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Abstract—The increasing deployment of multiple deep neural networks (DNNs) on edge devices is revolutionizing mobile vision
applications, spanning autonomous vehicles, augmented reality, and video surveillance. These applications demand adaptation to
contextual and environmental drifts, typically through fine-tuning on edge devices without cloud access, due to increasing data privacy
concerns and the urgency for timely responses. However, fine-tuning multiple DNNs on edge devices faces significant challenges due
to the substantial computational workload. In this paper, we present PatchLine, a novel framework tailored for efficient on-device
training in the form of fine-tuning for multi-DNN vision applications. At the core of PatchLine is an innovative lightweight adapter design
called patches coupled with a strategic patch updating approach across models. Specifically, PatchLine adopts drift-adaptive
incremental patching, correlation-aware warm patching, and entropy-based sample selection, to holistically reduce the number of
trainable parameters, training epochs, and training samples. Experiments on four datasets, three vision tasks, four backbones, and two
platforms demonstrate that PatchLine reduces the total computational cost by an average of 55% without sacrificing accuracy
compared to the state-of-the-art.

Index Terms—Patch, on-device, model adaptation, multi-DNN.
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1 INTRODUCTION

Mobile vision systems are increasingly adopting multiple
deep neural networks (DNNs) on edge devices for com-
prehensive understanding of complex environments [1], [2],
[3]. For instance, autonomous vehicles recognize road signs,
detect pedestrians, and mark lane boundaries using a mix of
DNNs for tasks like image classification [4], object detection
[5], and semantic segmentation [6]. Augmented Reality (AR)
applications leverage image classification to identify real-
world objects, object detection to overlay virtual entities,
and semantic segmentation to integrate virtual elements
with the physical environment [7]. Safety monitoring system
in factories utilizes image classification to detect dangerous
worker movements, object detection to determine whether
workers are appropriately attired, and semantic segmen-
tation to identify when a worker enters a hazardous area
[8]. Similarly, smart wearable devices like fitness bands and
smartwatches deploy a multi-DNN framework to detect
visual markers on the skin through image classification and
analyze bio-metrics like sweat on the skin’s surface via
semantic segmentation [9].
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These DNNs are typically trained on the cloud and then
deployed to edge devices for inference. Due to the difference
in data distribution between training and inference time, i.e.,
data drift, these models often suffer from accuracy degrada-
tion [10], [11]. Such data drift is not uncommon because
many mobile vision systems operate in dynamic contexts,
which increase the frequency of encountering input data
from the unseen distributions. Accordingly, model fine-
tuning is necessary to resume the inference accuracy, and
on-device model fine-tuning is preferable to cloud offloading,
driven by increasing data privacy concerns and the urgency
for timely responses [12], [13]. Take safety monitoring as an
example, in case of varying light and weather conditions,
e.g., from sunlit to foggy, the onboard DNNs must rapidly
adapt to environmental changes, often without cloud con-
nectivity [14], [15].

To counteract data drift, we resort to fine-tuning pre-
trained DNNs on newly acquired data, a simple yet versatile
strategy [16], [17]. However, fine-tuning modern DNNs
on edge devices with limited resources is challenging. For
example, training classical DNNs such as MobileNetv2 [18],
YOLOv4 [19], and DeepLabv3+ [20] for image classification,
object detection, and semantic segmentation respectively
demands peak memories of 4523 MB, 5911 MB, 6417 MB and
the computational workload of each batch is 77.34 GFLOPs,
266.30 GFLOPs, 601.44 GFLOPs (batch sizes: 16, 16, 8). Such
memory and computational demands would easily exceed
the capacities of commodity edge devices, such as the smart
phone [21] and NVIDIA Jetson TX2 [22].

There are different tactics for on-device DNN adaptation
or training. Some reduce the amount of trainable model
parameters by selecting important parameters [23], [24]
or designing lightweight adapters [25]. Others accelerate
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model training convergence by learning rate scheduling [26]
or warm starting [27]. There are also orthogonal approaches
such as reducing the training data by selecting the most
informative samples [13]. We focus on lightweight adapter
design for multi-DNN vision applications. The reasons are
two-fold. (i) Prior studies have shown the effectiveness of
solely updating adapters to combat data drift in vision tasks
[12], [28]. (ii) By updating adapters and freezing the original
model parameters, we can mitigate catastrophic forgetting
during model continuous adaptation [29].

While a straightforward adoption of existing on-device
DNN training methods to individual DNNs is feasible, there
are two unexplored opportunities to elevate the adaptation
efficiency of multi-DNN vision systems.

• Share adapter architectures among models. Models in
multi-DNN setups often employ the same backbone
architecture (with different parameters) as feature ex-
traction, followed by specialized decoders for down-
stream tasks. Since many visual drift types are more
appropriately adjusted at the backbone level, we pro-
pose task-agnostic adapters rather than model-specific
ones. This would notably simplify the adapter design
for multi-DNN vision applications.

• Transfer adapter parameters across models. The mod-
els in multi-DNN vision applications are correlated
since they all process images and employ the same
backbone architecture. Consequently, we may har-
ness the trained adapter of one model as a warm start
(initialization) for training adapters in subsequent
models. This would reduce the required training
epochs for subsequent models.

Nevertheless, it poses distinct challenges to integrate
these opportunities into a functional solution.

• Challenge 1: How to craft task-agnostic yet drift-adaptive
adapter architectures? A static adapter architecture
risks introducing unnecessary adaptation overhead
in terms of computation, memory, and latency.

• Challenge 2: How to decide the sequence of adapter param-
eter transfers across models? Model correlations differ
across tasks, and transferring parameters from less
correlated tasks might hinder model convergence.

To address these challenges, we introduce PatchLine, an
efficient on-device model fine-tuning framework tailored for
multi-DNN vision applications. Given multiple pre-trained
models that share the backbone architecture but diverge
in downstream tasks [30], [31] (e.g., image classification,
object detection, semantic segmentation), PatchLine fine-
tunes them by carefully designed adapters known as patches.
Specifically, PatchLine offers:

• Drift-adaptive Incremental Patching. Inspired by pre-
vious studies [28], [32], we design base patches as
tiny residual module attached to convolution groups
within the backbone. A patch predictor, trained
through extensive design exploration (what, where,
and how many to patch). We add basic patches in an
incremental fashion from the input layers based on
the drift severity measured by the MMD (Maximum-
Mean-Discrepancy) [33] metric.

• Correlation-aware Warm Patching. Instead of arbitrary
patch initialization, we employ a dedicated patch-
ing ordering based on the inter-model correlations.
Intriguingly, this patching sequence, determined of-
fline, remains robust against diverse data drift sce-
narios.

PatchLine also employs standardized techniques such as
entropy-based sample selection to further reduce the overall
fine-tuning workload. Evaluations on three datasets and
two backbones show that entropy-based sample selection
reduces the number of training samples by 9%-14%.

Our main contributions are summarized as follows.

• To the best of our knowledge, this is the first on-
device fine-tuning scheme for multi-DNN vision sys-
tems. We exploit two less unexplored opportunities
in on-device DNN training: (i) handling drifts in
vision tasks at backbone level for model-agnostic
adapter design; and (ii) harnessing inter-model cor-
relation for warm adapter initialization.

• We propose PatchLine, a holistic solution to im-
prove the adaptation efficiency of multi-DNN vi-
sion applications by reducing trainable parameters,
training epochs, and the training samples via drift-
adaptive incremental patching, correlation-aware
warm patching, and entropy-based sample selection.

• Extensive evaluations on four different drift datasets,
four common backbones and three basic vision tasks
demonstrate PatchLine reduces the total computa-
tional cost by an average of 55% without sacrific-
ing accuracy compared to the state-of-the-art model
adaptation framework (LST [32]).

2 RELATED WORK

2.1 Adaptation to Data Drift

There is extensive research on model adaptation to data
drifts [11], [34], [35], including the catastrophic forgetting
during continuous adaptation [29], training resource alloca-
tion [36], trigger conditions for model updates [34], and how
to obtain supervision information for new sampling data
[13]. It is also an important topic in mobile and ubiquitous
computing. Khani et al. [11] adaptively sample video frames
by continuously monitoring environmental changes in real-
time to improve the model adaptation accuracy. Xu et al. [37]
dynamically adjusts model parameters on the IoT devices
through local inference on drift data. Chauhan et al. [38]
applies model adaptation to time series and mitigates data
drift for behavior-based use authentication. Gan et al. [13]
handle accuracy degradation in a constantly changing envi-
ronment by presenting a model adaptation framework for
autonomous driving. Kong et al. [15] continuously update
the lightweight model at the edge device to improve the
video surveillance accuracy in adverse environments. Ekya
et al. [36] design a scalable resource scheduler for joint model
training and inference on edge servers. Less GPU resources
used without compromising accuracy.

Different from the above methods, the principal objective
of our work is to significantly reduce the computational cost
in multi-DNN adaptation for vision tasks.
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2.2 On-device DNN Training

On-device DNN training is motivated by the need for
privacy-preserving model customization and personaliza-
tion with local user data [39], [40]. The primary bottleneck
of DNN training on resource-constrained devices is memory
[23], [28]. For memory-efficient training, earlier studies [16],
[41] suggest updating only the last few layers, which leads
to poor accuracy, especially on datasets with notable drifts
[28]. p-Meta [23] automatically identifies adaptation-critical
parameters at runtime to minimize the memory footprint.
TinyTL [28] only updates the bias rather than weights, and
introduces the lite residual module to improve the model
capacity. To speed up on-device training, ElasticTrainer [42]
allows fully elastic selection of tensors to adapt to the
runtime need of training. Mercury [43] focuses on samples
that provide more important information in each training
iteration. Taking inspiration from Mercury, we propose
an entropy-based sample filtering method that removes
redundant data without compromising training accuracy.
To improve model accuracy, LST [32] proposes a ladder
side network, i.e., a small and separate network that takes
intermediate activations as input via shortcut connections
(called ladders) from the backbone.

Our patching shares similar principles as the partial
parameter update strategies [12], [28]. But we focus on
visual tasks adopting a “backbone + decoder” architecture,
resulting in a more structured design (residual layers per
convolution group). The patch architecture is inspired by
LST [32]. However, we do not add patches to all convolution
groups, but adaptively change the number of patches based
on the drifting data, without compromising accuracy. More
importantly, we harness the task correlations to reduce the
training workload across models, which is largely unex-
plored in previous on-device DNN training studies.

2.3 Multi-task Learning in Mobile Applications

Multi-task learning exploits the correlation between tasks,
allowing multiple tasks to be trained together by shar-
ing structure, which improves generalization [44], [45]. It
is widely adopted in ubiquitous computing applications
for effective model training across sensing modalities [46],
devices [47], users [48], tasks [49] etc. For example, Roy
et al. [1] improve the accuracy of vehicle detection by joint
learning of data from multiple sensing modalities, including
image, radar, acoustic, and seismic data. Sugarmate [48]
designs grouped input layers, together with the adoption
of a deep RNN model, to build blood glucose models for
the general public based on limited personal measurements
from single-user and grouped-users perspectives. Dai et al.
[50] introduce a specialized Multi-Task Learning (MTL)
model designed for randomized controlled experiments. LU
et al. [47] apply MTL in the field of depression detection,
achieving more precise depression detection through joint
learning from data collected from multiple devices.

Our work differs from multi-task learning in the prob-
lem settings. Instead of training a multi-task network from
scratch, we aim at efficient fine-tuning of multiple separately
pre-trained models.

2.4 Efficient Multi-DNN Inference

This thread of research accelerates the execution of multi-
ple pre-trained DNNs at different optimization levels. For
example, MTZ [51] enforces cross-model weight sharing for
storage saving. PAM [52] integrates network pruning into
model merging, offering a heuristic approach to minimize
the computational cost when executing any task subset.
Wang et al. [3] propose a speculative multi-model inference
framework to improve the accuracy on complex scenarios.
MTS [53] proposes a graph rewriter for efficient multi-task
inference with weight-shared DNNs. Heimdall [54] coordi-
nates both DNNs and non-DNNs with mobile GPUs. Band
[55] further optimizes the execution of multiple DNNs on
heterogeneous computational resources. Layerweaver [56]
reduces the temporal waste of computational resources by
interweaving layer execution of multiple different mod-
els with opposing characteristics: compute-intensive and
memory-intensive. LEO [57] proposes a scheduling frame-
work to distribute the sensor processing tasks across the
broader range of heterogeneous computational resources of
mobile phones (CPU, co-processor, GPU and the cloud).

Our work is inspired by the rationales in these stud-
ies, yet we exploit task relatedness among multiple pre-
trained models for training, which is more challenging and
resource-demanding than inference.

3 PROBLEM SCOPE

3.1 Multi-DNN Adaptation

Given N models (deep neural networks) are pre-trained for
different vision tasks on source domain dataset Ds, we aim
to fine-tune the N models on drift dataset Ddrift to resume
model accuracy at low training overhead. We consider the
following problem settings (see Fig. 1).

• Drift Types And Detection. The source dataset Ds and
the drifted dataset Ddrift differ in environment con-
ditions (e.g., fog, rain, snow), pose and appearance
(e.g., clothes and angles for objects in the person
class) etc. These drift types are common in applica-
tions such as safety monitoring [8] and autonomous
vehicles [13]. Data Drift can be quantified and de-
tected through the following steps: (i) Obtain feature
vector sets Fsource and Fdrift for source domain and
drift data from intermediate layers of pre-trained
visual models. (ii) Use Maximum Mean Discrepancy
(MMD) [33] to compare two distributions:

MMD2(Fsource, Fdrift) =
∥∥∥ 1
n

∑n
i=1 ϕ(xi)− 1

m

∑m
j=1 ϕ(xj)

∥∥∥2
H

(1)

where ϕ is a kernel function mapping to a repro-
ducing kernel Hilbert space (RKHS). A large positive
MMD indicates data drift.

• Model Architectures. We consider models adopting a
“backbone + decoder” architecture for diverse visual
tasks. Models in multi-DNN setups often employ the
same backbone architecture (with different param-
eters) as feature extraction, followed by specialized
decoders for down-stream tasks. For example, an au-
tonomous vehicle may adopt MobileNetv2 for image
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TABLE 1
Static memory, peak dynamic memory, and computation of each batch on example datasets. Batch sizes are 16 for image classification, 16 for

object detection, and 8 for semantic segmentation.

Application Model/Benchmark
Static Memory (MB) Peak Dynamic Memory Training Computation of Each Batch

Model/Sample (MB) (GLOPs)
Image Classification MobileNetv2/Core50 [61] 9.5/1.4 4523 77.34

Object Detection YOLOv4-MobileNetv2 /Core50 49.2/1.4 5911 266.30
Semantic Segmentation DeepLabv3+-MobileNetv2 /Core50 23.9/1.4 6417 601.44

Model 1
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Classification

Pre-training

Problem Setting

Time
Update one by one

Backbone

Decoder 1

Backbone

Decoder 2

Backbone

Decoder N

Model N

Semantic

Segmentation

……….
Device

𝐷𝑑𝑟𝑖𝑓𝑡

Drift Data

Source Domain Data

𝐷𝑆

Model 2 

Object 

Detection

Fig. 1. An illustration of problem setting.

classification, YOLOV4-MobileNetv2 for object de-
tection, and DeepLabv3+-MobileNetv2 for semantic
segmentation, respectively.

• Efficiency Metrics. We mainly adopt the overall com-
putational cost (in FLOPs) to measure the training
overhead. It can also imply the training latency [58],
which is crucial for rapid adaptation to drift data.

• Sequential Adaptation. We assume sequential adap-
tation of the N models. This is because parallel
adaptation may overwhelm the memory budget on
edge devices. As shown in Table 1, simultaneously
training MobileNetv2 and YOLOv4-MobileNetv2 re-
quires 10.4 GB of memory, whereas the maximum
memory of a smartphone [59] or an NVIDIA Jetson
TX2 [22] is within 8 GB. Furthermore, task-level
parallelism, where each model corresponds to one
task, is not well supported by many deep learning
frameworks [53], [60].

3.2 Optimization Opportunities

Adaptation Workload Decomposition. Following the se-
tups in Sec. 3.1, we can roughly estimate the workload
for multi-DNN adaptation as follows. For simplicity, we
assume standard mini-batch gradient descent is adopted.
The computation Ci of model i can be calculated as

Ci = Ei × (bi × ni)× (Fi +Bi) (2)

where Ei, bi, ni denote the number of epochs, batch size and
the number of batches, respectively. Fi and Bi represent the
computation of a single forward and backward pass. Since
we assume the N models are updated sequentially, the total
computational workload as follow:

C =
N∑
i=1

Ci =
N∑
i=1

(Ei × (bi × ni)× (Fi +Bi)) (3)

Opportunities to Decrease Adaptation Workload. Al-
though Eq. (3) shares the same form as the computational

cost in vanilla training, adapting pre-trained models brings
distinct opportunities to lower the computational overhead.

• Reduce single-pass training cost (Fi + Bi) via partial
model update. The computational cost of forward and
backward propagation is proportional to the number
of parameters updated in the model. In model adap-
tation, it is viable to only train a subset of important
parameters to handle data drifts.

• Reduce training epochs Ei via model parameter transfer.
Since the N models are correlated, there is potential
to reuse certain trained parameters of a highly rele-
vant model without retraining from scratch.

• Reduce training samples (bi×ni) via sample selection. It
is only necessary to train the models on data samples
critical to contextual changes, rather than on the
entire dataset to learn the visual tasks.

We aim at a comprehensive solution that optimizes the
adaptation workload from all the three aspects above for
multi-DNN vision applications, as explained below.

4 PATCHLINE OVERVIEW

This section presents an overview of PatchLine, an efficient
on-device model fine-tuning framework for multi-DNN vi-
sion applications. PatchLine attaches lightweight adapters
known as patches to each model, and only fine-tunes these
patches in a strategic sequence without altering the original
model parameters, to achieve high accuracy on drifted data
with low adaptation cost.
Design Rationales. As mentioned in Sec. 3.2, PatchLine
systematically decreases the total computation of multi-
DNN adaption in Eq. (3) via three strategies.

• Patching Scheme. PatchLine decreases the single-
pass training cost (Fi + Bi) by crafting patches
dedicated to drift adaptation in multi-DNN vision
applications. By freezing the original model param-
eters and only updating the patches, the single-pass
training cost is estimated as (Fi+PF+PB), where PF

and PB are the patch’s computations in the forward
and backward pass. We propose task-agnostic base
patches and drift-adaptive patching schemes where
PF + PB ≪ Bi even on severely drifted data.

• Patch Training Order. Instead of training the patches
of the N models independently from scratch, Patch-
Line intelligently transfers the trained patches of one
model to another, such that the training epochs of
model i reduce from Ei to E′

i, where E′
i < Ei

expect for the first model. Such parameters transfer
as warm-starts is viable since (i) the models are
correlated and (ii) the tasks share the same base patch



IEEE TRANSACTION ON MOBILE COMPUTING, VOL. X, NO. X, JANUARY 2024 5

Model

Affinity Table

1.The training order of multiple models:

model i→ model j→…model n

2.The strategy for setting the starting 

point of training for model patchs.

Online

Conv

Group-1

Conv

Group-2

Conv

Group-n

Backbone

Model i

…

Patch-1

Initial weights: 

Normal

Patch-2

Initial weights: 

Normal

Patch-n

Initial weights: 

Normal

Conv

Group-1

Conv

Group-2

Conv

Group-n

Backbone

Model j

…

Patch-1

Initial weights: 

Model i-patch1

Patch-2

Initial weights: 

Model i-patch2

Patch-n

Initial weights: 

Model i-patchn

Conv

Group-1

Conv

Group-2

Conv

Group-n

Backbone

Model n

…

Patch-1

Initial weights: 

Model x-patch1

Patch-2

Initial weights: 

Model x-patch2

Patch-n

Initial weights: 

Model x-patchn

Update one by one in the specified sequence: model i→ model j→…model n
Time

Patch Frozen 

No-Grad

…….

Update only patch and freeze the  remaining parts of the model.

PatchLine

Offline

𝐷𝑆

Source Domain Data

𝐷𝑠𝑦−𝑑𝑟𝑖𝑓𝑡

Synthetic Drift Data

Train

Input

Model i….j

Feature

Maps

𝐷𝑑𝑟𝑖𝑓𝑡

Drift Data
Entropy-Based 

Filter
𝐷𝑑𝑟𝑖𝑓𝑡
𝑟

Refined 

Drift Data
Patch 

Predictor

Number of 

patchs: n

Calculate 

Similarity

Data: Image

Label: Number 

of patch

Fig. 2. Illustration of PatchLine, where training multiple models in a specific order, with the acceleration of convergence facilitated by the transfer of
patch weights between models.

architectures. PatchLine employs a correlation-aware
patch update ordering to maximize patch parameter
reuse during training.

• Sample Selection. Though not a main contribution,
PatchLine utilizes a lightweight criterion to select
important samples for patch training, which reduces
the training samples of model i from bi×ni to bi×n′

i,
where n′

i < ni. We keep the batch size bi fixed
since it may affect the convergence of standard DNN
optimizers such as mini-batch gradient descent. Such
optimizations are beyond the scope of this work.

With the above optimizations, the total computation of
multi-DNN adaption is reduced to

Cpatch =
N∑
i=1

(E′
i × (bi × n′

i)× (Fi + PF + PB)) (4)

where E′
i ≤ Ei, n′

i < ni, and Fi + PF + PB < Fi + Bi.
Empirically, we observe PatchLine reduces the number of
epochs Ei by up to 47%, number of training samples ni by
up to 17% , and the single-pass training overhead (Fi +Bi)
by up to 67% (see Sec. 6.2).

Functional Modules. PatchLine consists of three mod-
ules: drift-adaptive incremental patching, correlation-aware warm
patching, and entropy-based sample selection, which decreases
the trainable parameters, training epochs, and the training
samples, respectively.

• Drift-adaptive Incremental Patching (Sec. 5.1). This
module incrementally adds base patches to the back-
bones of each model. Base patches can be attached as
residual connections per convolution group starting
from the input end. The number of base patches is
decided by a patch predictor according to the data
drift level. All the models share the same base patch
architectures and the number of base patches.

• Correlation-aware Warm Patching (Sec. 5.2). This
module accelerates patch training by recursively
transferring trained patch parameters of one model

to another as its warm initialization. The patch train-
ing sequence is derived from a model affinity table
trained offline.

• Entropy-based Sample Selection (Sec. 5.3). This
module picks samples notably deviate from the
source domain for patch training. It adopts a
lightweight entropy-based criterion on the image
classification model output score to select important
samples without extra computation overhead.

Operational Workflow. As illustrated in Fig. 2, PatchLine
works in two phases.

• Offline Phase. We first generate the model affinity
table for correlation-aware warm patching. Specifi-
cally, we perform inference with N models on the
same image sampled from the source dataset Ds, and
assess the inter-model correlation by comparing the
similarity between the feature maps from the same
convolution groups across models. We then train
the patch predictor for drift-adaptive incremental
patching. Concretely, we synthesize diverse drifted
data Dsy−drift from Ds, and train a neural network
that takes the drift level as input, and outputs the
number of patches to add.

• Online Phase. Given the actual drifted dataset
Ddrift, we first remove unimportant samples by the
entropy based filter. The remaining samples are fed
into the patch predictor to determine the number of
patches to insert. After attaching the patches to each
model, we train the patches of the N models on the
filtered samples based on the sequence given by the
model affinity table. That is, the trained patches of
one model are used as initialization of the subse-
quent models to accelerate model convergence.

5 PATCHLINE DESIGN

We now explain the details of how PatchLine reduces
trainable parameters, training epochs, and the training
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Fig. 3. Illustration of patching scheme (ResNet50 backbone).

samples via drift-adaptive incremental patching (Sec. 5.1),
correlation-aware warm patching (Sec. 5.2), and entropy-
based sample selection (Sec. 5.3).

5.1 Drift-adaptive Incremental Patching

This subsection introduces what, where, and how many
patches to insert into the models. The objective is to devise
task-agnostic and drift-adaptive patching scheme. Fig. 3 shows
an example, patching on the ResNet50 backbone. Note that
the backbone architecture can be used for diverse visual
tasks such as image classification, object detection, and
semantic segmentation.

5.1.1 Base Patch Architecture Design
Inspired by residual networks [62], we employ a base patch
consisting of a single convolution layer followed by an
activation layer and attach it as a residual module to the
original model, since single-layer side-path convolutions
demonstrated high learning capabilities [28], [32]

The kernel size of the convolution layer within the patch
is determined by the backbone structure. To ensure the
single-pass training computation of patches is lower than
that of the original model, i.e., Fi +PF +PB < Fi +Bi (see
Sec. 4), we adopt small kernel sizes such as 1x1 and 3x3,
and apply Algorithm 1 to check whether the constraint is
met. Since the ratio of backward pass operations to forward
pass operations is 2:1 [58], we only need to check whether
the ratio R (the output of Algorithm 1) of PF to Fi is
within 2/3. For the four backbones (VGG16 [63], ResNet50
[62], MobileNetv2, and Swin-Transformer-Tiny [64]) used
in our evaluation, we choose 1x1 convolution layers for
the base patch, which easily satisfies the ratio constraint.
The parameter count of the patch modules is significantly
lower than that of the original models. For instance, VGG16,
ResNet50, MobileNetv2, and Swin-Transformer-Tiny have
parameter counts of 134.29 M, 23.52 M, 2.23 M, and 28.27
M, respectively, while the patches only introduce 0.43 M,
2.78 M, 0.08 M, and 0.98 M parameters. That is, the patches
only increase the parameter count by an average of 4.8%.

Note that we only add patches to the backbone rather
than the entire model. This would allow model-agnostic
base patch design, since different models often adopt the
same backbone architecture (with different parameters) in
multi-DNN vision applications.

5.1.2 Extending Base Patches
A single base patch is insufficient to handle severe drift
data. There are primarily two ways of patch extension: (i)
insert multiple patches parallel to convolution groups of
the backbone (Fig. 4 (a)); and (ii) increase the number of

Algorithm 1: Patch Dimension Checking Algorithm

INPUT: Sm: The structure of model, Sp: The structure of
patch, H,M : The size of train data

OUTPUT: R: The forward computation of patch ratio to
the forward computation of model.

ALGORITHM:
CALCULATE Cm : THE FORWARD COMPUTATION OF

MODEL
for layer in Sm:

Clayer, H
′,M ′ = F (layer,H,M)

H = H ′,M = M ′

Cm ← Cm + Clayer

CALCULATE Cp : THE FORWARD COMPUTATION OF
PATCH

for patch in Sp:
Cpatch, H

′,M ′ = F (patch,H,M)
H = H ′,M = M ′

Cp ← Cp + Cpatch

CALCULATE R:
R← Cp/Cm

Return R
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Fig. 4. Illustration of potential ways to extend base patches.

convolution layers within a patch (Fig. 4 (b)). We adopt the
former strategy because distributing multiple patches over
different convolution groups allow adaptation at diverse
scales, while previous studies [12], [28] have already showed
the capability of single-convolution residual modules, as
mentioned in Sec. 5.1.1.

Given multiple base patches, an immediate follow-up
question is: which convolution groups to attach them to.
We sequentially attach base patches to each convolution
group starting from the input end, as shown in Fig. 4 (c).
We insert patches from the input because the shallow layers
of the network is important as an input to subsequent
conv groups. We add patches without skipping convolution
groups like in Fig. 4 (d) to allow feature co-adaptation on
successive layers, which is essential for effective transfer
learning [65]. We empirically compare continual patching
and skip patching in Sec. 6.3.

5.1.3 Deciding Number of Patches via Patch Predictor
Since we freeze the original model’s weights during training
and only update the patches, the model’s capacity is pro-
portional to the number of patches. Intuitively, the larger
data drift, the more patches are needed. We automatically
determine the number of patches according to the drift level
via a patch predictor.

The patch predictor is a neural network that takes drifted
data as input and outputs the number of patches for a given
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Fig. 5. Illustration of patch predictor, where source dataset Ds is utilized
to train a patch predictor.

backbone architecture. It is implemented using VGG16 as
the feature extraction network, followed by 3 fully con-
nected layers. We only randomly pick part of the drifted
dataset (10% by default) to fed into the patch predictor.
The output dimension of the patch predictor is backbone-
specific. For example, ResNet50 has 4 convolution groups,
and thus the output dimension is 5 (0 to 4 patches added).

Fig. 5 illustrates the training of the patch predictor. Note
that we do not train a different patch predictor per model
because they share the same backbone structure. We use
the simplest visual task e.g., image classification, to train
the patch predictor. The most critical step is to generate
the training data for the patch predictor. Specifically, we
first synthesize drift data Dsy−drift with various degrees
of drift as in [13] using source domain data Ds. We adopt
MMD (Maximum-Mean-Discrepancy) to measure the drift
level of synthesized data Dsy−drift. In total, we generate
18 datasets with MMD ranging from 0.0579 to 1.5670 from
the source domain dataset Ds. The labels for the synthetic
data Dsy−drift are manually annotated as follows. First, we
generate labels by attaching different numbers of patches
to the backbone and training them with various drifts.
Then, we label the drift data where the label represents the
minimal number of patches for the model to adapt to such
drift. For example, the source domain data Ds is labeled
as 0 because no patch is necessary to adapt to the source
domain data. After generating the training dataset, we train
the patch predictor in a standard supervised manner.

Discussions. We make the following notes on the drift-
adaptive incremental patching scheme.

• How is the base patch design different from previous
studies? Previous research has focused on how to
efficiently fine-tune a small subset of parameters
inside the whole model, e.g. p-meta [23] only up-
dates the parameters of key layers and channels,
BitFit [66] only updates the bias. There are also some
works on inserting some lightweight modules into
the model, but they all design the base module from
the perspective of accuracy [25], number of parame-
ters [67], or memory [12], whereas we look at it from
the perspective of computational overhead. And the
previous base module design only needs to be for a
single task, e.g., DCCL [67] only applies to the user
recommendation task, whereas our base patch needs
to apply to multiple vision tasks.

• How to train a single patch predictor shareable across
tasks? Firstly, multiple tasks need to share the same
backbone structure, which is a prerequisite for being
able to use a single patch predictor. This is because
different backbone structures have different numbers
of convolution groups and adaptability to drift data.

(a) Shallow-layer Feature Maps

Image 

Classification

Object 

Detection

Semantic 

Segmentation
Image 

Classification

Object 

Detection

Semantic 

Segmentation

(b) Deep-layer Feature Maps

Fig. 6. Example feature maps at shallow (a) and deep (b) convolution
groups in the backbones of models for image classification, object de-
tection, and semantic segmentation. From (a), the shallow layers of the
three tasks are similar and mainly extract edge features. From (b), the
deep layers of the three tasks extract distinct features for the “scissors”
class. Importantly, the deep layers of the three tasks still share part of
the feature maps despite their differences.

Then for multiple tasks, the most basic task (e.g.,
the basic visual task image classification) needs to
be selected to be trained on multiple artificial drift
datasets. Based on the training results, these artificial
data are labeled and used to train the patch predictor.
A patch predictor is comprised of a classification
model whose output layer dimension is based on
the number of conv groups used in the selected
backbone.

5.2 Correlation-aware Warm Patching
This subsection explains how to strategically transfer patch
parameters between models to accelerate their training con-
vergence. The basic idea is to utilize the trained patches of
the models positioned at the front of the training order as
the initialization for training the patches of the models at the
back of the training order. The training order is determined
by the model affinity table derived from the task relatedness.

5.2.1 Feasibility of Cross-model Patch Transfer
Although we assume the N models sharing the same back-
bone and patch architecture, their parameters differ across
models. However, it is viable to transfer parameters across
models from the following observations.

• Observation 1: The convolution groups of the back-
bones for different tasks have similar functionalities,
particularly in the shallow layers. Previous studies
[65] validate that shallow convolution groups extract
simple features such as edges, colors, and textures,
while deep convolution groups focus on more com-
plex features in image classification. We have similar
observations in the backbones of different visual tasks
e.g., image classification, object detection, and seman-
tic segmentation (see Fig. 6).

• Observation 2: Since patches are attached as resid-
ual modules per convolution group, they inherently
align with the functionality of the corresponding con-
volution group [12], [25]. This is because the function
of the convolution group in the model is related by
where it is in the position and the scale of the input,
whereas the residual modules has the same input
and position as the convolution group.

Observation 1 has three implications. (i) The feature maps
may indicate the functional differences in the backbones
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across visual tasks. (ii) We may share or transfer parameters
across the corresponding convolution groups in the back-
bones of different visual tasks. (iii) Even parameter sharing
at deep layers is meaningful because there is still overlap
among the feature maps in the deep layers of different visual
tasks. From Observation 2, these implications also apply to
the patches, which shows the potential of cross-model patch
parameter sharing or transfer.

5.2.2 Efficient Patch Transfer as Ordered Initialization
As mentioned in Sec. 4, we recursively transfer the trained
patch of one model to another as initialization to acceler-
ate patch training. The overall patch training workload is
minimized if the patch to be trained is initialized from the
patches of the most related task. Our goal is to determine
the training sequence based on the inter-task correlation.

We assess the task correlation from their similarities in
the feature maps, as shown in Fig. 7. Specifically, we calcu-
late the similarity of feature maps per convolution group in
the backbones for each model pair, and store the similarity
in a model affinity table. The feature maps are generated by
inferring on a sampled version of source dataset Ds without
accounting for drifts. This is because the functionalities
of convolution groups in the backbone are likely to stay
unchanged despite contextual drifts such as weather and
pose. Therefore, the model affinity table is a one-off offline
effort. Since only the relative similarity ranking rather than
the absolute value is needed, we explore various efficient
similarity metrics such as Mean Hashing [68], Perceptual
Hashing [69], and Three-Channel Histogram [70], and opted
for Perceptual Hashing since it can accurately estimate the
similarity ranking at low computational overhead.

During the online phase, we calculate the average affin-
ity of convolution groups from the model affinity table and
the number of patches. For instance, assume we need 3
patches according to the patch predictor. Then we compute
the mean likeness of the first three patches of two models
to decide the affinity between these two models based on
the model affinity table. The affinities between models are
calculated pairwise. The model with the highest total affin-
ity is updated first, followed by the model with the second
highest total affinity, and so on. The first model is initialized
randomly, while subsequent models are initialized from the
one with the highest affinity relationship. If two models
have the same total affinity, they can be selected randomly.
Discussions. We make the following notes on the
correlation-aware warm patching.

• Why transfer patches at the model level? The feature co-
adaptation also exists to successive patches of the
same model [65]. Removing the conv groups ex-
poses that the patches interconnect into a lightweight
multi-layer neural network, so that the patch-to-
patch relationship is equivalent to successive DNN
layers. So inserting a mix of patches from different
models is not conducive to knowledge transfer.

• Why does static training ordering work for diverse data
drifts? Firstly, the order in which we train tasks is
determined by their affinity correlation, an objective
and purpose-driven static relationship. We are not
reusing the parameters of different model patches;
we are merely using them as a starting point for
training. Once again, a dynamic training process is
required to adapt to drifting data. We believe that
related tasks learn something in common for the
same set of drift data and can use this to speed up
the training process, whereas task relevance is static.

5.3 Entropy-based Sample Selection
We apply a standard entropy-based sample selection
scheme in PatchLine. Specifically, we calculate the entropy
of the inference results on a given sample as

IEntropy = −
∑
x∈X

p(x) log p(x) (5)

where IEntropy is the entropy of the inference results for
samples, X is the inference results for samples, and x is the
score of the inference results. This score represents the prob-
ability that the input data belongs to a certain category. For
basic visual models such as image classification and object
detection, input image, they produce a set of predicted class
scores. The confidence of the model’s predictions is reflected
in the scores, and we typically choose the top1 score as
the prediction output. When the model’s predictions are
inaccurate for an image, the entropy of the output scores
will be low. Conversely, when the model is highly confident
in its predictions, the output scores will have a distinct
peak, resulting in high entropy. As the degree of data drift
increases, the inference accuracy decreases, and the entropy
of the output results rises [71], [72]. If IEntropy < ISource, we
remove this sample from the training set. ISource represents
the average entropy of inference results of source data on
the visual model, which can be obtained offline.

Note that it is common to capture an image as a training
sample every few frames after detecting data drift [11]. Since
most visual applications require continuous processing of
video streams, such as autonomous driving, unmanned
stores, and video surveillance, our method does not incur
additional computational overhead.

6 EVALUATION

6.1 Experimental Setups

Tasks and Models. We select three widely used vision
tasks: image classification, object detection, and seman-
tic segmentation. We construct nine DNN models using
four backbones VGG16, ResNet50, MobileNetv2, and Swin-
Transformer-Tiny, as shown in Table 2. VGG16 is a convo-
lutional backbone network, consisting of 13 convolutional
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TABLE 2
Overview of visual tasks and backbones (Swin-Tiny:

Swin-Transformer-Tiny).

Backbone Vision Task DNN Model / Parameters (M)

VGG16

Image Classification VGG16/134.29
Object Detection SSD-VGG16 /24.41

Semantic Segmentation U-Net-VGG16 / 24.89

ResNet50

Image Classification ResNet50 / 23.52
Object Detection RetinaNet-ResNet50 /36.45

Semantic Segmentation U-Net-ResNet50 / 43.93

MobileNetv2

Image Classification MobileNetv2 /2.23
Object Detection YOLOv4-MobileNetv2 / 12.10

Semantic Segmentation DeepLabv3+-MobileNetv2 / 5.82

Swin-Tiny

Image Classification Swin-Tiny / 28.27
Object Detection RetinaNet-Swin-Tiny / 37.98

Semantic Segmentation DeepLabv3+-Swin-Tiny / 34.84

layers and 3 fully connected layers, with a total of 134.29
M parameters. Resnet50 is a residual backbone network,
consisting of 4 stages and 50 layers, with a total of 23.52 M
parameters. MobileNet2 is a lightweight backbone network,
consisting of 7 bottleneck depth-separable convolution lay-
ers, with a total of 2.23 M parameters. Swin-Transformer-
Tiny is a lightweight backbone network based on transform-
ers, consisting of one patch embedding layer and 4 Swin
transformer stages, with a total of 28.27 M parameters.
Datasets. Core50 [61] is a benchmark for model adaptation
in three drift scenarios. It supports image classification,
object detection and semantic segmentation. It contains 50
domestic objects from 10 categories and 11 distinct sessions
(8 indoor and 3 outdoor). The detailed information about
the dataset in the appendix.

We construct four datasets from Core50:

• Source Domain Dataset: It includes 1920 images of
size 350x350 from 6 different categories,in the same
scene conditions. The training and test sets con-
tain 1800 and 120 images, respectively. This dataset
is used for model pre-training and offline phase
(Sec. 4).

• Core50-NC: It includes 180 images of size 350x350.
The training and test sets contain 144 and 36 images,
respectively.

• Core50-NI: It includes 174 images of size 350x350.
The training and test sets contain 144 and 30 images,
respectively.

• Core50-NIC: It includes 210 images of size 350x350.
The training and test sets contain 144 and 66 images,
respectively.

To experiment with larger datasets, we also create an-
other benchmark called SBD+, from the SBD [73] dataset
and the VOC2012 [74] dataset, which contains 11,391 images
with 20 different object classes. Each image supports three
visual tasks: image classification, object detection, and se-
mantic segmentation. We construct two datasets from SBD+:

• Source Domain Dataset: We randomly select 40% of
the data from SBD+ as source domain data (4556),
then split this source domain dataset into 80% for the
training set (3644) and 20% for the test set (912). The
usage of the train and test sets, as well as the image
dimensions, are consistent with the Core50 dataset.

• Drift Dataset: We randomly select 60% of the images
(6835) from the SBD+ dataset and applied corrup-

TABLE 3
Number of patches added on different datasets and amount of data

after filtering (Swin-Tiny: Swin-Transformer-Tiny).

Backbone Dataset Patch Entirety data/After filtering

VGG16

Core50-NC 2 144/120
Core50-NI 3 144/130

Core50-NIC 3 144/125
SBD+ 3 5469/5001

ResNet50

Core50-NC 3 144/126
Core50-NI 4 144/135

Core50-NIC 4 144/130
SBD+ 4 5469/4765

MobileNetv2

Core50-NC 4 144/128
Core50-NI 7 144/132

Core50-NIC 7 144/130
SBD+ 7 5469/5001

Swin-Tiny
Core50-NC 3 144/132

SBD+ 4 5469/5037

tions to images [13] to create the drift dataset. We
split this source domain dataset into 80% for the
training set (5469) and 20% for the test set (1366). The
usage of the train and test sets, as well as the image
dimensions, are consistent with the Core50 dataset.

Evaluation Platforms. We utilize two hardware platforms:
the NVIDIA GTX 2080ti and the NVIDIA Jetson TX2 [22].
These two platforms have similar computing capabilities
as representative edge devices. Specifically, the GTX 2080ti,
with 11 GB RAM and 13.45 TFLOPS (FP32), serves as a
representative for high-end edge devices, e.g., the NVIDIA
Jetson Orin NX [75], which has 16GB RAM and achieves
18.33 TFLOPS (FP32). Conversely, the NVIDIA Jetson TX2,
with 8 GB RAM and 0.63 TFLOPS (FP32), represents entry-
level edge devices. We also integrate the Jetson TX2 with
an AgileX smart car [76] for a case study. Unless otherwise
noted, our results are reported with the GTX 2080ti. Our
PatchLine is implemented by Pytorch 1.7 and CUDA 10.0.
Baselines. We compare the performance of PatchLine with
the following baselines. Training Details of PatchLine and
baselines in the appendix.

• FT-full: Fine-tuning the full network.
• FT-last: Fine-tuning the last layer of the network [16].
• LST: The state-of-the-art model adaptation method

[32]. It adds a small and separate network (known as
ladder side network) to the backbone as an adapter
and freezes other model parameters during training.
For fair comparison, we have reproduced the ladder
network structure in our three vision tasks according
to the open-source implementation [77].

6.2 Overall Performance
6.2.1 Performance with Convolutional Backbones
In this thread of experiments, we evaluate our method on
three convolutional backbones and four datasets.
Reduction in Epochs Ei. Table 4 shows the convergence
epochs of different methods. Compared with FT-full and
LST, we achieve the same accuracy, but reduce the number
of epochs by an average of 56% and 50%, respectively. Note
that FT-last has low accuracy on many tasks, because they
require feature maps from intermediate layers. We also per-
form t-tests (see * and ** Table 5) to check whether the gains
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TABLE 4
Accuracy and number of convergence epochs on convolutional backbones.

VGG16

Dataset Method
Image Classification Object Detection Semantic Segmentation

Accuracy(%) ↑/Epochs ↓ mAP(%)↑/Epochs↓ mIoU(%)↑/Epochs↓

Core50-NC

FT-full 100.00±0.00/30 100.00±0.00/30 90.13±0.13/60
FT-last 95.32±1.56/30 59.77±0.23/10 52.72±0.28/60

LST 95.32±1.56/40 100.00±0.00/30 89.00±0.47/60
PatchLine 100.00±0.00 /20 99.60±0.40 /10 90.10±0.35/40

Core50-NI

FT-full 98.44±1.56/30 95.00±1.67/40 80.25±0.44/60
FT-last 96.88±3.13/80 28.72±0.17/10 35.79±0.42/60

LST 98.44±1.56/40 99.72±0.23/30 80.86±0.10/60
PatchLine 98.44±1.56 /20 99.72±0.28/10 80.58±0.04/40

Core50-NIC

FT-full 99.22±0.78/30 97.73±0.77/40 84.89±0.34/60
FT-last 95.32±1.56/40 38.56±0.36/10 35.19±0.40/50

LST 97.66±0.78/30 99.72±0.15/40 84.16±0.23/60
PatchLine 99.22±0.78 /20 99.43±0.57/10 84.30±0.26/40

SBD+

FT-full 85.66±0.30/50 74.63±0.22/60 55.68±0.36/60
FT-last 64.00±0.03/20 16.53±0.31/10 13.63±0.11/20

LST 82.04±0.15/30 74.06±0.15/40 55.38±0.12/60
PatchLine 85.20±0.14/20 74.26±0.22/20 55.30±0.16/30

ResNet50

Core50-NC

FT-full 100.00±0.00/30 100.00±0.00/40 90.80±0.15/50
FT-last 95.32±1.56/70 83.27±0.29/50 47.99±0.72/30

LST 95.32±1.56/70 98.61±1.39/50 90.30±0.65/50
PatchLine 100.00±0.00/20 100.00±0.00/10 90.68±0.26/20

Core50-NI

FT-full 98.44±1.56/40 93.05±0.83/50 79.72±0.23/60
FT-last 96.88±3.12/80 75.65±0.33/60 29.90±0.20/40

LST 96.88±3.12/50 95.56±0.56/40 79.45±0.15/60
PatchLine 100.00±0.00/20 99.72±0.28/10 79.69±0.21/30

Core50-NIC

FT-full 100.00±0.00/40 96.65±0.19/50 84.36±0.14/60
FT-last 92.97±0.79/50 74.02±0.08/50 30.39±0.40/30

LST 98.44±1.56/50 98.39±0.16/40 84.64±0.17/60
PatchLine 99.22±0.78/20 99.56±0.44/20 84.60±0.09/30

SBD+

FT-full 85.77±0.23/50 77.04±0.17/50 61.73±0.26/60
FT-last 76.98±0.22/70 17.30±0.23/40 10.40±0.21/40

LST 84.34±0.18/40 76.89±0.15/40 61.36±0.31/60
PatchLine 84.90±0.11/20 76.94±0.06/20 61.64±0.06/40

MobileNetv2

Core50-NC

FT-full 98.44±1.56/50 88.83±0.33/60 91.08±0.09/60
FT-last 95.31±1.56/30 49.26±0.25/10 46.58±0.40/50

LST 96.88±0.00/20 87.44±0.20/50 89.08±0.40/40
PatchLine 98.44±1.56/10 88.20±0.16/40 90.41±0.06/20

Core50-NI

FT-full 100.00±0.00/20 88.23±0.18/50 89.41±0.39/50
FT-last 90.63±3.13/60 67.66±0.21/20 38.27±0.26/50

LST 98.44±1.56/20 87.44±0.10/40 87.36±0.30/40
PatchLine 100.00±0.00/10 87.40±0.12/20 88.43±0.23/20

Core50-NIC

FT-full 99.22±0.78/60 89.94±0.02/60 89.66±0.27/60
FT-last 92.97±0.79/70 54.19±0.12/10 38.41±0.08/40

LST 96.10±0.70/40 88.08±0.31/50 88.23±0.22/40
PatchLine 99.22±0.78/10 88.75±0.04/30 89.17±0.13/20

SBD+

FT-full 82.94±0.22/60 70.16±0.17/60 64.01±0.10/70
FT-last 75.75±0.27/70 10.63±0.26/20 16.11±0.12/60

LST 81.89±0.11/40 69.45±0.14/40 63.44±0.10/60
PatchLine 82.30±0.07/10 69.97±0.02/20 63.64±0.36/30

are statistically significant. Overall, PatchLine achieves high
accuracy on various drift datasets with fewer convergence
epochs across the three convolutional backbones.
Reduction in Single-pass Computational Cost (Fi + Bi).
Fig. 8 shows the corresponding single-pass computational
cost of different methods. PatchLine reduces the single-pass
computational cost by up to an average of 64% than FT-
full. Compared with LST, our single-pass computational
cost is lower under various drift datasets. For example,
with VGG16 backbone on Core50-NC dataset, we only need
two patches, reducing the single-pass computational cost by
5%. Although our single-pass computational cost is slightly
higher than FT-last, we achieve much higher accuracy.
Reduction in Training Samples ni. As shown in Table 3,

our entropy-based sample selection reduces the amount of
training data by an average of 11% on three backbones.

Overall Reduction in Computation and Latency. As shown
in Fig. 8, on three backbones and four datasets , we reduce
the total computational cost by an average of 85% compared
to FT-full. Compared to LST, we achieve higher accuracy
and reduce the total computational cost by an average of
55%. In comparison to FT-full and LST, we respectively
decrease the total training time by 70% and 51%, as shown
in Fig. 8. Especially, using ResNet50 as the backbone on the
Core50-NC dataset, we update the three vision tasks in just
100 seconds. In summary, PatchLine consistently achieves
faster multi-DNN model fine-tuning with less computa-
tional overhead across the three backbones.
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Fig. 8. Single-pass computational cost, total computational cost and training time with different convolutional backbones: (a) VGG16; (b) ResNet50;
(c) MobileNetv2.

TABLE 5
Paired t-test results and p-values on four backbones and four datasets.
*: p-value <0.05; **: p-value <0.01.IC:Image Classification, OD: Object

Detection, SS: Semantic Segmentation.

VGG16

Dataset
IC OD SS

p-value p-value p-value
Core50-NC 5.99× 10−11** 2.12× 10−2* 1.57× 10−16**
Core50-NI 1.33× 10−2* 1.57× 10−2* 6.94× 10−17**

Core50-NIC 0.06× 10−2** 2.57× 10−5** 1.39× 10−2*
SBD+ 1.57× 10−42** 0.10× 10−2** 1.30× 10−2*

ResNet50
Core50-NC 1.38× 10−10** 3.49× 10−6** 7.29× 10−5**
Core50-NI 2.10× 10−2* 0.21× 10−2** 3.73× 10−9**

Core50-NIC 3.36× 10−2* 6.31× 10−13** 1.16× 10−2*
SBD+ 2.73× 10−12** 6.37× 10−17** 2.52× 10−7**

MobileNetv2
Core50-NC 5.99× 10−11** 1.84× 10−21** 8.19× 10−17**
Core50-NI 8.07× 10−14** 0.02× 10−2** 1.16× 10−22**

Core50-NIC 2.12× 10−23** 2.45× 10−13** 1.17× 10−24**
SBD+ 2.18× 10−15** 1.63× 10−17** 1.27× 10−5**

Swin-Tiny
Core50-NC 4.25× 10−2* 9.43× 10−9** 2.99× 10−6**

SBD+ 2.33× 10−12** 1.22× 10−9** 6.24× 10−15**

Peak Memory Cost. Our PatchLine is also memory-efficient,
since the patches are lightweight and only the patch pa-
rameters are updated during backpropagation. As shown in
Fig. 9, we reduce the peak memory cost by up to 44% and
8% compared to FT-full and LST, respectively. Although Ft-
last achieves the lowest peak memory cost, updating only
the last layer fails to meet the accuracy requirements.

MobileNetv2 Yolov4 DeepLabv3+

0

2000

4000

6000

8000

Model

P
e
a
k
M
e
m
o
ry
(M
B
)

FT-full FT-last

LST

PatchLine

Fig. 9. Peak memory of different methods (MobileNetv2 backbone).

6.2.2 Performance with Transformer-Based Backbone
In this thread of experiments, we use Swin-Transformer-
Tiny as the backbone. Swin-Tiny consists of four Swin
transformer stages, and we add patches to each stage using
residual connections.
Reduction in Epochs Ei. As shown in Table 6, across the
two datasets, we reduce the number of epochs by 57% and
44% compared with Ft-full and LST, respectively.
Reduction in Single-pass Computational Cost (Fi + Bi).
As shown in Fig. 10 (a), PatchLine reduces the single-pass
computational cost by up to 65% compared with Ft-full.
Reduction in Training Samples ni. As shown in Table 3,

our sample selection method reduces the amount of training
data by 8%.
Overall Reduction in Computation and Latency. As shown
in Fig. 10 (b), we reduce the total computational cost by up
to 86% and 50% compared to FT-full and LST. In comparison
to FT-full and LST, we respectively diminish the total train-
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TABLE 6
Accuracy and number of convergence epochs with transformer-based backbone.

Dataset Method
Image Classification Object Detection Semantic Segmentation

Swin-Tiny RetinaNet-Swin-Tiny DeepLabv3+-Swin-Tiny
Accuracy(%) ↑/Epochs ↓ mAP(%)↑/Epochs↓ mIoU(%)↑/Epochs↓

Core50-NC

FT-full 100.00±0.00/30 74.69±0.28/70 69.69±0.26/60
FT-last 96.88±1.56/40 50.55±0.43/70 47.55±0.34/60

LST 98.44±1.56/30 74.14±0.22/50 68.76±0.75/50
PatchLine 100.00±0.00/20 74.44±0.12/30 69.44±0.11/30

SBD+

FT-full 88.70±0.22/40 47.66±0.23/70 52.91±0.16/70
FT-last 80.62±0.18/30 7.15±0.11/60 12.49±0.19/40

LST 87.66±0.29/30 47.20±0.26/60 52.27±0.23/50
PatchLine 88.08±0.14/20 47.60±0.06/30 52.80±0.08/20
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Fig. 10. Single-pass computational cost, total computational cost and training time with transformer-based backbone.
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Fig. 11. Accuracy, number of convergence epochs, total computational cost and training time on Jetson TX2 (ResNet50 backbone).
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Fig. 12. Performance of two extension methods with different backbones. Patch-1+2: already patch-1, adding a patch to the 2-th convolution group
within model. Patch-1+2layers: already patch-1, adding two convolution layers within the patch-1.

ing time by 71% and 47%, as shown in Fig. 10 (c). Overall,
the experimental results demonstrate that our method can
also achieve efficient fine-tuning of multiple DNN models
on the transformer-based backbone.

6.2.3 Performance on Jetson TX2
In this thread of experiments, we evaluate the performances
of PatchLine and baselines on the Jetson TX2.

Reduction in epochs Ei. The PatchLine and baselines show
consistent accuracy and convergence epochs on the TX2
platform. As shown in Fig. 11 (a-b), compared with FT-

full and LST, we achieve the same accuracy, but reduce the
number of epochs by 58% and 71%, respectively. Overall Re-
duction in Computation and Latency. Due to the limited AI
computing capabilities of the Jetson TX2, PatchLine requires
15× training time compared to deployment on the GTX 2080
Ti. However, compared to the baselines, we still significantly
reduce computational cost and training time. From Fig. 11
(c), we reduce the total computational cost by up to 88% and
75% compared to FT-full and LST, respectively. Compared
with FT-full and LST, we decrease the total training time by
81% and 75%, as in Fig. 11 (d).
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Fig. 13. Performance of adding patch in order and skipping the convolution group. Position i means adding a patch to the i-th convolution group.
Position i+j means adding patches to the i-th and j-th convolution group.

6.3 Comparison of Patch Extension Methods

6.3.1 Expansion within Model vs. within Patch
We assess the effectiveness of two distinct patch extension
methods in image classification with two backbones. Specif-
ically, we compare their performance in terms of accuracy,
parameters, and computational cost under various drift
levels (measured by MMD). From Fig. 12, we observe that
adding patches within the model and maintaining the same
parameter count, leads to an average accuracy improvement
of 7% compared to the alternative. This method also reduces
the computational cost by up to 63% than adding convolu-
tion layers inside the patch.

6.3.2 Continual Patching vs. Skip Patching
This experiment evaluates the performance of two patching
methods: continual patching and skip patching, on image
classification task and with the VGG16 backbone. From
Fig. 13 (a-b), we observe that regardless of whether one
or two patches are added, placing patches in the sequence
of convolution groups consistently yielded high accuracy.
Interestingly, continual patching requires fewer parameters
compared to skip patching. This is further shown in Fig. 13
(c), where adding two patches at positions 1 and 2, as
opposed to positions 1 and 3, results in a 58% reduction
in parameters. This strategy also improves the accuracy by
up to 3% (from 92.61% to 95.74%) under an MMD of 0.5280.
In contrast, the computational cost of continual patching is
marginally higher than that of skip patching. For instance,
the workload at positions 1+2 is only 0.2424 GFLOPs greater
than at positions 1+3.

6.4 Ablation Studies

6.4.1 Effectiveness of Entropy-based Sample Selection
The purpose of this experiment is to examine whether
our entropy-based sample selection affects accuracy and
convergence time. As shown by Fig. 14, our sample selection
method does not affect the accuracy of the results, but rather
reduces the training time. Taking the example (Fig. 14 (a)) of
image classification task with VGG16 as the backbone and
the dataset being core50-NC, adding the sample selection
method can reduce training time by 17% (from 26.62s to
22.18s) while achieving the same accuracy. In summary, the
results of two distinct data sets indicate that the method

TABLE 7
Computational cost introduced by adding different numbers of patches.

Patch-x: adding x patches.

Backbone Patch-x Computation (GFLOPs)

MobileNetv2
Patch-7 0.065
Patch-4 0.048
Patch-2 0.043

ResNet50
Patch-4 1.776
Patch-3 1.269
Patch-1 0.254

of sample selection reduces the training time overhead
by an average of 13% and 9% on VGG16 and ResNet50,
respectively, without compromising accuracy.

The reasons are as follows. (i) Filtering data similar to
the source does not affect accuracy, as we freeze the model
trained on the source data, preserving the knowledge from
the source data. (ii) The training data is derived from a
video stream, where redundancy exists between frames.
Thus, sampling training data does not substantially decrease
the overall information. Some studies [13], [80] suggest that
reducing the training samples can even improve accuracy.

6.4.2 Effectiveness of Warm Patching

In this section, we compare the accuracy and convergence
time of our warm patching method with three common ran-
dom initialization methods (Normal [78], Xavier [79], Uni-
form [78]). From Fig. 15, our warm patching method con-
sistently achieves higher accuracy and shorter convergence
times. The other initialization methods yield similar accu-
racy, yet demand more training time. For instance, on the
U-Net-ResNet50 model, our approach reduces training time
by an average of 54% compared to other methods on the
two datasets. For the eight scenarios in Fig. 15, our method
reduces the training time by up to 55% than other methods.
In some cases, such as the U-Net-VGG16 model, our method
improves the accuracy by 5%-3% compared to other meth-
ods. In summary, our warm patching method outperforms
various random initialization approaches, achieving higher
training accuracy and faster convergence.

6.4.3 Effectiveness of Patch Predictor

In this experiment, we examine whether the patch predictor
has an impact on accuracy and computation cost. The patch
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Fig. 14. Impact of entropy-based sample selection. Patch: adding patches and utilizing the entirety of the training samples. Patch+Entropy: adding
patches and filtering training samples based entropy. VGG16: a-b and ResNet50: e-h.
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Fig. 15. Performance comparison of our warm start for patches and three common random initialization methods (Normal [78], Xavier [79] and
Uniform [78]). VGG16: a-d and ResNet50: e-h.
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Fig. 16. Impact of patch predictor on accuracy. Predictor: adding patches
based on the predictor’s results. Patch-x: adding x patches.

predictor selects the optimal number of patches based on
the degree of data drift, reducing computational overhead
without compromising accuracy. As shown in Table 3,
the patch predictor consistently selects fewer patches on

the Core-NC dataset compared to the Core-NIC dataset,
adding 4 and 3 patches for the MobileNetv2 and ResNet50
backbones, respectively. This is because dataset Core-NC
has a smaller degree of drift compared to dataset Core-
NIC. As shown in Fig. 16, on the Core-NC dataset, the
patch predictor achieved the same accuracy as adding the
maximum number of patches (Patch-7 in MobileNetv2 and
Patch-4 in ResNet50) on both backbone networks. As shown
in Table 7, by reducing the number of patches, the patch
predictor reduced the computational overhead by 26% and
29% compared to adding the maximum number of patches
on both backbones, respectively. However, insufficient patch
additions can have a significant impact on accuracy. On
the MobileNetV2 backbone network, the Patch Predictor
improved accuracy by 8% and 62% on the Core-NIC dataset
compared to Patch-3 and Patch-1, respectively. In summary,
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TABLE 8
Accuracy and number of convergence epochs with ResNet50 backbone on the autonomous driving application.

Condition Method
Image Classification Object Detection Semantic Segmentation

ResNet50 RetinaNet-ResNet50 U-Net-ResNet50
Accuracy(%)↑/Epochs↓ mAP(%)↑/Epochs↓ mIoU(%)↑/Epochs↓

Snow

FT-full 100.00/40 60.81/50 57.67/70
FT-last 100.00/40 18.33/30 16.67/40

LST 100.00/60 59.92/50 56.12/70
PatchLine 100.00/20 61.33/20 57.89/40

Rain

FT-full 100.00/30 69.06/40 81.98/60
FT-last 100.00/50 30.70/40 20.07/10

LST 100.00/40 69.22/40 77.93/60
PatchLine 100.00/20 69.23/20 82.18/30

Night

FT-full 93.75/30 50.89/70 44.80/60
FT-last 81.25/40 17.43/50 7.21/40

LST 81.25/40 48.52/60 43.96/50
PatchLine 93.75/20 49.46/30 43.78/30

Camera

Jetson 

TX2
Image 

Classification

Object

Detection

Semantic

Segmentation
Lane, sidewalk and 

obstacle

Car and person

Traffic sign

Fig. 17. An illustration of case study, where we deploy PatchLine and
baselines on a smart car as an autonomous driving application.

our patch predictor can be applied to a variety of backbone
networks and datasets, reducing computational overhead
without compromising accuracy.

6.5 Case Study

We deploy PatchLine and various baselines on a smart car to
update three vision tasks for an autonomous driving appli-
cation. As depicted in Fig. 17, we utilize image classification
to identify road signs, object detection for recognizing cars
and people, and semantic segmentation to delineate lane
boundaries. We construct datasets for evaluations based on
the ACDC dataset [81], which includes images of car driving
in diverse weather conditions like rain, snow, fog, and night.

• Source Domain Dataset: It includes 500 images of
size 1920x1080 from fog condition. The training and
test sets contain 400 and 100 images, respectively.

• Snow, Rain, and Night Dataset: Each condition in-
cludes 60 images of size 1920x1080. The training and
test sets contain 50 and 10 images, respectively.

Due to the limited resource of the TX2 platform, we
down-scale all the training samples to 350x350 pixels. We
use ResNet50 as the backbone, and add 3, 4, and 4 patches
respectively to handle drifts caused by rain, snow and night
conditions. The training sequence is as follows: ResNet50,
RetinaNet-ResNet50, and U-Net-ResNet50, with the latter
two models’ backbones being initialized using the patch pa-
rameters of ResNet50. Batch sizes are 8 for image classifica-
tion, 8 for object detection, and 4 for semantic segmentation.
The experiment results are shown below.

Reduction in Epochs (Ei). As shown in Table 8, our ap-
proach not only achieves higher accuracy compared to FT-
full and LST but also reduces the number of training epochs
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Fig. 18. Total computational cost and training time with ResNet50 back-
bone on the autonomous driving application.

by 57% and 51%, respectively. Specifically, for semantic
segmentation under the rain condition, we observe a 5%
accuracy improvement over LST. However, in the snow
condition, the accuracy for lane detection is lower, likely due
to snow coverage. At the night condition, due to insufficient
lighting, the accuracy of all three visual tasks decreases.

Reduction in Training Samples (ni). Our entropy-based
sample selection strategy effectively reduces the amount of
training data by 16%, 8%, and 8% for the rain, snow, and
night condition.

Overall Reduction in Computation and Latency. From
Fig. 18 (a), PatchLine reduces the total computational cost
by up to 84% and 57% compared to FT-full and LST, respec-
tively. Furthermore, from Fig. 18 (b), the overall training
time decreases by 74% and 60% compared to FT-full and
LST. In summary, PatchLine not only demonstrates superior
accuracy across diverse weather conditions but also sub-
stantially reduces computational costs.

7 LIMITATIONS

As a first step towards efficient multi-DNN fine-tuning,
our work still has some limitations. (i) The model training
sequence is obtained offline given prior knowledge of the
vision tasks. Accordingly, when there is a change in the
targeted vision tasks, the training sequence needs to be
updated. The profiling overhead may limit our method to
applications with fixed vision tasks. (ii) Our method relies
on data labels. In many real-world mobile computing appli-
cations, labels are not always readily available. Therefore,
multi-DNN adaptation in a semi-supervised or unsuper-
vised manner remains a challenge. (iii) Our solution is
evaluated with only three vision tasks. It would be beneficial
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to test our method on other visual tasks and even extend it
to other application domains.

8 FUTURE WORK

In the future, we aspire to enhance PatchLine in the fol-
lowing areas: (i) The current design of PatchLine is built
upon supervised training (fine-tuning). Given the increasing
interest in unsupervised domain adaptation [82], we plan
to extend the principles of PatchLine to unsupervised on-
device multi-DNN fine-tuning. (ii) Our primary goal is
to reduce the overall computation workload in training
(fine-tuning), which often results in shorter overall training
latency (see Sec. 6.2.1). Our PatchLine is also memory-
efficient, since the patches are lightweight, and only lead to
an average 56% peak memory (see Sec. 6.2.1) than updating
all parameters during backpropagation. We plan to explore
patch designs that are both computation- and memory-
efficient in the future. (iii) PatchLine currently shares patch
parameters only at the model level. Finer-grained parameter
sharing e.g., at the patch level would further reduce training
latency.

9 CONCLUSION

We propose PatchLine, an efficient on-device model fine-
tuning framework for multi-DNN vision applications. The
core idea of PatchLine is to add a lightweight residual
adaptation module (referred to as a patch) to the model
and strategically update the patch module using the rel-
evance of vision tasks. Specifically, PatchLine introduce a
series techniques such as drift-adaptive incremental patch-
ing, correlation-aware warm patching, and entropy-based
sample selection, to holistically reduce the number of train-
able parameters, training epochs, and training samples.
Extensive experiments on diverse datasets, vision tasks,
backbones and platforms demonstrate PatchLine reduces
the total computational cost by an average of 55% without
sacrificing accuracy compared to the state-of-the-art model
adaptation framework.
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