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Abstract—Future mobile devices are anticipated to perceive, understand and react to the world on their own by running multiple
correlated deep neural networks locally on-device. Yet the complexity of these deep models needs to be trimmed down both
within-model and cross-model to fit in mobile storage and memory. Previous studies squeeze the redundancy within a single model. In
this work, we aim to reduce the redundancy across multiple models. We propose Multi-Task Zipping (MTZ), a framework to
automatically merge correlated, pre-trained deep neural networks for cross-model compression. Central in MTZ is a layer-wise neuron
sharing and incoming weight updating scheme that induces a minimal change in the error function. MTZ inherits information from each
model and demands light retraining to re-boost the accuracy of individual tasks. MTZ supports typical network layers (fully-connected,
convolutional and residual) and applies to inference tasks with different input domains. Evaluations show that MTZ can fully merge the
hidden layers of two VGG-16 networks with a 3.18% increase in the test error averaged on ImageNet for object classification and
CelebA for facial attribute classification, or share 39.61% parameters between the two networks with < 0.5% increase in the test errors.
The number of iterations to retrain the combined network is at least 17.8× lower than that of training a single VGG-16 network.
Moreover, MTZ can effectively merge nine residual networks for diverse inference tasks and models for different input domains. And
with the model merged by MTZ, the latency to switch between these tasks on memory-constrained devices is reduced by 8.71×.

Index Terms—Deep Neural Networks; Model Compression; Multi-Task Learning;
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1 INTRODUCTION

A I-POWERED mobile applications increasingly demand
multiple deep neural networks for correlated tasks to

be performed continuously and concurrently on resource-
constrained mobile devices such as wearables, smartphones,
and drones [1], [2], [3], [4], [5], [6]. Examples include wear-
able cameras that recognise objects and identify people for
the visually impaired and drones that detect vehicles and
identify road signs for traffic surveillance. While many pre-
trained models for different inference tasks are available [7],
[8], [9], it is often infeasible to deploy them directly on
mobile devices due to their large memory footprints. For
instance, VGG-16 models for object classification [9] and
facial attribute classification [10] both contain over 130M
parameters. Packing multiple such models easily strains
mobile storage and memory at inference time.

Model compression [11] is an effective approach to rad-
ically reduce the size of a deep neural network without
sacrificing its accuracy by pruning unimportant operations
(pruning) [12], [13], [14], [15] or reducing the precision of
operations (quantization) [16], [17]. However, all these pro-
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posals focus on single-model compression. Consequently, they
generate sub-optimally compressed neural networks for
multiple correlated inference tasks because there can still be
notable redundancy across models due to task relatedness.
For example, deep neural networks trained for different
visual tasks tend to learn similar low-level features that
resemble either Gabor filters or colour blobs [18]. Sharing
information among tasks holds potential to further reduce
the sizes of multiple correlated models without incurring
drop in individual task inference accuracy.

We study information sharing in the context of cross-
model compression, which seeks effective and efficient infor-
mation sharing mechanisms among pre-trained models for
multiple tasks to reduce the size of the combined model
without accuracy loss in each task (see Fig. 1). A solution
to cross-model compression is multi-task learning (MTL),
a paradigm that jointly learns multiple tasks to improve
the robustness and generalisation of tasks. However, most
MTL studies use heuristically configured shared structures,
which may lead to dramatic accuracy loss due to improper
sharing of knowledge [19], [20]. Some recent proposals [21],
[22] automatically decide “what to share” in deep neu-
ral networks. Yet deep MTL usually involves enormous
training overhead [19]. Hence it is inefficient to ignore the
already trained parameters in each model and apply MTL
for cross-model compression.

In this paper, we propose Multi-Task Zipping (MTZ), a
framework to automatically and adaptively merge corre-
lated, well-trained deep neural networks for cross-model
compression via neuron sharing. It decides the optimal
sharable pairs of neurons on a layer basis and adjusts their
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Fig. 1. Differences between multi-task learning (MTL) and our multi-task
zipping (MTZ) as solutions to cross-model compression (illustrated with
two tasks). Given two pre-trained models, MTL manually decides the
shared structures, and then retrain the multi-task model from scratch i.e.,
the original weights of the individual models are discarded. In contrast,
our MTZ automatically determines what to share, and only a lightweight
finetuning is necessary to re-boost the accuracy on each task because
the original weights of the individual models are either kept (for non-
shared neurons) or analytically calculated (for shared neurons).

incoming weights such that minimal errors are introduced
in each task. Unlike MTL, MTZ inherits the parameters of
each model and optimises the information to be shared
among models such that only light retraining is necessary to
resume the accuracy of individual tasks. In effect, it squeezes
the inter-network redundancy from multiple already trained
deep neural networks. MTZ may be further integrated with
existing proposals for single-model compression, which reduce
the intra-network redundancy via network pruning [12], [13],
[14], [15] or network quantization [16], [17].

The contributions and results of this work are as follows.

• We propose MTZ, a framework that automatically
merges multiple correlated, pre-trained deep neural
networks. It squeezes the task relatedness across
models via layer-wise neuron sharing, while requir-
ing light retraining to re-boost the accuracy of the
combined model. We also extend MTZ to support
different layer types and tasks with different input
domains. To the best of our knowledge, this is one
of the first studies on cross-model compression for
deep neural networks.

• MTZ managed to share 39.61% parameters between
the two VGG-16 networks pre-trained for object
classification (on ImageNet [23]) and facial attribute
classification (on CelebA [24]), while incurring less
than 0.5% increase in test errors. Even when all the
hidden layers are fully merged, there is a moderate
(averaged 3.18%) increase in test errors for both
tasks. MTZ achieves the above performance with at
least 17.9× fewer iterations than training a single
VGG-16 network from scratch [9].

• MTZ can merge models of different input domains
(e.g., audio- and video-based models), and is able to
share 90% of the parameters among nine ResNets on
nine different visual recognition tasks while inducing
negligible loss on accuracy. Furthermore, with the
joint model merged by MTZ, the latency to switch be-
tween these inference tasks on memory-constrained
devices can be reduced by 8.71×.

A preliminary version of this work is presented in [25].

This paper has made the following additional contributions:

• We enhance the theoretical analysis of MTZ by show-
ing that the accumulated error at the output layer in
our layer-wise neuron sharing is bounded (Sec. 3.5).

• We propose an optimised network zipping scheme
for ResNets (Sec. 4.2.2 to support batch normalisation
layers and Sec. 4.2.3 to support residual blocks).

• We empirically show that MTZ can support different
input domains e.g., audio- and image-based models
(Sec. 5.3) and is scalable in merging more than two
networks (Sec. 5.4). Experimental results show that
MTZ can merge 9 ResNets pre-trained for diverse
visual inference tasks, which reduce the model stor-
age from 9× to only 1.8× of a single ResNet, with
marginal loss in all the 9 inference tasks. In addi-
tion, MTZ can reduce the latency by 8.71× when
switching between the 9 inference tasks on memory-
constrained embedded platforms.

In the rest of this paper, we first review related work in
Sec. 2, and then introduce our MTZ framework in Sec. 3 and
its extensions in Sec. 4. We present the evaluations of MTZ
in Sec. 5 and finally conclude in Sec. 6.

2 RELATED WORK

MTZ compresses multiple well-trained deep neural net-
works of correlated inference tasks. It is relevant to research
on multi-task learning and single-model compression. Our
work belongs to the emerging field of cross-model compres-
sion and is complementary to resource scheduling of deep
neural networks and edge-assisted inference.

2.1 Multi-Task Learning

Multi-task learning (MTL) jointly trains multiple correlated
tasks to achieve higher accuracy than training each task
individually. Determining “what to share” among tasks is a
central issue in MTL, where can take place at different levels
[19]. For MTL with neural networks, common techniques
include hard or soft parameter sharing of the hidden layers
[20]. Hard parameter sharing enforces sharing most or all of
the parameters among all tasks while keeping a few task-
specific output layers [26]. It causes notable accuracy drop
when many tasks are trained jointly [27]. In soft parame-
ter sharing, individual tasks are connected via information
sharing [28]. The two sharing schemes can also be combined
for more flexible parameter sharing i.e., adaptively sharing
a subset of parameters in the hidden layers [22].

The shared topology in most MTL studies is heuristically
configured, which may lead to improper knowledge trans-
fer [18]. Only a few schemes [21], [22] optimise what to share
among tasks, especially for deep neural networks. Our MTZ
resembles these automatic shared structure optimisation
studies for MTL in effect, but differs in objectives. MTL
jointly trains multiple tasks to improve their generalisation
and accuracy, while MTZ aims to compress multiple already
trained tasks with mild training overhead. Specifically, MTZ
inherits the parameters directly from each pre-trained net-
work when optimising the neurons shared among tasks in
each layer and demands light retraining.
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2.2 Single-Model Compression

There have been various model compression proposals to
reduce the size of a single neural network without incurring
loss in accuracy [11]. Pruning-based methods compress a
deep neural network by eliminating unimportant operations
such as weights [13], [14] or neurons [12], [29]. Neuron-
level pruning is more desirable since it leads to regular
sparsity in the pruned networks, and thus avoids the need
for customised hardware [11]. The memory footprint of a
neural network can be further reduced by lowering the
precision of parameters (network quantization) [16], [17].

Unlike previous research that deals with the intra-
redundancy of a single network, our work reduces the
inter-redundancy among multiple networks. In principle, our
method is a neuron-level cross-model pruning scheme. Our
work may be integrated with single-model compression to
further reduce the size of the combined neural network.

2.3 Cross-Model Compression

Cross-model compression aims to construct an accurate and
compact multi-task neural network for efficient inference on
resource-constrained platforms. Georgiev et al. [1] are the
first to explore cross-model compression. They directly ap-
ply MTL techniques by heuristically configuring the shared
structure and training the multi-task network from scratch.
Our preliminary version [25] and NeuralMerger [3] are
among the earliest studies to merge well-trained neural
networks without training from scratch. NeuralMerger [3]
utilises a joint encoding scheme for weight sharing, which
can be understood as a cross-network quantization. Our
technique is orthogonal to [3] since we focus on network
merging. Neural weight virtualisation (NWV) [5] and Zip-
perNet [6] are two latest studies that explore merging for
cross-model compression. NWV [5] shares all parameters
among tasks and retrains to recover the accuracy i.e., hard
parameter sharing. ZipperNet [6] relaxes the constraint by
a layer-wise merging strategy, i.e., all the parameters are
shared till a given layer. In contract, MTZ allows partial
merging in each hidden layer. In addition, ZipperNet [6]
adopts a heuristic neuron similarity metric and only ap-
plies to convolutional layers. In contrast, our MTZ shares
neurons and updates weights via sensitivity analysis, and
our method supports not only convolutional layers, but
also fully connected layers, batch normalisation layers and
residual blocks. We compare the performance with NWV [5]
and ZipperNet [6] in Sec. 5.

2.4 Resource Scheduling for Deep Neural Networks

Orthogonal to reducing the complexity of deep neural
networks themselves, resource scheduling algorithms en-
ables efficient on-device execution of deep neural networks.
DeepX [30] is a software accelerator that splits deep neural
networks into blocks to be executed across multiple co-
processors. DeepEye [2] proposes to interleave the execution
of convolutional layers and fully-connected layers from
multiple deep neural networks to improve the runtime
efficiency of multi-model execution. NestDNN [4] designs
a dynamic model pruning and recovery scheme and a
resource-aware runtime scheduler to adaptively select the

best models and allocate them to the available resources
to maximise the overall inference accuracy and minimise
the overall latency of concurrently running deep neural net-
works. As with [2], [4], our work also focuses on optimising
multiple deep neural networks. However, our approach is
complementary, which aims to reduce the memory footprint
of multiple models by enforcing neuron sharing rather than
scheduling their executions.

2.5 Edge-Assisted Deep Inference
In addition to on-device execution, offloading is also a pop-
ular strategy to run deep neural networks in the era of edge
computing [31]. Particularly, the memory- or computation-
intensive portion of a deep model can be offloaded to the
edge to meet the resource constraints on end devices. For
example, DeepDecision [32] dynamically decides whether
to execute the model on-edge or on-device according to the
available resources. Neurosurgeon [33] explores the optimal
layer to partition a deep neural network for collaborative
execution between the edge and the device that minimises
latency and energy consumption. EdgeDuet [34] runs a full
model on-edge and a compressed version on-device and
only uploads image tiles to the full model when necessary.
EalgeEye [35] partitions the multiple-model pipeline for face
identification both spatially and temporally and runs the
partitions in parallel on both the edge and the device. Mag-
num [36] adopts a lightweight blockchain-based framework
to enable transfer learning in industrial IoT applications.

Our work is complementary to model partition. On the
one hand, cross-model compression can be combined with
model partition schemes for higher efficiency when running
multiple tasks in edge-device collaborative inference. For
instance, AMVP [37] proposes an adaptive scheduler that
integrates single- and cross-model compression with model
partition for multi-task video processing at the edge. On the
other hand, model compression is preferable over model
partition to applications where communication with the
edge is prohibited due to data privacy or unreliable network
connections [31], [38], [39], [40].

3 LAYER-WISE NETWORK ZIPPING

This section explains the principles and details of our net-
work zipping method with two feed-forward networks of
dense fully connected (FC) layers. We discuss the extensions
to other layers and settings in Sec. 4.

3.1 Problem Statement
Consider two inference tasks A and B with the correspond-
ing well-trained deep neural networks MA and MB , i.e.,
trained to a local minimum in error. We assume the same
input domain and the same number of layers in MA and
MB . Performing multiple correlated inference tasks on the
same input domain is common in mobile applications (e.g.,
face recognition, age and gender identification from a wear-
able camera [2], [5]; or speaker identification and ambient
scene analysis from a smartphone microphone [1]). Note
that our method also works for different input domains
(see Sec. 5.3). The assumption on the same number of layers
follows the practice in multi-task learning for ease of joint
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Fig. 2. An illustration of neurons and the corresponding weight matrices
before and after zipping the l-th layers of MA and MB .

training [19]. Note that the models for different tasks can
vary in the widths in their layers. Our goal is to construct a
combined model MC by sharing as many neurons between
layers in MA and MB as possible such that (i) MC has
minimal loss in inference accuracy for the two tasks and
(ii) the construction of MC involves minimal retraining. As
with other studies on cross-model compression [1], [3], [5],
[6], the process to construct the combined model, i.e., model
merging and retraining, takes place offline on the cloud or
the edge before model deployment. The combined model is
then deployed to resource-constrained devices for accurate
multi-task inference. Although extensive model training is
affordable on the cloud/edge, it is still desirable to minimise
the retraining overhead to allow fast model deployment and
to serve more model merging requests at the same time.

3.2 Layer Zipping via Neuron Sharing

We take a layer-wise approach to the neuron sharing prob-
lem described in Sec. 3.1. This subsection presents the pro-
cedure of zipping the l-th layers (1 ≤ l ≤ L − 1) in models
MA and MB given the previous (l − 1) layers of the two
models have been merged (see Fig. 2).

Denote the input layers as the 0-th layers. The L-th
layers are the output layers of MA and MB . Denote the
weight matrices of the l-th layers in MA and MB as
WA

l ∈ RN
A
l−1×N

A
l and WB

l ∈ RN
B
l−1×N

B
l , where NA

l and
NB
l are the numbers of neurons in the l-th layers in MA

and MB . Assume Ñl−1 ∈ [0,min{NA
l−1, N

B
l−1}] neurons are

shared between the (l− 1)-th layers in MA and MB . Hence
there are N̂A

l−1 = NA
l−1 − Ñl−1 and N̂B

l−1 = NB
l−1 − Ñl−1

task-specific neurons left in the (l − 1)-th layers in MA and
MB . Zipping the l-th layers in in MA and MB consists of
two steps: neuron sharing and weight matrices updating.

3.2.1 Neuron Sharing
To enforce neuron sharing between the l-th layers in MA

and MB , we calculate the functional difference (details in
Sec. 3.3) between the i-th neuron in layer l in MA, and
the j-th neuron in the same layer in MB . The functional
difference is measured by a metric d[w̃A

l,i, w̃
B
l,j ], where

w̃A
l,i, w̃

B
l,j ∈ RÑl−1 are the incoming weights of the two

neurons from the shared neurons in the (l − 1)-th layer. We
do not alter incoming weights from the non-shared neurons

in the (l−1)-th layer because they are likely to contain task-
specific information only.

To zip the l-th layers in MA and MB , we first calculate
the functional difference for each pair of neurons (i, j) in
layer l and select Ñl ∈ [0,min{NA

l , N
B
l }] pairs with the

smallest functional difference. These pairs of neurons form a
set {(ik, jk)}, where k = 0, · · · , Ñl and each pair is merged
into one neuron. Thus the neurons in the l-th layers in MA

and MB fall into three groups: Ñl shared, N̂A
l = NA

l − Ñl
specific for A and N̂B

l = NB
l − Ñl specific for B.

3.2.2 Weight Matrices Updating

After neuron sharing, the weight matrices WA
l and WB

l are
re-organised as follows. The weights vectors w̃A

l,ik
and w̃B

l,jk
,

where k = 0, · · · , Ñl, are merged and replaced by a matrix
W̃l ∈ RÑl−1×Ñl , whose columns are w̃l,k = f(w̃A

l,ik
, w̃B

l,jk
),

where f(·) is an incoming weight update function. W̃l rep-
resents the task-relatedness between A and B from layer
(l − 1) to layer l. The incoming weights from the N̂A

l−1
neurons in layer (l− 1) to the N̂A

l neurons in layer l in MA

form a matrix ŴA
l ∈ RN

A
l−1×N̂

A
l . The remaining columns

in WA
l are packed as W̃A

l ∈ RN̂
A
l−1×Ñl . Matrices ŴA

l and
W̃A

l contain the task-specific information for A between
layer (l − 1) and layer l. For task B, we organise matrices
ŴB

l ∈ RN
B
l−1×N̂

B
l and W̃B

l ∈ RN̂
B
l−1×Ñl in a similar manner.

We also adjust the order of rows in the weight matrices in
the (l+1)-th layers, WA

l+1 and WB
l+1, to maintain the correct

connections among neurons.
The above layer zipping process can reduce Ñl−1 × Ñl

weights from WA
l and WB

l . Essential in MTZ are the
neuron functional difference metric d[·] and the incoming
weight update function f(·). They are designed to demand
only light retraining to recover the original accuracy.

3.3 Deriving Neuron Functional Difference Metric d[·]
and Incoming Weight Update Function f(·)
This subsection introduces our neuron functional difference
metric d[·] and weight update function f(·) leveraging pre-
vious research on parameter sensitivity analysis [13], [14].

3.3.1 Preliminaries

A naive approach to accessing the impact of a change in
some parameter vector θ on the objective function (training
error) E is to apply the parameter change and re-evaluate
the error on the entire training data. An alternative is to
exploit second order derivatives [13], [14]. Specifically, the
Taylor series of the change δE in training error due to
certain parameter vector change δθ is [14]:

δE =

(
∂E

∂θ

)>
· δθ +

1

2
δθ> ·H · δθ +O(‖δθ‖3) (1)

where H = ∂2E/∂θ2 is the Hessian matrix containing all
the second order derivatives. For a network trained to a
local minimum in E, the first term vanishes. The third and
higher order terms can also be ignored [14]. Hence:

δE =
1

2
δθ> ·H · δθ (2)



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 0, NO. 0, MONTH 2021 5

Eq.(2) approximates the deviation in error due to parameter
changes. However, it is still a bottleneck to compute and
store the Hessian matrix H of a modern deep neural net-
work. For instance, applying the weight pruning scheme
proposed in [14] on a VGG-16 model [9] trained on the
ImageNet ILSVRC-2012 dataset [23] requires the calculation
of a Hessian matrix with approximately (138 × 106)2 =
1.9044× 1016 elements.

As next, we harness the trick in [13] to break the cal-
culations of Hessian matrices into layer-wise, and propose
a Hessian-based neuron difference metric as well as the
corresponding weight update function for neuron sharing.

3.3.2 Our Method
Inspired by [13] we define the error functions of MA and
MB in layer l as

EAl =
1

nA

∑
‖ỹAl − yAl ‖2 (3)

EBl =
1

nB

∑
‖ỹBl − yBl ‖2 (4)

where yAl and ỹAl are the pre-activation outputs of the l-
th layers in MA before and after layer zipping, evaluated
on one instance from the training set of A; yBl and ỹBl are
defined in a similar way; ‖ · ‖ is l2-norm; nA and nB are the
number of training samples for MA and MB , respectively;
Σ is the summation over all training instances. Since MA

and MB are trained to a local minimum in training error,
EAl and EBl will have the same minimum points as the
corresponding training errors.

We further define an error function of the combined
network in layer l as

El = αEAl + (1− α)EBl (5)

where α ∈ (0, 1) is used to balance the errors of MA and
MB . The change in El with respect to neuron sharing in the
l-th layer can be expressed in a similar form as Eq.(2):

δEl =
1

2
(δw̃A

l,i)
> · H̃A

l,i · δw̃A
l,i +

1

2
(δw̃B

l,j)
> · H̃B

l,j · δw̃B
l,j (6)

where δw̃A
l,i and δw̃B

l,j are the adjustments in the weights of
i and j to merge the two neurons; H̃A

l,i = ∂2El/(∂w̃
A
l,i)

2

and H̃B
l,j = ∂2El/(∂w̃

B
l,j)

2 denote the layer-wise Hessian
matrices. Similarly to [13], the layer-wise Hessian matrices
can be calculated as

H̃A
l,i =

α

nA

∑
xAi−1 · (xAi−1)> (7)

H̃B
l,j =

1− α
nB

∑
xBj−1 · (xBj−1)> (8)

where xAi−1 and xBj−1 are the outputs of layer (l− 1) in MA

and MB , respectively.
When sharing the i-th and j-th neurons in the l-th layers

of MA and MB , our aim is to minimize δEl, which can be
formulated as the optimization problem below:

min
(i,j)
{ min
(δw̃A

l,i,δw̃
B
l,j)

δEl} s.t. w̃A
l,i + δw̃A

l,i = w̃B
l,j + δw̃B

l,j (9)

For the inner minimization problem:

min
(δw̃A

l,i,δw̃
B
l,j)

δEl s.t. w̃A
l,i + δw̃A

l,i = w̃B
l,j + δw̃B

l,j (10)

we form Lagrange multipliers with the second order ap-
proximation in (2):

L =
1

2
(δw̃A

l,i)
> · H̃A

l,i · δw̃A
l,i +

1

2
(δw̃B

l,j)
> · H̃B

l,j · δw̃B
l,j

+ λ> · (w̃A
l,i + δw̃A

l,i − w̃B
l,j − δw̃B

l,j) (11)

where λ is the vector of Lagrange undetermined multipliers.
By taking functional derivatives and employing the con-
straints of Eq.(9), we have closed-form solutions:

δw̃A,opt
l,i =(H̃A

l,i)
−1 ·

(
(H̃A

l,i)
−1 + (H̃B

l,j)
−1
)−1

· (w̃B
l,j − w̃A

l,i) (12)

δw̃B,opt
l,j =(H̃B

l,j)
−1 ·

(
(H̃A

l,i)
−1 + (H̃B

l,j)
−1
)−1

· (w̃A
l,i − w̃B

l,j) (13)

δEoptl =
1

2
(w̃A

l,i − w̃B
l,j)
> ·
(

(H̃A
l,i)
−1 + (H̃B

l,j)
−1
)−1

· (w̃A
l,i − w̃B

l,j) (14)

We define the neuron functional difference metric as:

d[w̃A
l,i, w̃

B
l,j ] = δEoptl (15)

and the weight update function as:

f(w̃A
l,i, w̃

B
l,j) = w̃A

l,i + δw̃A,opt
l,i = w̃B

l,j + δw̃B,opt
l,j . (16)

3.4 MTZ Framework
Algorithm 1 outlines the process of MTZ on two tasks of
the same input domain, e.g., images. We first construct a
joint input layer. In case the input layer dimensions are not
equal in both tasks, the dimension of the joint input layer
equals the larger dimension of the two original input layers,
and fictive connections (i.e., weight 0) are added to the
model whose original input layers are smaller. Afterwards
we begin layer-wise neuron sharing and weight matrix
updating from the first hidden layer. The two networks are
“zipped” layer by layer till the last hidden layer and we
obtain a combined network. After merging each layer, the
networks are retrained to re-boost the accuracy.
Practical Issues. We make the following notes on the prac-
ticability of MTZ.

• How to set the number of neurons to be shared? One
can directly set Ñl neurons to be shared for the l-
th layers, or set a layer-wise threshold εl instead.
Given a threshold εl, MTZ shares pairs of neurons
where {(ik, jk)|d[w̃A

l,ik
, w̃B

l,jk
] < εl}. In this case

Ñl = |{(ik, jk)}|. One can set {Ñl} if there is a
hard constraint on storage or memory. Otherwise
{εl} can be set if accuracy is of higher priority.
Note that {εl} controls the layer-wise error δEl,
which correlates to the accumulated errors of the
outputs in layer L ε̃A = 1√

nA

∑
‖x̃AL − xAL‖ and

ε̃B = 1√
nB

∑
‖x̃BL − xBL‖ [13].

• How to execute the combined model for each task? Dur-
ing inference, only task-related connections in the
combined model are enabled. For instance, when
performing inference on task A, we only activate
{ŴA

l }, {W̃A
l } and {W̃l}, while {W̃B

l } and {ŴB
l }

are disabled (e.g., by setting them to zero).
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Algorithm 1: Multi-task Zipping via Layer-wise Neu-
ron Sharing

input : {WA
l }, {WB

l }: weight matrices of MA, MB ;
XA,XB : training datum of task A and B
(including labels); α: coefficient to balance
MA and MB ; {Ñl}: number of neurons to be
shared in layer l

1 for l = 1, . . . , L− 1 do
2 Calculate inputs for the current layer xAl−1 and

xBl−1 using training data from XA and XB and
forward propagation

3 H̃A
l,i ← α

nA

∑
xAi−1 · (xAi−1)>

4 H̃B
l,j ← 1−α

nB

∑
xBj−1 · (xBj−1)>

5 Select Ñl pairs of neurons {(ik, jk)} with the
smallest d[w̃A

l,i, w̃
B
l,j ]

6 for k ← 1, . . . , Ñl do
7 w̃l,k ← f(w̃A

l,ik
, w̃B

l,jk
)

8 Re-organize WA
l and WB

l into W̃l, ŴA
l , W̃A

l ,
ŴB

l and W̃B
l

9 Permute the order of rows in WA
l+1 and WB

l+1 to
maintain correct connections

10 Conduct a light retraining on task A and B to
re-boost accuracy of the joint model

output: {ŴA
l }, {W̃A

l }, {W̃l}, {W̃B
l }, {ŴB

l }: weights
of the zipped multi-task model MC

• How to zip more than two neural networks? MTZ is able
to zip more than two models by sequentially adding
each network into the joint network, and the calcu-
lated Hessian matrices of the already zipped joint
network can be reused. Therefore, MTZ is scalable in
regards to both the depth of each network and the
number of tasks to be zipped. Also note that since
calculating the Hessian matrix of one layer requires
only its layer input, only one forward pass in total
from each model is needed for the merging process
(excluding retraining).

Complexity Analysis. We only analyse the complexity of
the main merging process (Line 3 to 9) and ignore the
complexity of the forward and backward propagation of
neural networks (Line 2 and 10). For simplicity, we consider
fully merging two layers from two networks, which both
have n neurons in every hidden layer. Line 3 and 4 take
O(n2) time andO(n2) memory. Line 5 takesO(n5) time and
O(n2) memory (using in-place matrix inversion) to calculate
all the paring distances, and then O(n4) to sort them. This
is the most time consuming step, as the calculation of the
merging criterion (15) involves inversion of the Hessian
matrices. There are O(n) iterations in Line 6 and 7, and line
7 takes O(n3) time and O(n2) memory. Line 8 and 9 take
O(n2) time and O(n2) memory. Therefore, the total time
cost is O(n5) and memory cost is O(n2).

3.5 Propagation of Layer-wise Error

Note that we define layer-wise error function Eq.(5) to avoid
calculating the entire Hessian matrix. In this subsection, we

demonstrate the effectiveness of such a layer-wise formu-
lation by proving that the accumulated error at the output
layer is bounded.

To analyse the accumulated error at the output layer, we
investigate how the error Eq.(5) propagates from layer l to
the final output layer. Note that the error function in layer
l consists of two parts, EAl and EBl , as defined in Eq.(3)
and Eq.(4), which are defined with pre-activation outputs
yAl and ỹAl . In order to understand the propagation of
errors, however, we need to take activation function into
consideration. We define:

EAl =
1

nA

∑
‖z̃Al − zAl ‖2 (17)

EBl =
1

nB

∑
‖z̃Bl − zBl ‖2 (18)

El = α · EAl + (1− α) · EBl (19)

where zAl = σ(yAl ), z̃Al = σ(ỹAl ), zBl = σ(yBl ) and
z̃Bl = σ(ỹBl ) are post-activation layer outputs with activation
function σ(·). In this paper, we consider the widely adopted
activation function: rectified linear unit (ReLU).

After merging the l-th layer, there are three groups of
neurons: N̂A

l task-A-specific neurons, N̂B
l task-B-specific

neurons, and Ñl shared neurons. When taskA is performed,
only task-A-specific and shared neurons are activated. The
connections between the task-A-specific and shared neurons
in the l − 1-th and l-th layer have weights W′A

l :

W′A
l =

[
ŴA

l

W̃A
l

W̃l

]
(20)

Similarly, we can define W′B
l . Furthermore, we denote the

vectorisation of the weight matrices W′A
l and W′B

l as VAl
and VBl , respectively.

Adapting the conclusions in [13] to multiple neural
networks, the propagation of the layer-wise error in MTZ
can be described by the following theorem:

Theorem 1. For a multi-task network merged via Algorithm
1 with L layers, the accumulated error of the last layer
output is upper-bounded by:

EL ≤
L−1∑
i=1

(
α·

L−1∏
j=i+1

‖VAj ‖
√
δEAi

+(1− α)·
L−1∏
j=i+1

‖VBj ‖
√
δEBi

) (21)

Proof. From similar derivation as in [13], we have:

EAL ≤
L−1∑
i=1

( L∏
j=i+1

‖VAj ‖
√
δEAi

)
+
√
δEAL (22)

and the same holds if we switch A with B. However, as
the last layer, i.e., the output layer is untouched, we have√
δEAL =

√
δEBL = 0. Therefore:

EAL ≤
L−1∑
i=1

( L−1∏
j=i+1

‖VAj ‖
√
δEAi

)
(23)

which also holds if we swap A and B. Finally, since El =
α · EAl + (1− α) · EBl , Eq.(21) holds.
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4 MTZ EXTENSIONS

In this section, we explain how to extend MTZ to support
sparse models (Sec. 4.1), other commonly used layers in
computer vision e.g., convolutional (CONV) layers, batch
normalisation (BN) layers and residual blocks (Sec. 4.2).

4.1 Support for Sparse Models
Since the pre-trained neural networks may have already
been sparsified via weight pruning, we also extend MTZ
to support sparse models. Specifically, we use sparse matri-
ces, where zeros indicate no connections, to represent such
sparse models. Then the incoming weights from the previ-
ous shared neurons w̃A

l,i, w̃
B
l,j still have the same dimension.

Therefore d[w̃A
l,i, w̃

B
l,j ], f(w̃A

l,i, w̃
B
l,j) can be calculated as

before. However, we also calculate two mask vectors m̃A
l,i

and m̃B
l,j , whose elements are 0 when the corresponding

elements in w̃A
l,i and w̃B

l,j are 0, and 1 otherwise. We pick the
mask vector with more 1′s and apply it to w̃l. This way the
combined model always have a smaller number of weights
than the sum of the original two models.

4.2 Extension to Other Layers
This subsection introduces how to extend MTZ from FC
layers to CONV layers, BN layers and residual blocks.

4.2.1 Extensions to Convolutional Layers
The layer zipping procedure of two convolutional layers
are similar to that of two fully connected layers. The only
difference is that sharing is performed on kernels rather than
neurons. Take the i-th kernel of size kl×kl in layer l ofMA as
an example. Its incoming weights from the previous shared
kernels are W̃A,in

l,i ∈ Rkl×kl×Ñl−1 . The weights are then
flatten into a vector w̃A

l,i to calculate functional differences.
As with in Sec. 3.2, after layer zipping in the l-th layers,
the weight matrices in the (l + 1)-th layers need careful
permutations regarding the flattening ordering to maintain
correct connections among neurons, especially when the
next layers are fully connected layers.

4.2.2 Extensions to Batch Normalisation Layers
BN layers are typically applied on the pre-activation outputs
of CONV layers. After training, the output of the BN layer
applied on the i-th channel of layer l is:

BN(yl,i) = γl,i ·
yl,i − µl,i√
σ2
l,i + ε

+ βl,i (24)

where yl,i is the pre-activation output of the CONV layer,
γl,i and βl,i are the two learnable parameters (scaling and
shifting) for the BN layer, µl,i and σl,i are the pre-calculated
mean and standard deviation.

Since all the parameters are fixed after training, the effect
of the BN layer can be replaced by multiplying the incoming
weight wl,i by a scalar γl,i

σl,i
and adding βl,i − γl,i·µl,i

σl,i
to the

bias bl,i. The calculation of the Hessian matrices (7) and (8)
remains the same, and in the closed-form solutions Eq.(12),
Eq.(13) and Eq.(14) the new weights and bias should be
used. Later in the retraining phase, newly initialised BN
layers need to be applied.
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Fig. 3. An example of the weight matrices when merging residual blocks
with output dimension of three.

4.2.3 Extensions to Residual Blocks
At the end of each residual block, the output vector of
the last CONV layer is added with the identity shortcut
vector. This addition can be considered as a layer of neurons
(channels) with binary weights (1 or 0) fully connected to
the last convolutional layer and the last shortcut addition
layer (or in the case of the first residual block, it connect to
the pre-convolutional layer). However, in order to continue
the chain of MTZ, the neurons at this addition layer should
be marked as shared/unshared. Since the neuron sharing
situation of the last CONV layer in the current residual block
can be different from of the addition layer of the last residual
block, there might be conflicts. We propose an exact and an
approximate method to combine residual blocks.
Exact Method. We illustrate the exact method via an exam-
ple residual block with output dimension of three. In the last
CONV layer of the current block, the first neuron in modelA
is shared with the second neuron in model B, and the third
neuron in model A is shared with the third neuron in model
B. In the addition layer of the last block, the second neuron
in model A is shared with the second neuron in model B.
Fig. 3 illustrates the weight matrices of the current addition
layers of model A and B, where the red column indicates
the weights from merged neurons, and the weight matrices
from the merged neurons.

As shown in this example, we mark the neurons in the
addition layer as shared/unshared as follows:

• If a neuron in the addition layer is not connecting
(i.e., having non-zero weights) to any shared convo-
lutional neuron or shared shortcut neuron, e.g., the
first row in the matrices on the right of Fig. 3, this
neuron is marked as unshared.

• In other cases, these addition neurons are merged
by analysing their incoming weights from merged
neurons, e.g., the matrices on the right of Fig. 3.

Approximate Method. The exact method above requires
an additional layer to be processed by MTZ, and actually
adds more weights to the model. To avoid this problem, we
propose an approximate method to merge residual blocks.
The idea is to use the neuron sharing scheme of the last
CONV layer in the current residual block as the reference.
In other words, in the last CONV layer in current residual
block, if the i-th neuron in model A is merged with j-th
neuron in model B, then their corresponding neurons in the
addition layer are also marked as merged.
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5 EVALUATIONS

We first evaluate the performance of MTZ on zipping two
networks pre-trained for the same task (Sec. 5.1) and dif-
ferent tasks (Sec. 5.2). We mainly assess the test errors of
each task after network zipping and the retraining overhead
involved. We then show that MTZ can merge models for
different input domains (Sec. 5.3). Finally we show that
MTZ is scalable and reduces the execution time of neural
networks on resource-constrained mobile devices (Sec. 5.4).
MTZ is implemented with TensorFlow. All experiments are
conducted on a workstation equipped with Nvidia Titan
X Maxwell GPU. The execution time of neural networks
is measured on the Jetson Nano embedded platform [41]
equipped with a 128-core Maxwell GPU, a Quad-core ARM
A57 (1.43GHz) CPU, and 4GB 64-bit LPDDR4 (25.6GB/s).

5.1 Zipping Two Networks for the Same Task

This experiment validates the effectiveness of MTZ by merg-
ing two differently trained models for the same task. Ideally,
two models trained to different local optimums should
function the same on the test data. Therefore their hidden
layers can be fully merged without incurring any accuracy
loss. This experiment aims to show that, by finding the
correct pairs of neurons which shares the same functionality,
MTZ can achieve the theoretical limit of compression ratio
i.e., 100%, even without any retraining involved.

Dataset and Settings. We test on MNIST dataset with the
LeNet-300-100 and LeNet-5 networks [7] to recognise hand-
written digits from 0 to 9. LeNet-300-100 is a fully connected
network with two hidden layers (300 and 100 neurons each),
reporting an error from 1.6% to 1.76% on MNIST [7], [13].
LeNet-5 is a convolutional network with two convolutional
layers and two fully connected layers, which achieves an
error from 0.8% to 1.27% on MNIST [7], [13].

We train two LeNet-300-100 networks of our own with
errors of 1.57% and 1.60%; and two LeNet-5 networks with
errors of 0.89% and 0.95%. All the networks are initialised
randomly with different seeds, and the training data are
also shuffled before every training epoch. After training,
the ordering of neurons/kernels in all hidden layers is
once more randomly permuted. Therefore the models have
completely different parameters (weights). The training of
LeNet-300-100 and LeNet-5 networks requires 1.05 × 104

and 1.1× 104 iterations in average, respectively.
For sparse networks, we apply one iteration of L-

OBS [13] to prune the weights of the four LeNet net-
works. We then enforce all neurons to be shared in each
hidden layer of the two dense LeNet-300-100 networks,
sparse LeNet-300-100 networks, dense LeNet-5 networks,
and sparse LeNet-5 networks, using MTZ.

Results. Fig. 4a plots the average error after sharing dif-
ferent amounts of neurons in the first layers of two dense
LeNet-300-100 networks. Fig. 4b shows the error by further
merging the second layers. We compare MTZ with a ran-
dom sharing scheme, which shares neurons by first picking
(ik, jk) at random, and then choosing randomly between
w̃A
l,ik

and w̃B
l,jk

as the shared weights w̃lk . When all the
300 neurons in the first hidden layers are shared, there
is an increase of 0.95% in test error (averaged over the

TABLE 1
Test errors on MNIST by sharing all neurons in two LeNet networks.

Model errA errB re-errC # re-iter

LeNet-300-100-Dense 1.57% 1.60% 1.64% 550
LeNet-300-100-Sparse 1.80% 1.81% 1.83% 800
LeNet-5-Dense 0.89% 0.95% 0.93% 600
LeNet-5-Sparse 1.27% 1.28% 1.29% 1200

two models) even without retraining, while random sharing
induces an error of 33.47%. We also use MTZ to fully
merge the hidden layers in the two LeNet-300-100 networks
without any retraining i.e., without line 10 in Algorithm 1.
The averaged test error increases by only 1.50%.

Table 1 summarises the errors of each LeNet pair before
zipping (errA and errB), after fully merged with retraining
(re-errC ) and the number of retraining iterations involved (#
re-iter). MTZ consistently achieves lossless network zipping
on FC and CONV networks, either they are dense or sparse,
with 100% parameters of hidden layers shared. Meanwhile,
the number of retraining iterations is approximately 19.0×
and 18.7× fewer than that of training a dense LeNet-300-100
network and a dense LeNet-5 network, respectively.

5.2 Zipping Two Networks for Different Tasks
This experiment evaluates the performance of MTZ to au-
tomatically share information among two neural networks
for different tasks. We investigate: (i) what the accuracy loss
is when all hidden layers of two models for different tasks
are fully shared (in purpose of maximal size reduction); (ii)
how much neurons and parameters can be shared between
the two models by MTZ with at most 0.5% increase in
test errors allowed (in purpose of minimal accuracy loss);
(iii) how MTZ performs compared with the state-of-the-art
cross-model compression schemes [5], [6].
Dataset and Settings. We first test the performance of MTZ
for either maximal size reduction or minimal accuracy loss.
We merge two VGG-16 networks trained on the ImageNet
ILSVRC-2012 dataset [23] for object classification and the
CelabA dataset [24] for facial attribute classification. The Im-
ageNet dataset contains images of 1, 000 object categories.
The CelebA dataset consists of 200 thousand celebrity face
images labelled with 40 attribute classes. VGG-16 has 13
convolutional layers and 3 fully connected layers. We adopt
the pre-trained weights from the original VGG-16 model [9]
for the object classification task, which has a 10.31% error.
For the facial attribute classification task, we train a second
VGG-16 model following a similar process as in [10]. We
initialise the convolutional layers of a VGG-16 model using
the pre-trained parameters from imdb-wiki [8], and train the
remaining 3 fully connected layers till the model yields an
error of 8.50%, which matches the accuracy of the VGG-16
model in [10] on CelebA.

We conduct two experiments with the two VGG-16
models. (i) All hidden layers in the two models are 100%
merged using MTZ. (ii) Each pair of layers in the two models
are adaptively merged using MTZ allowing an increase
(< 0.5%) in test errors on the two datasets.
Results. Table 2 summarises the performance when each
pair of hidden layers are 100% merged. The test errors of
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Fig. 4. Test error on MNIST by continually sharing neurons in (a) the first and (b) the second fully connected layers of two dense LeNet-300-100
networks till the merged layers are fully shared.

TABLE 2
Test errors and retraining iterations of sharing all neurons (output layer fc8 excluded) in two VGG-16 networks for ImageNet and CelebA.

Layer NA
l

ImageNet (Top-5 Error) CelebA (Error) # re-iter
w/o-re-errC re-errC w/o-re-errC re-errC

conv1_1 64 10.59% 10.61% 8.45% 8.43% 50
conv1_2 64 11.19% 10.78% 8.82% 8.77% 100
conv2_1 128 10.99% 10.68% 8.91% 8.82% 100
conv2_2 128 11.31% 11.03% 9.23% 9.07% 100
conv3_1 256 11.65% 11.46% 9.16% 9.04% 100
conv3_2 256 11.92% 11.83% 9.17% 9.05% 100
conv3_3 256 12.54% 12.41% 9.46% 9.34% 100
conv4_1 512 13.40% 12.28% 10.18% 9.69% 400
conv4_2 512 13.02% 12.62% 10.65% 10.25% 400
conv4_3 512 13.11% 12.97% 12.03% 10.92% 400
conv5_1 512 13.46% 13.09% 12.62% 11.68% 400
conv5_2 512 13.77% 13.20% 12.61% 11.64% 400
conv5_3 512 36.07% 13.35% 13.10% 12.01% 1× 103

fc6 4096 15.08% 15.17% 12.31% 11.71% 2× 103

fc7 4096 15.73% 14.07% 11.98% 11.09% 1× 104

both tasks gradually increase during the zipping procedure
from layer conv1_1 to conv5_2 and then the error on
ImageNet surges when conv5_3 are 100% shared. After
1, 000 iterations of retraining, the accuracies of both tasks
are resumed. When 100% parameters of all hidden layers
are shared between the two models, the joint model yields
test errors of 14.07% on ImageNet and 11.09% on CelebA,
i.e., increases of 3.76% and 2.59% in the original test errors.

Table 3 shows the performance when each pair of hidden
layers are adaptively merged. MTZ achieves an increase in
test errors of 0.44% on ImageNet and 0.45% on CelebA.
Approximately 39.61% of the parameters in the two models
are shared (56.94% in the 13 CONV layers and 38.17% in
the 2 FC layers). The zipping procedure involves 20, 650
iterations of retraining. For comparison, at least 3.7 × 105

iterations are needed to train a VGG-16 network from
scratch [9]. That is, MTZ is able to inherit information from
the pre-trained models and construct a combined model
with an increase in test errors of less than 0.5%. And the
process requires at least 17.9× fewer (re)training iterations
than training a joint network from scratch.

For comparison, we also trained a fully shared multi-task
VGG-16 with two split classification layers jointly on both

tasks. The test errors are 14.88% on ImageNet and 13.29%
on CelebA. This model has exactly the same topology and
amount of parameters as our model constructed by MTZ,
but performs slightly worse on both tasks.

Comparison with State-of-the-Arts. We compare our MTZ
against two recent cross-model compression schemes, Neu-
ral Weight Virtualisation [5] (NWV for short) and Zipper-
Net [6] in the fully shared setting, i.e., in purpose of maximal
size reduction. We choose the fully shared setting because
NWV adopts hard parameter sharing, i.e., parameters are
shared across all tasks. ZipperNet allows partial parameter
sharing but all the weights within a layer are fully shared.

To compare with ZipperNet [6], we apply it to merge
two VGG-16 networks pre-trained on ImageNet and CelabA
as above. Specifically, we perform filter alignment by Hun-
garian algorithm for each CONV layer and then retrain the
merged network as [6]. The merging process starts with
the first CONV layer and continues until all CONV layers
are merged. Since ZipperNet does not apply to FC layers,
we leave the two FC layers in the VGG-16 separate. For
fair comparison, the number of retraining iterations for
each CONV layer is set to the same as our MTZ (detailed
numbers see Table 2). Fig. 5 plots the test errors after fully
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TABLE 3
Test errors, number of shared neurons, and retraining iterations of adaptively zipping two VGG-16 networks for ImageNet and CelebA.

Layer NA
l Ñl

ImageNet (Top-5 Error) CelebA (Error) # re-iter
w/o-re-errC re-errC w/o-re-errC re-errC

conv1_1 64 64 10.28% 10.37% 8.39% 8.33% 50
conv1_2 64 64 10.93% 10.50% 8.77% 8.54% 100
conv2_1 128 96 10.74% 10.57% 8.62% 8.46% 100
conv2_2 128 96 10.87% 10.79% 8.56% 8.47% 100
conv3_1 256 192 10.83% 10.76% 8.62% 8.48% 100
conv3_2 256 192 10.92% 10.71% 8.52% 8.44% 100
conv3_3 256 192 10.86% 10.71% 8.83% 8.63% 100
conv4_1 512 384 10.69% 10.51% 9.39% 8.71% 400
conv4_2 512 320 10.43% 10.46% 9.06% 8.80% 400
conv4_3 512 320 10.56% 10.36% 9.36% 8.93% 400
conv5_1 512 436 10.42% 10.51% 9.54% 9.15% 400
conv5_2 512 436 10.47% 10.49% 9.43% 9.16% 400
conv5_3 512 436 10.49% 10.24% 9.61% 9.07% 1× 103

fc6 4096 1792 11.46% 11.33% 9.37% 9.18% 2× 103

fc7 4096 4096 11.45% 10.75% 9.15% 8.95% 1.5× 104
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Fig. 5. Test errors after merging each CONV layer in two VGG-16
networks for ImageNet and CelebA using ZipperNet [6].

merging each CONV layer in the two VGG-16 networks.
In general, ZipperNet performs worse than MTZ in terms
of accuracy after merging. The difference gets increasingly
evident after merging the conv4_2 layer. In the end, Zip-
perNet only achieves a test errors of 15.43% on ImageNet
and 12.74% on CelebA, 2.08% and 0.73% worse than MTZ.

For comparison with NWV [5], we merge two ResNet-
28 networks [42] to cover diverse model architectures. The
two ResNet-28 networks are pre-trained on German Traffic
Sign Recognition Benchmark (GTSRB) [43] and Street View
House Numbers (SVHN) [44]. Table 7 provides a summary
of the datasets. When merging the two ResNet-28 networks
with NWV, the weights are organised into 5, 822 weight-
pages with a page size of 1, 000. Then the weight-pages
are retrained as in NWV to recover the inference accuracy.
Table 4 lists the test errors of the fully shared ResNet-28
model merged by NWV and MTZ. MTZ achieves better
accuracy than NMV on both tasks after merging. Compared
with NWV, MTZ yields 5.99% lower error on GTSRB and
0.79% on SVHN.

To demonstrate the feasibility of MTZ on merging mod-
els of similar architectures yet different depth, we further
merge a ResNet-28 network and a ResNet-34 network,
which are pretrained respectively on GTSRB and SVHN.

TABLE 4
Test errors of the joint network merged by NWV [5] and MTZ. The joint

model is fully shared except the last classification layer.

GTSRB SVHN Average

NWV 7.04% 7.65% 7.35%
MTZ 1.05% 6.86% 3.96%

TABLE 5
Test errors of the joint network by merging ResNet-28 (pretrained on
GTSRB) and ResNet-34 (pretrained on SVHN) using MTZ. The joint

model is merged layer-by-layer from the first layers.

GTSRB SVHN Average

MTZ 1.14% 6.80% 3.97%

The two networks are merged layer-by-layer from the first
layers and the extra layers in the ResNet-34 are left indepen-
dent. Table 5 shows the test errors of the merged model. We
can see that the merged model performs well on both tasks,
showing the effectiveness of MTZ merging networks with
different depth.

5.3 Zipping Two Networks for Different Input Domains

This experiment evaluates the performance of MTZ to
merge two models for different input domains. The aim
is to show the potential memory saving to share informa-
tion among different models, even if they are designed for
different input domains, e.g., one for audio and the other
for visual input. This is common in mobile and ubiquitous
computing with multiple sensing modalities.

Dataset and Settings. We experiment with an audio-visual
emotion classification task, where we perform emotion
recognition from speech and facial expression [45]. We use
the same models as [45], where one ResNet-28 network is
used to extract audio representations and the other ResNet-
28 network is used to extract facial features from video
frames. The audio and video features are concatenated
and fed to full connected layers for emotion recognition.
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The performance of emotion recognition is assessed on the
RML audio-visual dataset [46]. The RML database contains
720 utterances from 8 participants with 6 emotions: anger,
disgust, fear, joy, sadness, and surprise.

We first train the two ResNet-28 networks for audio
emotion classification (ResNet-28-Audio) and video emo-
tion classification (ResNet-28-Video) respectively. The two
models are then merged via full connected layers and fine-
tuned for audio-emotion classification (ResNet-28-Fusion).
Finally we enforce sharing 90% of the neurons in the two
networks (the last classification layer excluded) via MTZ,
which leads to a joint model of 1.1× the size of a single
ResNet-28 network.
Results. Table 6 shows the accuracy of different models on
emotion classification. Comparing ResNet-28-Fusion with
ResNet-28-Audio and ResNet-28-Video, the emotion recog-
nition error drops significantly from around 40% to about
25%. However, this accuracy gain is at the cost of double the
size of the model, i.e., having twice the number of parame-
ters of a single ResNet-28 network. Our MTZ method is able
to enforce information sharing between ResNet-28-Audio
and ResNet-28-Video. Specifically, compared with ResNet-
28-Fusion, our joint model only has 1.1 times the number of
the parameters (in contrast to 2 times), with only a 3.68%
drop in emotion recognition accuracy. The results indicate
that inter-redundancy is not limited to models with the same
input domain and MTZ is able to suppress inter-redundancy
among models for different input domains.

5.4 Zipping More Than Two Networks
This experiment evaluates the scalability of MTZ and the
benefit of cross-model compression for running multiple
models on embedded platforms. We investigate: (i) what
the accuracy loss is if more than two models are merged;
and (ii) what is the reduction in the model-switching time
on resource-limited devices if multiple models are merged.
Dataset and Settings. We adopt the models and datasets
in [47], a recent work on multi-task learning with ResNets.
Specifically, nine ResNet-28 networks [42] are trained for
diverse image recognition tasks, including CIFAR100 [48],
German Traffic Sign Recognition Benchmark (GTSRB) [43],
Omniglot [49], Street View House Numbers (SVHN) [44],
UCF101 [50], Flowers102 [51], Daimler Mono Pedestrian
Classification Benchmark (DPed) [52], Describable Texture
Dataset (DTD) [53] and FGVC-Aircraft [54]. Table 7 provides
a brief summary of the datasets.

To test the scalability of MTZ, we enforce sharing 90%
of the neurons in a single ResNet-28 network with the other
eight models, and evaluate the accuracy of the joint model
on each of the nine task.

To show the benefit of executing a compact joint model,
we measure the delay when switching between the nine
inference tasks on the Jetson Nano embedded platform [41].
A 32GB Sandisk microSD is connected to the platform to
storage the neural networks. To perform inference tasks on-
device, the corresponding model should be loaded from the
microSD to the memory. When a new task is performed,
the parameters of the new model are loaded and the old
parameters in the memory are overwritten, as the memory
resource is limited. Fig. 6 illustrates the setup to measure

Fig. 6. Hardware setup to measure the execution time of the nine
inference tasks (the photo was for the traffic sign recognition task, i.e.,
the GTSRB dataset [43]) on the Jetson Nano embedded platform.

the execution time of the visual inference tasks on the
embedded platform. To measure the model-switching time,
tasks are performed in a random sequence but each one
from the 9 tasks is performed 10 times.
Results. Table 8 shows the accuracy of each individual pre-
trained model and the joint model on the nine tasks. Com-
pared with each individual model, the accuracy of the joint
model only drops by 0.46% (averaged across the nine tasks).
However, the total storage for the nine models decreases
from 9× to only 1.8× of a single ResNet-28 network. The
results show that MTZ is able to enforce neuron sharing
among dozens of models for diverse tasks while retaining
the inference accuracy on each task.

Fig. 7 shows the averaged time needed to update the
parameters in the memory for new tasks. As 90% of the
parameters are shared, only 10% of the parameters in the
memory are needed to be updated when we use the joint
model. Hence the model-switching time when using the
joint model is significantly lower than that when using
individual models. In general, the joint model is able to
achieve 8.71× lower model-switching time.

6 CONCLUSION

We propose MTZ, a framework to automatically merge
multiple correlated, well-trained deep neural networks
for cross-model compression via neuron sharing. It selec-
tively shares neurons and optimally updates their incoming
weights on a layer basis to minimise the errors induced
to each individual task. Only light retraining is necessary
to resume the accuracy of the joint model on each task.
Evaluations show that MTZ can fully merge two VGG-16
networks with an error increase of 3.76% and 2.59% on
ImageNet for object classification and on CelebA for facial
attribute classification, or share 39.61% parameters between
the two models with < 0.5% error increase. The number of
iterations to retrain the combined model is 17.9× lower than
that of training a single VGG-16 network. Meanwhile, MTZ
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TABLE 6
Test errors of audio emotion classification network, visual emotion classification network and the joint network merged by MTZ. 1× is the number

of parameters of one single ResNet excluding the last classification layer.

Model ResNet-28-Audio ResNet-28-Video ResNet-28-Fusion MTZ

#par. 1.0× 1.0 × 2.0 × 1.1 ×
Test Error 43.02% 39.65% 24.74% 28.42%

TABLE 7
A brief description of the datasets that each ResNet-28 network is trained on.

Dataset Brief Description

CIFAR100 [48] 60, 000 colour images of 100 different object categories
GTSRB [43] 50, 000+ images for 43 traffic sign classes in different resolutions
Omniglot [49] 1, 623 different handwritten characters from 50 different alphabets
SVHN [44] 70, 000 images of digits cropped from street views
UCF101 [50] 13, 320 videos clips collected from YouTube for 101 action categories
Flowers102 [51] 8, 189 images of 102 categories of flowers
DPed [52] 50, 000 grey-scale images of pedestrians and non-pedestrians
DTD [53] 5, 640 texture images of 47 terms (categories) e.g., bubbly
FGVC-Aircraft [54] 10, 000 images of 100 different aircraft models e.g., Airbus A310

TABLE 8
Test errors of pre-trained single ResNets and the joint network merged by MTZ. The joint model is compressed to 1.8× of a single model. 1× is

the number of parameters of a single ResNet-28 excluding the last classification layer. Without MTZ the joint model would have a size of 9×.

CIFAR100 GTSRB Omniglot SVHN UCF101 Flowers102 DPed DTD FGVC-Aircraft Average

Single 28.97% 0.56% 14.97% 6.04% 36.68% 37.45% 0.56% 67.61% 58.75% 27.96%
Joint 31.88% 0.51% 16.94% 6.70% 36.22% 37.35% 0.51% 67.71% 58.30% 28.42%
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Fig. 7. Averaged model-switching time between the nine tasks.

is able to share 90% of the parameters among nine ResNets
on nine different visual recognition tasks while inducing
negligible loss on accuracy. The joint model also reduces
the model-switching time between these inference tasks on
memory-constrained devices by 8.71×. Experiments also
show that MTZ is applicable to sparse networks and models
for different input domains.
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