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A Platform for Free-Weight Exercise
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Abstract—Regular free-weight exercise helps to strengthen natural movements and stabilize muscles that are important to strength,
balance, and posture of human beings. Prior works have exploited wearable sensors or RF signal changes for activity sensing,
recognition, and counting, etc.. However, none of them have incorporated three key factors necessary for a practical free-weight exercise
monitoring system: recognizing free-weight activities on site, assessing their qualities, and providing useful feedbacks to the bodybuilder
promptly. Our FEMO system provides an integrated free-weight exercise monitoring service that incorporates all the essential
functionalities mentioned above. FEMO achieves this by attaching passive RFID tags on the dumbbells and leveraging the Doppler shift
profile of the reflected backscatter signals for on-site free-weight activity recognition and assessment. The rationale behind FEMO is 1)
since each free-weight activity owns unique arm motions, the corresponding Doppler shift profile should be distinguishable to each other.
2) Doppler profile of each activity has a strong spatial-temporal correlation that implicitly reflects the quality of the activity. We implement

, Member, IEEE,

FEMO with COTS RFID devices and conduct a two-week experiment. The preliminary result from 15 volunteers demonstrates that
FEMO can be applied to a variety of free-weight activities, and provide valuable feedbacks for activity alignment.

Index Terms—Activity recognition and assessment, RFID

1 INTRODUCTION

FREE-WEIGHT exercise is indispensable in a balanced exer-
cise program and provides numerous health benefits. It
helps to stabilize bones and muscles that are relevant to
strength, balance and posture, and contributes to weight loss
and overall health [1]. Some researches recommend free-
weight training twice a week for adults [2], even for those
who walk or run regularly. Moreover, some individuals may
prefer free-weight exercises to aerobic exercises as the main
fitness activities simply for lifestyle or convenience reasons.
Monitoring and evaluation supports are crucial for free-
weight exercises. Compared with aerobic exercises, e.g.,
running, people are more vulnerable to inefficient training
or even accidental injuries in free-weight training. Stretch-
ing or warping muscles improperly, e.g., to the wrong direc-
tion or at a high speed, can lead to strains and tears. Timely
guidance is also important for exercise safety and quality
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since people might forget their progress, skip essential
steps, or miscount a sequence.

Despite academic and commercial success in aerobic exer-
cise monitoring [4], [5], [6], [7], [8], there is a void in automatic
free-weight exercise monitoring and evaluation. A personal
coach is still by far the most common solution to free-weight
training monitoring, which incurs high recruitment costs [9].
Unlike aerobic exercises where speed, distance and terrain are
essential, the quality of free-weight training is mostly defined
by repetitions, durations and activity sets. Existing schemes
on general activity recognition [10], [11] and aerobic exercise
tracking [6], [7] fail to capture such high-fidelity information
for free-weight exercises. Some pioneer work explored inertial
sensors, e.g., accelerometer and gyroscope, for free-weight
training monitoring [12], [13], yet these techniques cannot reli-
ably handle the variety of arm motion patterns and diverse
training paces. Furthermore, they also require body-worn sen-
sors to function, which poses inconvenience and might cause
unwanted motion changes during training. A promising alter-
native is to leverage wireless signals for device-free activity
sensing. Recent research has explored the feasibility of WiFi
signals for gesture and activity recognition [14], [15], [16], yet
either involves customized hardware (e.g., software radios
[15]) or targets at location-aware activities [16], thus unsuitable
for ubiquitous free-weight exercise tracking.

In this paper, we design FEMO, an automatic, non-invasive
and light-weight Free-weight Exercise MOnitoring system.
We enable non-invasive free-weight exercise monitoring by
attaching passive Radio Frequency IDentification (RFID) tags
on assisted instruments (e.g., dumbbells) during training, and
analyzing signals backscattered from tags during exercises.
Attaching passive RFID tags on instruments like a dumbbell
poses minimum overhead due to their negligible weight and
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size. FEMO works by analyzing the Doppler shifts extracted
from the backscattered signals. It automatically recognizes,
counts, and assesses the exercises on-site and in real time. The
detailed assessment feedbacks are also displayed on FEMO'’s
Ul'module to assist activity rectification.

The design of FEMO involves the following challenges:

(1) How to detect and extract accurate Doppler shifts from back-
scatter signals? Doppler shifts are accessible from com-
mercial RFID readers via a standard API. However,
the raw Doppler measurements are too noisy to pre-
cisely portray the tag movements (i.e., dumbbell trails).

We address this problem by transforming the
received phases from backscatter signals into the corre-
sponding Doppler shifts (Section 3.1). FEMO tracks this
Doppler stream and segments the Doppler shifts of each
activity performed even at diverse paces (Section 3.2).

(2)  How to recognize free-weight exercises on-site? Traditional
activity recognition schemes rely on sophisticated fea-
ture selection and complex classification techniques
for accurate recognition, which incur a large computa-
tional latency and are sensitive to training data.

FEMO addresses this problem by analyzing the
temporal patterns of RF signals affected by body
movements. Our observation is that each free-weight
activity is a unique combination of basic arm motions.
These combined arm motions exhibit unique yet stable
Doppler shift profiles in the temporal domain, produc-
ing light-weight and robust features for activity
recognition. We detail this idea and optimize the rec-
ognition process in Section 3.3.

(3)  How to assess user performances? Since FEMO aims to
provide useful feedbacks to users as guidance for
improper activity rectification, it is important to
quantify the quality of each performed activity.

In FEMO, we define a set of metrics evaluating the
quality of activities during free-weight exercises
from both the local and global views. An assessment
framework is proposed to evaluate both the activity
details and the activity consistency within each train-
ing group.

We implement FEMO as a framework consisting of four
core modules: Doppler value pre-processing, activity seg-
mentation, activity recognition and activity assessment. We
prototype FEMO on commodity hardware including a Com-
mercial Off-The-Shelf (COTS) RFID reader, a directional
antenna, and two passive RFID tags attached to the dumb-
bells. It runs on a central server and processes the tag reading
stream in pipeline. It also provides an interface to other
applications such as activity counting and training process
tracker, where they can obtain the current activity primitives
from FEMO via programming interfaces. We evaluate the
performance of FEMO on free-weight training data collected
in two weeks from 15 volunteers. The data cover 1,534
minutes of exercises, with 4,500 repetitions of 10 representa-
tive exercises. Results demonstrate that FEMO can be
applied to various representative free-weight activities, and
provide valuable feedbacks to users, especially beginners.

We summarize the contributions of this paper as follows:

e We introduce the first passive RFID-based system for
free-weight exercise monitoring. This system enables
on-site activity recognition and assessment, and
provides rich feedbacks to the user for activity
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rectification. Different from prior works that only
coarsely recognize to which type the activity is belong-
ing, our FEMO system can provide fine-grained meas-
urements on the activity by using the subtle Doppler
values retrieved from COTS passive RFID devices.

e We present a set of algorithms to effectively extract
free-weight exercise information from backscatter
signals. Specifically, our algorithms enable 1) extracting
minute Doppler shifting from noisy tag readings
reported by commercial RFID readers; 2) segmenting
the Doppler streaming such that each segment contains
an intact activity; 3) assessing the exercise performance
and providing useful feedbacks to the bodybuilder.

e We extend the system to multi-user scenario by
using multiple antennas. We address the challenging
issues in this extension, including the overlapped
monitoring regions, pairing between a tag and
antenna, and under-sampling caused by collisions.

e Last but not the least, we establish a proof-of-concept
prototype and conduct two-week experiments. Results
demonstrate the effectiveness of our system. It can
detect ten typical free-weight activities with an average
accuracy of 90.4 percent, and facilitate rectifying irreg-
ular exercise behaviors, especially for fitness novices.

2 OVERVIEW

This section briefly introduces the taxonomy of the targeted
free-weight activities and the overall work-flow of FEMO.

2.1 Taxonomy of Free-Weight Activities

In this paper, we focus on ten common and representative
free-weight activities, which can train different parts of the
muscle groups. We choose these popular activities based on
a two-week questionnaire investigation on 50 fitness enthu-
siasts in our university. Similar to [12], we categorize these
activities into different groups based on the muscle groups
desired to be trained. Fig. 1 illustrates ten free-weight activi-
ties of interests, which will be used to demonstrate our
work throughout this paper.

2.2 FEMO Work-Flow

Fig. 2 presents the work-flow of FEMO. It contains four
major steps: preprocessing, activity segmenting, activity rec-
ognition, and activity assessment.

The first step is preprocessing, where the system purifies
the raw phase readings and computes the Doppler shifts. In
this step, FEMO first mitigates the noisy phase readings
introduced by the hardware heterogeneity of the reader and
the inconsistency of tag orientations. FEMO then computes
the Doppler values and finally employs a moving-average
filter to smooth the Doppler values.

The second step is to segment the Doppler stream, such
that each segment contains a single free-weight activity. A
main challenge lies in the heterogeneity of Doppler profiles
with respect to different activities. We find that the state-of-
the-art, e.g., threshold-based filters [4], [12] or peak detec-
tion schemes [17], fails to segment the activity precisely. In
FEMO, we exploit the stochastic characteristics of Doppler
values and design a KL-divergence based segmentation
algorithm. This algorithm works efficiently and adapts to
various free-weight activities and users.

The third step is to recognize each activity from the Dopp-
ler segment. Towards accurate and prompt recognition, we
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build up a body movement model and observe that each
activity has a unique yet stable combination of arm motion
trails. Based on this observation, we employ the Doppler pro-
file as the feature of each activity and design a fingerprint
based activity recognition scheme. To improve the recognition
efficiency, we leverage the motion order of arms to prune the
unqualified matching candidates in advance.

The final step is to measure the quality of each activity
and provide valuable feedbacks to users. In FEMO, we
assess each activity from both the local and global views.
Local analysis concentrates on the activity details by com-
paring the proposed features against the standard ones.
The global analysis focuses on the consistency of each
group of activities by measuring the smoothness and con-
tinuity of activities within each group. The assessment
results are displayed on the end-user interface to assist
activity rectification.

3 SysTEMm DESIGN

This section details the FEMO design and highlights the chal-
lenges, key observations, and core techniques behind the
activity segmentation, recognition and assessment of FEMO.

3.1 Data Acquisition and Preprocessing
3.1.1  Preprocessing

Phase Measurement Smoothing. Instead of directly using the
noisy Doppler shifts from the API, we deduce the Doppler
shifts from the phase measurement reported by the commer-
cial reader. To achieve precise Doppler shifts, it is crucial to
minimize the phase noise. We change the tag orientation
with respect to the antenna with a step of 6 degree and exam-
ine how sensitive the phase measurement is to tag orienta-
tions. The antenna is set to be 2 m away from the tag. Fig. 3a
shows the raw phase measurements when the tag rotates 2w
(marked as red points). We find that due to the inherent cir-
cuit noise, the phase values fluctuate continuously and
randomly. We further test the distribution of these
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Fig. 4. Phase measurements before/after smoothing under static/move-
ment cases.

measurements against the standard Gaussian distribution
(shown in Fig. 3b). The linearity of the points on the Q-Q plot
suggests that the data are normally distributed, with a stan-
dard deviation of 0.0332 radian. Based on this observation,
we model the phase measurement 6 as a Gaussian random
variable A(u,0.0332). We then utilize the standard Kalman
Filter [18] to smooth the phase values. We test various look-
back window sizes, and empirically set it as 10 which opti-
mizes the smoothing performance.

Fig. 4 shows the phase measurement before/after
smoothing in both the static and movement cases. The dif-
ference indicates that the Kalman filter effectively enhances
the stability of phase measurements of static tags. For the
moving-tag case, we can see that the phase values change
steadily after filtering. Yet they still retain a clear profile of
the free-weight activity.

Deducing Doppler Shifts. Doppler shifts are generated due
to the relative movement between a transmitter and a
receiver, e.g., the stationary reader and the moving tag. The-
oretically, to calculate Doppler we should estimate the
change in RF frequency. However, the commercial reader
does not support this function, i.e., reporting the frequency
change. Hence, we adopt a phase-based method to measure
the corresponding Doppler. Suppose at time ¢; and ¢;,1, the
reader receives two consecutive signals from the moving
tag, with the phase readings 6; and 0;,. Let v be the tag’s
moving speed within the period of [t;,¢;41]. v can be
regarded as a constant due to the short interval between
two consecutive tag readings. Hence the distance (d) that
the tag moves equals to v - (t;11 — ;). On the other hand, we
know that the signal in the backscatter communication tra-
verses 2 times of d. Thus we have

20 - (ti+1 — ti) =\ (M> (1)
T
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Fig. 5. Doppler shift of 10 consecutive Bent-over lateral raise.

The Doppler shift can be further expressed as [19]

v Oiy1 — 0;
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Fig. 5b shows the phase-deduced Doppler shifts. The
measurements are collected when a volunteer performs
Bent-over lateral raise ten times. Compared with the noisy
Doppler values reported by the API (Fig. 5a), the deduced
Doppler values clearly show ten repetitive patterns.

Despite the high resolution, from Fig. 5b we find that the
deduced doppler value still fluctuates over time. This is
because the time interval between any two consecutive
readings may vary due to the random access mechanism of
ALOHA protocol [20]. Such non-uniform time intervals
lead to Doppler fluctuations and jitters that overwhelm the
original appearance of each activity. Therefore, after com-
puting the Doppler value, we apply a moving average filter
over the last n readings (n=10 in FEMO) to smooth the
Doppler values. Fig. 5¢c shows the final results.

3.2 Activity Segmentation

The activity segmentation module identifies Doppler seg-
ments that are likely to contain a complete free-weight activ-
ity. We define each segment as «; = (¢, : t.), with start time
t, and end time ¢, within the Doppler stream. The segmenta-
tion yields a set of segments K, with each containing a free-
weight activity: K = {k1,k2,...,kn}.

There has been extensive efforts on activity segmentation
[10]. Most of them assume that each activity will exhibit a clear
peak in the received signal stream. Thus by comparing each
signal strength with a static threshold, the activity segments
will be located accordingly. However, such a solution is
unsuitable for FEMO as a free-weight activity usually contains
multiple peaks within an activity period. The one-peak detec-
tion scheme may split one activity into multiple segments.

3.2.1 Key Observations

In FEMO, the activity segmentation scheme is based on the
fact that people tend to take a short rest after each activity to
control the training pace. We term such a short rest as a rest-
ing interval. The resting intervals have small Doppler values,
which naturally separate the activities. Thus by extracting
the start and end times of each resting interval, we can
acquire each activity segment accordingly. Our segmenta-
tion scheme leverages two insights:

e The sharp Doppler values usually take a small por-
tion of the whole data within the resting interval.
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e Except for the sharp Doppler values incurred by the
pose adjustment, the remaining Doppler readings
within the resting interval are relatively small and stable.

Thus if we split a resting interval into multiple consecutive

windows, the distribution of Doppler values within each win-
dow should be similar. Conversely, the Doppler values out-
side the resting interval corresponds to the free-weight
activity. These values change rapidly and show a completely
different distribution from those in the resting interval.

3.2.2 Segmentation Scheme

The above analysis leads us to an adaptive segmentation
scheme based on the KL divergence [21]. Denote the Dopp-
ler stream as S = (s;) € R, where N is the number of dis-
crete time points ¢, ..., ¢y at which the Doppler values are
sampled. For each w consecutive Doppler values, we group
them into a window. Within each window, we further cate-
gorize the Doppler values into multiple bins. The bin size is
empirically set as 0.35. Then we can get the discrete proba-
bility distribution function (PDF) of Doppler values within
each window. Given two consecutive windows w; and wj,
let P and @ be their PDF, respectively. The KL divergence
of @ from P is defined as

Di(PIQ) = 3 PQ) - . ®

The KL divergence measures the information loss when
@ is used to approximate P. In FEMO, there are three cases:

(1) both windows are within the resting interval;

(2)  both windows are within the activity period;

(3) one is within the resting interval and another is
within the activity period;

In the first case, Dy (P]|Q) will be close to zero due to
the similar probability distributions within these two win-
dows (Fig. 6a). In the latter two cases, Dg7,(P||Q) will be sig-
nificantly larger than zero as the distribution varies sharply
among these two windows (Fig. 6b). Hence by checking
Dy (P||Q), we can ascertain whether the current window is
within the resting interval or not. After finding all windows
within the resting interval, we can extract the activity seg-
ment accordingly. Fig. 7 shows the segmentation result over
a Doppler stream, we see that all of these ten activities are
correctly identified. We also notice the Doppler profile of
each activity is completely contained in the corresponding
segment, indicating accurate and robust segmentation.

Determining a Proper Window Size. In FEMO, multiple
windows will be employed for activity segmentation. The
window size, termed as w, should not be determined arbi-
trarily. On one hand, a large window size may cover extra
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portions instead of the resting period only, leading to inac-
curate segmentation. On the other hand, a small window
size tends to generate massive windows, resulting in high
computational overhead. In both cases, the segmentation
performance of FEMO will be degraded. We thus determine
the window size adaptively by using the equation: 4Z,
where n is the number of tags (which is related to the num-
ber of users) within the detection region of the reader’s
antenna, r is the reading rate of the reader (e.g., r = 340 for
Impin] R420 reader), ¢ is the minimum duration of the rest-
ing interval which is set to 0.5 s empirically, and d is the
granularity coefficient. The intuition behind is as follows.
Ideally, each tag within the reader’s detection region will be
interrogated L times per second. We can acquire £ Doppler
values during the resting interval. To guarantee that each
activity can be correctly identified, the resting interval
should contain at least 2 windows. Taking the multipath
effect into account, we conservatively set d = 4. Thus, the
window size automatically increases with a small number
of tags, yet decreases when the tag population increases. In
this way, the window size adapts to the ambient and popu-
lation change in FEMO.

3.3 Activity Recognition

The activity recognition module aims to identify the free-
weight activity within each segment. Many previous works
focus on building a robust activity recognition system [4],
[12], [15], [16], [22]. The main principle is to extract unique
features for the activity from the input signals, and train a
classifier to distinguish each unlabelled activity. However,
this method has two major drawbacks. First, the system per-
formance is sensitive to the training set. If the training set is
small or biased, the classifier will suffer from low recognition
accuracy. Although a larger training set may lead to a more
accurate classifier, it will incur a higher overhead (e.g., time
and cost for collecting the ground-truth) on system realiza-
tion and deployment. Second, such a method suffers from
higher latency. We are motivated to design our activity rec-
ognition scheme balancing accuracy and overhead.

3.3.1 Body Model and Key Observation

Activity recognition is directly linked to body movement
analysis. We aim to build a robust activity recognition
scheme via the body movement patterns. The key intuition
behind this scheme is that each free-weight activity can be
abstracted to either an arm stretching motion or an arm spin-
ning motion. For example, the Bent over single arm row
(activity 05) stands for stretching the arm vertically,
whereas the Chest fly on incline bench (activity 08) refers to
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Fig. 8. Trails of six basic arm motions.

Case 1: Vertial lateral raise conducted by volunteer 01

o N

720 20 20 60 80 100 120
8 5 Case 2: Vertial lateral raise conducted by volunteer 02
()] D D

2 ‘

® & s -
S

Lo

0 20 40 60 80 100 120
Ceése 3: Bent-over one—arm dumbbell conducted by volunteer 03

0 50 700 150 200
Sample

Fig. 9. Doppler profiles of activities.

the process of spinning both arms 90 degree in parallel.
Based on different moving directions, the arm stretching/
spinning motions can be further divided into 6 kinds of basic
arm motions (shown in Fig. 8). By systematically analysing
the motion trails of these fundamental arm motions, we
have the following observations:

(1)  Each arm motion corresponds to a unique motion
trail, which yields a unique Doppler pattern.

(2) By correlating the free-weight activity with arm
motions, each free-weight activity corresponds to a
unique combination of fundamental arm motions,
either with different numbers or different orders. For
detailed demonstration, we list the combinations of
each activity in Fig. 11.

An insight derived from above observations is that the
Doppler profile of each free-weight activity is distinguishable
from each other, leading to large inter-class variations. On the
other hand, the execution of each activity follows the stan-
dard back eight and demonstrates the similar arm motions.
Thus, performing an activity multiple times will result in
multiple similar Doppler profiles, with a large intra-class simi-
larity among them. Fig. 9 depicts the Doppler profile of three
activities. We can see that the two upper subfigures show
the stability of Doppler profiles corresponding to the same
activities, while the lowermost confirms that the Doppler
profile disperses in case of different free-weight activities.
Hence, the Doppler profile can discriminate the free-weight
activities and act as a reliable signature.

3.3.2 Fingerprint Matching

FEMO compares the profile in each segment against the stan-
dard to identify free-weight activities. Hence we need to
evaluate the similarity between two Doppler profiles. We
argue that the euclidean-distance metric is unsuitable since
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activity segments may vary in length due to personal prefer-
ences, physical characters (weight, height) and other reasons.

FEMO uses Dynamic Time Warping (DTW) [23] to com-
pute the similarity between two Doppler profiles. The bene-
fits are twofold. On one hand, DTW compares two profiles
with different lengths. On the other hand, DTW automati-
cally compresses or stretches a sequence to minimize the
distance between two sequences, thus focusing on the shape
similarity rather than the absolute values. Fig. 10 shows the
Doppler profiles of bent-over one-arm dumbbell that are
aligned with DTW. We observe that Doppler profile 1 is
stretched and shifted to match with Doppler profile 2.

Note that in current implementation of FEMO, we only
focus on the data of predefined ten activities. Other unknown
activities (including picking up, putting down the weights, or
walking around, etc..) will be filtered out by comparing their
DTW distances with a pre-calibrated threshold in advance.

3.3.3 Hierarchical Activity Recognition Framework

Directly using DTW for activity recognition is costly. The
complexity of DTW is O(mn), indicating a large overhead
for long Doppler profiles, especially when we have to
compare one Doppler profile against all candidates in the
database. To reduce the computational overhead, we design
a hierarchical activity recognition framework based on two
observations on the arm motion pattern:

(1)  The free-weight activity involves either a single arm
motion or two arm motions.

(2) For the two arm motion activities, they are either
conducted in parallel or alternatively.

Fig. 11 shows the decision-tree based recognition scheme.
At the first level, FEMO classifies the candidate by detecting
whether the current activity is a single arm activity or not.
This process can be achieved by checking whether the
attached two tags on the dumbbells are detected together. If
yes, FEMO further classifies the candidate by checking
whether the current two-arm activity is performed alterna-
tively or not. This process can be done by examining the
concurrency of activities within these two doppler streams.
Specifically, let ¢, and ¢; be the overlapping duration and
the longest time duration of two activity segments, respec-
tively. If t, > B - t;,, FEMO ascertains these two motions are
conducted in parallel. With above pruning process, we can
shrink the candidate group to no more than half its original
size. In our implementation, we set 8 as % by default. Identi-
fying the tag ID takes O(1) time, while judging the concur-
rency of two activities is achievable in O(1) time. These two
simple operations help to prune the unqualified profiles in
an early stage of activity recognition, thereby improving the
computational efficiency. After the activity recognition, all
activities will be labelled and stored for activity assessment.
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Fig. 11. The pipeline of activity recognition.

3.3.4 Extending to Multi-User Scenarios

Besides recognizing the activity for single-user scenarios, in
this section we extend FEMO to multi-user scenarios. It is
intuitive to use multiple antennas to deal with multiple
users. Each antenna can cover a particular region and moni-
tor one user. However, deploying multiple antennas will
raise several challenging issues. First, multiple antennas
may have overlapped areas. Each individual tag might be
read by more than one antenna, i.e., the tag might be within
different monitoring regions of those antennas. Thus, which
antenna should be assigned to monitor a certain tag is a
problem. In fact, this requires find a proper pairing between
a tag and an antenna. Another challenge is under-sampling,
which is caused by the TDMA based scheduling strategy of
RFID antennas or ALOHA based anti-collision mechanism
among multiple tags.

To address above issues, we first analyze the impact of
angle between the reader and the tag. Since Doppler will
have a projection to the reader-to-tag direction, this angle
has a non-trivial impact on the Doppler profile. The slight
deformation of Doppler profile might increase the DTW dis-
tance between it and the template, resulting in a decrease of
the recognition accuracy. Thus, for a given tag we propose to
assign the antenna that is directly facing the tag as the
desired antenna. The reader we adopted supports up to four
antennas, thus FEMO can monitor four users concurrently,
i.e.,, one antenna for each user. In practice, an RFID reader
can connect more antennas (e.g., 16) via an antenna hub.

FEMO addresses the multi-user problem with following
three steps: determining the pairing between the antenna
and the subject, interpolation-assisted Doppler profile con-
struction, and activity recognition.

e  Determining the pairing. It is possible that all the four
antennas can read a subject’s tag when he/she is per-
forming the activity. Thus, solving the pairing prob-
lem should consider the radiation pattern of RFID
antennas. According to the typical radiation pattern
of directional patch antenna, the transmitting power
radiated at an angle (to the left/right of the beam
center) is less than the power in the center of the
beam. For example, for the antenna with the gain of
8 dBi (adopted by our current implementation), the
power radiated at 36 degrees is 3 dB less than the
beam in the center (6 dB for the angle of 60 degrees
and 15 dB for the angle of 90 degrees). On the other
hand, passive tags harvest energy form the RF waves
emitted by the reader antenna. With these two facts,
we are inspired to estimate whether the tag is within
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Fig. 12. RSS values of four tags under four reader antennas in the multi-
user scenario.

the center monitoring region of an antenna based on
its backscattered signal strength. That is, the tag with
maximum RSS in a certain antenna should be the tar-
get tag. According to our experiments, within the
effective range of RFID readers (around 6 m in the
indoor environment), this conjecture always holds as
long as there is no obstacles constantly blocking the
line-of-sight between the antenna and tag.

As an illustrative measurement, we deploy four
reader antennas in parallel with 1.5 m in between
and ask four volunteers to stand 2 m away from the
antennas. For simplicity, tag i (e.g., volunteer i,
1 =1,2,3,4) is facing antenna 7, and volunteer 2 per-
forms activities. Fig. 12 plots the RSS values of each
tag collected by each antenna. In accordance with
our analysis, we find that tag ¢ has the maximum
RSS in the ones collected by antenna ¢. In particular,
in Figs. 12a and 12b, tag 4 is not even readable by
antenna 1 and 2 because of its weak signal strength
(e.g., lower than the minimum sensitivity of reader
(say 80 dBm)). Hence, in a multi-user scenario,
FEMO utilizes KL-divergence based scheme (Section
3.2.2) to find the static window before segmentation
procedure, and compares the RSS of tags collected
by a given antenna to determine which tag (subject)
should be appropriately pairing with this antenna.

e Interpolation-assisted Doppler profile construction. For
a COTS UHF RFID reader, all reader antennas
work in a TDMA pattern. Thus, the sampling rate is
decreased by a factor of M for individual tag, where
M is the number of antennas in the system (M = 4 in
current FEMO'’s implementation). To mitigate the
impact of under-sampling, we study the scheduling
strategy of reader antennas and find the fact that
they operate in a fixed order. The working time of
each antenna is short (about 0.025 s). Thus, we
propose to use linear interpolation algorithm to con-
tinuously collect sufficient samples from each tag. In
the implementation, we conduct interpolation on
phase values and construct phased based Doppler
profiles as aforementioned.

After above processes, FEMO can effectively support the

multi-user exercise monitoring, just as in the single-user
scenario.

3285

3.4 Activity Assessment

The activity assessment aims to characterize the quality of
the exercise and provides feedback to users on site. We first
measure the quality for each individual activity by compar-
ing its characteristics against the standard ones. Note that
free-weight activities are often grouped where each group
contains a set of repetitive activities. Activity consistency
within an activity group is also essential to the gym train-
ing [24]. Hence we assess the quality of activities from two
perspectives, i.e., the local view and global view, to reflect
both the offset of each individual activity from the standard
and the inconsistency of a activity group.

3.4.1 Local Analysis

Local analysis evaluates the quality of each activity by con-
centrating on its duration and intensity, which are two gen-
eral criteria for evaluating the free-weight activities.
Duration. It measures how long an activity is performed
by the user. The duration of an activity is critical to the free-
weight training [25]. A longer duration indicates a slower
arm motion, which potentially corresponds to an ineffective
muscle workout. If the duration is too short, the muscle will
be stretched or warped fiercely, leading to an excessive mus-
cle workout. Either case degrades the effectiveness of gym
training. In order to improve the training efficiency, FEMO
measures the difference of the durations between each con-
ducted activity and the standard. Let d; be the duration of
activity 4, d, be the duration of the corresponding standard
activity. FEMO computes their difference d; — d; and reports
the result to the user at the end of each activity group.
Intensity. Intensity is another important metric to evaluate
the quality of free-weight activities. It reflects the energy of
the arm motions expended by an activity [26]. It is under-
standable that a high quality activity should show a similar
energy trend to the standard. Adapting this idea to the dopp-
ler domain, it then becomes much clear that we measure the
similarity between their doppler segments. Specifically, Let
A={ay,a,...,a,} € R™™ be the doppler segment of the
desired activity, B = {b1,b,...,b,} € R"" be the corre-
sponding standard activity. In FEMO, we first align these
two doppler segments by DTW to address the potential
inconsistency of segment length. After that, we compute
their similarity using euclidean distance metric. A shorter
distance between two doppler segments indicates a higher
similarity, and hence a higher performance of this activity.

3.4.2 Global Analysis

Global analysis aims at monitoring how well each group of
activities are performed, with an emphasis on unveiling the
abnormal activity pattern and irregular resting intervals
within each activity group. This part concentrates on two
kinds of characteristics: smoothness and continuity.
Smoothness. Smoothness reflects how similar each activity
is to the remaining activities within an activity group. Dumb-
bells require more balance and more muscular control than
others, such as the training with barbells or machines, and bal-
ance is crucial for optimal performance [27]. Smoothness can
well reflect the balance by measuring the similarity of exer-
cises in a group. A larger similarity indicates more regular
arm actions, corresponding to effective muscle trainings. To
evaluate the smoothness of an activity, we employ the discrete
PDFs of all the Doppler values within an activity segment as



3286

the proposed features. Specifically, let PDF(A) = {p;}'", be
the PDF of the activity segment A, where p; represents the ith
bin value. Since the Doppler value induced is at the granular-
ity of 0.3 Hz, the number of bins to calculate the discrete prob-
ability distribution function is also set to the granularity of
0.3 Hz. In our measurements, we find that the fluctuation
range of most Doppler values is around 6 Hz, we therefore set
the number of bins to 20. To compare the similarity between
two activities, we employ the Earth Mover’s Distance
(EMD) [28]. EMD measures the dissimilarity between two dis-
crete probability distribution function PDF(A) = {p;};", and
PDF(B) = {g;}}_,- It is the minimal effort required to trans—
form one h1stogram into another. Formally, the EMD between
PDF(A) and PDF(B) is formulated as the following linear
programming problem

m n

Z Z ft J i,;'
=1 j=
m
st Y fiy<ap Z fij < pi
i=1 =1

> = min{meZQj}, fij =0,
o 7 7

where d;; is the ground distance between the bin ¢ in
PDF(A) and the bin j in PDF(B). We then calculate the
EMD for each pair of activities within a group.

Continuity. Continuity depicts the consistency of resting
intervals within an activity group. For efficient training, the
users should pace themselves throughout the exercises [29].
A higher consistency of resting intervals indicates that the
user has a good motion pace control, i.e., a regular muscle
stretching /warping pace. Ideally, within an activity group,
the resting intervals should be consistent with each other.
However, even a professional gymnasium trainer may fail to
keep strictly consistent resting intervals. Thus we model the
resting interval of the standard activity group as a standard
normal random variable. To evaluate the continuity of activi-
ties performed within an activity group, we investigate the
statistical characteristic of resting intervals and employ kurto-
sis as a metric. The coefficient of kurtosis is a measurement on
the degree of peakedness in a variable distribution. Specifi-
cally, let R = {r;}!"; be the vector of resting intervals within
an activity group. The kurtosis can be computed as follows:

EMD(A,B) =

mo 4 4
Ei:l(ﬁ H’) — 3= ’u'_ — 37 (4)

, 2\2 4
(o (ri = )7 o
where 1 and § are the mean value and standard deviation of
the resting interval vector. As larger B, value indicates a

concentrated distribution of resting intervals, therefore a
better continuity of activities that the user performs.

By =

4 SYSTEM IMPLEMENTATION

This section presents both the hardware composition and
software realization of FEMO.

Hardware. We implement a prototype of FEMO on COTS
UHF RFID devices, including an Impin] reader Model R420,
a Laird antenna model A9028RONF (with a gain of 8 dbi),
and a set of passive RFID tags. As the metal dumbbell will
block the magnetic waves, we place the tag on a plastic
form, which is further attached to the dumbbell. The reader
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is connected to a backend PC via an Ethernet cable and con-
tinuously reports the signal features backscattered from
tags, including RSSIs, phase angles, and Doppler shifts. The
reader connects to the host PC via Ethernet. We time-stamp
each tag reading by using the reader’s local clock in order to
eliminate the influence of network latency.

Software. The software of FEMO is fully implemented in
C#. It comprises of three components: data collection module,
data analysis module and UI module. The data collection
module is integrated with the Octane SDK, an extension of
the LLRP Toolkit, which supports continuous tag interro-
gation at a rate of 340 readings/s. The data analysis module is
responsible for recognizing and assessing the quality of each
performed activity. The assessment results are displayed on a
web-based Ul module. The software runs on a Lenovo PC
with an Intel Core i7-4600U 2.10 GHz CPU and 8 GB RAM.

UI Module. FEMO currently provides two services to the
bodybuilder: training tracker service and activity perfor-
mance assessment service. The training tracker aims to pro-
vide daily training statistics to the bodybuilder, including the
accumulative training summary and daily activity summary.
The former one records the training frequency, workout and
duration of the bodybuilder. The latter one reports the
amount of activities and average duration of each activity. In
this way, FEMO provides the raw training data to the body-
builder. The activity performance assessment service offers
the quantitative performance assessment on each activity in
the daily training. The user can visualize his doppler profiles
of the current activity group against the standard template for
evaluating his activity performance. The service also offers
quantitative reports on the quality of the selected activity
group against the standard template, such as the smoothness
of each activity and duration/intensity differences from stan-
dard template, within each activity group. Based on the com-
parison, the user obtains a thorough summary on the
continuity of activity groups. Although our current FEMO
prototype only has fundamental functions, e.g., the visualized
quality report for daily activities and logging data along the
overall training process, we plan to integrate more advanced
functionalities in our future work, such as the customized
training reminder and intelligent training advisor.

5 SYSTEM EVALUATION

In this section, we conduct extensive experiments and eval-
uate the performance of FEMO in terms of accuracy, effec-
tiveness, and overhead.

5.1 Experiment Setups

The experiment scenario is shown in Fig. 13. We attach two
Impinj H47 passive tags on a pair of dumbbells. Each dumb-
bell weighs 2.5 kg. Note that the H47 passive tag is a non-
metal mount tag hence does not work on metal surfaces, we
thus mount it on a foam plastics that is attached on the
dumbbell. The foam plastics sufficiently isolates the tag
from the metal. To conduct a comprehensive evaluation, we
design a training workout with the ten free-weight activi-
ties. In this workout, each activity is required to be per-
formed with three groups of ten repetitions. Then we
recruit 15 volunteers (vary in age, gender, height, and
weight) to follow this workout and track their training pro-
cess during two weeks. The total duration of the training is
1,534 minutes, with over 4,500 repetitions in total. The
15 volunteers are diverse in weight, height and exercise
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Fig. 13. Experiment scenario.

frequency. Among them, some ones are our acquaintances,
and others are not. To obtain standard templates, we recruit
one gym trainer who has over 5 years experience and let
him perform this workout under the same settings as the
other volunteers. In addition, to get the mostly effective
assessment of his training, we recommend the trainer to
stand at a constant place during his free-weight exercises.

5.2 Activity Segmentation
5.2.1 Evaluation Metric

We evaluate the activity segmentation scheme based on six
metrics [10]: insertion rate, deletion rate, fragmentation rate,
merge rate, underfill rate and accuracy. The former five met-
rics are used to examine the segmentation robustness while
the last is to examine the overall segmentation accuracy. The
detailed explanation of these metrics are as follows:

e Insertion rate: The proportion of cases that FEMO
detects an activity within the resting interval. It
examines how resilient FEMO is to noisy Doppler
peaks within resting intervals.

e Deletion rate: The proportion of cases that FEMO
misses one activity. It examines how sensitive FEMO
is to weak Doppler changes incurred by gym activity.

e Fragmentation rate: The proportion of cases that
FEMO splits a single activity into multiple ones. It
evaluates the ability of FEMO in processing compli-
cated or incoherent activities.

e Merge rate: The proportion of cases that FEMO
merges multiple activities into a single one. It evalu-
ates FEMO'’s ability in segmenting the activity with
high training pace (i.e., with tiny resting intervals).

e Underfill rate: The proportion of cases that the seg-
mented activity is incomplete. It examines whether
our method is capable to accurately while completely
excavate the entire doppler profile for an activity.

° Accumcy: # of correctly detected activity

F#of activities that are performed® It examines the

overall performance of FEMO on activity segmentation.
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5.2.2 Evaluation Result

Fine-Grained Segmentation Performance. Fig. 14a shows the
fine-grained performance of the segmentation scheme. In
particular, the insertion rate is zero for activity 01 and 05.
This value then increases steadily to around 0.005 for activi-
ties 02, 03, 04 and 10. Finally, it almost reaches 0.015 for
activities 06, 07, and 08, which occupies ignorable portion of
all the segments. For all activities, the insertion rate is
extremely low. This result indicates that our method is resilient
to those doppler peaks within the resting interval.

After checking the deletion rate, we find that it is also
extremely small (below 0.01) for all the desired activities
except activity 07. This is because that people usually raise
the dumbbells up slowly when performing activity 07, lead-
ing to minor Doppler values. Such minor changes, in some
cases, may be incorrectly put in resting intervals. Neverthe-
less, FEMO still controls the deletion rate below 0.02 for
activity 07. This result clearly demonstrates that FEMO is sensi-
tive to Doppler changes incurred by the gym activity.

As the bar chart in Fig. 14a shows, FEMO achieves
diverse fragmentation rate for different activities. The frag-
mentation rate is relatively small for activities 02, 04, 06 and
09, i.e., below 0.01 on average. It then triples for activities 07
and 10, and further quintuples for activities 01, 03, 05 and
08. This is because activities 01, 03, 05 and 08 contain a recip-
rocating motion, and people tend to keep a stable posture
for a while within these activities. Despite the high dispar-
ity, we observe that the overall fragmentation rate for ten
activities is below 0.065. This result shows that the probability
of segmenting one activity to multiple ones is very small.

In Fig. 14a, we also notice a gap between the maximum
and minimum merge rates. This is due to the diverse train-
ing pace on different gym activities. For example, in our
experiment, we find that the resting interval is relative lon-
ger for activity 01, 02 and 03, which results in a lower merge
rate. While for activity 06, 08 and 09, people tend to take a
short rest after performing the activity. Such a short rest
leads to activity omissions, yielding a relative larger merge
rate. Although the gap exists, it is still relative small
(approximate to 0.05) and FEMO can achieve a merge rate
of below 0.065 in the worst case. Therefore, we can conclude
that our method scales well to different training paces.

Fig. 14a also shows the underfill rate of FEMO. We find
that FEMO can precisely capture the entire Doppler profile
of activity 02, 04, 06 and 09. Then the underfill rate increases
slightly for more complex free-weight activities (e.g., activ-
ity 01, 03, 05 and 08). The highest underfill rate is 0.04 for
activity 08, indicating FEMO can precisely capture the entire
doppler profile of this activity with a success rate of 0.96.
This result clearly states that our method can accurately excavate
the entire doppler profile for each activity.

Accuracy w.r.t Activity Diversity. Fig. 14b plots the result
of overall segmentation accuracy with respect to different
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Fig. 14. Evaluation result of activity segmentation scheme.
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Fig. 15. Doppler profiles of activity 01, 02, 05, and 06 (two repeats in
each subfigure).

activities. The performance of the segmentation result can
be categorized into three groups. The first group contains
activities 01, 02, 05, and 10, where FEMO achieves a seg-
mentation accuracy over 0.95. In the second group, FEMO
achieves a segmentation accuracy between 0.9 and 0.95.
This group contains activities 04, 06, 07, and 09. While the
last group contains activities 03 and 08. For this group,
FEMO achieves an accuracy between 0.85 and 0.9. The first
two categories together cover eight out of ten activities, indi-
cating that FEMO can achieve a high accuracy (i.e., > 0.9)
for the major activities. As for the last group, although the
segmentation accuracy reduces, it is still above 0.85. There-
fore, we can conclude that FEMO is robust to activity diversity
and can achieve desirable segmentation accuracy.

Accuracy w.r.t Human Diversity. In this experiment, we
examine the effect of human diversity on the segmentation
accuracy. For each volunteer, we compute the segmentation
accuracy on different activities and get the overall accuracy
distribution. The result is shown in Fig. 14c. The overall seg-
mentation accuracy for the 15 volunteers maintains in a
high level. Specifically, the median accuracy is above 0.9 for
12 volunteers. For the remaining 3 volunteers (volunteer 9,
10, and 11), we can see that FEMO achieves a relative infe-
rior performance, with an accuracy of 0.83 on average. Inter-
estingly, based on the physical characteristic records of
volunteers, we find that all the three volunteers seldom go
to the gym. As a result, the lack of exercise of these volun-
teers may lead to non-standard behaviors, thus lowering
the segmentation accuracy of FEMO. We further investigate
the fine-grained segmentation accuracy distribution of each
volunteer. We can see that as shown in Fig. 14c, those who
take exercise regularly (e.g., volunteer 3, 4, 6 and 12), the
box is relatively short, suggesting that the segmentation
accuracy of overall activities has a high level similarity with
each other. While for those sedentary group (e.g., volunteer
9,10 and 11), we can see that the box of accuracy distribu-
tion is comparatively tall, indicating that FEMO holds dif-
ferent accuracy performance on different kinds of activities.

5.3 Evaluation on Activity Recognition
5.3.1  Evaluation Metric

It is possible that the activity recognition system can miss,
confuse, or falsely detect activities that did not occur. Thus,
in evaluating our activity recognition scheme, we employ
the following three metrics:
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Actual Predicted label
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Fig. 16. Confusion matrix of activity recognition.

Precision P. 1L

7ppp Where TP and FP represent the true
positives and the false positives. Precision is the fraction of
correctly recognized activities that are relevant to all the rec-
ognized activities.

Recall R. %, where FN is the false negatives. Recall is
the fraction of the correctly recognized activities that are rel-
evant to all this kind of activities.

False Positive Rate F'PR. The proportion of cases that

FEMO mistakes an activity for other activities.

5.3.2 Evaluation Result

Owerall Accuracy on Different Activities. Note that when con-
ducting the activity recognition, we only compare the pro-
file of current activity against the templates in the sub-class
(i.e., one-arm, in parallel, or alternative). Fig. 15 shows the
actual measurements (i.e., Doppler profile) of activity 01, 02,
05, and 06 that all belong to the one-arm sub-class. The
results indicate that the profile is distinguishable. Detailed
profiles of other activities are skipped due to space limit.
Instead, we show recognition accuracy for all activities
using the fusion matrix in Fig. 16. The data is collected from
15 volunteers. In Fig. 16, each row denotes the actual activ-
ity performed and each column represents the activity rec-
ognized by FEMO. Each element in the matrix represents
the fraction of activities in the row that were regarded as
the activity in the column. As is shown, the average accu-
racy is 0.90 with a standard deviation of 0.03 for 10 gym
activities. This shows that we can extract rich information
about free-weight activities from the Doppler profiles. The
result clearly shows that FEMO achieves a high and stable activ-
ity recognition performance, due to its efficient Doppler profile
extraction scheme and robust profile matching algorithm.

Examine the Fine-Grained Performance. In this experiment,
we examine the the precision, recall and false positive rate of
the recognition performance. The result is shown in Fig. 17.
FEMO achieves an average precision of 0.90 with a standard
deviation of 0.04. This result demonstrates that FEMO sub-
stantially returns more actual labels to the activity than error
labels. As Fig. 17 shows, although the recall fluctuates over
different activities, it still maintains a high level for all of these
10 activities, achieving a mean value of 0.91 with a standard
deviation of 0.03. This result demonstrates that FEMO can rec-
ognize all of these 10 activities with high accuracy. In a nut-
shell, the high precision and recall achieved by FEMO manifests
that our recognition scheme scales well to different activities.

We then examine the FPR of the recognition result. A
higher FPR implies a great portion of other activities that
are mistakenly classified as the targeting activity. As a
result, people may ignore the system’s notifications and
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eventually abandon the system. Fig. 17 shows the FPR cross
10 activities. We observe that FEMO achieves an average FP
rate of 0.011 with a standard deviation of 0.004. Such a low
FP rate suggests that FEMO rarely takes other activities as
the targeted activity. Therefore, we can trust the activity rec-
ognition result with high confidence.

Impact of Antenna-to-User Distance. We further examine
the impact of antenna-to-user distance on the activity recog-
nition. In this trail of experiments, we ask three volunteers
to perform activities under different antenna-to-user dis-
tance settings. Each activity is performed 30 times by each
volunteer. For each activity, we average the recognition
accuracy of these volunteers. We randomly pick out three
activities and show their recognition accuracy in Fig. 18. As
the result indicates, when the user is with close proximity to
the antenna, the recognition accuracy of these three activi-
ties all maintain in a high level. As we expand the user-to-
antenna distance, the recognition accuracy changes moder-
ately. This result clearly demonstrates that our recognition
scheme is insensitive to the user-to-antenna distance.

Impact of Angle. In this part, we test how the orientation of
the subject to the reader impacts the recognition accuracy.
In these experiments, a volunteer stands at different places
along a line which is 2 m away from the center of reader
antenna to form different angles (0 degree is the default set-
ting in FEMO), as shown in Fig. 19a. Three activities (activ-
ity 01, 05, and 06) are performed, each for 30 times. The
average recognition accuracy is reported in Fig. 19b. The
results indicate that as the angle gets larger, the accuracy
decreases gradually. Specifically, when the angle is
30 degree, FEMO can still achieve an accuracy of almost
90 percent. But when the angle is 60 degree, the accuracy
decreases by 20 percent. Based on our experimental result,
we recommend the users to directly face the antenna when
performing activities (or arrange the layout of the fitness
region to meet this requirement).
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5.4 Evaluation on Activity Assessment

FEMO can show the user the detailed assessment informa-
tion about Duration, Intensity, Smoothness, and Continuity of
his/her exercises. Then, to evaluate the activity assessment
service, we survey the 15 volunteers to get qualitative feed-
back on the effectiveness and practicability of our system
objectively based on their true experience. This includes the
user satisfaction and attractive feature. For each aspect, the
volunteer is required to give a score between 1 (lowest) to 5
(highest). And we treat these scores as the evaluation for
our activity assessment module.

Ovwerall Feedbacks. Table 1 shows the overall feedback on
FEMO. Participants consider that FEMO could help to reach
the training goal with an average satisfaction score of 4.5,
the standard deviation is 0.6. The potential to motivate regu-
lar training achieves a score of 4.7 on average, with std=0.4.
Besides, participates also show high interest (4.6) to use
FEMO for monitoring their free-weight training process.
Overall, the feedback confirms that FEMO can help to reach
training goals faster, motivate the training, and attract par-
ticipants for long-term use.

Attractive Services. Table 2 shows the ratings on different
services provided by FEMO. In the result, the most attrac-
tive services that the participants agree with is the accumu-
lative training summary and the local assessment. These
two services are scored 4.7. The global assessment is also
attractive, achieving a score of 4.6. Although the daily activ-
ity summary is less attractive compared with the others, it
still achieves a pretty high score (4.3 with std=0.4). There-
fore, from above results we believe that FEMO really pro-
vides valuable feedback to the user.

6 REAR-WORLD DEPLOYMENT

We deploy our FEMO system into a small fitness room in our
lab. As the bottom-right figure shown in Fig. 13, there are
other equipments coexisting, such as treadmills and ped-
alling machines. We conduct experiments in this scenario
and test the robustness of FEMO under different scenarios.

6.1 Impact of Surroundings

In this trail of experiments, we ask three volunteers to per-
form activities under various conditions. The first group of
experiments (Condition #1) are conducted in normal envi-
ronments, e.g., relatively constant surroundings. In the sec-
ond group of experiments (Condition #2), the volunteers
still perform their dumbbell activities. However, we intro-
duce certain dynamics to the environment by allowing
some other trainers to run on the treadmills concurrently,
indicating that the environment is dynamic compared with
Condition #1. During the third group of experiments (Con-
dition #3), a disturber walks across the line of sight between



3290
TABLE 1
Feedback on FEMO After Two Weeks Training
Feedback item Rating std
could help to reach the training goal 4.5 0.6
could help to rectify the irregular motion 4.7 0.4
would continue using it 4.6 0.6

TABLE 2
Service Assessment After Two Weeks Training
Service item Rating std
accumulative training summary 4.7 0.3
daily activity summary 43 04
global assessment 4.6 0.5
local assessment 4.7 0.4

the reader antenna and the volunteer frequently to simulate
the impact from other trainers in real-world scenarios.
Every volunteer performs each activity 50 times under each
condition. The segmentation and the recognition accuracy
are shown in Figs. 20 and 21. From the results we can see
that the segmentation accuracy scales well across three con-
ditions. In particular, both the segmentation and recognition
accuracy (say 0.92 and 0.87) under condition #2 are slightly
influenced, which is supportive for FEMO robustness in
real deployments. We notice that the recognition accuracy
has a significant reduction under condition #3. It proves
that when the line of sight from the reader antenna to the
user is frequently blocked, the Doppler profile will change
sharply and hence be hardly recognized. This indicates us
that we need to avoid such events by carefully arranging
the site layout in real deployments. On the other hand, if
the reader’s antenna is deployed on the ceiling, the proba-
bility that such a case occurs is extremely low. Thus, we can
safely argue that environmental impact to the deployment
of FEMO in a real gym would be negligible.

6.2 Multi-Antenna Scenario

We vary the number of reader antennas used for monitoring
one trainer and observe the activity recognition accuracy. In
this experiment, the volunteer performs activities with two,
three, and four antennas coexisting respectively. The anten-
nas are placed parallel to each other with panels directly fac-
ing the volunteer. The distance between the antenna and the
volunteer is 2 m. Fig. 22 depicts the relationship between
the number of antennas and the recognition accuracy. The
accuracy is about 91 percent on average when adopting one
antenna. With more antennas, the average recognition
accuracy of FEMO improves gradually and achieves about
94 percent when the number of antennas is four. In addition,
the gap of accuracy between each activity becomes narrower.
The reason lies in that more antennas can provide multi-
dimensional feature for each activity, which can complement
with each other. Moreover, the result proves that using more
antennas can further improve FEMO'’s efficiency.

6.3 Multi-User Scenario

We also test the accuracy of FEMO in the multiple-user sce-
nario. In this trail of experiments, we ask multiple volunteers
to perform activities concurrently. We conduct two groups of
experiments. In the first group, only one antenna is adopted
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for monitoring, and the antenna is 2 m away from the volun-
teers. In this case, when there are more than one user, different
users (e.g., tags) may have different angles to the reader
antenna. In the second group, we deploy multiple antennas
and each antenna is responsible to monitor one volunteer
(e.g., each volunteer stands facing one antenna). Fig. 23 shows
the recognition accuracy versus different number of volun-
teers. As expected, if increasing the number of trainers, the
accuracy decreases accordingly when using a single antenna.
This is because the angle between the reader and tag leads
changes to Doppler profiles, which further introduces ambi-
guity to the system. In particular, when the number of volun-
teers is four, the accuracy decreases sharply, i.e., around to
85 percent. On the contrary, when adopting multiple anten-
nas, the recognition accuracy of FEMO can always maintain
in a high level (say 90 percent) even with multiple users.

7 RELATED WORK

The design of FEMO is closely related to the activity recogni-
tion technique. There is a large body of works on human activ-
ity recognition. Based on different processing patterns, the
works in this domain can be broadly divided into two catego-
ries. The first category of works leverage dedicated sensors
[4], [22], [37], e.g., the gyroscope and accelerometer, for
human activity recognition. These works build upon the fact
that the sensor can provide rich information reflecting the ges-
ture recognition. UbiFit Garden [4] infers the body movement
via a on-body sensing module, and displays the result on
the mobile terminal to encourage individuals’ training



DING ET AL.: APLATFORM FOR FREE-WEIGHT EXERCISE MONITORING WITH PASSIVE TAGS

0.9
3
3 0.8
3
Q0.7
<
0.6
Hl Single antenna
[_1Four antennas
05 -

1 3 4

2
Number of human

Fig. 23. Impact of multiple human.

enthusiasm. RistQ [22] leverages the accelerations from a
wrist strap to detect and recognize smoking gestures. Chang
et al. [12] also use accelerometer sensors embedded in a glove
to recognize and track the free-weight exercises in the gym.
Although these proposals have demonstrated an inspiring
power in activity recognition, the requirement of wearing
some dedicated sensors is usually cumbersome or unsuitable
for gym activity recognition. Besides, the performance of
these sensor based schemes is sensitive to the hardware char-
acteristics (e.g., the sampling rate or computational capacity),
which limits the wide adoption in practice.

Another brunch of solutions exploits the wireless signals.
A lot of efforts have been made to improve the efficiency of
wireless networks [38], [39], [40], [41], [42], providing the
feasibility of utilizing wireless signals for gesture and activity
recognition. RF-IDraw [30] can infer a human’s writing by
tracking a passive RFID tag attached to his/her pen.
E-eyes [16] leverages WiFi signals to recognize the in-home
activity of human beings. In particular, there are many prior
works detecting movements by resorting to Doppler
effect [31], [32], [33], [34], [35]. Their common insight is that
the Doppler shift generated from the non-rigid-body motions
of humans contains valuable information related to the
human movement. The authors in [31], [33] extract certain fea-
tures from the Doppler shift to distinguish among humans,
animals, and vehicles. The work proposed in [32] can classify
seven human activities (such as the running, walking, etc.) by
extracting Doppler features from the signals collected by a
2.4 GHz Doppler radar. WiSee [15] exploits the Doppler effect
of WiFi signals caused by the body reflection to infer nine typi-
cal human motions. Similar to our work, these approaches are
device-free such that users are released from wearing or carry-
ing any devices. However, they either adopt dedicated hard-
ware (e.g., Software defined radio, Doppler radar, etc.) or
require complicated signal processing procedure, introducing
a high deployment cost or huge computational overhead.
Moreover, they have to rely on high-frequency signals (such
as 24 GHz, 24 GHz), in which cases the Doppler change
induced by human motions are obvious and easy to track.
Our work releases this constraint in that we realize the accu-
rate activity recognition and assessment by using a much
lower frequency spectrum, i.e., 860 MHz ~ 960 MHz, which is
adopted by COTS passive RFID devices. Within this spec-
trum, the Doppler changes are subtle and vulnerable to
noises [36]. In addition, we enable the on-site activity recogni-
tion and assessment by adopting several efficient techniques,
e.g., DITW, and provide rich feedbacks to the user for
assessments.

8 CONCLUSION

In this paper, we present the design, implementation and
evaluation of FEMO, a passive RFID based free-weight
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activity monitoring system. FEMO attaches passive RFID
tags to the training devices, i.e., dumbbell in this work, and
leverages the backscattered signal for on-site activity recog-
nition and assessment. The result of extensive experiments
collected from 15 volunteers demonstrates that FEMO can
be applied to a variety of free-weight activities, providing
valuable feedbacks for users’ activity rectification.
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