
IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 0, NO. 0, MARTH 2024 1

Edge-Cloud Collaborated Object Detection via
Bandwidth Adaptive Difficult-Case Discriminator

Zhiqiang Cao, Student Member, IEEE, Yun Cheng, Zimu Zhou, Yongrui Chen Member, IEEE,
Youbing Hu, Anqi Lu, Student Member, IEEE, Jie Liu, Fellow, IEEE, Zhijun Li, Member, IEEE

Abstract—Object detection, a fundamental task in computer vision, is crucial for various intelligent edge computing applications.
However, object detection algorithms are usually heavy in computation, hindering their deployments on resource-constrained edge
devices. Traditional edge-cloud collaboration schemes, like deep neural network (DNN) partitioning across edge and cloud, are unfit for
object detection due to the significant communication costs incurred by the large size of intermediate results. To this end, we propose a
Difficult-Case based Small-Big model (DCSB) framework. It employs a difficult-case discriminator on the edge device to control data
transfer between the small model on the edge and the large model in the cloud. We also adopt regional sampling to further reduce the
bandwidth consumption and create a discriminator zoo to accommodate the varying networking conditions. Additionally, we extend
DCSB to video tasks by developing an adaptive sampling rate update algorithm, aiming to minimize computational demands without
sacrificing detection accuracy. Extensive experiments show that DCSB can detect 97.26%-97.96% objects while saving
74.37%-82.23% network bandwidth, compared to cloud-only methods. Furthermore, DCSB significantly outperforms the latest DNN
partitioning methods, reducing inference time by 92.60%-95.10% given an 8Mbps transmission bandwidth. In video tasks, DCSB
matches the detection accuracy of leading video analysis methods while cutting the computational overhead by 40%.

Index Terms—Object detection; edge-cloud collaboration; neural networks; small-big model; difficult-case discriminator

✦

1 INTRODUCTION

D EEP neural network (DNN) based object detection is
extensively utilized in various intelligent applications

owning to its remarkable performance [1], [2], [3], [4].
However, the computational demand of DNN-based object
detection impedes its adoption on resource-limited edge
devices. This limitation is particularly critical in safety-
sensitive mobile applications, such as autonomous driving
[5] and safety monitoring systems [6], where accurate and
low-latency object detection is essential.

Model compression holds potential for efficient object
detection on edge devices [7], [8]. However, these com-
pressed models often incur accuracy drop, which is unsuit-
able for applications requiring high precision. An alternative
is to cloud offloading, where data is transmitted to the
cloud for inference on powerful DNNs, and the results are
returned to edge devices (middle of Fig. 1) [9], [10], [11],
[12]. However, cloud offloading incurs significant latency

• Z. Cao, Y. Hu, and A. Lu are with the School of Computer Science and
Technology, Harbin Institute of Technology, 150006, Harbin, China. (E-
mail: {zhiqiang cao,youbing,luanqi}@stu.hit.edu.cn)

• Y. Cheng is with Swiss Data Science Center, 8000 Zurich, Switzerland.
(E-mail: yun.cheng@sdsc.ethz.ch)

• Y. Chen is with the Department of Electronic, Electrical and Communi-
cation Engineering, University of Chinese Academy of Sciences, Beijing,
China. (E-mail: chenyr@ucas.ac.cn)

• Z. Zhou is with the School of Data Science, City University of Hong
Kong, Hong Kong, China. (E-mail: zimuzhou@cityu.edu.hk)

• J. Liu and Z. Li are with the Faculty of Computing,
Harbin Institute of Technology, 150006, Harbin, China. (E-
mail:{lizhijun os,jieliu}@hit.edu.cn)

This work is partly supposed by the National Key R&D Program of China
under Grant NO.2023YFB4503100. This work is also partly supported by
NSFC 62072137. Zimu Zhou’s research is supported by CityU APRC grant
(No. 9610633). (Corresponding author: Zhijun Li,Yun Cheng)

and bandwidth usage due to the necessity of uploading
large data volumes over the wide-area network (WAN).
As the number of edge devices connected to the network
grows explosively, and the data volume transferred also
increases dramatically [13], the bandwidth may fail to meet
the requirements of individual devices. Moreover, the opera-
tional costs and logistical challenges of maintaining network
connections for devices in remote locations e.g., surveillance
cameras [14], coupled with fluctuating network conditions,
underscore the critical need for bandwidth conservation.

A more promising strategy is collaborative inference
between the cloud and the edge (left of Fig. 1) [15], [16],
[17], [18]. It partitions the DNN inference workload between
the cloud and the edge, with the division optimized against
metrics such as bandwidth usage, processing delay, and
data output size. During DNN inference, the edge device
processes first part of the DNN and forwards the intermedi-
ate data to the cloud. The cloud continues the execution of
the remaining part and returns the result to the edge device.

Despite edge-cloud collaboration frameworks designed
for image classification, their applicability to object detection
can be challenging. (i) Partitioning models for object detec-
tion often results in the transmission of large intermediate
outputs, leading to increased communication overhead and
inference delays [19]. For instance, studies [20] show that
models like ResNet152 [21] generate outputs 19 to 4500
times larger than the input video itself. (ii) Many schemes
are dedicated to image classification, e.g., instance-wise
adaptive networks [22], which are not directly applicable to
objective detection. This is because object detection involves
analyzing images with multiple objects of diverse difficulty
levels, which complicates the metrics to assess whether an
input instance is difficult or not [22], [23]. (iii) The system’s



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 0, NO. 0, MARTH 2024 2

Traditional collaboration
Cloud

Partition

Deploy

Edge

Network

transfer

Optional

transfer

Difficult-case based small-big model

\\\\\\\\\\

Edge Cloud

On-device

transfer

Discriminator

Network

transfer

Edge Cloud
Cloud-only

Fig. 1. Comparison between our DCSB and existing methods.

robustness is questionable since abrupt changes in network-
ing conditions can easily cause system failures [24].

To this end, we propose a novel Difficult-Case based
Small-Big Model framework (DCSB) for object detection
(right of Fig. 1). It involves multiple innovations. (i)
Lightweight Difficult-Case Discriminator: Deployed at the
edge, this module efficiently categorizes incoming images as
either “easy cases” or “difficult cases”. Only difficult cases
are forwarded to the cloud for processing by a more capable,
heavyweight model to ensure high detection accuracy, while
easy cases are handled locally by a less resource-intensive
model, minimizing communication overhead. (ii) Regional
Sampling Algorithm: It selectively down-samples portions
of difficult-case images based on preliminary analysis by
the edge-deployed lightweight model, thus reducing the
volume of data that must be transmitted to the cloud
without significantly compromising the information nec-
essary for accurate object detection. (iii) Discriminator Zoo:
Recognizing the variability of networking conditions, we
propose a mechanism to dynamically select the most appro-
priate discriminator from a zoo of options. This adaptability
ensures optimal performance under fluctuating network
conditions. (iv) Handling Video Input: We extend DCSB to
video tasks, with an algorithm that dynamically adjusts
sampling rates. This adaptation balances computational de-
mands with the need for maintaining detection accuracy
across video frames. Our evaluation demonstrate that DCSB
can save 74.37%-82.23% bandwidth consumption while de-
tecting 97.26%-97.96% of objects. Our main contributions are
summarized as follows.

• We introduce a novel framework for edge-cloud
collaborative DNN inference. Conventional solutions
often distribute a DNN as a computation graph
between the device and cloud. In contrast, we strate-
gically place a compact model at the edge and a
more powerful model in the cloud, utilizing a novel
difficult-case discriminator to selectively transmit
data. It enables more bandwidth-efficient data trans-
fers between edge devices and the cloud.

• We systematically address multiple critical chal-
lenges to implement DCSB, including identification
of difficult cases, design of a lightweight difficult-
case discriminator that leverages specific semantics
extracted by the small model at the edge, and reduc-
tion of data transfer volumes without compromising
object detection accuracy.

• We evaluate DCSB across three object detection al-
gorithms, four datasets and two edge devices. The
results are compelling. Data transmission is reduced
by 74.37%-82.23% compared to cloud-only meth-

Small

model

Preliminary

results
Easy/Difficult

Difficult cases

Inference results

Big

model

Input2

Output7

3
4

5

6

Selecting 

discriminator 

Transmission condition

Latency budget

Discriminator 

zoo

1

Difficult-case

Discriminator

Regional 

sampler

Single image

Adaptive video 

sampling

Object 

tracker

Detection results 
Frame 1,n+1

Video

Frame 2,3,..,n,n+1

Sampling 

rate Tracking

results 

Output

Real-time 

Detection
Input 9

811
10

Data transfer

Optional transfer

Fig. 2. DCSB architecture and workflow. Blocks in blue are the main
functional modules. Dashed boxes are extra modules for video input.

ods, while still detecting 97.26%-97.96% of objects.
Mean Average Precision (mAP) improves by 15.97%-
17.61% over edge-only methods. When compared to
the state-of-the-art model partitioning method, CAS
[25], our framework demonstrates a significant re-
duction in inference time by 92.60%-95.10% at given
a fixed 8Mbps transmission bandwidth.

A preliminary version of this work is presented in [26].
This paper makes the following additional contributions.

• We replace its simplistic threshold-based discrimina-
tor design by a neural network of fully connected
layers enhanced with an attention module. This re-
design offers improved accuracy and robustness in
identifying difficult cases.

• We add a novel discriminator zoo module, which
dynamically selects an optimal difficult-case discrim-
inator based on the networking conditions and la-
tency budget. This module ensures optimal perfor-
mance across varying networking environments.

• We extend DCSB to video tasks with an algorithm to
adaptively adjust sampling rates to minimize com-
putational and communication demands without
sacrificing detection accuracy. When benchmarked
against EdgeDuet [27], the state-of-the-art in video
analysis, we achieve comparable detection accuracy
while notably reducing the overhead by 40%.

2 SYSTEM OVERVIEW

Architecture. The basic idea of DCSB is to offload images
that the small, edge-based model cannot recognize accu-
rately, to a big model in the cloud for processing. It works
with both single images and videos as input. Note that
DCSB is agnostic to the architectures of the small and big
model. Fig. 2 illustrates the main functional modules.

• Difficult-case Discriminator (Sec. 3). This module de-
termines whether an image can be processed locally
(an easy case) or must be sent to the cloud (a difficult



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 0, NO. 0, MARTH 2024 3

case). We replace the static threshold based design in
our preliminary version [26] with an attention based
mechanism to improve the decision accuracy and
robustness to varying bandwidth.

• Regional Sampler (Sec. 4). This module adaptively
down-samples regions of an image based on pre-
liminary analysis by the small model, reducing the
amount of data to be sent without notably compro-
mising detection accuracy.

• Discriminator Zoo (Sec. 5). This module dynamically
selects the most suitable difficult-case discriminator
based on networking conditions and the latency bud-
get. It houses various discriminators, each tuned to
specific scenarios.

• Object Tracking (Sec. 6.1). For video inputs, this mod-
ule continuously tracks objects across frames, lever-
aging the latest object detection results.

• Adaptation Video Sampling (Sec. 6.2). This module
adjusts the video frame sampling rate based on object
tracking and detection outcomes, optimizing compu-
tational and communication efficiency without com-
promising on detection quality.

Workflow. DCSB is designed to efficiently handle both sin-
gle images and video streams. We outline the distinct steps
for processing single images and videos below.

• Single Image Processing. 1 DCSB selects the most
suitable difficult-case discriminator from the discrim-
inator zoo based on current networking conditions
and latency constraints. This selection is updated pe-
riodically e.g., hourly to adapt to changing network-
ing conditions. 2 The edge device captures an image
and forwards it to the small model for preliminary
recognition. 3 The small model’s initial detection
results are fed into the difficult-case discriminator. 4
The difficult-case discriminator evaluates the com-
plexity of the case (easy or difficult), and returns it
to the small model. 5 For a difficult case, the edge
device compresses the image by the regional sampler,
and uploads the image to the cloud, where the big
model performs more accurate object detection. 6
The big model’s results are sent back to the edge
device for final processing. 7 DCSB aggregates the
results from both models for a difficult case or solely
relies on the small model’s output for an easy case
as the final output. In summary, the workflow for an
easy case follows steps 2 - 3 - 4 - 7 , and a difficult
case proceeds through steps 2 - 7 .

• Video Processing. For video inputs, DCSB incorpo-
rates two additional modules (dashed box in Fig. 2).
The workflow for processing video frames mirrors
that of single images, treating each sampled frame
as an individual image, i.e., following 1 - 7 . 8 The
detection results are fed into the object tracker. 9
All frames except the initial one are also sent to
the object tracker. 10 The object tracker tracks the
detected objects based on the latest detection results
and outputs the object positions and identities. 11
DCSB determines the next sampling rate based on
the detection and tracking results of the current
sampled frame. Note that the processes of detection

and tracking operate in parallel. The tracker detects
objects in each frame in real-time, while the object
detection models run on a small subset of sampled
frames to update the tracking objects.

3 DIFFICULT-CASE DISCRIMINATOR

The difficult-case discriminator is a core module in DCSB,
which regulates the communication between the small
model on edge devices and the big model in the cloud. It
decides the need for engaging the big model’s processing
capabilities for accurate object detection.

3.1 Defining Difficult Cases
A prerequisite is to define the difficult cases, which is more
challenging in object detection than image classification. In
image classification, difficult cases can be assessed via the
entropy of the classifier output [22]. In object detection,
the difficulty relates to the undetected objects, which cannot
be easily measured from the output of a single model.
Therefore, we define the difficult cases by comparing the
output between the big and small models. For a given
image i, let the number of objects detected by the small
model be ni, and by the big model be Ni. We classify the
image as a difficult case if the difference in the number
of detected objects Di = Ni − ni surpasses a predefined
threshold α > 0. For instance, α = 1 implies an image is a
difficult case if at least one object detected by the big model
is missed by the small model. This criterion allows easy
labeling of training data for the difficult-case discriminator
by comparing the detection results between the small and
big models. Only detection boxes with a confidence score
above 0.5 are considered as valid detection, as in standard
object detection benchmarks [28].

3.2 Indicators for Difficult Cases
Since it is infeasible to compare the outputs between two
models to determine whether an image is difficult, we need
a discriminator design without reliance on the big model.
Directly training a binary classifier on the raw images is
feasible, but may result in a discriminator too large for
frequent execution on edge devices. Thus, we resort to
lightweight indicators as inputs for the difficult-case dis-
criminator. Our analysis of the small model’s detection out-
comes shows that its performance degrades when handling
images with multiple objects or small objects, attributing to
the reduced complexity of its convolutional network and
the corresponding feature maps. Hence, we focus on two
indicators to classify difficult cases: number of objects in
an image and the area ratio of objects (i.e., an object’s area
relative to the total image area).

We validate the effectiveness of these two indicators as
follows. We set α to 1, i.e., an image is difficult if the small
model misses at least one object. Then the object with the
smallest area ratio is the most likely to be missed. Hence
we can use the number of objects and the proportion of the
smallest object area as two indicators to assess whether an
image is difficult when α = 1. Then we train a small model
(MobileNet v1-YOLOv4 [29]) and a big model (YOLOv4
[30]) on VOC07 [28], and calculate the two metrics for each



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 0, NO. 0, MARTH 2024 4

0.0 0.2 0.4 0.6 0.8 1.0

0

5

10

15

20

25

Minimum object area ratio

N
u

m
b

e
r

o
f

o
b

je
c

ts

Difficult Case

Ease Case

Fig. 3. Distribution of easy and difficult cases identified by two features-
the number of objects and the minimum object area ratio, for α = 1.

image. Finally, we label each image as either difficult or easy
as the difference between the number of objects detected by
the two models, i.e., the definition in Sec. 3.1. As shown
in Fig. 3, difficult cases are concentrated in areas with a
large number of objects or a small minimum object area ratio
i.e., the left and upper parts in Fig. 3), which validates the
effectiveness of the two indicators, i.e., the number of objects
and the area ratio of objects.

3.3 Discriminator Design

The difficult-case discriminator takes an image’s the detec-
tion results by the small model as input, and categorizes the
image as either difficult or easy.

3.3.1 Feature Extraction
Although the number of objects and the area ratio of objects
are effective in classifying difficult cases (Sec. 3.2), we cal-
ibrate the bounding boxes before using them to extract the
corresponding features. This is because the detection results
of the small model often have confidence lower than 0.5,
and would be considered invalid. However, this can lead to
limited number of features for the discriminator.

To provide more features to the discriminator, we use
a data-driven threshold Tc rather than the fixed 0.5 to
filter invalid bounding boxes. This is because although the
confidence of objects detected by the small model might
be lower than 0.5, it is still higher than an non-existent
object. As shown in Fig. 4, a bounding box contains 5
elements: confidence score, xmin, ymin, xmax, ymax. The
image contains two objects. If we filter invalid bounding
boxes via a confidence threshold of 0.5, the dog (confidence
of 0.2507) will be ignored. However, the confidence is still
remarkably higher than any object class that does not exist in
the image, like ‘cat’ (0.0735) or ‘bottle’ (0.0572). Therefore,
the fixed threshold of 0.5 is too conservative. Instead, we
set a threshold Tc for filtering invalid boxes through linear
regression with the following loss function.

L = Npredict −N truth (1)

where Npredict is the total number of objects detected (i.e.,
with confidence no lower than Tc) by the small model, and
N truth is the total number of objects from the ground truth.

[ 9.8185e-01,  7.2606e-03,  1.9569e-02,  9.9416e-01,  9.6643e-01]
[ 4.2750e-02,  7.5271e-01,  1.0902e-01,  9.1599e-01,  3.9780e-01]
[ 3.4980e-02,  1.5724e-01,  1.4404e-01,  4.8038e-01,  5.1469e-01]
[ 3.4751e-02,  3.9204e-02,  4.4560e-01,  8.0442e-01,  9.6372e-01]
[ 3.1454e-02,  3.8010e-01,  8.5059e-02,  5.2914e-01,  4.0919e-01]

[0.2507, 0.0888, 0.4184, 0.6564, 0.9166]
[0.1416, 0.1074, 0.4759, 0.5098, 0.7442]
[0.0200, 0.1124, 0.3641, 0.6505, 0.6703]
[0.0175, 0.0206, 0.5159, 0.4288, 0.8791]
[0.0152, 0.2782, 0.4324, 0.5694, 0.6080]

Dog Person

Output

Non-existent objects
[0.0735, 0.0888, 0.4184, 0.6564, 0.9166]
[0.0302, 0.1074, 0.4759, 0.5098, 0.7442]
[0.0135, 0.1183, 0.6292, 0.4877, 0.7961]
[0.0117, 0.1974, 0.5252, 0.9053, 0.8496]
[0.0103, 0.0286, 0.5137, 0.3686, 0.8696]

Cat Bottle
[0.0572, 0.4553, 0.4368, 0.7612, 0.7083]
[0.0333, 0.3824, 0.3979, 0.6376, 0.6188]
[0.0304, 0.5269, 0.4169, 0.6779, 0.6527]
[0.0253, 0.4753, 0.3396, 0.7266, 0.5539]
[0.0244, 0.4318, 0.4564, 0.5862, 0.7358]

Small 

model
Input

Fig. 4. Confidence scores (in red) of detected and non-existent objects.

After filtering invalid bounding boxes based on Tc, we
can get the number of objects and corresponding area ratios
for each detected object in the image.

3.3.2 Discriminator Architecture
Given the number of detected objects N and the corre-
sponding object area ratios {Sk} from the small model,
the discriminator decides whether the image is a difficult
case with a lightweight full connected network (FCN) (see
Fig. 5). Since the number of objects varies across images,
we standardize the input dimensions via zero-padding, i.e.,
[N,S1, . . . , SN, 0, . . . , 0], with the input dimension equal to
the maximum object number in the dataset plus one. We im-
plement the discriminator with a positional attention mod-
ule, four linear modules (Linear + BatchNorm1d + ReLU),
and an output module (Linear + Sigmoid), with a maximum
data dimension of 300. We introduce the positional attention
to enhance the FCN’s feature learning capability [31], since
naive FCNs treat each input dimension equally. In contrast,
we harness a positional attention module consisting of two-
layer bottleneck (dimension reduction and increase) and
a Sigmoid layer to dynamically assign weights to input
dimensions. We empirically set the reduction ratio to 3. This
design allows the discriminator to prioritize the connection
between features and results, without extra efforts to deter-
mine the importance of input features.

4 REGIONAL SAMPLER

Before uploading a difficult image to the cloud, the regional
sampler compresses it by down-sampling non-key regions,
thus reducing the bandwidth costs.

4.1 Identifying Key and Non-Key Regions
A prerequisite for the regional sampler is to identify key
regions, which needed to be processed by the big model
in the cloud. In contract, there are non-key regions that are
either irrelevant to object detection e.g., background, or can
already be correctly detected by the small model, e.g., large
objects. We can safely down-sample these regions in the
image without compromising the overall detection accuracy.

In DCSB, we identify key regions based on the inference
results of the small model, which can be classified into three
types. Set A: regions that can be clearly analyzed on the



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 0, NO. 0, MARTH 2024 5

Input:

[N, 𝑆1. . 𝑆𝑁 ,0,…,0]

Output:

Easy/Difficult
Position

Attention

Linear

BatchNorm1d

ReLU

(300,150) (150,50) (50,10) 

Linear

Sigmoid

(10,1) 
Linear

BatchNorm1d

ReLU

Linear

BatchNorm1d

ReLU

Linear

BatchNorm1d

ReLU

(Input_dim,300) 

Input:

[N, 𝑆1. . 𝑆𝑁 ,0,..,0]

[N *𝑤1, 𝑆1∗𝑤2, 𝑆2∗𝑤3, . . , 𝑆𝑁∗𝑤𝑁+1,0 *𝑤𝑁+2,..,0 *𝑤𝑖+𝐼]

…

…

(Out_dim,Input_dim) 

Linear

RuLU

Linear

RuLU
Sigmoid [𝑤1,𝑤2, 𝑤3, 𝑤3. . . 𝑤𝑁+1, 𝑤𝑁+2,. . , 𝑤𝑁+𝐼]

(Input_dim,Out_dim) 

Out_𝑑𝑖𝑚 =
𝐼𝑛𝑝𝑢𝑡_𝑑𝑖𝑚

𝑅𝑒𝑑𝑢𝑐𝑡𝑖𝑜𝑛_𝑟𝑎𝑡𝑖𝑜

Fig. 5. Illustration of the discriminator architecture.

Region set A Region set B

Down-samplingKey regions 

remain 

unchanged

Other regions (set C) are down-sampled

Fig. 6. An example of regional down-sampling.

small model (e.g., large objects); Set B: regions where objects
may exist but not for sure (e.g., small objects); and Set C :
irrelevant regions (e.g., background). The key regions are
subset of Set B excluding those in Set A, i.e., B −A.

Recall that the inference results of the small model are a
list of elements (labeled bounding boxes in object detection),
each associated with its coordinates and confidence. We
classify a region to Set A if the objects are detected with high
confidence. Aligned with the conventions [28], we consider
0.5 as the threshold for a high confidence score. For regions
with objects detected with a reasonable confidence, i.e., an
object detected but the object class might be inaccurate, we
consider these regions as Set B. We can reuse the confidence
threshold Tc in Sec. 3.3.1, which is trained to accurately es-
timate the number of objects. All other regions are classified
to Set C . Finally, the key regions are those in B −A.

4.2 Non-Key Regions Down-sampling

Given the key and non-key regions in a difficult-case image,
we down-sample the non-key regions rather than removing
them because the objects may overlap, and the semantic re-
lationship between objects may affect the detection accuracy
[19]. Fig. 6 shows an example of down-sampled image.

• Down-Sampling Method. We empirically evaluate
the data compression ratio and the mAP of two
widely adopted down-sampling methods, i.e., Max-
pool [32] and Gaussian Pyramid [33]. As shown

1 2 4 8

0

50

100

Down-sample Factor

m
A

P
(%

)

Maxpool Gas

(a) mAP

1 2 4 8

0

1

2

3

4

Down-sample Factor

C
o

m
p

re
s
s

io
n

ra
ti

o
(%

)

Maxpool Gas

(b) Compression ratio

Fig. 7. The mAP and compression ratio of two down-sampling methods.
Down-sampling factor of 1 means the original image.

in Fig. 7, given the same down-sampling factor,
Maxpool achieves higher accuracy (in mAP) than
Gaussian Pyramid. Therefore, we adopt Maxpool in
DCSB.

• Down-Sampling Factor. We set the down-sampling
factors1 dynamically based on the confidence scores
of the non-key regions (the down-sampling factors
for key regions are 1). We empirically set the down-
sampling factor for non-key regions with a confi-
dence higher than 0.95 to 8, a confidence between
0.85 and 0.95 to 4, and lower confidences to 2.
For regions that overlap, the lowest down-sampling
factor is utilized for all regions.

After down-sampling different regions within the image,
it is then uploaded to the cloud for further processing. When
the output of the big model is returned to the edge device,
we remove duplicate objects between the inference results
of the big model and the small model using Non-Maximum
Suppression (NMS) [34], and generate the final results.

5 DISCRIMINATOR ZOO

The discriminator zoo is designed to dynamically select the
most suitable discriminator based on the available latency
budget and transmission conditions, optimizing both effi-
ciency and accuracy.

5.1 Discriminator Generation
Generating a variety of discriminators is a one-off effort that
is conducted offline. It involves annotating multiple datasets
under varying definitions of difficult cases and using these

1. The down-sampling factor is a positive integer. A down-sampling
factor of K means we down-sample both the length and width of the
region to 1/K.



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 0, NO. 0, MARTH 2024 6

datasets to train various discriminators. Specifically, we first
input the images in the training dataset into both the large
and small models and collect their inference results. We then
adjust the threshold α to set varying levels of difficult-case
criteria. For different difficult-case criteria, we compare the
inference results of the big and small models and annotate
the results of the small model. For instance, if the small
model fails to detect two or more objects compared to
the large model when α = 2, the image is marked as a
difficult case; and it is an easy case otherwise. This method
allows us to create diverse training sets, which are then
used to train multiple difficult-case discriminators, denoted
as DC1, . . ., DCn , with with their corresponding data
upload ratios (the fraction of data sent relative to the total
dataset) as U1, . . ., Un. These discriminators share the same
architecture, but differ in model parameters. We also record
metrics such as the average inference times for both the
small and large models (Ts and Tb), the average amount
of data transmitted post-regional sampling (D), the average
data size of inference results returned by the big model (Dr),
and the inference time of the discriminator (Td).

5.2 Discriminator Selection

During the online phase, we choose the optimal discrim-
inator from those trained in the offline phase based on
the transmission conditions and latency budget. Specifically,
we monitor the network bandwidth B at regular intervals
(e.g., once an hour or every half an hour) and calculate
the estimated average inference latency L1, . . ., Ln using
different discriminators DC1, . . ., DCn under the current
transmission conditions. The average inference latency Ln

can be estimated as

Ln = Ts + Td + (Tb + (D +Dr)/B) ∗ Un (2)

Subsequently, we calculate the difference Lossn between
the user-defined latency budget l and the estimated average
inference latency Ln. The different Lossn is calculated by:

Lossn = |Ln − l| (3)

Finally, discriminator DCi with minimum different
Lossi is chosen as the optimal discriminator.

6 EXTENSIONS TO VIDEO INPUT

We extend DCSB to video inputs on top of the prevailing
“tracking + detection” mode for video analysis [23], [35],
[36]. Specifically, lightweight object trackers are applied to
infer the current position of the object from the previous
frame and object detection is only triggered at certain
sampling rate on key frames to update the tracked object.
Accordingly, we add an object tracker and an adaptive video
sampling module into DCSB (see Fig. 8). The former tracks
objects between adjacent frames, while the latter reduces the
triggering of object detection by adaptively adjusting the
sampling rate. These two modules operate in parallel with
the original DCSB and are deployed on the edge device.

Small

model

Frame 1,n+1

Tracking results of frame n+1

Preliminary

results Easy/Difficult

Difficult cases

Inference results

Big

model

Object 

tracker

Real-time Detection

Detection results

of frame n+1

Frame 2,3,..,n,n+1

Sampling rate 1/n

Output

Selecting 

discriminator 

Data transfer

Optional transfer

Discriminator 

zoo
Difficult-case

Discriminator

Regional 

sampler

Adaptive video 

sampling

Transmission condition

Latency budget

Video

Fig. 8. Workflow to handle video input.

Algorithm 1: Adaptive Sampling Rate Update
Input: Rt: Tracking results for the current sample frame,
Rd: Detection results of the current sampled frame, Sp:
The previous sampling rate status, f : The current
sampling rate, ∆: The speed of sampling rate changes,
fMAX: The maximum sampling rate

Output: fnext: Sample rate of next time
ALGORITHM:
Step 1: Calculate I
I ← mIoU(Rt, Rd)
Step 2: Determine current sample rate status Sc using I

if I ≥ Tc then
Sc ← 1

else
Sc ← 0

end if
Step 3: Determine the speed ∆ of sampling rate changes

combining with Sc and previous sample rate status Sp

if it is the initial sampling then
∆← ∆0

else if Sc = Sp then
∆← ∆× α

else
∆← ∆× β

end if
Step 4: Generate the sampling rate of next time fnext

if Sc = 1 then
fnext ← f −∆

else
fnext ← f +∆

end if
if fnext > fMAX then
fnext ← fMAX

end if

6.1 Object Tracker

We empirically choose the Oriented FAST and Rotated
BRIEF (ORB) feature extraction method [37] and the Lucas-
Kanade (LK) optical flow method [38] as the object tracker.
The ORB enables accurate and real-time feature point ex-
traction at the edge device [35]. The LK optical flow can
estimate the positions of feature points in next frame by a
local image flow (velocity) vector (Vx, Vy) [35], [39].



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 0, NO. 0, MARTH 2024 7

6.2 Adaptive Frame Sampling
To reduce the frequency to trigger object detection without
compromising accuracy, we leverage an adaptive sampling
scheme, which adjusts the sampling rate based on the
current tracking and detection results. Specifically, a decline
in tracking accuracy indicates rapid shifts in video content,
and thus necessitates an increased sampling frequency to
compensate for the tracking errors. Conversely, stable video
content allows for a reduced sampling pace.

As shown in Algorithm 1, we employ the mean Intersec-
tion over Union (mIoU) I between tracking and detection
results as the metric for tracking accuracy (Step1), and adjust
next time the sampling rate fnext based on a predefined
threshold Tc and current sampling rate f (Step2). When the
mIoU exceeds Tc, we decrease the sampling rate f by ∆
(fnext = f −∆); otherwise, we increase the sampling rate f
by ∆ (fnext = f +∆, Step4). We further introduce two state
variables Sc and Sp to refine ∆, increasing or decreasing
∆ based on the consistency of Sc and Sp (Step3). Sc rep-
resents the current sampling rate state, and Sp represents
the previous sampling rate state. When the two states are
the same, we increase the sampling rate change speed ∆.
Conversely, when the two states are different, we decrease
∆. When the sampling rate states are the same for two
consecutive instances (Sc = Sp), it indicates that the current
sampling rate change speed ∆ is insufficient to maintain
system accuracy. For instance, if the sampling rate has been
increasing for two consecutive instances (Sc = Sp = 0), it
suggests that the system has encountered challenging scenes
within the interval period. In such cases, it is necessary to in-
crease the sampling rate change speed ∆ to rapidly increase
the sampling rate and adapt to the changing environment.
Inspired by Hill Climbing, a classic optimization technique
in hyper-parameter search [40], we treat the sampling rate
as a hyper-parameter. We set the threshold Tc to 0.5 as
in previous studies [35], [39]. The α and β are the ratio
of ∆ increase and decrease, respectively. Users can adjust
them based on the specific video context. For instance,
on the Helmet dataset, we set α and β to 1.2 and 0.5,
respectively. In the case study experiment, where the video
scenes are more stable, we adjusted α and β to 1.0 and
0.8. To select the optimal hyper-parameters, we considered
previous research [40], in conjunction with our experimental
results, to determine these parameter settings. Constrained
by the inference latency of the object detection, the next time
sampling rate fnext ≤ 1/(TMAX∗fps), where TMAX and fps
are the maximum inference time and the frames per second
of the video, respectively.

TMAX = Ts + Tb + Td + (D +Dr)/B (4)

7 EVALUATION

7.1 Experiment Setup
7.1.1 Hardware and Software
We use Jetson Nano [41] and Jetson TX2 [42] as the edge
device. Unless specified, the evaluation result on Jetson
Nano is reported. We emulate a cloud with a PC equipped
with an AMD Ryzen9 5900HX CPU, an NVIDIA RTX3060
GPU, and 32G RAM. The client and the server are connected
via WLAN. The default network bandwidth is 8Mbps. We

implement DCSB with PyTorch 1.7 [43] and TensorRT [44],
deploying a small model on the edge device and a big model
on the server.

7.1.2 Datasets
We test four datasets.

• Voc2007: PASCAL VOC2007 [28], train on VOC2007
trainval (5011 images); and test on VOC2007 test
(4952 images).

• Voc2007+2012: PASCAL VOC2007+VOC2012 [45],
train on the union of VOC2007 trainval (5011 im-
ages) and VOC2012 trainval (11540 images), test on
VOC2007 test (4952 images).

• COCO: COCO [46] trainval 135k. It has 80 object
classes. We select 98,267 images containing 18 object
classes, which are the same 18 classes as the VOC
dataset. 5% are randomly selected for test (4914 im-
ages), the remaining are for training (93353 images).

• Helmet: It comes from the KubeEdge [47] open-
source sub-project Sedna, which is derived from the
videos collected by the camera on building sites. The
videos cover various classes: blur, occlusion, water
stains, smoke, insufficient light, etc., which can test
the robustness of our method. The training set and
test set created by KubeEdge contain 1,600 and 209
video frames, respectively, each containing 4480 and
606 objects.

7.1.3 Big Model & Small Model & Discriminator
We use SSD [48], YOLOv4 [30] and Resnet101-RetinaNet
[49] as big models, and Mobile v1 [29], Mobile v2 [50] and
ResNet18 [21] as small models. The image sizes for training
these three sets of small-big models are 300x300 for SSD,
416x416 for YOLOv4, and 600x600 for RetinaNet. The batch
sizes are set to 16 for three sets of small-big models. The
initial learning rate are 1× 10−2, 2× 10−3 and 1× 10−4 for
SSD, YOLOv4 and RetinaNet, respectively. We use a cosine
schedule for learning rate decay. All other hyperparameters
and pre-trained models were configured according to the
official code settings.

The training process of the discriminator uses weights
initialized with a normal distribution and the Adam opti-
mizer. The initial learning rate is set to 9e-3, and the batch
size is 128. We have uploaded the key code of DCSB to
GitHub. You can access the repository using the following
link: https://github.com/zhiqiangcao1218/DCSB.

7.1.4 Baselines
We compare DCSB with the following methods.

• Edge-Only: Only execute the small model on edge
devices.

• Cloud-Only: All data are uploaded to the cloud.
• CAS [25]: The state-of-art adaptive model partition-

ing framework.
• Early-exit [51]: It allows a neural network to termi-

nate its inference process early, thereby reducing un-
necessary computation and inference time for certain
inputs.

For video inputs, we further compare the adaptive sampling
scheme in DCSB with the following methods.



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 0, NO. 0, MARTH 2024 8

Voc2007 Voc2007+2012 COCO

0

5000

10000

Dateset

N
u
m
b
e
r
o
f
d
e
te
c
te
d
o
b
je
c
ts

Edge-only Cloud-only
CAS DCSB

Voc2007 Voc2007+2012 COCO

0

2000

4000

6000

8
2
.5
0

3
9
.3
0

1
5
9
.0
0

4
1
0
.0
0

4
1
0
.0
0

7
6
0
.0
0

0 0 0

Dateset

T
ra
n
s
fe
rr
e
d
d
a
ta
(M
B
)

Edge-only Cloud-only CAS

DCSB

Voc2007 Voc2007+2012 COCO

0

2000

4000

6000

8000

5
0
5
.0
9

4
4
1
.9
6

5
8
1
.2
4

5
2
4
.6
1

5
2
4
.6
1

8
8
3
.6
5

3
8
0
.9
2

3
8
0
.9
2

3
7
8
.0
0

Dateset

In
fe
re
n
c
e
ti
m
e
(s
)

Edge-only Cloud-only
CAS DCSB

Voc2007 Voc2007+2012 COCO

0

20

40

60

80

100

Dateset

m
A
P
(%
)

Edge-only Cloud-only
CAS DCSB

(a) MobileNet v1 and YOLOv4

Voc2007 Voc2007+2012 COCO

0

5000

10000

Dateset

N
u
m
b
e
r
o
f
d
e
te
c
te
d
o
b
je
c
ts

Edge-only Cloud-only
CAS DCSB

Voc2007 Voc2007+2012 COCO

0

2000

4000

6000

1
2
0
.0
0

9
6
.7
0

1
2
8
.0
0

4
1
0
.0
0

4
1
0
.0
0

7
6
0
.0
0

0 0 0

Dateset

T
ra
n
s
fe
rr
e
d
d
a
ta
(M
B
)

Edge-only Cloud-only CAS

DCSB

Voc2007 Voc2007+2012 COCO

0

2000

4000

6000

8000

3
6
0
.5
0

3
3
1
.6
0

3
5
5
.6
2

4
8
5
.7
1

4
8
5
.7
1

8
3
5
.1
3

2
0
6
.3
3

2
0
6
.3
3

2
0
4
.7
5

Dateset

In
fe
re
n
c
e
ti
m
e
(s
)

Edge-only Cloud-only
CAS DCSB

Voc2007 Voc2007+2012 COCO

0

20

40

60

80

100

Dateset

m
A
P
(%
)

Edge-only Cloud-only
DCSBCAS

(b) MobileNet v2 and SSD

Voc2007 Voc2007+2012 COCO

0

5000

10000

15000

Dateset

N
u
m
b
e
r
o
f
d
e
te
c
te
d
o
b
je
c
ts

Edge-only Cloud-only
CAS DCSB

Voc2007 Voc2007+2012 COCO

0

5000

10000

15000
1
5
2
.0
0

7
8
.6
0

1
5
7
.0
0

4
1
0
.0
0

4
1
0
.0
0

7
6
0
.0
0

0 0 0

Dateset

T
ra
n
s
fe
rr
e
d
d
a
ta
(M
B
)

Edge-only Cloud-only

DCSB

CAS

Voc2007 Voc2007+2012 COCO

0

5000

10000

15000

8
1
6
.3
4

6
8
9
.4
4

7
7
7
.0
7

6
1
2
.7
0

6
1
2
.7
0

9
6
1
.1
5

5
5
0
.2
2

5
5
0
.2
2

5
4
6
.0
0

Dateset

In
fe
re
n
c
e
ti
m
e
(s
)

Edge-only Cloud-only CAS

DCSB

Voc2007 Voc2007+2012 COCO

0

50

100

Dateset

m
A
P
(%
)

Edge-only Cloud-only
DCSBCAS

(c) ResNet18 and ResNet101-RetinaNet

Fig. 9. Performance with different models and datasets when the transmission bandwidth is 8Mbps and difficulty criterion α = 1.

• Fixed Sampling Rate: The sampling rate remains
constant.

• AMS [52]: It adjusts the frame sampling rate dynam-
ically based on the extent and speed of scene change
in a video.

• EdgeDuet [27]: It adjusts the frame sampling rate
dynamically based on the object’s speed in contin-
uously tracked frames.

7.2 Performances Overview

Performance on MobileNet v1 and YOLOv4. In this
thread of experiments, we use MobileNet v1-YOLOv4 and
YOLOV4 as the small and the big model, respectively. The
experimental results are shown in the Fig. 9 (a). Across the
three datasets, DCSB demonstrates an impressive ability to
detect an average of 97.25% of objects, with only about an
average 93.60 MB of data being transferred. It saves 82.23%
of the bandwidth resources compared with the cloud-only
method, and 98.56% of the bandwidth resources compared
with CAS, respectively. The efficacy of DCSB is attributed to
its strategy of exclusively uploading difficult cases and pro-
ficiently compressing the data associated with such difficult
cases.

On the contrary, the edge-only method can only detect
about 73.50% of objects. This is because the limited com-
putation resources of the edge devices can not perform
accurate DNN inference for complex object detection tasks.
Obviously, CAS suffers from a much larger bandwidth
consumption and longer inference latency due to the huge
amount of intermediate data when applied to object detec-
tion. For example, the intermediate data size for one image
in CAS is about 1.32MB, while the average data size of

a compressed image is only about 0.06 MB. Also, DCSB
improves the end-to-end mAP by 17.61% compared with
the edge-only method and saves about 92.60% of inference
time compared with the model partition method CAS.

Performance on MobileNet v2 and SSD. In this thread
of experiments, we use MobileNet v2-SSD and SSD as the
small and the big model, respectively. In general, on three
datasets, DCSB can detect 96.26% of objects with only about
114.90MB data being transferred on average. It saves 76.77%
of the bandwidth resources compared with the cloud-only
method, and 98.35% of the bandwidth resources compared
with CAS, respectively. Additionally, DCSB enhances the
end-to-end mAP by 15.97% when contrasted with the edge-
only method, and achieves a noteworthy 95.10% reduction
in inference time compared to CAS.

Performance on ResNet18 and ResNet101-RetinaNet. In
this thread of experiments, we use ResNet18-RetinaNet
and ResNet101-RetinaNet as the small and the big model,
respectively. Across the three datasets, DCSB can detect an
average of 97.96% of objects and save 74.37% of the band-
width resources compared with the cloud-only method, and
99.07% of the bandwidth resources compared with CAS,
respectively. Moreover, DCSB demonstrates a significant in-
crease in end-to-end mAP, achieving a 17.38% improvement
over the edge-only method. Simultaneously, it achieves sub-
stantial efficiency gains, reducing inference time by about
94.70% compared to CAS.

The experimental results exhibit stability across all three
diverse datasets and three sets of models, affirming the
robustness of DCSB under varying application scenarios.



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 0, NO. 0, MARTH 2024 9

Edge-only Cloud-only Early-exit DCSB

80

85

90

95

100

1700

1750

1800

1850

1900

m
A
P
(%
)

N
u
m
b
e
r
o
f
d
e
te
c
te
d
o
b
je
c
ts

mAP(%)
Number of detected objects

(a) mAP and object number

Exit-1 Exit-2 Exit-3 Exit-4 Exit-5 Exit-6

0

200

400

600

800

N
u
m
b
e
r
o
f
im
a
g
e
s

(b) Number of images

0.5 1.0 4.0 8.0 12.0 16.0 20.0 28.0 36.0 40.0

0.00

0.25

0.50

0.75

1.00

1.25

Bandwidth(Mbps)

In
fe
re
n
c
e
ti
m
e
(s
)

Edge-only

Cloud-only

Early-exit

DCSB

(c) Inference time under various bandwidths

Fig. 10. (a) Performance of DCSB and baselines on single object
dataset.(b) Number of images at different exit points. (c) The inference
time of DCSB and baselines under different bandwidths.

7.3 Compared with Early-exit methods in the Single-
Object Detection scenario
In this section, we primarily evaluate the performance of
DCSB and early-exit networks for single-object detection.
We use MobileNet v2-SSD and SSD as the small and the big
model, respectively. SSD extracts six feature layers from the
backbone into the detection head for object recognition, so
we set six exit points based on the model structure of SSD.
We determine the exit points based on the confidence scores
of the detection results, setting the confidence threshold
at 0.5 according to previous research [28], [51], [53]. We
filter the Voc2007+2012 dataset, retaining only single object
images. After filtering, the training set consists of 6,821
images, and the test set contains 1,905 images. Subsequently,
we train the discriminator, maintaining consistency with the
experimental setup used in prior experiments. The accuracy
of the small model, big model, and discriminator are 84.10%,
90.25%, and 97.64% on the single object dataset, respectively.
As shown in Fig. 10 (a), compared to the early-exit method,
DCSB detects the same number of objects but achieves
higher inference accuracy (88.77% versus 85.48%). As shown
in Fig. 10 (c), our method incurs less time overhead com-
pared to the early-exit method. For instance, we reduced the
inference time by 56.05% compared to the early-exit method
when the transmission bandwidth is 8Mbps. As shown in
Fig. 10 (b), only 18.06% of the images exit from the first
two layers, so the computational efficiency gains from the
early-exit method are quite limited. When the bandwidth is
extremely low, such as at 0.5 Mbps, the time overhead of the
early-exit method becomes less than our method.

Overall, in most cases, our method outperforms the
early-exit approach in both inference accuracy and time, and
it is applicable to a broader range of visual tasks.

7.4 Inference Latency under Various Bandwidths
In practical applications, the network bandwidth is subject
to fluctuations. The network bandwidth will affect the in-
ference latency and the discriminator selection. To simulate

4 8 12 16 20 24 28 32 36 40

0.0

0.9

1.8

2.7

Bandwidth(Mbps)

In
fe
re
n
c
e
ti
m
e
(s
)

Edge-only

Cloud-only

CAS

DCSB

Fig. 11. The inference time of DCSB and baselines under different
bandwidths when the latency budget is 0.1s.

Voc2007 Voc2007+2012 COCO

0

2000

4000

6000

8000

2
7
4
.2
3

2
1
1
.0
1

3
5
2
.1
5

5
2
4
.6
1

5
2
4
.6
1

8
8
3
.6
5

1
5
0
.0
6

1
5
0
.0
6

1
4
8
.9
1

Dateset

In
fe
re
n
c
e
ti
m
e
(s
) Edge-only Cloud-only

CAS DCSB

(a) MobileNet v1 and YOLOv4

Voc2007 Voc2007+2012 COCO

0

2000

4000

6000

8000

2
7
7
.9
7

2
4
9
.0
7

2
7
3
.7
2

4
8
5
.7
1

4
8
5
.7
1

8
3
5
.1
3

1
2
3
.8
0

1
2
2
.8
5

1
2
2
.8
5

Dateset

In
fe
re
n
c
e
ti
m
e
(s
)

Edge-only Cloud-only
CAS DCSB

(b) MobileNet v2 and SSD

Fig. 12. The inference time of DCSB and baselines with different models
and datasets on Jetson TX2 when the transmission bandwidth is 8Mbps
and difficult criterion α = 1.

a real environment, we evaluate the inference latency vari-
ation of the four frameworks on the Voc2007 dataset when
the network bandwidth changes from 4Mbps to 40Mbps.
Using the Mobile v1 and YOLO v4, other conditions are the
same as above. Fig. 11 plots the inference latency when the
network bandwidth changes from 4Mbps to 40Mbps. The
discriminator zoo contains three different discriminators,
corresponding to α being 1, 2, and 3. As the bandwidth
varies, the system automatically selects the discriminator
that is closest to the latency budget. When the bandwidth
is less than or equal to 4 Mbps, the DCSB chooses the
discriminator associated with α equal to 2. Conversely,
when the bandwidth exceeds 4 Mbps, the DCSB opts for
the discriminator linked to α equal to 1. For the bandwidth-
constrained edge, DCSB outperforms both CAS and cloud-
only methods.

7.5 Inference Latency on Jetson TX2

In this thread of experiments, we evaluated the inference
latency of DCSB and baselines on the Jetson TX2. The
experimental results are shown in the Fig. 12. DCSB achieves
a noteworthy 95.81% and 96.22% reduction in inference time
compared to CAS in two sets of models, respectively. In
comparison to the experimental results under equivalent
conditions on the Jetson Nano, there was an improvement
of 3.2% and 1.12% respectively. This is attributed to the
more powerful computational capabilities of the Jetson TX2,
leading to a reduction in the inference latency of the small
model. Consequently, our DCSB can yield greater gains.



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 0, NO. 0, MARTH 2024 10

Voc2007 Voc2007+2012 COCO

0

20

40

60

80

100

Dateset

A
c
c
u
ra
c
y
(%
)

Threshold

FCN+Attention

Voc2007 Voc2007+2012 COCO

0

20

40

60

80

Dateset

P
re
c
is
io
n
(%
)

Threshold
FCN+Attention

Voc2007 Voc2007+2012 COCO

0

20

40

60

80

Dateset

R
e
c
a
ll
(%
)

Threshold

FCN+Attention

Voc2007Voc2007+2012 COCO

0

20

40

60

80

100

Dateset

U
p
lo
a
d
ra
ti
o
(%
)

Threshold

FCN+Attention

Diff-case-ratio

(a) MobileNet v1 and YOLOv4

Voc2007 Voc2007+2012 COCO

0

20

40

60

80

100

Dateset

A
c
c
u
ra
c
y
(%
)

Threshold

FCN+Attention

Voc2007 Voc2007+2012 COCO

0

20

40

60

80

100

Dateset

P
re
c
is
io
n
(%
)

Threshold

FCN+Attention

Voc2007 Voc2007+2012 COCO

0

20

40

60

80

Dateset

R
e
c
a
ll
(%
)

Threshold

FCN+Attention

Voc2007Voc2007+2012 COCO

20

40

60

80

Dateset

U
p
lo
a
d
ra
ti
o
(%
)

Threshold

FCN+Attention

Diff-case-ratio

(b) ResNet18 and ResNet101-RetinaNet

Fig. 13. Performance of current version (FCN+Attention) and preliminary discriminator (Threshold) with different models and datasets when the
difficult criterion α = 1. Diff-case-ratio: the proportion of difficult cases in the dataset.

7.6 Performances of Difficult-case Discriminator

7.6.1 Comparison with the Preliminary Version

We first evaluate the performance of our new discrimina-
tor (FCN + Attention) and the preliminary discriminator
(threshold-based) [26]. The average inference time for the
new and preliminary versions of the discriminator is 2ms
and 4ms, respectively, on Jetson Nano. The FCN+Attention
method, which employs a 4-layer fully connected network,
does not impose significant computational overhead on
edge devices.

As shown in Fig. 13, across the three datasets and two
sets of models, the FCN+Attention method achieves an
average accuracy improvement of 6.26% compared to the
threshold-based method. Moreover, in terms of precision
and recall, the FCN+Attention method maker outperforms
the threshold-based method. Compared to the preliminary
discriminator, the new version discriminator reduces the
upload ratio by 4.77% across various datasets, approaching
more closely the inherent difficult-case ratio of the datasets.
In summary, the new version of the discriminator surpasses
the preliminary version in terms of both accuracy and
upload ratio, among other aspects.

7.6.2 Comparison with Other Difficult-case Discriminators

We compare DCSB with two other basic difficult-case dis-
criminating strategies: blurred images uploading, and up-
loading according to the top-1 confidence score. We adopt
the Mobile v1 and YOLO v4 as the small-big model. For the
sake of fairness, we set the same upload ratio for DCSB and
baselines in three datasets.

Upload Blurred Images to the Cloud. There are many ways
to define the ambiguity of an image. We choose the Brenner
gradient function to define ambiguity. The Brenner gradient
function is one of the simplest gradient evaluation functions.

Voc2007 Voc2007+2012 COCO

0

20

40

60

80

100

Dateset

m
A
P
(%
)

DCSB

Blurry

Voc2007 Voc2007+2012 COCO

0

5000

10000

Dateset

N
u
m
b
e
r
o
f
d
e
te
te
d
o
b
je
c
ts

DCSB

Blurry

(a) Performance of DCSB and the method based on ambiguity

Voc2007 Voc2007+2012 COCO

0

20

40

60

80

100

Dateset

m
A
P
(%
)

DCSB Confidence

Voc2007 Voc2007+2012 COCO

0

5000

10000

Dateset

N
u
m
b
e
r
o
f
d
e
te
te
d
o
b
je
c
ts

DCSB Confidence

(b) Performance of DCSB and the method based on top-1 confidence
score.

Fig. 14. Performance of DCSB and two basic difficult-case discrimina-
tors

It calculates the square of gray level differences between two
pixels. The function is defined as follows:∑

y

∑
x

|f(x+ 2, y)− f(x, y)|2 (5)

where f(x, y) is the gray value of the pixel (x, y). The larger
the value of the function, the clearer the image. The results
are shown in Fig. 14 (a). For the end-to-end mAP, DCSB
significantly outperforms this method by up to 13.55%; in
terms of the number of detected objects, DCSB is 24.56%
higher.

Upload Method Based on the Top-1 Confidence Score. The
confidence scores of the bounding boxes represent how con-
fident the object detection algorithm is in the classification
result. The higher the confidence score, the more confident



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 0, NO. 0, MARTH 2024 11

Voc2007 Voc2007+2012 COCO

75

80

85

Dateset

A
c
c
u
ra
c
y
(%
)

FCN

FCN+Attention

(a) MobileNet v2 and SSD

Voc2007 Voc2007+2012 COCO

75

80

85

Dateset

A
c
c
u
ra
c
y
(%
)

FCN

FCN+Attention

(b) ResNet18 and ResNet101-
RetinaNet

Fig. 15. Impact of position attention. FCN: full connected network.
FCN+Attention: full connected network with positional attention.

Voc2007 Voc2007+2012 COCO

0

500

1000

1500

Dateset

T
ra
n
s
fe
rr
e
d
d
a
ta
(M
B
)

Ori-img

Discriminator

Dis+Sampler

(a) Transferred data

Voc2007 Voc2007+2012 COCO

0

20

40

60

80

Dateset

m
A
P
(%
)

Discriminator Dis+Sampler

(b) mAP

Fig. 16. Impact of regional sampler module. Ori-img: the total sizes of
all original images in the test set. Discriminator: the transferred date of
DCSB with discriminator. Dis+Sampler: the transferred date of DCSB
with discriminator and regional sampler.

the model is in the detection result. Therefore, it can be
used to evaluate whether the image is a difficult case or
an easy case. Take the top-1 of the recognition boxes of each
type of object in a single image, and then add a total of 20
confidence scores for 20 categories (VOC dataset) and then
take the average value. According to this value, we upload
data to the cloud for processing while maintaining the same
cloud upload ratio as DCSB in three datasets. The results are
shown in Fig. 14(b). For the end-to-end mAP, DCSB has an
average improvement of 10.51%; regarding the number of
detected objects, DCSB is 11.61% higher than that strategy.
This method is far better than the other baseline, but it is still
much worse than our semantic-based uploading strategy.

7.7 Ablation Studies
7.7.1 Impact of Position Attention Module
In this section, we primarily examine whether position
attention has an impact on the accuracy of discriminator. As
shown in Fig. 15, the FCN with added positional attention
exhibits significant improvement in accuracy across all three
datasets. Taking the example of Mobile v2 and SSD as the
small-big model, the FCN+Attention method achieves an
average accuracy improvement of 1.8% compared to the
FCN method. In two sets of models and three datasets,
Compared to the FCN method, the FCN+attention approach
shows an increase in accuracy by 1.79%. Overall, the posi-
tion attention assists FCN in better extracting data features,
leading to an improvement in accuracy.

7.7.2 Impact of Regional Sampler Module
In this section, our primary emphasis is to evaluate the con-
tribution of the regional sampler module to the reduction

56.3 20.38 7.65 2.32

80

85

90

95

100

Upload ratio(%)

P
re

c
is

io
n

(%
)

Fixed-dis

Adap-dis

56.3 20.38 7.65 2.32

6000

8000

10000

Upload ratio(%)

N
u

m
b

e
r

o
f

d
e

te
te

d
o

b
je

c
ts

Fixed-dis

Adap-dis

(a) ResNet18 and ResNet101-RetinaNet on the Voc2007 dataset

37.74 10.82 3.57 0.83

75

80

85

90

95

Upload ratio(%)

P
re

c
is

io
n

(%
)

Fixed-dis

Adap-dis

37.74 10.82 3.57 0.83

7000

8000

9000

Upload ratio(%)

N
u

m
b

e
r

o
f

d
e
te

te
d

o
b

je
c

ts

Fixed-dis

Adap-dis

(b) MobileNet v2 and SSD on the Voc2007+2012 dataset

Fig. 17. Impact of discriminator zoo module. Fixed-dis: the discriminator
(α = 1) is fixed. Adap-dis: adaptively selecting the optimal discriminator
from the discriminator zoo based on transmission conditions and latency
budget.

of transferred data and its influence on accuracy. As shown
in Fig. 16, we adopt the Mobile v1 and YOLO v4 as the
small-big model. On the three datasets, the discriminator
reduced the average uploaded data by 67.98% compared
to the cloud-only method (ori-img in Fig. 16). On top of
this, the regional sampler module further decreased the data
by 47.52%. Taking the Voc2007 dataset as an example, the
cloud-only method requires uploading 410MB of data, the
discriminator needs to upload 146MB of data, and after
passing through the region sampler, the data of difficult-
case reduced to only 82.50MB. Moreover, the region sampler
has a minimal impact on the end-to-end map, as shown
in Fig. 16 (b). Across the three datasets, the dis+sampler
exhibits an average decrease of only 1.88% compared to
the discriminator method. This is attributed to the fact that
the region sampler compresses only non-critical regions,
preserving the original resolution for key regions.

7.7.3 Impact of Discriminator Zoo

In this section, we primarily compare the performance of
the fixed discriminator (Fixed-dis) approach with our pro-
posed adaptive bandwidth selection discriminator (Adap-
dis) across different datasets and models. As shown in
Fig. 17, we employ two sets of models, and for each model
group, we train four difficult-case discriminators. These dis-
criminators corresponded to different difficult-case criteria
(α =1,2,3,4). The fixed-dis utilizes the discriminator trained
when α was set to 1.

As shown in Fig. 17, with the reduction in cloud upload
ratio, the Adap-dis method exhibits significantly higher
precision compared to the Fixed-dis method. This is because
raising the difficult-case criteria improves the precision of
identifying difficult cases. When bandwidth decreases, re-
ducing the amount of data uploaded without improving
the precision of difficult case identification would lead to
a decline in recognition performance. In different upload
ratios and models, the Adap-dis method detects 7.86% more
objects compared to the Fixed-dis method. This is due to
the Adpa-dis method selecting a discriminator (α > 1)



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 0, NO. 0, MARTH 2024 12

TABLE 1
Performance of DCSB and baselines on the Helmet dataset.

Method Average-IoU(%)↑ Objects-Number↑ Dete-Number↓
Fixed-10 80.93 226 24
Fixed-20 72.60 188 12
Fixed-30 70.46 206 8
Fixed-40 68.58 192 6
DCSB 72.97 226 6
AMS 73.70 188 14

EdgeDuet 73.08 228 10

0.1 0.3 0.5 0.7 0.9 1.2 1.7 2.0 2.5 3.0

66

68

70

72

74

180

190

200

210

220

230

A
v
e
ra
g
e
-I
o
U
(%
) O

b
je
c
t-N
u
m
b
e
r

Average-IoU

Objects-Number

(a) α: the ratio of ∆ increase

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 1.2

60

62

64

66

68

70

72

74

140

160

180

200

220

240

A
v
e
ra
g
e
-I
o
U
(%
) O

b
je
c
t-N
u
m
b
e
r

Average-IoU Objects-Number

(b) β: the ratio of ∆ decrease

Fig. 18. (a) Fixing the value of β at 0.5, we evaluate the performance of
our method under different values of α. (b) Fixing the value of α at 1.2,
we evaluate the performance of our method under different values of β.

that uploads images with more missed objects to the cloud.
Therefore, compared to a fixed discriminator (α = 1), it can
detect more objects.

7.8 Performance of DCSB in Video Task

In this thread of experiments, we use MobileNet v1-
YOLOv4 and YOLOv4 as the small and the big model, re-
spectively. The accuracy of the small model, big model, and
discriminator are 44.67%, 68.80%, and 78.47% on the Helmet
dataset, respectively. As shown in Table 1, we primarily
compare our proposed adaptive dynamic sampling rate
method with the baselines in terms of accuracy (Average-
IoU and Objects-Number) and efficiency (Dete-Number: the
number of times object detection is triggered). ”Fixed-xx”
denotes the method with a fixed sampling rate, where video
frames are sampled every xx frames. Compared to the fixed
sampling rate method, DCSB detects the same number of
objects but reduces the frequency of object detection trig-
gers by 75%. This significantly reduces the computational
overhead on resource-constrained edge devices. Compared
to AMS and EdgeDuet, DCSB achieves similar detection
accuracy but reduces the number of object detection trig-
gers by 57.14% and 40%, respectively. EdgeDute divides
objects into several intervals based on their velocity and
assigns different sampling rates accordingly. In contrast, our
method adjusts the sampling frames more finely based on
the detection results of the previous sampling frame.

7.9 Performance Evaluation Under Various Hyper-
parameters

In this section, we primarily evaluate how different hyper-
parameters (α, β in Algorithm 1) values impact the overall
performance of our method. We use MobileNet v1-YOLOv4
and YOLOv4 as the small and the big model, respectively.
As shown in Fig. 18 (a), fixing the value of β, Setting α to
1.2 achieves the best detection accuracy. When the value of α
is too small, DCSB lacks sufficient momentum to escape its

USB3.0  1080p  Camera

Jetson TX2

(a) Jetson TX2 (b) Sample frames

Edge-only Cloud-only CAS DCSB

0

50

100

0

500

1000

1500

2000

m
A
P
(%
)

N
u
m
b
e
r
o
f
d
e
te
c
te
d
o
b
je
c
ts

mAP(%)
Number of detected objects

(c) mAP and object number

Edge-only Cloud-only CAS DCSB

0

500

1000

0

1
2
4
.0
0

4
1
.1
0

T
ra
n
s
fe
rr
e
d
d
a
ta
(M
B
)

(d) Transferred data

Fig. 19. (a) Sample frames are collected from the lab corridor. (b) The
Jetson TX2 and a 1080p camera are fixed at the end of the corridor.
Performance of DCSB and baselines on real-world data (c-d).

current state, affecting detection accuracy. Conversely, if α is
set too high, the sampling intervals may become excessively
large, diminishing the detection accuracy. The other hyper-
parameter β controls the reduction rate of the sampling
frequency change ∆. When the sampling states of two
consecutive instances are inconsistent, it indicates that the
system has escaped from its predicament. Consequently, ∆
should be reduced to stabilize the system’s state. As shown
in Fig. 18 (b), setting β to 0.5 achieves optimal recognition
accuracy.

8 CASE STUDY

We implement DCSB on a real-world video monitoring
system deployed in the lab corridor. The system is designed
to detect pedestrians in the corridor. We obtain permission
for student volunteers, and the process is approved by our
institution’s IRB. As shown in Fig. 19 (a), a 1080p camera
captures video, and the Jetson TX2 edge device is used to
detect pedestrians. The lab server and other experimental
setups are detailed in Sec. 7.1. In this thread of experiments,
we use MobileNet v1-YOLOv4 and YOLOv4 as the small
and the big model, respectively. We manually annotate the
ground truth for the video frames. As shown in Fig. 19 (b),
we evaluate the performance of DCSB and baselines un-
der varying levels of pedestrian density. The experimental
results are shown in the Fig. 19 (c-d). DCSB demonstrates
an impressive ability to detect 98.54% of objects, with only
41.10 MB of data being transferred. It saves 66.85% of
the bandwidth resources compared with the cloud-only
method, and 96.68% of the bandwidth resources compared
with CAS, respectively. Additionally, DCSB enhances the
end-to-end mAP by 16.46% when contrasted with the edge-
only method.

9 RELATED WORK

Our work is related to the following categories of research.



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 0, NO. 0, MARTH 2024 13

9.1 Object Detection

Object detection can be broadly classified into two ap-
proaches based on the detection process. Two-stage algo-
rithms, like R-CNN [54] and Faster R-CNN [55], operate in
a sequential manner. They first generate candidate regions,
known as region proposals, and then classify objects within
these regions and refine their locations. In contrast, one-
stage algorithms, such as SSD [48], RetinaNet [49], and
YOLOv4 [30], simultaneously predict object classes and
locations in a single pass. More recently, transformer-based
object detection has gained increasing popularity [56], [57],
[58]. DETR treats object detection as a set prediction prob-
lem and employs a novel transformer-based architecture
[59]. Similarly, ViT-FRCNN [60] replaces the convolutional
backbone with a transformer. Despite their efficacy, these
advanced object detection models entail considerable com-
putational demands [39], making edge-cloud collaboration
a more viable deployment strategy for resource-constrained
edge devices.

9.2 Model Compression

Model compression aims to reduce the computational de-
mand of DNNs, enabling their deployment on devices
with limited capabilities without notably sacrificing perfor-
mance [61], [62]. For example, network pruning [61] and
lightweight networks (MobileNet v1 [29] and MobileNet v2
[50]) can reduce the DNN inference workload, but often
incur noticeable accuracy loss. However, object detection
algorithms usually must achieve high accuracy and low
latency, as they are frequently applied in safety-critical ap-
plications, e.g., autonomous driving [63] and assistance for
the visually impaired [64]. Current compression techniques
struggle to deliver satisfactory accuracy and latency for
object detection.

9.3 Cloud Offloading

By offloading certain computational tasks to the cloud,
edge devices can perform intensive operations beyond the
limitations of their hardware. For example, CloneCloud
[65] seamlessly offloads parts of a mobile application to
device clones operating in the cloud. Microsoft Brainwave
[9] accelerates DNN inference in major services like Bing’s
intelligent search and Azure. Cloud offloading often con-
sumes substantial bandwidth, which can be problematic
for bandwidth-restricted and time-sensitive mobile applica-
tions.

9.4 Device-Cloud Collaboration

To balance inference accuracy and computational overhead,
some works have already proposed offloading part of the
computational tasks from edge devices to the cloud, intro-
ducing methods such as model partitioning and early-exit
methods.

Model partitioning is a promising alternative for efficient
DNN inference leveraging the resources on both the cloud
and edge device [25], [66], [67], [68]. For example, Neu-
rosurgeon [15] partitions a CNN between the device and
cloud and determines the best split point based on workload

and networking conditions. CAS [25] presents a context-
aware adaptive surgery framework that perceives changing
processing contexts and dynamically finds suitable partition
solutions in real time. Yet, these solutions are primarily
designed for image classification and struggle with object
detection. This is because partitioning object detection mod-
els requires transferring high volume of intermediate data,
leading to significant communication delays as in traditional
cloud offloading [19]. In contrast, we introduce a novel
framework that employs a difficult-case based small-big
model architecture. It effectively reduces communication
costs and overall inference latency while maintaining high
accuracy dedicated for object detection.

Early-exit methods [17], [69], [70] allow a neural network
to terminate its inference process early, thereby reducing un-
necessary computation for certain inputs and consequently
lowering the overall inference time and computational over-
head. BranchyNet [53] enables local devices to avoid send-
ing feature maps to the cloud server by adding exit branches
to the DNN, allowing inference to be completed locally
once a certain accuracy level is achieved. ATHEENA [71]
proposes a tool-flow for hardware early-exit network au-
tomation to reduce area while maintaining accuracy. EINet
[72] simultaneously considers inference accuracy and time
to determine the optimal exit point. MAMO [73] proposes
a novel model for inference acceleration with exit selection
and model partitioning. Both early-exit networks and our
method share the same high-level idea, i.e., simple samples
can meet accuracy requirements without complex compu-
tations. Accordingly, inference overhead can be reduced
without compromising accuracy. But most studies on early-
exit networks are designed for image classification (where
there is only one object in an image) and cannot be applied
to object detection (where multiple objects may be present
in an image). This is because the exit mechanisms for image
classification are based on the difficulty of the entire image.
They would fail in object detection because it requires finer-
grained processing at regional or even object level. For
example, when an image contains two objects, one is easy
and the other is difficult to recognize. Then the easy object
demands a shallow exit whereas the difficult object requires
a deep exit, which cannot be easily implemented with ex-
isting early-exit networks. There are a few works that apply
early-exit networks to object detection. TEEM [74] uses an
early-exit structure to eliminate redundant frames in video
object detection. Moos et al. [51] deploy early-exit networks
to the single-object detection task to reduce overall inference
time. However, these proposals are dedicated for certain
scenarios and do not apply to generic object detection. In
contrast, our DCSB is a versatile solution applicable to both
image classification and object detection.

In the mobile computing community, there are also other
types of device-cloud collaboration works. For instance,
MARIA et al. [75] design an incentive mechanism to ad-
dress the issue of computational task offloading from users
to edge servers and the allocation of uplink transmission
power, with the aim of minimizing network-wide end-
to-end energy consumption and enhancing resource uti-
lization efficiency. WAVE [2] achieves high-accuracy real-
time object detection under bandwidth-constrained cellular
networks through strategies like deep RoI encoding and



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 0, NO. 0, MARTH 2024 14

prioritized parallel offloading. Trine [36] enables low-cost
real-time video analysis through the collaborative efforts
of cloud, edge, and terminal devices. LEAF+AIO [1] bal-
ances the energy consumption of mobile augmented reality
(MAR) devices with tracking accuracy loss by optimizing
offloading frequency and local computing configurations.
The aforementioned works are orthogonal to our research
direction; their techniques and methods can be effectively
applied to our study, with the aim of further enhancing the
performance and outcomes of our research.

10 FUTURE WORK

In the future, we aspire to enhance DCSB in the following ar-
eas: (i) The current design focuses on a single-client scenario,
but we plan to extend the DCSB principle to multi-client sce-
narios. By employing methods such as client clustering and
adding adaptive modules, we aim to reduce overall compu-
tational resource consumption while maintaining decision
accuracy. (ii) We plan to extend the principles of DCSB to
other complex visual tasks, such as semantic segmentation,
instance segmentation et al. (iii) The discriminator currently
classifies samples based on the results from a small model,
leading to unnecessary computational resource usage. We
plan to optimize this process so that samples can be classi-
fied without passing through the small model.

11 CONCLUSION

In this paper, we present DCSB, an edge-cloud collaboration
framework for object detection based on a difficult-case dis-
criminator. In this framework, a difficult-case discriminator
is designed to quickly decide whether an image should be
processed locally by the small model at the edge, or be up-
loaded to the cloud to be further processed by the big model.
Moreover, we design a regional sampling algorithm that
adaptively down-samples the regions of already-detected
objects to save the communication bandwidth when up-
loading difficult cases. To adapt to changes in transmission
conditions, we propose the dynamic selection of the opti-
mal discriminator through the discriminator zoo module.
Finally, we extend DCSB to video tasks and introduce an
algorithm for adaptive adjustment of sampling rates, aiming
to reduce computational overhead without compromising
detection accuracy. Extensive experiments on the real edge
device demonstrate the effectiveness of the DCSB on var-
ious datasets and object detection algorithms. DCSB can
detect 96.26%-97.96% of objects but save 74.37%-82.23% of
network bandwidth compared with the cloud-only method
and 98.35%-99.07% of the bandwidth resources compared
with CAS, respectively. Also, DCSB improves the end-to-
end mAP by 15.97%-17.61% compared with the edge-only
method. In addition, compared with the state-of-the-art
model partition method - CAS, DCSB saves 92.60%-95.10%
of the inference time when the transmission bandwidth
is 8Mbps. In video tasks, compared to the state-of-the-art
video analysis method - EdgeDute, DCSB achieves the same
detection accuracy while reducing computational overhead
by 40%.

REFERENCES

[1] H. Wang, B. Kim, J. L. Xie, and Z. Han, “Leaf+ aio: Edge-assisted
energy-aware object detection for mobile augmented reality,” IEEE
Transactions on Mobile Computing, 2022.

[2] L. Dong, Z. Yang, X. Cai, Y. Zhao, Q. Ma, and X. Miao, “Wave:
Edge-device cooperated real-time object detection for open-air
applications,” IEEE Transactions on Mobile Computing, 2022.

[3] V. Vukotić, C. Raymond, and G. Gravier, “Multimodal and cross-
modal representation learning from textual and visual features
with bidirectional deep neural networks for video hyperlinking,”
in Proceedings of the 2016 ACM workshop on Vision and Language
Integration Meets Multimedia Fusion, 2016, pp. 37–44.

[4] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
4700–4708.

[5] S. Milz, G. Arbeiter, C. Witt, B. Abdallah, and S. Yogamani, “Visual
slam for automated driving: Exploring the applications of deep
learning,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition Workshops, 2018, pp. 247–257.

[6] Y. Lin, L. Deng, Z. Chen, X. Wu, J. Zhang, and B. Yang, “A
real-time atc safety monitoring framework using a deep learning
approach,” IEEE Transactions on Intelligent Transportation Systems,
vol. 21, no. 11, pp. 4572–4581, 2019.

[7] M. Rhu, M. O’Connor, N. Chatterjee, J. Pool, Y. Kwon, and S. W.
Keckler, “Compressing dma engine: Leveraging activation spar-
sity for training deep neural networks,” in 2018 IEEE International
Symposium on High Performance Computer Architecture (HPCA).
IEEE, 2018, pp. 78–91.

[8] J. Kim, S. Park, and N. Kwak, “Paraphrasing complex network:
Network compression via factor transfer,” Advances in neural infor-
mation processing systems, vol. 31, 2018.

[9] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caulfield,
T. Massengill, M. Liu, D. Lo, S. Alkalay, M. Haselman et al., “Serv-
ing dnns in real time at datacenter scale with project brainwave,”
iEEE Micro, vol. 38, no. 2, pp. 8–20, 2018.

[10] K. Hazelwood, S. Bird, D. Brooks, S. Chintala, U. Diril, D. Dzhul-
gakov, M. Fawzy, B. Jia, Y. Jia, A. Kalro et al., “Applied machine
learning at facebook: A datacenter infrastructure perspective,” in
2018 IEEE International Symposium on High Performance Computer
Architecture (HPCA). IEEE, 2018, pp. 620–629.

[11] J. Ouyang, S. Lin, W. Qi, Y. Wang, B. Yu, and S. Jiang, “Sda:
Software-defined accelerator for large-scale dnn systems,” in 2014
IEEE Hot Chips 26 Symposium (HCS). IEEE, 2014, pp. 1–23.

[12] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Ba-
jwa, S. Bates, S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter
performance analysis of a tensor processing unit,” in Proceedings
of the 44th annual international symposium on computer architecture,
2017, pp. 1–12.

[13] Security, “Data generated by new surveillance cameras to increase
exponentially in the coming years.” news, Oct. 2023. [Online].
Available: http://www.securityinfowatch.com/news/12160483/

[14] K. Du, A. Pervaiz, X. Yuan, A. Chowdhery, Q. Zhang, H. Hoff-
mann, and J. Jiang, “Server-driven video streaming for deep learn-
ing inference,” in Proceedings of the Annual conference of the ACM
Special Interest Group on Data Communication on the applications,
technologies, architectures, and protocols for computer communication,
2020, pp. 557–570.

[15] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the
cloud and mobile edge,” ACM SIGARCH Computer Architecture
News, vol. 45, no. 1, pp. 615–629, 2017.

[16] C. Hu, W. Bao, D. Wang, and F. Liu, “Dynamic adaptive dnn
surgery for inference acceleration on the edge,” in IEEE INFOCOM
2019-IEEE Conference on Computer Communications. IEEE, 2019, pp.
1423–1431.

[17] E. Li, L. Zeng, Z. Zhou, and X. Chen, “Edge ai: On-demand
accelerating deep neural network inference via edge computing,”
IEEE Transactions on Wireless Communications, vol. 19, no. 1, pp.
447–457, 2019.

[18] C. Ding, Z. Lu, F. Juefei-Xu, V. N. Boddeti, Y. Li, and J. Cao,
“Towards transmission-friendly and robust cnn models over cloud
and device,” IEEE Transactions on Mobile Computing, 2022.

[19] W. Zhang, Z. He, L. Liu, Z. Jia, Y. Liu, M. Gruteser, D. Raychaud-
huri, and Y. Zhang, “Elf: accelerate high-resolution mobile deep
vision with content-aware parallel offloading,” in Proceedings of



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 0, NO. 0, MARTH 2024 15

the 27th Annual International Conference on Mobile Computing and
Networking, 2021, pp. 201–214.

[20] J. Emmons, S. Fouladi, G. Ananthanarayanan, S. Venkataraman,
S. Savarese, and K. Winstein, “Cracking open the dnn black-box:
Video analytics with dnns across the camera-cloud boundary,” in
Proceedings of the 2019 workshop on hot topics in video analytics and
intelligent edges, 2019, pp. 27–32.

[21] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[22] E. Park, D. Kim, S. Kim, Y.-D. Kim, G. Kim, S. Yoon, and S. Yoo,
“Big/little deep neural network for ultra low power inference,”
in 2015 International Conference on Hardware/Software Codesign and
System Synthesis (CODES+ ISSS). IEEE, 2015, pp. 124–132.

[23] Y. Han, G. Huang, S. Song, L. Yang, H. Wang, and Y. Wang, “Dy-
namic neural networks: A survey,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 44, no. 11, pp. 7436–7456,
2021.

[24] M. Liu, X. Ding, and W. Du, “Continuous, real-time object de-
tection on mobile devices without offloading,” in 2020 IEEE 40th
International Conference on Distributed Computing Systems (ICDCS).
IEEE, 2020, pp. 976–986.

[25] H. Wang, B. Guo, J. Liu, S. Liu, Y. Wu, and Z. Yu, “Context-aware
adaptive surgery: A fast and effective framework for adaptative
model partition,” Proceedings of the ACM on Interactive, Mobile,
Wearable and Ubiquitous Technologies, vol. 5, no. 3, pp. 1–22, 2021.

[26] Z. Cao, Z. Li, Y. Chen, H. Pan, Y. Hu, and J. Liu, “Edge-cloud
collaborated object detection via difficult-case discriminator,” in
2023 IEEE 43rd International Conference on Distributed Computing
Systems (ICDCS). IEEE, 2023, pp. 259–270.

[27] Z. Yang, X. Wang, J. Wu, Y. Zhao, Q. Ma, X. Miao, L. Zhang,
and Z. Zhou, “Edgeduet: Tiling small object detection for edge
assisted autonomous mobile vision,” IEEE/ACM Transactions on
Networking, vol. 31, no. 4, pp. 1765–1778, 2023.

[28] M. Everingham and J. Winn, “The pascal visual object classes
challenge 2007 (voc2007) development kit,” Int. J. Comput. Vis,
vol. 88, no. 2, pp. 303–338, 2010.

[29] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,”
arXiv preprint arXiv:1704.04861, 2017.

[30] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Op-
timal speed and accuracy of object detection,” arXiv preprint
arXiv:2004.10934, 2020.

[31] J. Hu, L. Shen, and G. Sun, “Squeeze-and-excitation networks,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2018, pp. 7132–7141.

[32] R. Hesse, S. Schaub-Meyer, and S. Roth, “Content-adaptive down-
sampling in convolutional neural networks,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2023, pp. 4543–4552.

[33] Y. Zhao, Z. Chen, and S. Luo, “Micro-expression recognition based
on pixel residual sum and cropped gaussian pyramid,” Frontiers
in Neurorobotics, vol. 15, p. 746985, 2021.

[34] M. Gong, D. Wang, X. Zhao, H. Guo, D. Luo, and M. Song, “A
review of non-maximum suppression algorithms for deep learn-
ing target detection,” in Seventh Symposium on Novel Photoelectronic
Detection Technology and Applications, vol. 11763. SPIE, 2021, pp.
821–828.

[35] K. Apicharttrisorn, X. Ran, J. Chen, S. V. Krishnamurthy, and A. K.
Roy-Chowdhury, “Frugal following: Power thrifty object detection
and tracking for mobile augmented reality,” in Proceedings of the
17th Conference on Embedded Networked Sensor Systems, 2019, pp.
96–109.

[36] Y. Zhao, Z. Yang, X. He, X. Cai, X. Miao, and Q. Ma, “Trine: Cloud-
edge-device cooperated real-time video analysis for household
applications,” IEEE Transactions on Mobile Computing, 2022.

[37] E. Rublee, V. Rabaud, K. Konolige, and G. Bradski, “Orb: An
efficient alternative to sift or surf,” in 2011 International conference
on computer vision. Ieee, 2011, pp. 2564–2571.

[38] B. D. Lucas and T. Kanade, “An iterative image registration
technique with an application to stereo vision,” in IJCAI’81: 7th
international joint conference on Artificial intelligence, vol. 2, 1981, pp.
674–679.

[39] K. Yang, J. Yi, K. Lee, and Y. Lee, “Flexpatch: Fast and ac-
curate object detection for on-device high-resolution live video

analytics,” in IEEE INFOCOM 2022-IEEE Conference on Computer
Communications. IEEE, 2022, pp. 1898–1907.

[40] A. K. Pradhan, D. Mishra, K. Das, M. S. Obaidat, and M. Ku-
mar, “A covid-19 x-ray image classification model based on an
enhanced convolutional neural network and hill climbing algo-
rithms,” Multimedia Tools and Applications, vol. 82, no. 9, pp. 14 219–
14 237, 2023.

[41] NVIDIA, “Nvidia jetson nano,” official document, Oct. 2023.
[Online]. Available: https://developer.nvidia.com/embedded/
jetson-nano-developer-kit

[42] Nvidia, “Nvidia jetson tx2,” Product Introduction, Oct.
2023. [Online]. Available: https://www.nvidia.com/en-us/
autonomous-machines/embedded-systems/jetson-tx2/.

[43] pytorch, “pytorch,” official document, Oct. 2023. [Online].
Available: https://pytorch.org/

[44] Nvidia, “tensorrt,” official document, Oct. 2023. [Online].
Available: https://developer.nvidia.com/tensorrt

[45] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn,
and A. Zisserman, “The PASCAL Visual Object Classes
Challenge 2012 (VOC2012) Results,” http://www.pascal-
network.org/challenges/VOC/voc2012/workshop/index.html.

[46] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft coco: Common objects in
context,” in Computer Vision–ECCV 2014: 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13.
Springer, 2014, pp. 740–755.

[47] S. Wang, Y. Hu, and J. Wu, “Kubeedge. ai: Ai platform for edge
devices,” arXiv preprint arXiv:2007.09227, 2020.

[48] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu,
and A. C. Berg, “Ssd: Single shot multibox detector,” in Com-
puter Vision–ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11–14, 2016, Proceedings, Part I 14. Springer,
2016, pp. 21–37.

[49] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss
for dense object detection,” in Proceedings of the IEEE international
conference on computer vision, 2017, pp. 2980–2988.

[50] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“Mobilenetv2: Inverted residuals and linear bottlenecks,” in Pro-
ceedings of the IEEE conference on computer vision and pattern recogni-
tion, 2018, pp. 4510–4520.

[51] A. Moos, “Efficient single object detection on image patches
with early exit enhanced high-precision cnns,” arXiv preprint
arXiv:2309.03530, 2023.

[52] M. Khani, P. Hamadanian, A. Nasr-Esfahany, and M. Alizadeh,
“Real-time video inference on edge devices via adaptive model
streaming,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2021, pp. 4572–4582.

[53] S. Teerapittayanon, B. McDanel, and H.-T. Kung, “Branchynet:
Fast inference via early exiting from deep neural networks,”
in 2016 23rd international conference on pattern recognition (ICPR).
IEEE, 2016, pp. 2464–2469.

[54] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hier-
archies for accurate object detection and semantic segmentation,”
in Proceedings of the IEEE conference on computer vision and pattern
recognition, 2014, pp. 580–587.

[55] S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-
time object detection with region proposal networks,” Advances in
neural information processing systems, vol. 28, 2015.

[56] Z. Liu, J. Ning, Y. Cao, Y. Wei, Z. Zhang, S. Lin, and H. Hu, “Video
swin transformer,” in Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, 2022, pp. 3202–3211.

[57] Z. Zhang, X. Lu, G. Cao, Y. Yang, L. Jiao, and F. Liu, “Vit-yolo:
Transformer-based yolo for object detection,” in Proceedings of
the IEEE/CVF international conference on computer vision, 2021, pp.
2799–2808.

[58] M. Lin, M. Chen, Y. Zhang, C. Shen, R. Ji, and L. Cao, “Super
vision transformer,” International Journal of Computer Vision, pp. 1–
16, 2023.

[59] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” in
European conference on computer vision. Springer, 2020, pp. 213–229.

[60] J. Beal, E. Kim, E. Tzeng, D. H. Park, A. Zhai, and D. Kislyuk,
“Toward transformer-based object detection,” arXiv preprint
arXiv:2012.09958, 2020.

[61] K. Xu, Z. Wang, X. Geng, M. Wu, X. Li, and W. Lin, “Efficient
joint optimization of layer-adaptive weight pruning in deep neural



IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 0, NO. 0, MARTH 2024 16

networks,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, 2023, pp. 17 447–17 457.

[62] L. Huyan, Y. Li, D. Jiang, Y. Zhang, Q. Zhou, B. Li, J. Wei, J. Liu,
Y. Zhang, P. Wang et al., “Remote sensing imagery object detec-
tion model compression via tucker decomposition,” Mathematics,
vol. 11, no. 4, pp. 1–26, 2023.

[63] J. Li, R. Xu, J. Ma, Q. Zou, J. Ma, and H. Yu, “Domain adaptive
object detection for autonomous driving under foggy weather,”
in Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, 2023, pp. 612–622.

[64] J. K. Mahendran, D. T. Barry, A. K. Nivedha, and S. M. Bhandarkar,
“Computer vision-based assistance system for the visually im-
paired using mobile edge artificial intelligence,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
2021, pp. 2418–2427.

[65] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,
“Clonecloud: elastic execution between mobile device and cloud,”
in Proceedings of the sixth conference on Computer systems, 2011, pp.
301–314.

[66] M. Yu, Z. Jiang, H. C. Ng, W. Wang, R. Chen, and B. Li, “Gillis:
Serving large neural networks in serverless functions with auto-
matic model partitioning,” in 2021 IEEE 41st International Confer-
ence on Distributed Computing Systems (ICDCS). IEEE, 2021, pp.
138–148.

[67] A. Mukherjee and S. Dey, “Automated deep learning model
partitioning for heterogeneous edge devices,” in Proceedings of the
Second International Conference on AI-ML Systems, 2022, pp. 1–8.

[68] E. Li, Z. Zhou, and X. Chen, “Edge intelligence: On-demand
deep learning model co-inference with device-edge synergy,” in
Proceedings of the 2018 Workshop on Mobile Edge Communications,
2018, pp. 31–36.

[69] Y. Qiu, M. Chen, W. Liang, D. Niyato, Y. Wang, Y. Li, V. C. Leung,
Y. Hao, L. Hu, and Y. Zhang, “Reliable or green? continual individ-
ualized inference provisioning in fabric metaverse via multi-exit
acceleration,” IEEE Transactions on Mobile Computing, 2024.

[70] S. Laskaridis, A. Kouris, and N. D. Lane, “Adaptive inference
through early-exit networks: Design, challenges and directions,”
in Proceedings of the 5th International Workshop on Embedded and
Mobile Deep Learning, 2021, pp. 1–6.

[71] B. Biggs, C.-S. Bouganis, and G. Constantinides, “Atheena: A
toolflow for hardware early-exit network automation,” in 2023
IEEE 31st Annual International Symposium on Field-Programmable
Custom Computing Machines (FCCM). IEEE, 2023, pp. 121–132.

[72] J. Huang, Y. Gao, and W. Dong, “Elastic dnn inference with unpre-
dictable exit in edge computing,” in 2023 IEEE 43rd International
Conference on Distributed Computing Systems (ICDCS). IEEE, 2023,
pp. 293–304.

[73] F. Dong, H. Wang, D. Shen, Z. Huang, Q. He, J. Zhang, L. Wen, and
T. Zhang, “Multi-exit dnn inference acceleration based on multi-
dimensional optimization for edge intelligence,” IEEE Transactions
on Mobile Computing, vol. 22, no. 9, pp. 5389–5405, 2022.

[74] A. Sabet, J. Hare, B. Al-Hashimi, and G. V. Merrett, “Temporal
early exits for efficient video object detection,” arXiv preprint
arXiv:2106.11208, 2021.

[75] M. Diamanti, P. Charatsaris, E. E. Tsiropoulou, and S. Papavas-
siliou, “Incentive mechanism and resource allocation for edge-
fog networks driven by multi-dimensional contract and game
theories,” IEEE Open Journal of the Communications Society, vol. 3,
pp. 435–452, 2022.

Zhiqiang Cao received the master’s degree in
Electromagnetic Field and Microwave Technol-
ogy from China radio propagation Research In-
stitute, Qingdao, China, in 2020. He is currently
pursuing the Ph.D. degree in computer science
and technology with the Harbin Institute of Tech-
nology, Harbin, China. His research interests in-
clude computer vision, edge-cloud collaborative
intelligence.

Yun Cheng received the B.Sc. and M.Sc. de-
grees in computer science and technology from
Harbin Institute of Technology, Harbin, China,
in 2012 and 2015, respectively.He received his
Ph.D. degree from ETH Zürich in 2022. His
research interests include machine intelligence
and efficient, applied machine learning.

Zimu Zhou is currently a tenure-track assistant
professor at the School of Data Science, City
University of Hong Kong. He received his Ph.D.
degree from Hong Kong University of Science
and Technology in 2015. His research interests
include model compression, federated machine
learning, applied machine learning.

Yongrui Chen Yongrui Chen is currently an As-
sociate Professor with the Department of Elec-
tronic, Electrical and Communication Engineer-
ing, University of Chinese Academy of Sciences,
Beijing, China. He has received his M.S de-
gree from Tsinghua University, China in 2007,
and Ph.D. degree from University of Chinese
Academy of Sciences, China in 2011. His re-
search interests include Internet of Things, wire-
less communications and networks.

Youbing Hu received the master’s degree in
computer technology from Xidian University,
Xi’an, China, in 2020. He is currently pursuing
the Ph.D. degree in computer science and tech-
nology with the Harbin Institute of Technology,
Harbin, China. His research interests include
computer vision, edge-cloud collaborative intel-
ligence, and continuous learning.

Anqi Lu received the master’s degree in com-
puter science and technology from Heilongjiang
University, Harbin, China, in 2021. She is cur-
rently pursuing the Ph.D. degree in computer
science and technology with the Harbin Insti-
tute of Technology, Harbin, China. Her research
interests include computer vision and satellite-
terrestrial collaborative intelligence.

Jie Liu (Fellow, IEEE) is a Chair Professor at
Harbin Institute of Technology Shenzhen (HIT
Shenzhen), China and the Dean of its AI Re-
search Institute. Before joining HIT, he spent 18
years at Xerox PARC and Microsoft. He was
a Principal Research Manager at Microsoft Re-
search, Redmond and a partner of the company.
His research interests are Cyber-Physical Sys-
tems, AI for IoT, and energy-efficient computing.

Zhijun Li received the M.S. and Ph.D. degrees
in computer science and technology from the
Harbin Institute of Technology in 2001 and 2006,
respectively. He is currently a Professor with the
School of Computer Science and Technology,
Harbin Institute of Technology. His research fo-
cuses on wireless networks, mobile computing,
and artificial Internet of Things. He was a recipi-
ent of the MobiCom 2017 Best Paper Award.


