number N increases by 1 (line 22). Lines 23-24
securely compare the total matching number with the length
of TQ and output the result indicating whether T matches TQ

or not. The underlined code segments need to be implemented
with two-party SMC protocols (e.g., by using Obliv-C [22]).

Correctness of Our Pruning. The correctness of pruning in
lines 5-7 of Algorithm 3 is proven in Lemma 6.

Lemma 6: If the reference trajectory rt of partition PN fails
to match T ′

Q under a threshold of τ +
√
2L (L > τ ), then no

trajectory in PN can match TQ under a threshold of τ . Here,
T ′
Q denotes the subtrajectory of TQ that generates GQ, and L

denotes the grid size.
Proof: We prove Lemma 6 by demonstrating that if a

point q in T ′
Q cannot be matched by any segments in rt under

a threshold of
√
2L + τ , it cannot either be matched by any

trajectories in PN under a threshold of τ .
Consider the case where the distance from q to the grid

boundary is always larger than τ , implying that q can only
be matched by locations within the same grid. Since

√
2L

is the longest distance between two locations within a grid,
none of the segments in rt traverse q’s grid at timestamp
q.ts. Consequently, no trajectory in PN traverses q’s grid at
timestamp q.ts, indicating that q cannot be matched by any
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TABLE II: Real datasets.

Dataset Geolife Dazhong Xi’an Chengdu Multi-Company

|TD| 11k 700k 3200k 6000k 2400k
Size 0.3G 1.6G 10.9G 16.7G 38.7G

TABLE III: Parameter settings.

Parameter Setting

Sampling Rate 5%, 10%, 20%, 40%
Trajectory Scalability |TD| 1500k, 3000k, 4500k, 6000k

Privacy Budget ϵ 0.01, 0.02, 0.03, 0.04, 0.05
Partition Parameter α 0.25, 0.5, 1, 2, 4

#(Data Owner) 1, 2, 3, 4, 5

trajectory in PN . We can extend this conclusion to the general
case by raising the threshold from

√
2L to

√
2L + τ , since

L > τ indicates that q can only be matched by the point from
the adjacent grid, thus completing our proof.
Security of SMC Based Verification. In SMC based verifi-
cation, the number of reference trajectories and whether they
pass the pruning stage, along with the lengths of trajectories in
the remaining partitions are disclosed to facilitate the execution
of Secure-Verify. Apart from this, all other information
regarding trajectories in TC and query trajectory TQ are
thoroughly protected by SMC in the semi-honest model.
Complexity Analysis. The complexity of pruning and final
validation is O(|T ′

Q| · |GQ| · |TC|
m + |TQ| · |T | ·nrm), where nr

is the number of partitions surviving the pruning. According
to the experiments on real-world datasets, nr can be regarded
as a constant. Besides, |TQ|, |T ′

Q|, |GQ| and |T | are constants
related to the trajectory length. Therefore, we choose m =
Θ(

√
|TC|) (i.e., m = ⌊α

√
|TC|⌋) in line 2 of Algorithm 3

to achieve optimal complexity.

V. EXPERIMENTAL STUDY

This section presents our experimental evaluation. We first
introduce the experiment setup (Sec. V-A). Then, we present
the performance on real datasets (Sec. V-B), scalability tests
(Sec. V-C), ablation studies (Sec. V-D), and extension to
multiple data owners (Sec. V-E).

A. Experiment Setup

Datasets. We use five real-world trajectory datasets.
• Geolife [23]. It contains daily trajectories of individuals

collected by MSRA from April 2007 to August 2012.
• Dazhong [24]. It contains trajectories of 13,013 cars

collected by SAIC Volkswagen [25] in April 2016 and
May 2016.

• Xi’an & Chengdu [26]. They are trajectory datasets
published by Didi Chuxing’s ride-hailing services in
Xi’an and Chengdu, respectively, during October 2016.

• Multi-Company [18]. It is a shared trajectory dataset
from 5 taxi companies in Beijing (e.g., JinYinJian [27]).
Each company can be naturally regarded as a data owner
of its collected trajectories.

Baselines. We compare our framework GIST with following
solutions:

• STSC-ext [8]. It uses both addictively homomorphic en-
cryption and secure multi-party computation to calculate
the similarity between trajectories. When extending this
method to FTM, we assume that timestamps of points in
TQ are published first.

• PL-filter [10]. It uses Planar Laplace mechanism to pub-
lish points and guarantee Geo-I. We extend the method
by using the trajectory published by Planar Laplace
mechanism for filtering.

• NGram-filter [11]. It uses exponential mechanism to
publish the trajectory under local differential privacy.
Then the published trajectory is used to filter the tra-
jectory database.

• ATP-filter [12]. It uses direction information to perturb
the query trajectory so that the published trajectory sat-
isfies ϵ-LDP. Then the published trajectory is utilized for
filtering.

The last three baselines, namely PL-filter, NGram-filter and
ATP-filter, follow a same procedure as GIST. At first, the
query trajectory TQ is published as T ′

Q, using the corre-
sponding privacy mechanism, and the published trajectory is
used for filtering. Then each trajectory in the filtered database
undergoes secure verification one by one. To guarantee the
accuracy of the filtering process, we use the safe threshold
for these methods. The safe threshold T ensures that if the
distance between trajectory T and T ′

Q is larger than T , then
T can be ruled out safely. Specifically, T is calculated as
the sum of the distance threshold τ and the largest distance
between a point in TQ and its corresponding point in T ′

Q. To
ensure a fair comparison, the privacy budgets ϵ in NGram-
filter and ATP-filter are normalized by the length of TQ to
maintain consistent interpretations with the other methods.
Metrics. We mainly assess the efficiency of GIST and base-
lines by the following metrics.

• Running time. It is the average response time for an-
swering one FTM query.

• Communication cost. It is the total network communi-
cation between the query user and all data owners.

• Retention rate. It is the ratio of the size of the candidate
trajectory database TC to the original database TD. The
retention rate ranges between 0 and 1, with a smaller rate
indicating a more effective filtering method.

Apart from the above three metrics, we also report the index
size of our framework GIST in Sec. V-C.
Implementation. All the methods are implemented in C/C++
and compiled using GCC/G++ 9.4.0. We employ Obliv-C [22]
for SMC operations and GMP library [28] for big integer
computation. For all methods, we set the distance threshold
τ = 50m. In GIST, we set publishing rate ρ = 60%, privacy
parameters ϵ = 0.01, δ = 2.5× 10−5, and partition parameter
α = 0.5. The query trajectory is randomly sampled from the
dataset TD, and we reserve a subset of points in it. The portion
of reserved points is controlled by the sampling rate parameter
in Table III. We also vary other parameters, including trajec-
tory scalability |TD|, privacy budget ϵ, partition parameter α,
and the number of data owners. For each parameter setting,
the average result of 100 queries is reported.
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(a) Running time and communication cost on Geolife

(b) Running time and communication cost on Dazhong

(c) Running time and communication cost on Xi’an

Fig. 10: Running time and communication cost of FTM under
different sampling rates of TQ.

Environment. Experiments are carried out on 5 servers con-
nected by LAN, each with 24 2.60GHz Intel(R) Xeon(R)
Platinum 8361HC CPU processors and 128GB of memory.

B. Experiments on Real Datasets

To illustrate the efficiency of GIST in real-world applica-
tions, we conduct experiments on three real datasets, Geolife
[23], Dazhong [25] and Xi’an [26].

Comparison Across Datasets. Fig. 10 shows the running time
and communication cost of FTM in these real datasets. Four
sampling rate are used: 5%, 10%, 20% and 40%. Across all
three real datasets, GIST consistently outperforms the OblivC
and the STSC-ext. In the Xi’an dataset [26] which contains
3.2 million trajectories, GIST is 19.8× to 420.8× faster than
the runner-up PL-filter, while incurring 14.5× to 233.2× lower
communication cost.

Vary Sampling Rate. The efficiency of GIST is primarily
influenced by two factors: the number of trajectories requiring
verification and the cost associated with securely verifying
each trajectory. As the sampling rate increases, the effec-
tiveness of filtering improves, leading to a reduction in the
number of trajectories that need verification. Meanwhile, the
cost of verifying each trajectory also increases. We observe
that in Geolife dataset, the efficiency of GIST peaks when the
sampling rate is 10%, while in Dazhong and Xi’an datasets,
GIST achieves the best performance when the sampling rate
is 40% and 20%, respectively. In contrast, the filtering rates of
other methods change slightly as the sampling rate increases,

TABLE IV: Construction time and memory size of grid index
in GIST under different trajectory scalabilities.

Trajectory Scalability |TD| 1500k 3000k 4500k 6000k

Index Construction Time (s) 224.5 513.4 712.5 924.6
Index Size (MB) 154.8 321.7 448.1 585.2

since a higher sampling rate usually enlarges the safe threshold
and undermines the filtering effectiveness. Accordingly, the
running time of these methods exhibits an increasing trend.

C. Experiments on Scalability Test

We use Chengdu dataset [26] for scalability tests. Trajectory
datasets TD of different sizes are generated by randomly
sampling from the original dataset.
Vary Trajectory Scalability |TD|. Fig. 11 presents the results
of scalability test under four levels of trajectory scalability
|TD|. Generally, the running time and communication cost
of GIST grow linearly with the data size, and maintain an
advantage of 1 to 2 orders of magnitude over the best baseline
at all sampling rates. Using sampling rate of 20% as an
example, GIST is 147.5× to 186.8× more efficient than PL-
filter, and takes 73.1× to 107.4× lower communication.
Vary Sampling Rate. As the sampling rate increases, the
advantages of GIST become more evident. Taking trajectory
scalability of 6 million as an example, GIST is 42.5× more
efficient than STSC-ext when the sampling rate is 5%, and
526.8× more efficient when the sampling rate is 40%. This
is because STSC-ext suffers from a prominent performance
loss as the length of TQ increases. In contrast, a longer
query trajectory can be leveraged in GIST to enhance the
filtering effectiveness, compensating for the performance loss
in verification.
Index Construction. Table IV presents construction time
and memory size of the grid index in GIST under different
trajectory scalabilities. For the trajectory scalability of 6000k,
the construction time is around 15min, which is feasible in the
preprocessing stage. Besides, the grid index’s size (585.2MB)
is far more smaller than the size of the raw trajectory data
(16.7G). The space cost is acceptable, considering the memory
size of a modern server.

D. Experiments on Ablation Study

We conduct ablation studies from two aspects of our GIST:
the filtering and verification phases. The following experi-
ments are performed on Dazhong dataset [25], using 10% and
40% as the sampling rate for TQ.

1) Ablation Study on Privacy Mechanism in Filtering:
We compare the filtering effectiveness of GIST and baselines
for location or trajectory privacy protection, including PL-filter
[10], NGram-filter [11] and ATP-filter [12].
Vary Privacy Budget ϵ. Fig. 12 shows the retention rate
of different filtering methods varying privacy budgets. It is
demonstrated that for each method, a weaker privacy level
indicated by larger ϵ, proves to be more effective in preserving
the utility of the query trajectory, resulting in a lower retention



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 11

(a) Sampling rate of 5% (b) Sampling rate of 10%

(c) Sampling rate of 20% (d) Sampling rate of 40%

Fig. 11: Running time and communication cost of scalability tests on the Chengdu dataset.

(a) Sampling rate of 10% (b) Sampling rate of 40%

Fig. 12: Retention rate of filtering in GIST and other trajectory
publishing methods under different privacy budgets ϵ.

(a) Sampling rate of 10% (b) Sampling rate of 40%

Fig. 13: Running time of pruning and final validation in SMC
based verification under different partition parameters α.

rate. Notably, our filtering method demonstrates at least an 85×
improvement in effectiveness under the same privacy budget.
The results reveal that trajectories published using existing
trajectory privacy mechanism cannot maintain high effective-
ness when employed for filtering, illustrating the necessity of
developing a novel privacy mechanism within our framework.

2) Ablation Study on Pruning in Verification: The perfor-
mance of SMC based verification is impacted by the partition
parameter α. We compare the verification efficiency under
different choices of α.

Vary Partition Parameter α. As shown in Fig. 13, pruning
at all levels of α can reduce the running time of verification,

illustrating the effectiveness of our pruning strategy. Besides,
choosing a smaller α results in larger number of partitions,
leading to increased pruning time but reduced final validation
time. The figure indicates that in real-world data, pruning
achieves the optimal performance when α = 0.5 and bring
an up to 16.2× improvement in running time.

E. Experiments on Multiple Data Owners

Our GIST can be extended to a more general scenario where
the trajectory database TD is distributed among multiple data
owners. The extended method follows these steps: initially,
the query user employs TQ to generate GQ and broadcasts
it to all the data owners; then each data owner filters their
local database using GQ; finally, the query user performs
verification with all the data owners in parallel. We conduct the
experiment on Multi-Company dataset, a real-world trajectory
dataset distributed among five data owners [18]. We report the
performance of GIST with privacy budget ϵ of 0.01, 0.02 and
0.05 in the following experiments.
Vary #(Data Owner). The experiment results on Multi-
Company dataset are shown in Fig. 14. Overall, the total
communication cost of GIST for cross-platform data grow
linearly with the number of data owners, while the running
time remains relatively steady as the number of data owners
increases. This is because the filtering and verification steps
of GIST can be performed in parallel.

VI. RELATED WORK

Trajectory Similarity Query. Various similarity measures
have been proposed for trajectory data [16], [29]. Some
measures consider spatial information only, such as DTW
[30], ERP [31] and EDR [32]. Other measures consider both
spatial and temporal information, such as STLCSS [33] and
STED [15]. Based on different measures, existing works have
designed efficient query processing solutions [34]–[36] and
trajectory analytic systems [37]–[39]. However, they cannot
be used for our FTM problem as they usually assume no
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(a) Sampling rate of 10%

(b) Sampling rate of 40%

Fig. 14: Running time and communication cost of varying the
number of data owners.

privacy protection for query users’ or data owners’ trajectories.
Besides, directly combining them with the secure computation
techniques is infeasible, since filtering and pruning strategy in
these methods can lead to privacy leakage of query trajectory
or trajectory database.

Trajectory Privacy Preservation. Privacy are crucial in tra-
jectory analytics since trajectory data may disclose sensitive
information like mobility patterns and personal profiles [1],
[2]. Geo-Indistinguishability is widely used in protecting a
user’s location by injecting planar Laplacian noise, offering
adaptive privacy preservation depending on the distance [10].
Differential privacy has also been applied in trajectory data
publishing. Central differential privacy assumes all the trajec-
tories are collected by a central server and publishes perturbed
trajectories [40], [41] or synthetic trajectories [42], [43] with a
statistical distribution similar to the original data. In contrast,
local differential privacy does not rely on the central server
and leverages exponential mechanism for privacy protection
[11], [12]. Among these methods, we compare GIST with
[10]–[12], since they are state-of-the-art solutions adaptable
for filtering.

Data Federation Management. Data isolation has become
an obstacle for cross-silo data analytics, since sharing raw
data among data owners is usually prohibited due to privacy
concerns [7], [44]. In response to these challenges, data
federation has arisen as a promising paradigm, facilitating
collaborative and secure query services for data owners in-
terested in sharing their data. For example, SMCQL [17],
Conclave [45] and Shrinkwrap [46] are data management
systems over relational data federation. Hu-Fu [18] is a spatial
data federation system. There are also studies on efficient
processing of specific queries over a data federation, such as
federated range aggregation [47], [48] and federated join [49],
[50]. These works speed up the secure queries drastically by
leveraging differential privacy to remove unnecessary dummy
data/operations without sacrificing too much on the privacy.
In comparison, our FTM problem differs from these studies
in both data type and query type.

VII. CONCLUSION

In this paper, we study the problem of Federated Trajectory
Matching (FTM) and introduce a framework called Geo-I
accelerated SMC based method for federated Trajectory
matching (GIST). We design a novel paradigm for publishing
the query trajectory at a grid level and establish the bound for
the grid size under specified privacy parameters. Besides, we
devise a data partition scheme along with a reference trajectory
based pruning strategy to further improve efficiency. Finally,
experiments show that our method is significantly faster and
takes up to 2 orders of magnitude lower communication cost
than the state-of-the-arts.
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