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We Can Hear You with Wi-Fi!
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Abstract—Recent literature advances Wi-Fi signals to “see” people’s motions and locations. This paper asks the following question:
Can Wi-Fi “hear” our talks? We present WiHear, which enables Wi-Fi signals to “hear” our talks without deploying any devices. To
achieve this, WiHear needs to detect and analyze fine-grained radio reflections from mouth movements. WiHear solves this micro-
movement detection problem by introducing Mouth Motion Profile that leverages partial multipath effects and wavelet packet
transformation. Since Wi-Fi signals do not require line-of-sight, WiHear can “hear” people talks within the radio range. Further, WiHear
can simultaneously “hear” multiple people’s talks leveraging MIMO technology. We implement WiHear on both USRP N210 platform
and commercial Wi-Fi infrastructure. Results show that within our pre-defined vocabulary, WiHear can achieve detection accuracy of 91
percent on average for single individual speaking no more than six words and up to 74 percent for no more than three people talking
simultaneously. Moreover, the detection accuracy can be further improved by deploying multiple receivers from different angles.

Index Terms—Wi-Fi radar, micro-motion detection, moving pattern recognition, interference cancelation

1 INTRODUCTION

ECENT research has pushed the limit of ISM (Industrial

Scientific and Medical) band radiometric detection to a
new level, including motion detection [11], gesture recogni-
tion [37], localization [10], and even classification [14]. We
can now detect motions through-wall and recognize human
gestures, or even detect and locate tumors inside human
bodies [14]. By detecting and analyzing signal reflection,
they enable Wi-Fi to “SEE” target objects.

Can we use Wi-Fi signals to “HEAR” talks? It is commo-
nsensical to give a negative answer. For many years, the abil-
ity of hearing people talks can only be achieved by deploying
acoustic sensors closely around the target individuals. It costs
a lot and has a limited sensing and communication range.
Further, it has detection delay because the sensor must first
record the sound and process it, then transmit it to the
receiver. In addition, it cannot be decoded when the sur-
rounding is too noisy.

This paper presents WiHear (Wi-Fi Hearing), which
explores the potential of using Wi-Fi signals to HEAR
people talk and transmit the talking information to the
detector at the same time. This may have many potential
applications: 1) WiHear introduces a new way to hear
people talks without deploying any acoustic sensors. Fur-
ther, it still works well even when the surrounding is
noisy. 2) WiHear will bring a new interactive interface
between human and devices, which enables devices to
sense and recognize more complicated human behaviors
(e.g., mood) with negligible cost. WiHear makes devices
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“smarter”. 3) WiHear can help millions of disabled people
to conduct simple commands to devices with only mouth
motions instead of complicated and inconvenient body
movements.

How can we manage Wi-Fi hearing? It sounds impossi-
ble at first glance, as Wi-Fi signals cannot detect or memo-
rize any sound. The key insight is similar to radar
systems. WiHear locates the mouth of an individual, and
then recognizes his words by monitoring the signal reflec-
tions from his mouth. By recognizing mouth moving pat-
terns, WiHear can extract talking information the same
way as lip reading. Thus, WiHear introduces a micro-
motion detection scheme that most of previous literature
can not achieve. And this minor movement detection can
also achieve the ability like leap motion [1]. The closest
works are WiSee [37] and WiVi [11], which can only detect
more notable motions such as moving arms or legs using
doppler shifts or ISAR (inverse synthetic aperture radar)
techniques.

To transform the above high-level idea into a practical
system, we need to address the following challenges:

(1) How to detect and extract tiny signal reflections from the
mouth only? Movements of surrounding people, and other
facial movement (e.g., wink) from the target user may affect
radio reflections more significantly than mouth movements
do. It is challenging to cancel these interferences from the
received signals while retaining the information from the
tiny mouth motions.

To address this issue, WiHear first leverages MIMO beam-
forming to focus on the target’s mouth to reduce irrelevant
multipath effects introduced by omnidirectional antennas.
Such avoidance of irrelevant multipath will enhance Wi-
Hear’s detection accuracy, since the impact from other peo-
ple’s movements will not dominate when the radio beam is
located on the target individual. Further, since for a specific
user, the frequency and pattern of wink is relatively stable,
WiHear exploits interference cancelation to remove the peri-
odic fluctuation caused by wink.
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(2) How to analyze the tiny radio reflections without any
change on current Wi-Fi signals? Recent advances harness
customized modulation like Frequency-Modulated Carrier
Waves (FMCW) [10]. Others like [19] use ultra wide-band
and large antenna array to achieve precise motion tracking.
Moreover, since mouth motions induce negligible doppler
shifts, approaches like WiSee [37] are inapplicable.

WiHear can be easily implemented on commercial Wi-Fi
devices. We introduce mouth motion profiles, which partially
leverage multipath effects caused by mouth movements.
Traditional wireless motion detection focuses on move-
ments of arms or body, which can be simplified as a rigid
body. Therefore they remove all the multipath effects. How-
ever, mouth movement is a non-rigid motion process. That
is, when pronouncing a word, different parts of the mouth
(e.g., jaws and tongue) have different moving speeds and
directions. We thus cannot regard the mouth movements as
a whole. Instead, we need to leverage multipath to capture
the movements of different parts of the mouth.

In addition, since naturally only one individual is talking
during a conversation, the above difficulties only focus on
single individual speaking. How to recognize multiple indi-
viduals’ talking simultaneously is another big challenge. The
reason for this extension is that, in public areas like airports
or bus stations, multiple talks happen simultaneously.
WiHear enables hear multiple individuals’ simultaneously
talks using MIMO technology. We let the senders form mul-
tiple radio beams to locate on different targets. Thus, we can
regard the target group of people as the senders of the reflec-
tion signals from their mouths. By implementing a receiver
with multiple antennas and enabling MIMO technology, it
can decode multiple senders’ talks simultaneously.

Summary of results. We implemented WiHear in both
USRP N210 [8] and commercial Wi-Fi products. Fig. 1
depicts some syllables (vowels and consonants) that WiHear
can recognizel. Overall, WiHear can recognize 14 different
syllables, 33 trained and tested words. Further, WiHear can
correct recognition errors by leveraging related context infor-
mation. In our experiments, we collect training and testing
samples at roughly the same location with the same link
pairs. All the experiments are per-person trained and tested.
For single user cases, WiHear can achieve an average detec-
tion accuracy of 91 percent to correctly recognize sentences
made up of no more than six words, and it works in both
line-of-sight (LOS) and non-line-of-sight (INLOS) scenarios.
With the help of MIMO technology, WiHear can differentiate
up to 3 individuals” simultaneously talking with accuracy up
to 74 percent. For through-wall detection of single user, the
accuracy is up to 26 percent with one link pair, and 32 per-
cent with 3 receivers from different angles. In addition, based
on our experimental results, the detection accuracy can be
further improved by deploying multiple receivers from dif-
ferent angles.

Contributions. We summarize the main contributions of
WiHear as follows:

e WiHear exploits the radiometric characteristics of
mouth movements to analyze micro-motion in a non-

1. Jaws and tongue movement based lip reading can only recognize
30~40 percent of the whole vocabulary of English [24].
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Fig. 1. lllustration of vowels and consonants [36] that WiHear can detect
and recognize, ©Gary C. Martin.

invasive and device-free manner. To the best of our
knowledge, this is the first effort using Wi-Fi signals
to hear people talk via PHY layer Channel State Infor-
mation (CSI) on off-the-shelf WLAN infrastructure.

e WiHear achieves lip reading and speech recognition
in LOS, NLOS scenarios. WiHear also has the poten-
tial of speech recognition in through-wall scenarios
with relatively low accuracy.

e  WiHear introduces mouth motion profile using partial
multipath effect and discrete wavelet packet trans-
formation to achieve lip reading with Wi-Fi.

e We simultaneously differentiate multiple individu-
als’ talks using MIMO technology.

In the rest of this paper, we first summarize related work

in Section 2, followed by an overview in Section 4. Sections 5
and 6 detail the system design. Section 7 extends WiHear to
recognize multiple talks. We present the implementation
and performance evaluation in Section 8, discuss the limita-
tions in Section 9, and conclude in Section 10.

2 RELATED WORK

The design of WiHear is closely related to the following two
categories of research.

Vision/sensor based motion sensing. The flourish of smart
devices has spurred an urge for new human-device interac-
tion interfaces. Vision and sensors are among prevalent
ways to detect and recognize motions.

Popular vision-based approaches include Xbox Kinect [2]
and Leap Motion [1], which use RGB hybrid cameras and
depth sensing for gesture recognition. A slightly different
approach which has been grounded into commercial
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products called Vicon systems [3]. These systems can
achieve precise motion tracking using cameras by detecting
and analysing markers placed on human body, which needs
both instrumentation to environments and target human
body. Yet they are limited to the field of view and are sensi-
tive to lighting conditions. Thermal imaging [34] acts as an
enhancement in dim lighting conditions and non-line-of-
sight scenarios at the cost of extra infrastructure. Vision has
also been employed for lip reading. [26] and [25] present a
combination of acoustic speech and mouth movement
image to achieve higher accuracy of automatic speech rec-
ognition in noisy environment. [33] presents a vision-based
lip reading system and compares viewing a person’s facial
motion from profile and front view. [23] shows the possibil-
ity of sound recovery from the silent video.

Another thread exploits various wearable sensors or hand-
hold devices. Skinput [29] uses acoustic sensors to detect on-
body tapping locations. Agrawal et al. [12] enable writing in
the air by holding a smartphone with embedded sensors.
TEXIVE [15] leverages smartphone sensors to detect driving
and texting simultaneously.

WiHear is motivated by these precise motion detection
systems, yet aims to harness the ubiquitously deployed Wi-
Fi infrastructure, and works non-intrusively (without on-
body sensors) and through-wall.

Wireless-based motion detection and tracking. WiHear builds
upon recent research that leverages radio reflections from
human bodies to detect, track, and recognize motions [41].
WiVi [11] initializes through-wall motion imaging using
MIMO nulling [35]. WiTrack [10] implemented an FMCW
(Frequency Modulated Carrier Wave) 3D motion tracking
system at the granularity of 10 cm. WiSee [37] recognizes
gestures via Doppler shifts. AllSee [32] achieves low-power
gesture recognition on customized RFID tags.

Device-free human localization systems locate a person
by analyzing his impact on wireless signals received by pre-
deployed monitors, while the person carries no wireless
enabled devices [51]. The underlying wireless infrastructure
varies, including RFID [52], Wi-Fi [51], ZigBee [47], and the
signal metrics range from coarse signal strength [51], [47] to
finer-grained PHY layer features [49], [50].

Adopting a similar principle, WiHear extracts and inter-
prets reflected signals, yet differs in that WiHear targets at
finer-grained motions from lips and tongue. Since the micro
motions of the mouth produce negligible Doppler shifts and
amplitude fluctuations, WiHear exploits beamforming tech-
niques and wavelet analysis to focus on and zoom in the
characteristics of mouth motions only. Also, WiHear is tai-
lored for off-the-shelf WLAN infrastructure and is compati-
ble with the current Wi-Fi standards. We envision WiHear
as an initial step towards centimetre-order motion detection
(e.g., finger tapping) and higher-level human perception
(e.g., inferring mood from speech pacing).

3 BACKGROUND ON CHANNEL STATE
INFORMATION

In typical cluttered indoor environments, signals often
propagate to the receiver via multiple paths. Such multipath
effect creates varying path loss across frequencies, known as
frequency diversity [38]. Frequency diversity depicts the
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Fig. 2. Framework of WiHear.

small-scale spectral structure of wireless channels, and has
been adopted for fine-grained location distinction [53],
motion detection [48] and localization [43].

Conventional MAC layer RSSI provides only a single-
valued signal strength indicator. Model multi-carrier radio
such as OFDM measures frequency diversity at the granu-
larity of subcarrier, and stores the information in the form
of Channel State Information. Each CSI depicts the ampli-
tude and phase of a subcarrier:

H(fo) = |[H(fi)l|e? ), )

where H(f;) is the CSI at the subcarrier with central fre-
quency of f;, and /H denotes its phase. Leveraging the off-
the-shelf Intel 5300 network card with a publicly available
driver [28], a group of CSIs H(f) of K = 30 subcarriers are
exported to upper layers,

Recent WLAN standards (e.g., 802.11n/ac) also exploit
MIMO techniques to boost capacity via spatial diversity. We
thus involve spatial diversity to further enrich channel meas-
urements. Given M receiver antennas and N transmitter
antennas, we obtain an M x N matrix of CSIs { H,, ()} yrxn-
where each element H,,, (f) is defined as Equation (2).

In a nutshell, PHY layer CSI portrays finer-grained spec-
tral structure of wireless channels. Spatial diversity pro-
vided by multiple antennas further expands the dimensions
of channel measurements. While RSSI based device-free
human detection systems mostly make binary decisions
whether a person is present along the link [47] or resort to
multiple APs to fingerprint a location [51], TagFree utilizes
the rich feature space of CSI to identify different objects
with only a single AP.

4 WIHEAR OVERVIEW

WiHear is a wireless system that enables commercial Wi-Fi
devices to hear people talks using OFDM (Orthogonal Fre-
quency Division Multiplexing) Wi-Fi devices. Fig. 2 illustrates
the framework of WiHear. It consists of a transmitter and a
receiver for single user lip reading. The transmitter can be
configured with either two (or more) omnidirectional anten-
nas on current mobile devices or one directional antenna (eas-
ily changeable) on current APs (access points). The receiver
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only needs one antenna to capture radio reflections. WiHear
can be extended to multiple APs or mobile devices to support
multiple simultaneous users.

WiHear transmitter sends Wi-Fi signals towards the mo-
uth of a user using beamforming. WiHear receiver extracts
and analyzes reflections from mouth motions. It interprets
mouth motions in two steps:

1) Wavelet-based mouth motion profiling. WiHear sani-
tizes received signals by filtering out-band interfer-
ence and partially eliminating multipath. It then
constructs mouth motion profiles via discrete wave-
let packet decomposition.

2)  Learning-based lip reading. Once WiHear extracts
mouth motion profiles, it applies machine learning
to recognize pronunciations, and translates them via
classification and context-based error correction.

At the current stage, WiHear can only detect and recog-
nize human talks if the user performs no other movements
during speaking. We envision the combination of device-
free localization [49] and WiHear may achieve continuous
Wi-Fi hearing for mobile users. For irrelevant human inter-
ference or ISM band interference, WiHear can tolerant irrel-
evant human motions 3 m away from the link pair without
dramatic performance degradation.

5 MouTH MOTION PROFILING

The first step of WiHear is to construct Mouth Motion Profile
from received signals.

5.1 Locating on Mouth

Due to the small size of the mouth and the weak extent of its
movements, it is crucial to concentrate maximum signal
power towards the direction of the mouth. In WiHear, we
exploit MIMO beamforming techniques to locate and focus
on the mouth, thus both introducing less irrelevant multi-
path propagation and magnifying signal changes induced
by mouth motions [20]. We assume the target user does not
move when he speaks.

The locating process works in two steps:

1)  The transmitter sweeps its beam for multiple rounds
while the user repeats a predefined gesture (e.g., pro-
nouncing [s] once per second). The beam sweeping is
achieved via a simple rotator made by stepper motors
similar in [54]. We adjust the beam directions in both
azimuth and elevation as in [55]. Meanwhile, the
receiver searches for the time when the gesture pattern
is most notable during each round of sweeping. With
trained samples (e.g., waveform of [e] for the target
user), the receiver can compare the collected signals
with trained samples. And it chooses the time stamp
in which the collected signals share highest similarity
with trained samples.

2) The receiver sends the selected time stamp back to
the transmitter and the transmitter then adjusts and
fixes its beam accordingly. After each round of
sweeping, the transmitter will get the time stamp
feedback to adjust the emitted angle of the radio
beam. The receiver may also further feedback to the
transmitter during the analyzing process to refine
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Fig. 3. lllustration of locating process.

the direction of the beam. As the example shown in
Fig. 3, after the transmitter sweeping the beam for
several rounds, the receiver sends back time slot 3 to
the transmitter.

Based on our experimental results, the whole locating
process usually costs around 5-7 seconds, which is accept-
able in real-world implementation. we can And we define
correctly locating as the mouth is within the beam’s cover-
age. More precisely, since the horizontal angle of our radio
beam is roughly 120 degree, our directional antenna rotates
120 degree per second. Thus basically we sweep our radio
beam for around two rounds. And then it can locate to
the correct direction. For single user scenarios, we tested
20 times with three times failure, and thus the accuracy is
around 85 percent. For multiple user scenarios, we define
the correct locating as all users’” mouths are within the radio
beams. We tested with three people for 10 times with two
times failure, and thus the accuracy is around 80 percent.

5.2 Filtering Out-Band Interference
As the speed of human speaking is low, signal changes
caused by mouth motion in the temporal domain are often
within 2-5 Hz [46]. Therefore, we apply band-pass filtering
on the received samples to eliminate out-band interference.
In WiHear, considering the trade-off between computa-
tional complexity and functionality, we adopt a 3-order But-
terworth IIR band-pass filter [21], of which the frequency
response is defined by equation (3). Butterworth filter is
designed to have maximum flat frequency response in the
pass band and roll off towards zero in the stop band, which
ensures the fidelity of signals in target frequency range
while removing out-band noises greatly. The gain of an n-
order Butterworth filter is:

2
G (w) = | H(jw)= — %0 ®)

2n?
1+ (&)

where G(w) is the gain of Butterworth filter; w represents
the angular frequency; w, is the cutoff frequency; n is the
order of filter, in our case, n = 3; Gy is the DC gain.
Specifically, since normal speaking frequency is 150-300
syllables/minute [46], we set the cutoff frequency to be (60/
60-300/60) Hz to cancel the DC component (corresponding
to static reflections) and high frequency interference. In
practice, as the radio beam may not be narrow enough, a
common low-frequency interference is caused by winking.
As shown in Fig. 4, however, the frequency of winking is
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Fig. 4. The impact of wink (as denoted in the dashed red box).

smaller than 1 Hz (0.25 Hz on average). Thus, most of reflec-
tions from winking are also eliminated by filtering.

5.3 Partial Multipath Removal

Unlike previous work (e.g., [10]), where multipath reflec-
tions are eliminated thoroughly, WiHear performs partial
multipath removal. The rationale is that mouth motions are
non-rigid compared with arm or leg movements. It is com-
mon for the tongue, lips, and jaws to move in different pat-
terns and deform in shape sometimes. Consequently, a
group of multipath reflections with similar delays may all
convey information about the movements of different parts
of the mouth. Therefore, we need to remove reflections with
long delays (often due to reflections from surroundings),
and retain those within a delay threshold (corresponding to
non-rigid movements of the mouth).

WiHear exploits CSI of commercial OFDM based Wi-Fi
devices to conduct partial multipath removal. CSI represents
a sampled version of the channel frequency response at the
granularity of subcarrier. An IFFT (Inverse Fast Fourier
Transformation) is first operated on the collected CSI to
approximate the power delay profile in the time domain
[42]. We then empirically remove multipath components
with delay over 500 ns [30], and convert the remaining power
delay profile back to the frequency domain CSI via an FFT
(Fast Fourier Transformation). Since for typical indoor chan-
nel, the maximum excess delay is usually less than 500 ns
[30], we set it as the initial value. The maximum excess delay
of power delay profile is defined to be the temporal extent of
the multipath that above a particular threshold. The delay
threshold is empirically selected and adjusted based on the
training and classification process (Section 6). More pre-
cisely, if we cannot get well-trained waveform (i.e., easy to
be classified as a group) of one specific word/syllable, we
empirically adjust the multipath threshold value.

5.4 Mouth Motion Profile Construction

After filtering and partial multipath removal, we obtain a
sequence of cleaned CSI. Each CSI represents the phases
and amplitudes on a group of 30 OFDM subcarriers. To
reduce computational complexity with keeping the tempo-
ral-spectral characteristics, we explore to select a single rep-
resentative value for each time slot.

We apply identical and synchronous sliding windows on
all subcarriers and compute a coefficient C for each of them
in each time slot. The coefficient C is defined as the peak to
peak value on each subcarrier within a sliding window.
Since we have filtered the high frequency components, there
would be little dramatic fluctuation caused by interference
or noise [21]. Thus the peak-to-peak value can represent

2911

human talking behaviors. We also compute another metric,
the mean of signal strength in each time slot for each subcar-
rier. The mean values of all subcarriers facilitate us to pick
the several subcarriers (in our case, we choose ten such sub-
carriers) which represent the most centralized ones, by ana-
lyzing the distribution of mean values in each time slot.
Among the chosen subcarriers, based on C calculated
within each time slot, we pick the waveform of the subcar-
rier which has the maximum coefficient C. By sliding the
window on each subcarrier synchronously, we can pick a
series of waveform segments from different subcarriers and
assemble them into a single one by arranging them one by
one. We define the assembled CSls as a Mouth Motion Profile.

Some may argue that this peak-to-peak value may be
dominated by environment changes. However, first of all,
we have filtered the high frequency components. In addi-
tion, as mentioned in introduction and previous sessions,
during our experiment, we keep the surrounding environ-
ment static. Thus it is unlikely to introduce irrelevant signal
fluctuation caused by the environment. Furthermore, the
sliding window we use is 200 ms (we can change the dura-
tion of sliding window according to different people’s
speaking patterns). These three reasons may ensure that, for
most scenarios, our peak-to-peak value is dominated by
mouth movements. Further, we use all the 30 subcarriers
information to remove irrelevant multipath and keep partial
multipath in Section 4.3. Thus we do not waste any informa-
tion collected from PHY layer.

5.5 Discrete Wavelet Packet Decomposition

WiHear performs discrete wavelet packet decomposition on
the obtained Mouth Motion Profiles as input for the learning
based lip reading.

The advantages of wavelet analysis are two-folds: 1) It
facilitates signal analysis on both time and frequency
domain. This attribute can be leveraged in WiHear for ana-
lysing the motion of different parts on mouth (e.g., jaws and
tongue) in varied frequency domains. It is because each part
of mouth moves at different pace. It can also help WiHear
locate the time periods for different parts of mouth motion
when one specific pronouncing happens. 2) It achieves fine-
grained multi-scale analysis. In WiHear, the motion of
mouth when pronouncing some syllables shares a lot in
common (e.g., [e], [i]), which makes them difficult to be dis-
tinguished. By applying discrete wavelet packet transform
to the original signals, we can figure out the tiny difference
which is beneficial for our classification process.

Here we first introduce discrete wavelet transform
(DWT). As with the Fourier transform, where the signal is
decomposed into linear combination of the basis if the sig-
nal is in the space spanned by the basis, wavelet decomposi-
tion also decomposes a signal to a combination of a series of
expansion functions. It is given by equation (4):

F6) =" agy(t), )
k

where: £ is an integer index of the finite or infinite sum,
the a; are the expansion coefficients, and the ¢, (t) are
expansion functions, or the basis. If the basis chosen app-
ropriately, there exists another set of basis #,,(t) which is
orthogonal to ¢, (¢).
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The inner product of these two functions is ginven by

equation (5):
>= [ a0

<¢:(t)
With the orthonormal property, it is easy to find the coef-
ficients by equation (6):

<J0),. dt)> = / FOF (1)t

-/ (2}; amk«t))as;(t)dt ©
= Z QA Ol
k!

= ag.

(t)dt = oy (5)

We can rewrite it as follows equation (7)

ar = < (1), (1) > = / FFt). ™)

For the signal we want to deal with, apply a particular
basis satisfying the orthogonal property on that signal. It is
easy to find the expansion coefficients a;. Fortunately, the
coefficients concentrate on some critical values, while others
are close to zero.

Discrete wavelet packet decomposition is based on the
well-known discrete wavelet transform, where a discrete
signal f[n] is approximated by a combination of expansion
functions (the basis).

£l :LMZ Wljo, Kby, ali]
(€)
\/—ZZWYIIJ? w]k[ ]

J=Jo

where f[n| represents the original discrete signal, which is
defined in [0, M — 1], including totally M points. ¢; ,[n] and
V;x[n] are both discrete functions defined in [0, M — 1],
called wavelet basis. Usually, the basis sets ¢, [n], , and
Vikln } (GRez iz ATe chosen to be orthogonal to each other
in order for the convenience of obtaining the wavelet coeffi-
cients in the decomposition process, which means:

<¢jg,/€[n]7 wj.m [n] >= (S]‘[)-,j(skﬂn’ (9)

In discrete wavelet decomposition, during the decompo-
sition procedure, the initial step splits the original signal
into two parts, approximation coefficients (i.e., Wy[jo, k])
and detail coefficients (i.e., Wy[j, k]). After that, the follow-
ing steps consist of recursively decomposing the approxi-
mation coefficients and detail coefficients into two new
parts, respectively, using the same strategy as in initial step.
This offers the richest analysis: the complete binary tree in
the decomposition producer is produced as shown in Fig. 5:

The wavelet packet coefficients in each level can be com-
puted using the following equations as:

Wolin ] = =3 f(n}dy 41 10)
Wil = <=3 felialel, 320D
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Fig. 5. Discrete wavelet packet transformation.

where Wy [jo, k] refers to the approximation coefficients while
Wy [, k] represents the detailed coefficients respectively.

The efficacy of wavelet transform relies on choosing
proper wavelet basis. One approach that aims at maximiz-
ing the discriminating ability of the discrete wavelet packet
decomposition is applied, in which a class separability func-
tion is adopted [39]. We applied this method for all possible
wavelets in the following families: Daubechies, Coiflets,
Symlets, and got their class separability respectively. Based
on their classification performance, a Symlet wavelet filter
of order 4 is selected.

6 LiPp READING

The next step of WiHear is to recognize and translate the
extracted signal features into words. To this end, WiHear
detects the changes of pronouncing adjacent vowels and con-
sonants by machine learning, and maps the patterns to
words using automatic speech recognition. That is, WiHear
builds a wireless-based provocation dictionary for automatic
speech recognition system [22]. To make WiHear an auto-
matic and real-time system, we need to address the following
issues: segmentation, feature extraction and classification.

6.1 Segmentation
The segmentation process includes inner word segmenta-
tion and inter word segmentation.

For inner word segmentation, each word is divided into
multiple phonetic events [31]. And WiHear then uses the
training samples of pronouncing each syllable (e.g., sibilants
and plosive sounds) to match the parts of the word and then
using the syllables’” combination to recognize the word.

For inter word segmentation, since there is usually a short
interval (e.g., 300 ms) between pronouncing two successive
words, WiHear detects the silent interval to separate words
apart. Specifically, we first compute the finite difference (i.e.,
sample-to-sample difference) of the signal we obtained,
which is referred as Sy;;. Next we apply a sliding window to
Sqi signal. Within each time slot, we compute the absolute
mean value of signals in that window to determine whether
this window is active or not, w.r.t, by comparing with a
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dynamically computed threshold, we can determine whether
the user is speaking within time period that the sliding win-
dow covers. In our experiments, the threshold is set to be 0.75
times the standard deviation of the differential signal across
the whole process of pronouncing a certain word. This metric
identifies the time slot when signal changes rapidly, indicat-
ing the process of pronouncing a word.

6.2 Feature Extraction

After signal segmentation, we can obtain wavelet profiles
for different pronunciations, each with 16 fourth-order sub-
waveforms from high frequency to low frequency compo-
nents. To avoid the well-known “dimensionality curse” [27],
We apply a Multi-Cluster/Class Feature Selection (MCFS)
scheme [18] to extract representative features from wavelet
profiles to reduce the quantity of sub-waveforms. Compared
with other feature selection methods like SVM, MCFS can
produce an optimal feature subset by considering possible
correlations between different features, which better con-
forms to the characteristics of the dataset. We run the same
dataset on SVM, which cost 3-5 minutes. The same dataset
processing using MCFS only takes around 5 seconds. MCFS
works as follows.

First, a m-nearest neighbor graph is constructed from the
original dataset P. For each p;, once its m nearest neighbors
are determined, weighted edges are assigned between p; and
each of its neighbors, respectively. We define the weight
matrix W for the edge connecting node ¢ and node j as:

_lpi—pjl?

WL')]' =e (].2)

Second, MCFS solves the following generalized eigen-
problem:

Lv = AAv, (13)
where A is a diagonal matrix and A;; = > i Wi;. The graph
Laplacian L is defined as L = A — W. And V is defined as
V' = [v1, 02, ...vg], in which all the v are the eigenvectors of
Equation (13) with respect to the smallest eigenvalue.

Third, given vy, a column of V, MCEFS searches for a rele-
vant feature subset by minimizing fitting errors:

min |[oy, — PTag||® + ylaxl, (14)
op

. . . M
where ¢4, is a M-dimensional vector and |aiz| = i1 lo ]
represents the L;-norm of o;.

Finally, for every feature j, MCFS defines the MCFS score
for the feature as:

Score(j) = max ot s (15)

where «}, ; is the jth element of vector ¢, and all the features
are sorted by their MCFS scores in descending order.

Fig. 6 shows the features selected by MCFS w.r.t. the
mouth motion reflections in Fig. 1, which differ in each
pronunciation.

6.3 Classification
For a specific individual, his speed and rhythm of speaking
each word share similar patterns. We can thus directly

2913

(h) e

(@ o [(OR

Fig. 6. Extracted features of pronouncing different vowels and consonants.

compare the similarity of the current signals and previously
sampled ones by generalized least squares [16].

For scenarios where the user speaks at different speeds in
a specific place, we can use dynamic time warping (DTW)
[45] to classify the same word spoken at different speeds
into the same group. DTW overcomes the local or global
time series’ shifts in time domain. It calculates intuitive dis-
tance between two time series waveforms. For more infor-
mation, we recommend [40] which describes it in detail.
Further, for people that share similar speaking patterns, we
can also use DTW to enable word recognition with only one
training individual.

For other unknown scenarios (e.g., different environments,
etc.), due to the fine-grained analysis of wavelet transform,
any small changes in the environment will lead to a single
classifier with very poor performance [44]. Therefore instead
of using a single classifier, we explore a more advanced
machine learning scheme: Spectral Regression Discriminant
Analysis (SRDA) [17]. SRDA is based on the popular Linear
Discriminant Analysis (LDA) yet mitigates computational
redundancy. We use this scheme to classify the test signals in
order to recognize and match them into the corresponding
mouth motions.

6.4 Context-Based Error Correction

So far we only explore direct word recognition with mouth
motions. However, since the pronunciations spoken are cor-
related, we can leverage context-aware approaches widely
used in automatic speech recognition [13] to improve recog-
nition accuracy. As a toy example, when WiHear detects
“you” and “ride”, if the next word is “horse”, WiHear can
automatically distinguish and recognize “horse” instead of
“house”. Thus we can easily reduce the mistakes in recogniz-
ing words with similar mouth motion pattern, and further
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improve recognition accuracy. Therefore, after applying
machine learning for classification of signal reflections and
mapping to their corresponding mouth motions, we use con-
text-based error correction to further enhance our lip reading
recognition.

7 EXTENDING TO MULTIPLE TARGETS

For one conversation, it is common that only one person is
talking at one time. Therefore it seems sufficient for WiHear
to track one individual each time. To support debate and
discussion, however, WiHear needs to be extended to track
multiple talks simultaneously.

A natural approach is to leverage MIMO techniques. As
shown in previous work [37], we can use spatial diversity to
recognize multiple talks (often from different directions) at
the receiver with multiple antennas. Here we also assume
that people stay still while talking. To simultaneously track
multiple users, we can first let each of them perform a unique
pre-defined gesture (e.g., Person A repeatedly speaks [ee],
Person B repeatedly speaks [h], etc.). Then we try to locate
radio beams on them. The detailed beam locating process is
illustrated in Section 4.1. After locating, WiHear’s multi-
antenna receiver can detect their talks simultaneously by
leveraging spatial diversity in MIMO system.

However, due to additional power consumption of multi-
ple RF links [32] and physical sizes of multiple antennas, we
explore an alternative approach called ZigZag cancelation to
support multiple talks with only one receiving antenna. The
key insight is that, for most of the circumstances, multiple
people do not begin pronouncing each word exactly at the
same time. Therefore we can use ZigZag cancelation. After we
recognize the first word of a user, we can predictably recog-
nize the word he would like to say. Then in the middle of the
first person speaking the first word, the second person
speaks his first word. We can rely on the previous part of the
first person part of first word, and use this information to
predict the following part of his first word, and we can cancel
the following part of first person speaking the first word and
recognize the second person speaking. And we repeat the
process back and forth. Thus we can achieve multiple hear-
ing without deploying additional devices.

Figs. 7a and 7b depict the speaking of two users, respec-
tively. After segmentation and classification, we can see
each word as encompassed in the dashed red box. As is
shown, three words from user]l have different starting and
ending time compared with those of user2. Take the first
word of the two users as an example, we can first recognize
the beginning part of userl speaking word1, and then use
the predicted ending part of userl’s wordl to cancel in the
combined signals of userl and user2’s word1. Thus we use
one antenna to simultaneously decode two users” words.

8 IMPLEMENTATION AND EVALUATION

We implement WiHear on both commercial Wi-Fi infra-
structure and USRP N210 [8], and evaluate its performance
in typical indoor scenarios.

8.1 Hardware Testbed
We use a TP-LINK N750 serial, TL-WDR4300 type wireless

router as the transmitter, and use a 3.20 GHz Intel(R)
Pentium 4 CPU 2 GB RAM desktop equipped with Intel 5300
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Fig. 7. Feature extraction of multiple human talks with ZigZag decoding
on a single Rx antenna.

NIC (Network Interface Controller) as the receiver. As
shown in the Fig. 10, the transmitter possesses directional
antennas TL-ANT2406A [4] (beam width: Horizontal
120 degree, Vertical 90 degree) and operates in IEEE 802.11n
AP mode at working at 2.4 GHz band. The receiver has
three working antennas and the firmware is modified as in
[28] to report original CSI to upper layers.

During the measurement campaign, the receiver continu-
ously pings packets from the AP at the rate of 100 packets
per second and we collect CSIs for 1 minute during each
measurement. The collected CSIs are then stored and proc-
essed at the receiver.

For USRP implementation, we use GNURadio software
platform [5], and implement WiHear into a 2 x 2 MU-
MIMO system with 4 USRP N210 [8] boards and XCVR2450
daughterboards, which operate in the 2.4 GHz range. We
use IEEE 802.11 OFDM standard [9], which has 64 sub-car-
riers (48 for data). We connect USRP N210 nodes via Gigabit
Ethernet to our laboratory PCs, which are all equipped with
a qual-core 3.2 GHz processor, 3.3 GB memory and running
Ubuntu 10.04 with GNURadio software platform [5]. Since
USRP N210 boards cannot support multiple daughter
boards, we combine two USRP N210 nodes with an external
clock [7] to build a two-antenna MIMO node. We use the
other two USRP N210 nodes as clients.

8.2 Experimental Scenarios

We conduct the measurement campaign in a typical office
environment and run our experiments with four people
(one female and three males). We conduct measurements in
a relatively open lobby area covering 9m x 16m as Fig. 8.
During our experiments, we always keep the distance
between the radio and the user within roughly 2 m. To eval-
uate WiHear’s ability to achieve LOS, NLOS and through-
wall speech recognition, we extensively evaluate WiHear’s
performance in the following six scenarios (shown in Fig. 9).

e Line of sight. The target person is on the line of sight
range between the transmitter and the receiver.
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Fig. 8. Floor plan of the testing environment.

e  None line of sight. The target person is not on the line
of sight places, but within the radio range between
the transmitter and the receiver.

o  Through wall Tx side. The receiver and the transmitter
are separated by a wall (roughly 6 inches). The target
person is on the same side as the transmitter.

e  Through wall Rx side. The receiver and the transmitter
are separated by a wall (roughly 6 inches). The target
person is on the same side as the receiver.

e  Multiple Rx. One transmitter and multiple receivers
are on the same side of a wall. The target person is
within the range of these devices.

e  Multiple link pairs. Multiple link pairs work simulta-
neously on multiple individuals.

Due to the high detection complexity of analyzing mouth
motions, for practical issues, the following experiments are
per-person trained and tested. Further, we tested two differ-
ent types of directional antennas, namely, TL-ANT2406A
and TENDA-D2407. With roughly the same location of
users and link pairs, we found that WiHear does not need
training per commercial Wi-Fi device. However, for devices
that have huge differences like USRPs and commercial Wi-
Fi devices, we recommend per device training and testing.

8.3 Lip Reading Vocabulary
As previously mentioned, lip reading can only recognize a
subset of vocabulary [24]. WiHear can correctly classify and
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Fig. 9. Experimental scenarios layouts. (a) line-of-sight, (b) non-line-of-
sight, (c) through wall Tx side, (d) through wall Rx side, (e) multiple Rx,
and (f) multiple link pairs.
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L L TL-ANT2406A

Fig. 10. The commercial hardware testbed.

recognize following syllables (vowels and consonants) and
words.

Syllables. [z], [e], [i], [ul, [s], (1], [m], [h], [v], [o], [w], [b],
G, 1.

Words. see, good, how, are, you, fine, look, open, is, the,
door, thank, boy, any, show, dog, bird, cat, zoo, yes, meet,
some, watch, horse, sing, play, dance, lady, ride, today, like,
he, she.

We note that it is unlikely any words or syllables can be
recognized by WiHear. However, we believe the vocabu-
lary of the above words and syllables are sufficient for sim-
ple commands and conversations. To further improve the
recognition accuracy and extend the vocabulary, one can
leverage techniques like Hidden Markov Models and Lin-
ear Predictive Coding [16], which is beyond the scope of
this paper.

8.4 Automatic Segmentation Accuracy

We mainly focus on two aspects of segmentation accuracy
in LOS and NLOS scenarios like Figs. 9a and 9b: inter
word and inner word. Our tests consist of speaking senten-
ces with varied quantity of words ranging from 3 to 6. For
inner word segmentation, due to its higher complexity, we
try to speak 4-9 syllables in one sentence. We test on both
USRP N210 and commercial Wi-Fi devices. Based on our
experimental results, we found that the performance for
LOS (.e., Fig. 9a) and NLOS (i.e., Fig. 9b) achieve similar
accuracy. Given this, we average both LOS and NLOS per-
formance as the final results. And Sections 7.5, 7.6, 7.7 fol-
low the same rule.

Fig. 11 shows the inner-word and inter-word segmenta-
tion accuracy. The correct rate of inter-word segmentation
is higher than that of inner-word segmentation. The main
reason is that for inner-word segmentation, we directly use
the waveform of each vowel or consonant to match the test
waveform. Since different segmentation will lead to differ-
ent combinations of vowels and consonants, even some of
the combinations do not exist. In contrast, inter-word seg-
mentation is relatively easy since it has a silent interval
between two adjacent words.

When comparing between commercial devices and USRPs,
we find the overall segmentation performance of commercial
devices is a little better than USRPs. The key reason may be
the number of antennas on the receiver. The receiver NIC
card of commercial devices has 3 antennas whereas MIMO-
based USRP N210 receiver only has two receiving antennas.
Thus the commercial receiver may have richer information
and spacial diversity than USRP N210’s receiver.
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Fig. 11. Automatic segmentation accuracy for (a) inner-word segmentation on commercial devices, (b) inter-word segmentation on commercial devi-
ces, (c) inner-word segmentation on USRP, and (d) inter-word segmentation on USRP.

8.5 Classification Accuracy

Fig. 12 depicts the recognition accuracy on both USRP
N210s and commercial Wi-Fi infrastructure in LOS (.e.,
Fig. 9a) and NLOS (i.e., Fig. 9b). We also average the perfor-
mance of LOS and NLOS for each kind devices. All the cor-
rectly segmented words are used for classification. We
define the correct detection as correctly recognizing the
whole sentence and we do not use context-based error cor-
rection here. As is shown in Fig. 12, the accuracy perfor-
mance of commercial Wi-Fi infrastructure system achieves
91 percent on average with no more than 6-word sentences.
In addition, with multiple receivers deployed, WiHear can
achieve 91 percent on average with fewer than 10-word sen-
tences, which is further discussed in Section 7.8.

Results show that the accuracy of commercial Wi-Fi infra-
structure with directional antenna is much higher than that of
USRP devices. The overall USRP accuracy performance for
6-word sentences is around 82 percent. The key reasons are
two-folds: 1) the USRP N210 uses omni-directional antennas
which may introduce more irrelevant multipath. 2) the
receiver of commercial Wi-Fi product has one more antenna,
which gives one more dimension of spacial diversity.

Since overall commercial Wi-Fi devices perform better
than USRP N210, we mainly focus on commercial Wi-Fi
devices in the following evaluations.

8.6 Training Overhead

WiHear requires a training process before recognizing
human talks. We evaluate the training process in LOS and
NLOS scenarios in Figs. 9a and 9b, and then average the per-
formance. Fig. 13 shows the training overhead of WiHear.
For each word or syllable, we present the quantity of training
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Fig. 12. Classification performance.

set and its corresponding recognition accuracy. As a whole,
we can see that for each word or syllable, the accuracy of
word-based is higher than syllable-based scheme. Given this
result, empirically we choose the quantity of training sample
ranging from 50 to 100, which has good recognition accuracy
with acceptable training overhead.

However, the training overhead of word-based scheme is
much larger than syllable-based one. Note that the amount
of syllables in a language is limited, but the quantity of
words is huge. We should make a trade off between sylla-
ble-based recognition and word-based recognition.

8.7 Impact of Context-Based Error Correction

We evaluate the importance of context-based error correc-
tion in LOS and NLOS scenarios as in Figs. 9a, 9b, and then
average the performance. We compare WiHear’s recognition
accuracy with and without context-based error correction.
We divide the quantity of words into three groups, namely
fewer than three words (i.e., <3), 4 to 6 words (i.e., 4-6),
more than six words but fewer than 10 words (i.e., 6 <). By
testing different quantity of words in each group, we average
the performance as the group’s recognition accuracy. The fol-
lowing sections follow the same rule.

As shown in Fig. 14, without context-based error correc-
tion, the performance drops dramatically. Especially in the
scenario of more than six words, context-based error correc-
tion achieves 13 percent performance gain than without it.
This is because the longer the sentence, the more context
information can be exploited for error correction.

Even with context-based error correction, the detection
accuracy still tends to drop for longer sentences. The main
problem is segmentation. For syllable-based technique, it is
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Fig. 13. Training overhead.
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Fig. 14. With/without context-based error correction.
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Fig. 16. Performance of multiple users with multiple link pairs.

obviously hard to segment the waveforms. For word-based
technique, even though a short interval often exists between
two successive words, the magnitudes of waveforms during
these silent intervals are not strictly 0. Thus some of them
may be regarded as part of the waveforms of some words.
This may cause wrong segmentation of the words and
decrease the detection accuracy. Thus the detection accu-
racy is dependent on the number of words. The perfor-
mance in the following parts suffers from the same issue.

8.8 Performance with Multiple Receivers

Here we analyze radiometric impacts of human talks from
different perspectives (i.e., scenarios like Fig. 9e). Specifi-
cally, to enhance recognition accuracy, we collect CSI from
different receivers in multiple angle of views.

Based on our experiments, even though each NIC receiver
has three antennas, the spatial diversity is not significant
enough. In other words, the mouth motion’s impacts on dif-
ferent links in one NIC are quite similar. This may be because
the antennas are closely placed to each other. Thus we pro-
pose to use multiple receivers for better spatial diversity. As
shown in Fig. 20, the same person pronouncing the word
“GOOD” has different radiometric impacts on the received
signals from different perspectives (from the angles of 0, 90
and 180 degree).
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With WiHear receiving signals in different perspectives,
we can build up Mouth Motion Profile with these dimensions
of different receivers. Thus it will enhance the performance
and improve recognition accuracy. As depicted in Fig. 15,
with multiple (3 in our case) dimensional training data,
WiHear can achieve 87 percent accuracy even when the user
speaks more than six words. It ensures the overall accuracy
to be 91 percent in all three words’ group scenarios. Given
this, if it is needed for high accuracy of Wi-Fi hearing, we rec-
ommend to deploy more receivers from different views.

8.9 Performance for Multiple Targets

Here we present WiHear’s performance for multiple targets.
We use two and three pairs of transceivers to simulta-
neously target on two and three individuals, respectively
(i.e., scenarios like Fig. 9f). As shown in Fig. 16, compared
with a single target, the overall performance decreases with
the number of targets increasing. Further, the performance
drops dramatically when each user speaks more than six
words. However, the overall performance is acceptable. The
highest accuracy of three users’ simultaneously talking less
than three words is 74 percent. The worst situation can
achieve nearly 60 percent accuracy with thre users speaking
more than six words at the same time.

For ZigZag cancelation decoding, since NIC card [28] has
three antennas, we enable only one antenna for our mea-
surement. As depicted in Fig. 17, the performance drops
more severely than that of multiple link pairs. The worst
case (i.e., 3 users, 6 < words) only achieves less than 30 per-
cent recognition accuracy. Thus we recommend to use Zig-
Zag cancelation scheme with no more than two users who
speak fewer than six words. Otherwise, we increase link
pairs to ensure the overall performance.

8.10 Through Wall Performance

We tested two through wall scenarios, target on the Tx side
(Fig. 9¢) and on the Rx side (Fig. 9d). As shown in Fig. 18,
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although recognition accuracy is pretty low (around 18 per-
cent on average), compared with the probability of random
guess (i.e,, 1/33 = 3 percent), the recognition accuracy is
acceptable. Performance with target on the Tx side is better.

We believe by implementing interference nulling as in
[11] can improve the performance, which unfortunately can-
not be achieved with commercial Wi-Fi products. However,
an alternative approach is to leverage spatial diversity with
multiple receivers. As shown in Fig. 19, with two and three
receivers, we can analyze signals from different perspec-
tives with the target on the Tx side. Especially with three
receivers, the maximum accuracy gain is 7 percent. With
trained samples from different views, multiple receivers
can enhance through wall performance.

8.11 Resistance to Environmental Dynamics

We evaluate the influence of other ISM-band interference
and irrelevant human movements on the detection accuracy
of WiHear. We test these two kinds of interference in both
LOS and NLOS scenarios as depicted in Figs. 9a and 9b. The
resistance results of these two scenarios also share high sim-
ilarity. Thus here we depict environmental effects on NLOS
scenarios in Fig. 21.

As shown in Fig. 21, one user repeatedly speaks a 4-word
sentence. For each of the following three cases, we collect the
radio sequences of speaking the repeated 4-word sentence
for 30 times and draw the combined waveform in Fig. 21. For
the first case, we remain the surroundings stable. With pre-
trained waveform of each word that the user speaks, as
shown in Fig. 21a, we can easily recognize four words that
user speaks. For the second case, we let three men randomly
stroll in the room but always keep 3 m away from the
WiHear’s link pair. As shown in Fig. 21b, the words can still
be correctly detected even though the waveform is loose
compared with that in Fig. 21a. This loose character may be
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Fig. 20. Example of different views for pronouncing words.
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the effect of irrelevant human motions. For the third case, we
use a mobile phone to communicate with an AP (e.g., surfing
online) and keep them 3 m away from WiHear’s link pair. As
shown in Fig. 21c, the generated waveform fluctuates a little
compared with that in Fig. 21a. This fluctuation may be the
effect of ISM band interference.

Based on above results, we can conclude that WiHear
can be resistant to ISM band interference and irrelevant
human motions 3 m away without significant recognition
performance degradation. For interference within 3 m
around transceivers, the interference sometimes dominates
the WiHear signal fluctuation. Therefore, the performance
is unacceptable (usually around 5 percent accuracy) and
we leave it as one of our future works.
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9 DISCUSSION

So far we assume people do not move when they speak. It is
possible that a person talks while walking. We believe the
combination of device-free localization techniques [49] and
WiHear would enable real-time tracking and continuous
hearing. We leave it as a future direction.

Generally, people share similar mouth movements when
pronouncing the same syllables or words. Given this, we
may achieve Wi-Fi hearing via DTW (details in Section 5.3)
with training data from one person, and testing on another
individual. We leave it as part of the future work.

Due to the longer distance between the target person and
the directional antenna, the larger noise and interference
occurs. For long range Wi-Fi hearing, we recommend grid
parabolic antennas like TL-ANT2424B [6] to accurately
locate the target for better performance.

To support real-time processing, we can only use CSI on
one subchannel to reduce the computational complexity.
Since we found the radiometric impact of mouth motions
is similar across subchannels, we may safely select one
representative subchannel without sacrificing much perfor-
mance. However, the full potential of the whole CSI infor-
mation is still under-explored.

10 CONCLUDING REMARKS

This paper presents WiHear, a novel system that enables
Wi-Fi signals to hear talks. WiHear is compatible with
existing Wi-Fi standards and can be extended easily to com-
mercial Wi-Fi products. To achieve lip reading, WiHear
introduces a novel system for sensing and recognizing
micro-motions (e.g., mouth movements). WiHear consists
of two key components, mouth motion profile for extracting
features, and learning-based signal analysis for lip reading.
Further, Mouth motion profile is the first effort that leverage
partial multipath effects to get the whole mouth motions’
impacts on radio. Extensive experiments demonstrate that,
with correct segmentation, WiHear can achieve recognition
accuracy of 91 percent for single user speaking no more
than 6 words and up to 74 percent for hearing no more than
three users simultaneously.

WiHear may have many application scenarios. Since Wi-
Fi signals do not require LOS, even though experimental
results are not promising, we believe WiHear has the poten-
tial to “hear” people talks through walls and doors within
the radio range. In addition, WiHear can “understand” peo-
ple talking, which can get more complicated information
from talks than gesture-based interfaces like Xbox Kinect [2]
(e.g., mood). Further, WiHear can also help disabled people
to conduct simple commands to devices with mouth
movements instead of inconvenient body gestures. We can
also extend WiHear for motion detection on hands. Since
WiHear can be easily extended into commercial products,
we envision it as a practical solution for Wi-Fi hearing in
real-world deployment.
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