
JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, JULY 2024 1

ClassTer: Mobile Shift-Robust Personalized
Federated Learning via Class-Wise Clustering

Xiaochen Li, Sicong Liu*, Member, IEEE, Zimu Zhou, Member, IEEE, Yuan Xu,
Bin Guo, Senior Member, IEEE, Zhiwen Yu, Senior Member, IEEE,

✦

Abstract—The rise of mobile devices with abundant sensor data and
computing power has driven the trend of federated learning (FL) on
them. Personalized FL (PFL) aims to train tailored models for each
device, addressing data heterogeneity from diverse user behaviors and
preferences. However, due to dynamic mobile environments, PFL faces
challenges in test-time data shifts, i.e., variations between training and
testing. While this issue is well studied in generic deep learning through
model generalization or adaptation, this issue remains less explored
in PFL, where models often overfit local data. To address this, we
introduce ClassTer, a shift-robust PFL framework. We observe that
class-wise clustering of clients in cluster-based PFL (CFL) can avoid
class-specific biases by decoupling the training of classes. Thus, we
propose a paradigm shift from traditional client-wise clustering to class-
wise clustering, which allows effective aggregation of cluster models
into a generalized one via knowledge distillation. Additionally, we extend
ClassTer to asynchronous mobile clients to optimize wall clock time
by leveraging critical learning periods and both intra- and inter-device
scheduling. Experiments show that compared to status quo approaches,
ClassTer achieves a reduction of up to 91% in convergence time, and an
improvement of up to 50.45% in accuracy.

Index Terms—Personalized federated learning, shift-robust, asyn-
chronous mobile devices

1 INTRODUCTION

The rapid increase in sensory data from mobile de-
vices, combined with their local computing power and
widespread wireless networks, has catalyzed the emergence
of federated learning (FL) on these devices. The proliferation
of rich sensors on widely used mobile devices, combined
with their computational capabilities and the expansive
reach of wireless networks, has propelled the development
of federated learning (FL) on them [2]. In FL, multiple
mobile devices ranging from smartphones to drones and
robots work together to train a shared deep model under
centralized server management while ensuring data privacy
by retaining data locally [2], [40], [90], [94]. This method
is particularly advantageous for resource-intensive deep
learning tasks on mobile devices [89], [95], including ac-
tivity recognition (e.g., Google keyboard [77]), personalized
recommendations (e.g., Alibaba shopping recommendation
[78]), and communication optimization (e.g., Meta video call
app [79]). A unique feature of FL on mobile devices is
its non-IID data resulting from diverse user behaviors and

*Corresponding Author: Sicong Liu (e-mail:scliu@nwpu.edu.cn)

preferences, exemplified by Siemens factories employing
FL in defect detection: air conditioning production lines
primarily detect cracks and scratches, whereas razor lines
typically encounter discoloration and deformation.

To address data heterogeneity across mobile devices, per-
sonalized federated learning (PFL) tailors models to spe-
cific device data profiles. Existing methods for PFL can be
divided into two types based on the presence of a global
model. without a global model, PFL methods directly train
multiple personalized models, including clustering [12], [16],
[17], [53], multi-task learning [21], [22]. With a global model,
PFL methods follow global model personalization, includ-
ing local fine-tuning [43], [73] or meta-learning [14], [15],
[18], and model interpolation [36], [37], [92].

Yet, orthogonal to data heterogeneity across clients, data
heterogeneity within a single mobile client can also differ
between training and testing over time due to dynamic and
diverse mobile environments, referred to as test-time data
shift (we defer more examples in Sec. 2.2). While this issue
is well-examined in generic deep learning contexts [46], [80],
[81], [89], [91], such as by improving model generaliza-
tion [7], [36], [47], [81] and realizing adaptation [16], [29],
[46], [80], it remains less-explored in PFL, where models
often overfit to local personalized training data.

In PFL, we observe that enhancing model generalization
is favorable over adaptation methods for combating mobile
data shifts because individual mobile clients often possess
limited sensory data, which may be insufficient to fine-tune
the model (i.e., the reason for federated learning). Accord-
ingly, previous shift-robust PFL methods [28], [39] leverage
the global model, which is often an intermediate result to train
the personalized models, to improve the generalization of
the personalized models. However, prior research fails to
achieve shift-robust PFL under extreme data heterogeneity in
mobile application scenarios for the following reasons.

• Existing shift-robust PFL schemes [28], [65] implic-
itly assume the feasibility to train a global model,
which may not converge with extreme non-IID mobile
data [12], [56] (see more detials in Sec. 2.2).

• Previous PFL strategies, such as clustering-based FL
(CFL) [17], [53], that deal with extreme data heterogene-
ity typically assume a fixed data distribution between
train- and test-times. This neglect of data mismatch
over time makes them vulnerable to non-stationary
test-time mobile data shifts.

0000–0000/00$00.00 © 2021 IEEE



JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, JULY 2024 2

𝑤𝑤0

𝑤𝑤𝑡𝑡𝑤𝑤1𝑡𝑡
𝑤𝑤2𝑡𝑡

𝑤𝑤3𝑡𝑡

(a)

𝑤𝑤0

𝑤𝑤2𝑡𝑡

𝑤𝑤1𝑡𝑡 𝑤𝑤3𝑡𝑡𝑤𝑤𝑡𝑡

Client

Optimization 
direction

Optimization 
path

𝑤𝑤 Model weight

(b)

Fig. 1. Extracting a (global) generalized model under (a) mild and (b)
extreme data heterogeneity in CFL. It can be challenging to aggregate
the cluster models into a generalized one as in other shift-robust PFL
methods, particularly under extreme data heterogeneity.

An intuitive solution is to extract a generalized model from
PFL strategies designed for extreme data heterogeneity,
e.g., clustering-based personalized federated learning (CFL)
[12], which groups clients with similar data distributions
into clusters and learns distinct models per cluster (known
as cluster models). It manages data heterogeneity through
clustering and is prevalent in mobile applications, where
mobile data often exhibit natural clusterability due to simi-
larities in mobile users’ lifestyles, work habits, and physical
environments [17]. Nevertheless, extracting a generalized
model during CFL is challenging. Firstly, there is usually no
global model in CFL. More importantly, naively aggregating
the cluster models into a (global) generalized model can
be ineffective under extreme mobile data heterogeneity. For
example, a badminton player’s watch struggles to collect
basketball activity data. As depicted in Fig. 1, although
a generalized model may be aggregated under mild data
heterogeneity (see Fig. 1a), it can be difficult, if not impos-
sible, to extract the generalized model under extreme data
heterogeneity (see Fig. 1b).

In response, we present ClassTer, a mobile data shift-
robust personalized federated learning via class-wise clus-
tering. First, we observe that the class-wise clustering of
mobile clients in cluster-based personalized FL (CFL) can
avoid class-specific biases by decoupling the training of
classes (see Sec. 3.1). Therefore, we propose a paradigm shift
from traditional client-wise clustering to class-wise clustering,
which allows effective aggregation of the cluster models into
a generalized one via knowledge distillation. Specifically,
ClassTer fairly schedules clients to contrastively train multi-
ple single-class models, and the server extracts a generalized
model from these single-class models via knowledge distil-
lation to achieve shift-robust PFL with synchronous clients.
Second, we extend ClassTer to asynchronous mobile clients
for faster convergence, measured by wall clock time, where
clusters aggregate updates as soon as they are available from
each mobile client. Supporting asynchronous mobile clients

makes ClassTer more practical, as mobile clients in real-
world FL systems often experience heterogeneous resource
availability and dynamic network bandwidth, leading to
asynchronous local model updates and staleness issue [50].
In particular, we harness the notion of critical learning periods
(Sec. 5.1) and perform both intra- and inter-cluster schedul-
ing to control staleness and optimize training convergence
in asynchronous shift-robust PFL.

We evaluate the performance of ClassTer on 4 mobile
tasks and 15 real-world scenarios with diverse data or
system heterogeneity using 20 mobile devices. Results show
a reduction in training time of up to 88.2% and an im-
provement in accuracy of up to 50.45% (Sec. 6.2) Our main
contributions are summarized as follows.

• To the best of our knowledge, this is the first work
that compacts data shifts with extreme Non-IID data
distribution in PFL. It maintains high accuracy under
extreme Non-IID data and avoids significant accuracy
decline with test-time mobile data shifts.

• We propose ClassTer, shift-robust PFL via class-wise
clustering. It adapts to extreme Non-IID data shifts
using class-wise clustering and efficiently extracts a
generalized global model through intra-cluster schedul-
ing. We also harness the critical learning period to
implement an asynchronous version using intra- and
inter-cluster schedules to control staleness.

• Experiments show that ClassTer outperforms existing
a-/synchronous or personalized FL methods [2], [28],
[40], [53], [73] in trading off training accuracy and
latency across various mobile tasks, data shifts, plat-
forms, and scenarios.

2 PROBLEM STATEMENT

2.1 Preliminaries

Federated learning (FL) collaboratively trains a powerful
deep model with the distributed data possessed by indi-
vidual clients (mobile devices), which would be otherwise
impossible with the limited data on a single client alone [2].
The standard FL involves multiple clients and a server.
Clients train local models with their own data and push them
to the server. The server aggregates the local models into
a global model, which is then sent back to the clients. The
iteration continues until model convergence.

Mobile Data Heterogeneity and Model Personalization.
In mobile applications, attributed to diverse user behaviors
and preferences, sensory data collected by each client may
notably vary, leading to severe data heterogeneity, which
can significantly impair model convergence [7], [57]. Fur-
thermore, severe data heterogeneity implies that a sin-
gle global model may not fit all the clients, necessitating
personalized federated learning (PFL), which learns cus-
tomized models for individual clients [55], [56]. Specif-
ically, given clients {1, 2, . . . , C} holding local training
datasets {D1, D2, . . . , DC}, PFL trains personalized models
{w1, w2, . . . , wC} where wc is deployed to client c, with the
following objective:

min
w1,w2,...,wC

l(w1, . . . , wC) =
C∑

c=1

|Dc|
|D|

E [L(wc;Dc)] (1)



JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, JULY 2024 3

where, E [L(wc;Dc)] represents the empirical risk calculated
using model wc with data sampled from client c’s training
dataset Dc, |Dc| is the sample number of client c’s training
dataset, and |D| is the total size of training dataset.
Test-Time Mobile Data Shift and Model Generalization.
Orthogonal to data heterogeneity across clients, the data
distribution at the same mobile client may also vary between
train- and test-time due to mobile users typically collect-
ing environmental and user data in open and dynamic
settings, a phenomenon known as test-time data shift [28],
[59], [80]. Although such data shift is extensively studied
in the generic machine learning literature, e.g., model gen-
eralization [60], [61], it is largely overlooked in PFL, where
the personalized model often “overfits” the local (training)
data at each client. A few pioneer studies [28] exploit the
global model during federated training to enhance the gen-
eralization of the personalized models to combat test-time
data shifts. However, they may not function properly under
extreme data heterogeneity (see Sec. 2.2).

2.2 Problem Definition
Due to the ubiquity of both data heterogeneity and test-time
data shift in mobile applications, we explore shift-robust PFL
with mobile devices as follows:

min
w1,w2,...,wC

l(w1, . . . , wC) =
C∑

c=1

|Dc|
|D|

E
[
L(wc; D̂c)

]
(2)

where {D1, D2, . . . , DC} and {w1, w2, . . . , wC} are training
datasets and personalized models for clients {1, 2, . . . , C},
and client c holds Dc and deploys wc. E [L(wc;Dc)] repre-
sents the empirical risk calculated using model wc with data
sampled from mobile client c’s dataset which experiences
data shift D̂c. |Dc| is the sample number of client c’s training
dataset, and |D| is the total size of training dataset.

We investigate the shift-robust PFL problem with the
following scope.

• We care about severe non-IID (not independent, and
identically distributed) label distributions across mobile
clients. This is a challenging problem. For example,
in sensor-based human activity recognition, a sports
enthusiast is likely to gather human activity data about
jogging and hiking, while a homebody may collect
data about sitting and standing. Similarly, in Siemens
factories that implement an FL system for learning
defect detection models [64], the air conditioning pro-
duction line might predominantly encounter cracks and
scratches, while the razor line may primarily experience
discoloration and deformation.

• We consider both the cases of synchronous and asyn-
chronous clients. In both cases, we optimize both the
training effectiveness (measured by accuracy on drifted
data) and efficiency (measured by convergence time).
The mobile clients are commodity mobile devices e.g.,
Jetson Nano (commonly used in industrial control),
which are capable of training small- to medium-sized
models e.g., MobileNet [63] and DistilBERT [72] via
standard SGD, and the models can be reliably trans-
ferred between the mobile clients and the server.

• We focus on personalized federated training for typical
mobile classification tasks, e.g., image recognition [69],

cla
ss

 1

cla
ss

 2

cla
ss

 3

cla
ss

 4

cla
ss

 5

cla
ss

 6

cla
ss

 7

cla
ss

 8

cla
ss

 9

cla
ss

 10
0.0

0.5

1.0

Pr
ed

ic
t

 p
ro

ba
bi

lit
y(

%
)

(a)

cla
ss

 1

cla
ss

 2

cla
ss

 3

cla
ss

 4

cla
ss

 5

cla
ss

 6

cla
ss

 7

cla
ss

 8

cla
ss

 9

cla
ss

 10
0.0

0.5

1.0

Pr
ed

ic
t

 p
ro

ba
bi

lit
y(

%
)

Local model 1 Local model 2 Local model 3

(b)

cla
ss

 1

cla
ss

 2

cla
ss

 3

cla
ss

 4

cla
ss

 5

cla
ss

 6

cla
ss

 7

cla
ss

 8

cla
ss

 9

cla
ss

 10
0.0

0.5

1.0

Pr
ed

ic
t

 p
ro

ba
bi

lit
y(

%
)

Cluster model 1 Cluster model 2 Cluster model 3

(c)

Fig. 2. Prediction probabilities of (a) the global model, (b) three local
models and (c) three cluster models, for a sample with a true label of 4.

sensor-based human activity recognition [67], and text-
based emotion detection [68]. Because the datasets in
these mobile applications are highly personalized and
exhibit clusterability due to user habits and lifestyles.

• We observe that the shifted labels of mobile client c are
likely to have appeared in the training data of other
clients [38]. Notable out-of-distribution (OOD) samples
w.r.t. the entire federation is out of our scope. For in-
stance, the homebody in the human activity recognition
example may start jogging after the model is trained,
while jogging is already seen from the training data of
the sports enthusiast.

3 MOBILE SHIFT-ROBUST PFL
This section explains the key idea (Sec. 3.1) to extract a
generalized model in CFL even under extreme data hetero-
geneity, and presents an overview (Sec. 3.2) of ClassTer, our
effective and efficient shift-robust PFL scheme.

3.1 Key Idea: Class-Wise Clustering
Our key novelty is the paradigm shift from the traditional
client-wise clustering [16], [17], [53] to class-wise clustering,
which allows effective aggregation of the cluster models
into a generalized one via knowledge distillation. We utilize
knowledge distillation rather than methods like parameter
averaging [2] for its efficiency, i.e., it only needs to run once at
the server without excessive client-server communications.

Effective knowledge distillation always demands high-
confidence soft labels [54]. However, the client-wise clus-
tering scheme in conventional CFL often leads the cluster
models to yield wrong confidence estimates, even though the



JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, JULY 2024 4

Clients

Class 1 Cluster model 1

Class N Cluster model N

…

Local contrastive learning

Phase 1

Server

Cluster models

Server

…

Cluster models

Phase 2

Generalized model

Knowledge distillation

Client 1

Client 2

Client N

…

…

Fig. 3. Workflow of ClassTer.

output class is correct. To illustrate the reason, Fig. 2 plots
the confidence (estimated by prediction probabilities) for a
sample with the true label of 4, using three models: a global
model trained on the full dataset, local models trained on
local data, and cluster models obtained by conventional
CFL. Compared to an ideal global model that delivers
correct predictions, local models 1 and 3, along with cluster
models 1 and 3, yield incorrect predictions. This is due to
their training with a partial view (at each client or cluster),
where the data are personalized and non-IID across clients
or clusters, thus introducing large biases toward frequent
classes in the training data rather than the correct ones.

To address this problem, our key idea is that the class-
wise clustering of mobile clients in CFL can avoid the class-
specific biases by decoupling the training of classes. Con-
cretely, we learn each class independently, such that all per-
class models are already trained with a holistic view on
the entire (federated) dataset before aggregating into the
generalized model. We also adopt contrastive learning [66]
at mobile clients to avoid over-confidence in incorrect pre-
dictions in training the single-class models.
Additional Scalability Benefits. Despite the above-
mentioned benefits of class-wise clustering in CFL, it raises
concerns on whether it scales to practical classification tasks,
which contain hundreds. We argue that class-wise clus-
tering is plausible in mobile applications because mobile
clients often only possess samples from a limited number
of personalized classes. Additionally, a model trained to
recognize a single class is more lightweight than one trained
to recognize all classes (e.g., hundreds), making it highly
suitable for deployment and learning on mobile devices.
We empirically validate the scalability and efficiency of our
class-wise clustering mechanism in Sec. 6.3.5.

3.2 Solution Overview
Upon the above-mentioned principle of class-wise clustering,
we develop ClassTer, an effective and efficient shift-robust
PFL scheme for mobile devices. Algorithm 1 and Fig. 3 il-
lustrate the workflow of ClassTer. First, the server initializes
N cluster models, where N is the number of classification
classes. In each iteration, the server assigns a cluster model
with the slowest progress to the mobile clients to balance
training latency across clusters. Each mobile client performs
local contrastive learning on the downloaded cluster model,
and uploads the local model to the server. The server ag-
gregates the uploaded local models with the cluster model
of the corresponding class. This iteration continues until all
cluster models converge. To extract the generalized model,
ClassTer distills knowledge from the cluster models. Finally,
the generalized model is sent to all mobile clients, and each

Algorithm 1 ClassTer Training Procedure
1: Initialize: Server predefines N models {w1, . . . , wN} for

N task classes and generalized model wg

2: while not converged do
3: for each client c do
4: Request single-class model wn for n-th class of

local data.
5: Local contrastive training w′

n ← wn+η∇fn(wn).
6: Send updates w′

n to the server.
7: end for
8: Aggregate updates for each model n.
9: end while

10: Distill knowledge from {w1, . . . , wN} into generalized
model wg

11: Personalize the generalized model wg for each client
denoted as {wc

g}.
12: Output: Generalized and personalized models wg, {wc

g}

Class-wise data

FL models

Clients

Client-wise clustering Class-wise clustering

1

2

Fig. 4. Comparison between client-wise and class-wise clustering.

mobile client fine-tunes the output layer of the generalized
model to obtain a personalized model. During inference,
based on the occurrence of a mobile data shift measured by
the entropy of output logits, each mobile client adaptively
selects either the generalized or personalized predictions
as the output. As next, we explain the detailed designs
of ClassTer in both the synchronous and asynchronous
settings.

4 CLASSTER WITH SYNCHRONOUS CLIENTS

This section presents the key modules to enable shift-robust
PFL with synchronous clients. As shown in Fig. 4, ClassTer
first fairly schedules clients to contrastively train multiple
single-class models. Then, the server extracts a generalized
model from these single-class models via knowledge distilla-
tion to enable shift robustness.

4.1 Local Contrastive Learning

Why Contrastive Learning. As mentioned in Sec. 3.2, we
leverage contrastive learning to at clients to improve the ac-
curacy and avoid over-confidence of the single-class models.
Contrastive learning is more suitable for extreme non-IID
data distribution than supervised learning, as it allows a
single-class model to learn only from the target class. For
example, one-class classification (OCC) methods [74], [75]



JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, JULY 2024 5

are initially contrastively trained with only one class of data
which is one of the most extreme non-IID data distribution.
During testing, OCC classifies samples by comparing their
features to those of the training samples.

ClassTer follows the contrastive learning method in
OCC, but at test time, the OCC classification method is
infeasible because using training sample features would com-
promise privacy in FL. Therefore, ClassTer trains the single-
class model to learn the features of the target Concretely,
the objectives of local training include the following. (i) To
learn accurate target class features, ClassTer minimizes the
distance between augmented representations of the same
sample and maximizes the distance between different sam-
ples. (ii) To classify target and non-target data, ClassTer
maximizes confidence within the target class and minimizes
confidence outside the non-target class.
Loss Design. According to the principles above, we devise
a training loss that utilizes four data samples from the
local dataset Dm of client m: ξ+,p, ξ+,q, ξ−, where ξ+ is the
sample within the data distribution, and ξ− is the sample
outside the distribution. Specifically, the loss is defined as:

L = Lcon + Lclassify (3)

where Lcon is the standard contrastive loss for learning
features of target class data:

Lcon = − log
exp(sim(w(ξ+), w(ξ̂+))/τ)

exp(sim((w(ξ+,p), w(ξ+,q))/τ)
(4)

{ξ+,p, ξ+,q} ∈ ξ+, ξ̂+ is the augmentation (e.g., crop) of
ξ+, and sim is the cosine similarity and τ is a temperature
hyper-parameter.

For Lclassify , it naturally transfers the feature compar-
ison method from OCC to FL. This involves a predefined
feature center vc, minimizing the distance between the
target class features and vc, and maximizing the distance
between the non-target class features and vc:

log
exp(sim(w(ξ+), vc)/τ)

exp(sim(w(ξ−), vc)/τ)
(5)

However, calculating the distance between the feature and
vc produces a much larger gradient than Lcon, resulting in a
trivial solution where all features collapse to the predefined
center vc. Therefore, we shift to training a classifier to
classify the learned features instead of directly comparing
the features.

Lclassify =
∑

{ξ+,ξ−}∈ξ

CrossEntropy(wclassifer(w(ξ))) (6)

Local Training Workflow. In each iteration, the client will
take a batch of data DB . Based on the target data class, the
client splits DB into ξ+, ξ−. For ξ+, the client generates ξ̂+
by applying random augmentations. For the most extreme
non-IID data distributions, where each client only holds one
class of data, we can generate Gaussian noise as ξ−.

4.2 Inter-Cluster Scheduling

Imbalanced Convergence of Cluster Models. Although
local contrastive learning at the mobile client boosts the
accuracy of the cluster models i.e., the single-class models,

𝐾𝐾𝐾𝐾(𝑃𝑃𝑖𝑖 ,𝑓𝑓(𝜉𝜉𝑖𝑖 ,𝑤𝑤𝑔𝑔))

Generalization 
model

𝜇𝜇1,𝜎𝜎1 𝜇𝜇2,𝜎𝜎2 𝜇𝜇3,𝜎𝜎3 𝜇𝜇4,𝜎𝜎4

𝑧𝑧𝑖𝑖,1 𝑧𝑧𝑖𝑖,2 𝑧𝑧𝑖𝑖,3 𝑧𝑧𝑖𝑖,4
Normalize Normalize Normalize Normalize

Single class model

Generalization 
model

Pure noise

Test sample

Fig. 5. Illustration of knowledge distillation from cluster models into a
generalized model.

these models may not converge simultaneously even with
synchronous clients. This is because each mobile client is
involved in local training multiple cluster models, and the
local training of these models will compete for the limited
resources at the client. A cluster model trained with few
clients per iteration suffers from a long convergence time.
And the imbalanced convergence time causes fast cluster
models to wait for the slow ones for knowledge distillation,
leading to prolonged overall training latency.
Cluster Model Scheduling. ClassTer strategically selects
cluster models per FL iteration for local training to roughly
synchronize the convergence of all cluster models. Formally,
let Emax be the number of local iterations still required
by the cluster model with the longest convergence time,
and Ê be the average number of local iterations across all
cluster models. We aim to minimize v, the convergence time
imbalance index across clusters defined as v = (Emax

E
− 1).

Although Emax and E reflect the number of local iterations
still needed, they are difficult to measure. Therefore, we
convert the number of remaining local iterations into the
number of completed local iterations, which is easier to
assess. Specifically, assume all cluster models need the same
number of local iterations, denoted as Ê, and let the number
of local finished iterations for the n − th cluster model be
en. Then Emax can be calculated as Ê − Min(en), where
E = 1

N

∑
(Ê − en). Consequently, v is expressed as:

v = 1− Min(en)
en

(7)

Then our goal becomes maximizing the minimum propor-
tion of effective training rounds, Min(en). Thus, for each
round, ClassTer always assigns clients to the cluster with
the lower en.

4.3 Generalized Model Extraction
As mentioned in Sec. 3.2, we extract the generalized model
from the single-class models via knowledge distillation
(KD) at the server. However, naive KD may fail due to
the misaligned objectives between the generalized model and
the single-class models. Note that KD implicitly assumes
that both the teacher and the student are intended for the
same classification task [54]. Yet in our case, the generalized



JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, JULY 2024 6

model aims to recognize multiple classes whereas each
single-class model targets at only one class. The different
objectives makes the soft labels between the generalized and
the single-class models incomparable, which may lead to
sub-optimal or even wrong knowledge transfer.

To align the objectives between the generalized model
from single-class models, we use the output probabilities
from each single-class model as the predicted probabilities
for one class in the generalized model and create soft labels
for training the generalized model. However, differences
in prediction scales between single-class models still cause
problems. For example, if one model’s probabilities are
between 1 and 10 and those of another are between 0 and
1, the soft labels will always favor the former’s probabilities
over the correct ones. Therefore, normalizing the probabil-
ities of single-class models is necessary. We observe that
the dimensional differences in single-class models are data-
independent, meaning that regardless of the data provided,
the model’s output remains at the same scale. Therefore, we
can obtain the necessary statistics (e.g., mean and standard
deviation) for normalizing the model’s probabilities by us-
ing some pure noise data.

Fig. 5 illustrates the process to compute the distilling
probabilities from the single-class model output for a sam-
ple ξi. Firstly, each single class model(wn) calculates the
mean (µn) and variance (σn) of its normalized output from
a set of pure noise data. For a given sample ξi in the dataset
S , we generate the logits output zi,n = f(ξi, wn) using
single-class model wn ∈ w1...N . Then, we use the mean and
variance to normalize the model logits output and combine
the normalized result as:

Pi∥i=n =
zi,n − µn

σn
(8)

In this context, Pi reflects the accurate inference probability
distribution for the sample ξi. Simultaneously, Pi shares the
same vector space as the prediction probability distribution
(f(ξi,Wg)) of the generalization model Wg . Therefore, the
final distillation objective is formalized as follows:

L(Wg,W1...N ) = KL(Pi, f(ξi,Wg)) (9)

Since all knowledge distillation occurs on the server, the
mobile devices have no additional overhead. Additionally,
the extra overhead can be disregarded due to the server’s
powerful computational capacity.

5 SUPPORTING ASYNCHRONOUS CLIENTS

This section extends ClassTer to asynchronous clients for
faster convergence (measured by wall clock time), where
clusters aggregate updates as soon as they are available
from each client. Supporting asynchronous clients makes
ClassTer more practical because clients in real-world FL sys-
tems are likely to experience heterogeneous resource avail-
ability and transmission bandwidth, causing them to upload
local model updates asynchronously to the server. In this
context, using synchronous aggregation for asynchronous
updates results in long waiting times and inefficiency. How-
ever, asynchronous model aggregation demands dedicated
staleness control to retain training convergence and model ac-
curacy [40]. ClassTer harnesses the notion of critical learning

𝑡1

Critical 

learning 

period

Fig. 6. Critical learning period and training rounds.

periods (Sec. 5.1) and performs both intra-cluster (Sec. 5.2)
and inter-cluster (Sec. 5.3) scheduling to support effective
and efficient asynchronous CFL, as explained below.

5.1 Critical Learning Period in FL
The effectiveness of asynchronous model aggregation is of-
ten hampered by the stale updates of local models [49], [50].
To mitigate the impact of staleness, updates from lagging
clients can be either discarded [50] or decayed [40]. We
adopt the latter since slow clients may contain important
personalized data, and thus excluding them from training
may drastically deteriorate the model accuracy [16].

In addition to which mobile clients to include, an equally
important yet often overlooked issue is when to include
these clients for training. Pioneer studies [34], [35] show that
excluding important mobile clients from the critical learning
periods (often the early stage) of FL can lead to irreversible
accuracy degradation. Thus, ensuring access to comprehen-
sive data during the critical learning period is essential to
achieve high model accuracy in federated learning.
Probing Critical Learning Period. Existing methods iden-
tify the critical learning periods in the synchronous set-
tings based on the Federated Gradient Norm (FGN) [35].
FGN(t) =

∑
k∈M(t)

Nk∑
k∈M(t) Nk

∆Lt
k, where t denotes the

current round of FL training, and M (t) represents the
set of all devices participating in that round t. FGN cal-
culates the average training loss across these clients for
each round. Specifically, for a probabilistic classification
model pw(y | x), where w is the model parameter, and
L(x, y;w) denotes the loss function computed for input
x and label y, the gradient of the loss for the example
(x, y) is g(x, y;w) = ∂

∂wL(x, y;w). After gradient descent
for the (x,y) sample, the training loss is computed as
∆L = L(x, y;w − ηg(x, y;w)) − g(x, y;w), where η is the
learning rate. The FGN quantifies the correlation between
the critical learning period and training rounds, as illus-
trated in Fig. 6. The rounds (0, t1] are identified as the
critical learning period, determined by the threshold-based
criterion: FGN(t)−FGN(t−1)

FGN(t−1) ≥ δ. If this criterion is met,
round t is a part of the critical learning period.

We extend the notion of critical learning periods to
the asynchronous setting and propose an asynchronous FGN
(AFGN) metric to account for client model training epoch p at
time t. Specifically, we follow the idea of FGN to identify the
mutation point of the gradient norm and further refine the
measurement to include time-variant factors. It quantifies
the difference between the gradient norm of the n − th
single-class model at the time t.

AFGN(p(t))i = AFGN(p(t− 1))i +
Nk

N
×∆LT

k (10)



JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, JULY 2024 7

where N is the total sum of training data across all clients in
iteration t, dynamically changing due to system heterogene-
ity. Nk indicates the current data volume for k, and ∆LT

k is
the training loss uploaded by client k in round T .

As AFGN is an iterative function, we use the second
derivative of AFGN d2

dt2 AFGN(t) to judge the critical learn-
ing period of the n-th cluster as follows:

Trps(Clusters(n)) =
d2

dt2
AFGN(t)

≈ AFGN(t) + AFGN(t− 2)− 2AFGN(t− 1)
(11)

where Trps denotes the learning period in the n-th cluster.
We monitor Trps at time t for each cluster. When it sur-
passes a specified threshold, the cluster is considered to be
in a critical learning period. The higher the Trps value, the
greater the criticality of the learning period.

Quantifying the critical learning period allows for more
balanced intra-cluster aggregation in its early stages. In each
KL training round, more clients can be aggregated into a few
single-class models at the inter-cluster level.

5.2 Asynchronous Intra-Cluster Scheduling
Unlike synchronous intra-cluster clients with uniform up-
date frequencies, asynchronous intra-cluster clients exhibit
varying update frequencies, causing staleness. The staleness
significantly reduces learning accuracy during the critical
learning period. Therefore, to mitigate the staleness issue,
we schedule the weight aggregation ratio according to the
critical learning period.

Aggregating asynchronous updates with staleness into
single-class models equally can degrade accuracy and ex-
tend convergence times. Specifically, aggregating stale up-
dates during critical learning periods may cause irreversible
accuracy loss. To optimize the trade-off between accuracy
and latency, ClassTer strategically schedules aggregation
weights among client updates to maximize updates during
critical learning periods for improved early-stage results,
while limiting updates towards the end to enhance feder-
ated learning efficiency.

Initially, we predict the average training time per round
(tavg) and its variance (σ) through local testing with multi-
ple clients in the first round, and these metrics are updated
iteratively during the FL process. When a client i submits
an update, it uploads the local model wi

local and its training
time t. Based on the asynchronous critical learning period
prob, we modify the Hinge aggregation formula in [40] as:

β =

{
α if t < Tavg + 3 ∗ AFGN(i)

AFGNmax
σ

α
a(t−τ−b)+1 otherwise

(12)

where α is set to 0.5, a to 10, and b to 4, as used by [40]. The
uploaded model wi

local is then aggregated into the single-
class model wi

server by wi+1
server = βwi

local + (1− β)wi
server.

5.3 Asynchronous Inter-Cluster Scheduling
In the synchronous setting, ClassTer simultaneously assigns
multiple mobile clients to a cluster that has been trained
with a few mobile clients. However, in the asynchronous
setting, clients are assigned to clusters on arrival. When
clusters are trained with similar numbers of clients, each

cluster might receive balance but few clients at the same
time for training, impacting the training accuracy of the
single class model during critical learning periods.

ClassTer further introduces an asynchronous scheduler
that dynamically adjusts client assignments to align train-
ing times across various clusters, complementing the syn-
chronous strategy described in Sec. 4.2. It tracks the count
of updates for each single-class model with {e1, e2, . . . , eN},
where en indicates the number of updates for the n-th
single-class model. Under conditions where clients can train
multiple clusters, we prioritize assigning clients to con-
tribute to single-class models with fewer updates, adhering
to the principle of minimizing bottlenecks [76]. The reason
is that single-class models with fewer updates can prioritize
and capture more clients for training, thereby speeding up
the training of slower single-class models. However, the im-
mediate updates to {e1, . . . , eN} result in each single-class
model being trained by only a few clients simultaneously,
leading to performance decline during critical learning peri-
ods. This occurs because these updates frequently change
the priority of the single-class models, causing clients to
be dispersedly allocated rather than assigned in batches.
Thus, updates are not immediately reflected in {e1, . . . , eN};
instead, counts are cached for K updates before a client
assignment adjustment. This strategy of delayed updates
allows clients to concentrate on training specific single-class
models within a brief period, minimizing gradient errors
potentially caused by limited client participation during
critical learning periods.

6 EXPERIMENT
6.1 Experiment Setup
Implementation. We implement ClassTer using Python 3.9
and PyTorch 1.10 for the server and mobile clients, respec-
tively. The server is equipped with two RTX 3090 GPUs and
128GB RAM. We use 20 mobile and embedded devices of
five types: Jetson Nano C1, Jetson NX Xavier C2, Jetson
Nano Orin C3, Jetson AGX Xavier C4, and Raspberry Pi 4
C5. They represent diverse computing capabilities and form
a distributed FL system.

Tasks, Datasets, and Models. We experiment with four
real-world mobile applications. And the data assigned to
each client is Non-IID and unbalanced. We simulate the
degree of Non-IID using the Dirichlet distribution [82], with
the hyperparameter set between 0.1 and 0.5. A value of
0.1 represents the most extreme Non-IID data distribution,
while 0.5 represents nearly IID data distribution.

• Image Recognition (T1) is ubiquitous in smart cam-
eras/robots. We employed the CIFAR-10 dataset [82].
To demonstrate scalability, we also utilized the CIFAR-
100. We utilize Resnet-8 for this task.

• Human Activity Recognition, HAR (T2) on mobiles has
gained significant attention [17]. We adopt the HARBox
dataset [17], which comprises sensor data from 121
users. The model utilizes the LSTM architecture.

• Text-based Emotion Detection (T3) is deployed on
mobile devices to detect user emotion. We adopt Daily-
Dialog [71] dataset, which has 13,000 dialogue samples
encompassing seven different emotions. We utilize the
transformer-based model DistillBert [72] for this task.



JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, JULY 2024 8

• Image aesthetics evaluation (T4) evaluate the aesthetics
of user-taken photos. We gathered 1,000 images from
20 users, classifying them into five aesthetic value cate-
gories. We use ResNet-8 for this task.

Assessing the performance of the FL system can be
challenging when dealing with hundreds of physical de-
vices. Therefore, we divide our experiments into simulation
experiments and real-world experiments. For simulation
experiments(T1, T2, and T3), we gather data on local training
times and communication overhead to simulate the system
using the software. In detail, we simulate 50% fast devices
and 50% slow devices. For real-world experiments T4, we
conducted them with 3C1, 5C2, 4C3,2C4 and 6C5.

Baselines. We adopt five mainstream FL algorithms with
mobile devices as performance comparison baselines. These
baselines offer SOTA methods for evaluating system effi-
ciency and model accuracy in extreme Non-IID data distri-
butions, both before and after data shift They are configured
as follows:

• Standard FL methods: These methods provide accu-
racy and training time baseline since they are not opti-
mized for any particular mobile scenario.
- FedAvg [2]: the server calculates the average of all
mobile clients’ weights as a global model and then
deploys the same global model to all clients.

• Personalized FL (PFL) methods provide high accuracy
results without data shift as the model is personalized
for each client.
- Cluster-based PFL: IFCA [53]: is a learning personal-
ized models method, which learns different models for
each cluster to realize personalization.
- Fine-tuning based PFL: FedAvg+Fine-tuning [73]
fine-tunes the global model at the client to realize
personalization.

• Shift-robust PFL mitigate the accuracy decline brought
by test-time mobile data shift.
- DM-PFL [28] trains generalized and personalized
models simultaneously and adaptively select output to
address data shift.

• Asynchronous FL methods:
- FedAsyn [40] promptly aggregates the model and dis-
tributes updates to clients in an asynchronous manner.

6.2 Performance Comparison

We test ClassTer and four baseline methods (i.e., FedAvg,
IFCA, FedAvg+FT, DM-PFL, and FedAsyn ) across Image
recognition(T1), Human activity recognition (T3), and Text-
based emotion detection (T3) tasks under extreme device
heterogeneity (i.e., Slow devices have 20 times the local
training time of fast devices.) and non-IID data distribu-
tion (i.e., Dirichlet distribution with a hyperparameter of
0.1 [82]).

Fig. 7 presents the results. First, ClassTer demonstrates
the highest accuracy across all three tasks. For instance, as
shown in Figure Fig. 7b, our method outperforms the five
baselines by 10%-33% in accuracy. This is because ClassTer
effectively extracts a global model from single-class models
trained through class-wise clustering, reducing the accuracy
decline caused by data shift. Second, ClassTer also exhibits

the fastest convergence speed across the three tasks. As de-
picted in Figure 4b, ClassTer achieves the highest accuracy
with the fewest number of training rounds compared to the
four baselines. This is because ClassTer balances the train-
ing progress of single-class models through intra-cluster
scheduling and alleviates the staleness issue from slow
devices with critical learning-based inter-cluster scheduling.

Summary: ClassTer achieves an optimal trade-off be-
tween training time and accuracy benefiting from its criti-
cal learning period-based intra- and inter-cluster scheduler.
In extreme shift scenarios, ClassTer outperforms the a-
/synchronous PFL baselines by 1%-34% in accuracy and re-
duces the training time by 21%-91%. This makes ClassTer a
promising solution for federated learning in mobile applica-
tions with prevalent extreme data and system heterogeneity.

6.3 Performance in Various Scenarios
6.3.1 Performance under Different Data Shifts
We test ClassTer and four baseline methods across six
shift scenarios with the T1 task, utilizing three different
numbers of FL rounds. In mobile scenarios, the degree of
data shift can vary due to the changing of deployment envi-
ronments (e.g., stable environment results in 0% data shift,
and an extremely dynamic environment results in 100%
data class shift). Fig. 8 shows the results. First, ClassTer
exhibits the best accuracy result under different degrees
of data shifts. For example, as shown in Fig. 8b, with 400
rounds FL training, demonstrates accuracy improvements
of 4.04% ∼ 50.45% compared to non-shift-robust methods
FedAvg, FedAvg+FT, ICFA and 5.16% ∼ 12.28% compared
to shift-robust method DM-PFL. Second, ClassTer achieves
shift-robustness most rapidly. For instance, as shown in
Fig. 8a, with only 200 rounds of FL training, ClassTer
achieves 78.74% and 36.5% accuracy with 0% and 100% data
shift, which are 5.45% and 14.61% higher than shift-robust
method DM-PFL. As shown in Fig. 8c, after 800 rounds
of FL training, ClassTer still achieves an accuracy 1.66%-
49.73% higher than the baselines under various data shift
conditions.

Summary: ClassTer establishes an effect shift-robust so-
lution for extreme non-iid data distribution with several
advantages: i) ClassTer achieves the highest test accuracy
under various data shift conditions by aggregating single-
class models into a generalized model. ii) ClassTer adapts to
extreme non-iid data distribution through class-wise cluster-
ing, achieving the highest accuracy with the fewest rounds
among FedAvg, FedAvg+FT, ICFA, and DM-PFL. This en-
ables ClassTer to provide shift-robust deep learning models
for mobile applications in the shortest time.

6.3.2 Performance over Different Non-IID Settings
We test ClassTer and four baseline methods across five
non-iid degree scenarios with the T1 task. First, ClassTer
exhibits the best accuracy result with extreme Non-IID data
distribution. For example, as shown in Fig. 9e and Fig. 9f,
ClassTer accuracy improvements of 14.34%-23.5% with shift
and 1.66%-49.73% without shift. Second, ClassTer remains
effective under general non-iid conditions. As shown in
Fig. 9e and Fig. 9f, with a 0.5 Non-IID degree, which
represents a weak Non-IID data distribution, ClassTer still



JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, JULY 2024 9

0.0 0.5 1.0
Normalized time cost

40
50
60
70
80
90

Ac
cu

ra
cy

 (%
)

FedAvg
FedAsyn
IFCA
DM-PFL
FedAvg+FT
Ours

FedAvg
FedAsyn
IFCA
DM-PFL
FedAvg+FT
Ours

(a) Performance on T1 without data shift

0.0 0.5 1.0
Normalized time cost

30
40
50
60
70

Ac
cu

ra
cy

 (%
)

FedAvg
FedAsyn
IFCA
DM-PFL
FedAvg+FT
Ours

FedAvg
FedAsyn
IFCA
DM-PFL
FedAvg+FT
Ours

(b) Performance on T1 with data shift

0.8 1.0
Normalized time cost

40
50
60
70
80
90

Ac
cu

ra
cy

 (%
)

FedAvg
FedAsyn
IFCA
DM-PFL
FedAvg+FT
Ours

FedAvg
FedAsyn
IFCA
DM-PFL
FedAvg+FT
Ours

(c) Performance on T2 without data shift

0.8 1.0
Normalized time cost

35
40
45

Ac
cu

ra
cy

 (%
)

FedAvg
FedAsyn
IFCA
DM-PFL
FedAvg+FT
Ours

FedAvg
FedAsyn
IFCA
DM-PFL
FedAvg+FT
Ours

(d) Performance on T2 with data shift

0.6 0.8 1.0
Normalized time cost

40
50
60
70
80
90

Ac
cu

ra
cy

 (%
)

FedAvg
FedAsyn
IFCA
DM-PFL
FedAvg+FT
Ours

FedAvg
FedAsyn
IFCA
DM-PFL
FedAvg+FT
Ours

(e) Performance on T3 without data shift

0.4 0.6 0.8 1.0
Normalized time cost

20
30
40
50
60
70

Ac
cu

ra
cy

 (%
)

FedAvg
FedAsyn
IFCA
DM-PFL
FedAvg+FT
Ours

FedAvg
FedAsyn
IFCA
DM-PFL
FedAvg+FT
Ours

(f) Performance on T3 with data shift
Fig. 7. Comparison of accuracy vs. training time between ClassTer and other baselines on diverse tasks.

0 20 40 60 80 100
Data shift degree(%)

0
30
60
90

Ac
cu

ra
cy

(%
)

FedAvg FedAvg+FT IFCA DM-PFL Ours

(a) Accuracy with various shifts using 200 FL rounds

0 20 40 60 80 100
Data shift degree(%)

0
30
60
90

Ac
cu

ra
cy

(%
)

FedAvg FedAvg+FT IFCA DM-PFL Ours

(b) Accuracy with various shifts using 400 FL rounds

0 20 40 60 80 100
Data shift degree(%)

0
30
60
90

Ac
cu

ra
cy

(%
)

FedAvg FedAvg+FT IFCA DM-PFL Ours

(c) Accuracy with various shifts using 800 FL rounds

Fig. 8. Accuracy with different degrees of shift on CIFAR10 in Dir(0.1)
non-IID setting.

achieves comparable accuracy (improving 0.12% without
data shift and 2.45% with data shift compare with DM-PFL).
Third, ClassTer provides higher accuracy more quickly
across varying degrees of Non-IID data distribution. For
instance, ClassTer achieves 1.55%-49.62% higher accuracy
with 400 FL rounds(Fig. 9c and Fig. 9d) compared to base-
line methods with 800 FL rounds(Fig. 9e and Fig. 9f) under
0.1 Non-IID data distributions.

TABLE 1
Quantity and performance ratios of fast and slow devices

Index Slow/Fast device
quantity proportion

Slow/Fast device
performance ratio

D1 1/1 1/1
D2 1/1 1/5
D3 1/1 1/10
D4 1/1 1/20

Summary: ClassTer is efficient in extreme Non-IID sce-
narios while remaining effective in general Non-IID con-
ditions. The reason is that the class-wise clustering method
enables effective FL training of single-class models with
near-IID conditions under any data distribution.

6.3.3 Performance on Different Mobile Devices
We test ClassTer and two baseline methods (i.e., FedAvg and
FedAsyn) under various heterogeneous device conditions in
T1 task to determine the highest accuracy achievable within
the specified time frame. This reflects the superior capability
of ClassTer in rapidly training models. In this experiment,
clients are divided into fast and slow devices based on
the time taken to complete each round of FL. The device
ratio of fast and slow devices is 1:1, and the training time
ratios for fast and slow devices to complete each round of
FL are illustrated in the Tab. 1 as 1:5, 1:10, 1:15, and 1:20.
Such device heterogeneity is common in mobile scenarios,
for example, devices with GPUs can perform several times
faster than those without GPUs. We record the training
time taken by ClassTer and the baselines to achieve various
accuracy levels within four hours. In some settings (e.g., D4
and 30% accuracy), the baselines failed to achieve the target
accuracy and were recorded as 0 (e.g., FedAsyn in Fig. 10a).
We evaluate accuracy on CIFAR-10 with 100% data shift.

First, under varying heterogeneous device conditions,
ClassTer consistently achieves the target accuracy in the
shortest time. As shown in Fig. 10a, to achieve 30% accuracy,



JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, JULY 2024 10

0.1  0.2  0.3  0.4  0.5  
Non-IID degree( )

0
30
60
90

Ac
cu

ra
cy

(%
)

FedAvg FedAvg+FT IFCA DM-PFL Ours

(a) 200 FL rounds and without data shift

0.1  0.2  0.3  0.4  0.5  
Non-IID degree( )

0
20
40
60

Ac
cu

ra
cy

(%
)

FedAvg FedAvg+FT IFCA DM-PFL Ours

(b) 200 FL rounds and with 100% data shift

0.1  0.2  0.3  0.4  0.5  
Non-IID degree( )

0
30
60
90

Ac
cu

ra
cy

(%
)

FedAvg FedAvg+FT IFCA DM-PFL Ours

(c) 400 FL rounds and without data shift

0.1  0.2  0.3  0.4  0.5  
Non-IID degree( )

0
20
40
60

Ac
cu

ra
cy

(%
)

FedAvg FedAvg+FT IFCA DM-PFL Ours

(d) 400 FL rounds and with 100% data shift

0.1  0.2  0.3  0.4  0.5  
Non-IID degree( )

0
30
60
90

Ac
cu

ra
cy

(%
)

FedAvg FedAvg+FT IFCA DM-PFL Ours

(e) 800 FL rounds and without data shift

0.1  0.2  0.3  0.4  0.5  
Non-IID degree( )

0
20
40
60

Ac
cu

ra
cy

(%
)

FedAvg FedAvg+FT IFCA DM-PFL Ours

(f) 800 FL rounds and with 100% data shift
Fig. 9. Accuracy with different degrees of Non-IID data distribution on CIFAR10.

D1 D2 D3 D4
Device heterogeneity degree

0

100

Ti
m

e(
m

in
)

FedAvg FedAsyn Ours

(a) Time for 30% accuracy

D1 D2 D3 D4
Device heterogeneity degree

0

100

Ti
m

e(
m

in
)

FedAvg FedAsyn Ours

(b) Time for 40% accuracy

D1 D2 D3 D4
Device heterogeneity degree

0

25

Ti
m

e(
m

in
)

FedAvg FedAsyn Ours

(c) Time for 50% accuracy
Fig. 10. Training time to achieve different accuracy.

0.1 0.5
Non-IID degree( )

0

100

C
om

m
un

ic
at

io
n

co
st

(G
B)

FedAvg FedAvg+FT IFCA DM-PFL Ours

Fig. 11. ClassTer vs. other baselines in terms of communication cost.

ClassTer save up to 93.14% time compared to FedAvg and
FedAsyn under 1:5, 1:10, and 1:15 device heterogeneity
degree. Under 1:20 device heterogeneity degree, ClassTer
saves 93.21% time compared to FedAvg while FedAsyn
fails to achieve 30% accuracy due to the severe staleness
issue. Second, ClassTer can achieve the highest accuracy
within a limited time under various heterogeneous de-
vice conditions. As shown in Fig. 10c, within four hours,
ClassTer reached 50% accuracy in as little as 28 minutes
under multiple heterogeneous device conditions, whereas
both FedAvg and FedAsyn failed to achieve 50% accuracy
within the same four-hour period.

6.3.4 Communication Overhead
We compare ClassTer’s communication cost with FedAvg,
FedAvg+FT, ICFA, and DM-PFL in the image recognition
(T1) task. As shown in Fig. 11, ClassTer achieves 68.8%-
77.6% communication cost reduction with the most extreme
Non-IID scenario and 70.5%-74.6% communication cost re-

CIFAR-10 CIFAR-100 DailyDialog
Tasks

0

100

C
om

m
 c

os
t(G

B)

DM-PFL
Ours

(a) Communication cost

CIFAR-10 CIFAR-100 DailyDialog
Tasks

0

30

60

90
Ac

cu
ra

cy
(%

)

DM-PFL
Ours

(b) Accuracy

Fig. 12. Comparison of communication costs and accuracy for various
tasks with diverse scales.

duction with the generic Non-IID scenario(Non-IID degree
is 0.5). The reason is class-wise clustering reduces training
complexity, thus requiring fewer communication rounds to
reach the target accuracy.

6.3.5 Scalability to Transformer Models

We test ClassTer and DM-PFL across three different scale
tasks (CIFAR-10, CIFAR-100, and DailyDialog) to vali-
date ClassTer’s scalability. As shown in Fig. 12, ClassTer
achieved a reduction in communication costs by 33.3%-
81.4% and an accuracy gain of 1.3%-2.66% without data shift
across different tasks, validating its scalability.



JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, JULY 2024 11

10 20 30
Parallel number

50.0

52.5

55.0

57.5

Ac
cu

ra
cy

(%
)

(a) Accuracy

10 20 30
Parallel number

12

18

24

Ti
m

e(
m

in
)

(b) Training time
Fig. 13. Performance of ClassTer with different parallel device numbers.

ResNet-8 ResNet-18 ResNet-34
Model size

52

54

56

Ac
cu

ra
cy

(%
)

(a) Accuracy

ResNet-8 ResNet-18 ResNet-34
Model size

2.5

5.0

7.5

Co
m

m
(G

B)

(b) Comm. cost
Fig. 14. Perfomance of ClassTer with different model size.

6.4 Micro-benchmark

6.4.1 Impact of Parallel Number
We evaluate the training time and accuracy with 100% data
shift using different parallel numbers in ClassTer (i.e., 10,
20, and 30), which represent the scalability of ClassTer to a
large FL system. As shown in Fig. 13, with the increase of
parallel number, ClassTer can reduce up to 61.5% training
time to achieve similar FL accuracy. This is because updates
between different single class models do not interfere, en-
abling more clients to train simultaneously.

6.4.2 Impact of Single-class Model Size
We assess the communication cost and accuracy with 100%
data shift of ClassTer using various sizes of single-class
models. This shows that ClassTer can lower the overhead
in the federated phase by reducing the size of the single-
class model. As shown in Fig. 14, using the smaller model,
ClassTer achieves 73.3% communication cost reduction and
similar accuracy.

6.4.3 Impact of Local Training Round
We test the communication cost in PFL for achieving 50%
accuracy under a 100% data shift (where the test data is com-
pletely different from the training data) using different local
training rounds in ClassTer. This indicates that ClassTer
can reduce communication cost by extending local training
rounds. As shown in Fig. 15, with the increase of local
training rounds, ClassTer can reduce up to 41.64% com-
munication cost. This is because, after class-wise clustering,
clients training the same single-class model share similar
optimization objectives, so more local training rounds do
not lead to significant optimization conflicts.

6.4.4 Impact of knowledge distillation phase
We tested the percentage of time taken by the knowledge
distillation(KD) phase and the federated learning (FL) phase
during the convergence of ClassTer under four heteroge-
neous device conditions. The experiment showed that the
additional time overhead introduced by knowledge distil-
lation is acceptable. As shown in Tab. 2, the time spent
in the KD phase under these four conditions ranged from
only 5.17% to 7.39%, accounting for only a small fraction of
the total time overhead. Since the KD-phase occurs entirely

5 10 20
Local rounds

18

24

30

36

Co
m

m
(G

B)

Fig. 15. Communication cost of ClassTer with different local training
rounds.

Camera

Storage:64G
Memory: 4G

Perf: 472GFLOPS

Computation : Jetson Nano
Raspberry Pi 4B

Nano

AGX

Nano

Nano 
Orin

Nano 
Orin

Nano 
Orin

Nano 
Orin TX2

TX2TX2 TX2
AGX

Nano

Fig. 16. Illustration of the case study with 20 mobile devices.
Low skill users Medium skill users High skill users

Fig. 17. Illustration of personalized mobile data caused by diverse user
photography habits and skills.

on the server, the time overhead is stable and manageable,
making it acceptable for mobile systems.

6.5 Case Study

We use twenty mobile devices for a two-day study with the
aesthetics evaluation app, which helps users automatically
evaluate the aesthetics of their photos. Twenty participants
labeled each image sample collected locally from their
mobile phones from ”1-5” based aesthetics, resulting in
imbalanced data across devices due to varying photography
skills. The system is deployed on 20 devices(as shown in
Fig. 16) and each device holds one user’s data.

To test ClassTer’s performance under different shifts, we
have three group users with varying photography skills
(low, medium, and high) using the model trained by a user
with low photography skills to conduct photo tests and
assess accuracy. As shown in Fig. 17, the model achieves
the highest accuracy when evaluating photos taken by low-
skill users. For photos taken by medium-skill and high-
skill users, accuracy decreased due to the data shift from
improved shooting skills. However, ClassTer’s class-wise
clustering maintained shift robustness, resulting in a limited
accuracy drop.

7 RELATED WORK

Generic and Personalized FL for Handling Non-IID Data.
Generic FL aims to train a single global model to serve all
clients, with FedAvg [2] as the standard method. However,
data heterogeneity presents challenges. To address this, prior
efforts enhance FedAvg on the client side, e.g., by regular-
ization [7], [8], [36] and hyperparameter control [10], [47] to
mitigate gradient divergence from non-IID data, or on the
server side, e.g., by weight matching [45] and knowledge
distillation [43], [44]. Nonetheless, the diverse data distribu-
tions among clients make it challenging to fit a single global
model to each client’s specific data [12], [55].



JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, JULY 2024 12

TABLE 2
Quantity and performance ratios of fast and slow devices

KD phase FL phase Overall
D1 7.39% 92.61% 100%
D2 6.56% 93.44% 100%
D3 5.68% 94.32% 100%
D4 5.17% 94.83% 100%

Personalized FL (PFL) produces multiple personalized
models to fit local data distributions and address non-IID
mobile data issues. PFL can be divided into two types based
on the presence of a global model. First, without a global
model, PFL methods directly train multiple personalized
models, each tailored to a specific data distribution. Second,
with a global model, the PFL architecture is ”FL training +
personalizing the global model.” Methods for personaliz-
ing the global model include local fine-tuning [43], [73],
meta-learning [14], [15], [18], and model interpolation [36],
[37]. For example, Fallah et al. propose a meta-learning
method [15] where a global meta-model is learned during
FL training and each client fine-tunes it locally. However,
relying on a single global model can degrade personalized
model performance due to difficulties in converging across
diverse local data distributions [12].

Therefore, maintaining multiple global models in PFL for
better personalization emerges, employing techniques like
clustering [12], [16], [17], [83], [84], [85] and multi-task
learning [21], [22]. For example, ClusterFL et al. [17] pro-
poses a cluster-based PFL method where the server iden-
tifies the cluster structure using KL-divergence between
the uploaded models. Clients with similar data distribu-
tions are grouped into clusters, each maintaining its own
global model. Thus, ClassTer follows the cluster-based PFL
scheme, leveraging the high clusterability in mobile applica-
tion data distributions despite their extreme non-IID nature.
FL with Data Shift. Data shift is a common issue, which
occurs when test data distribution diverges from training
data, risking accuracy [28], [38], [87]. To address this, generic
FL enhances shift robustness typically in two ways, i.e., on-
device adaptation [46] and improving generalization during
the training of global model [28], [39]. While cluster-based
PFL effectively manages extreme non-IID data, it is less
resilient to data shifts in mobile deployments. Integrating
the above shift-robust methods with cluster-based PFL in
mobile settings presents challenges. In particular, when in-
tegrating cluster-based FL with on-device adaptation meth-
ods, cluster center models fail to adapt to data distributions
that experience shifts, as these models overfit the original
data distribution. Another approach to achieving data shift
robustness in cluster-based FL is to use the output of a
generalized model to correct the output of the cluster center
model. However, due to extremely non-IID data distribu-
tions, existing FL methods fail to train a generalized model
effectively. To achieve shift robustness in cluster-based PFL,
ClassTer focuses on enhancing the global model’s general-
ization, reducing additional client training resource costs.
Synchronous and Asynchronous and FL. Device het-
erogeneity refers to the diversity in computational re-
sources [93]. It can be addressed by modifying the model ar-
chitecture and system-level adaptation. The former assigns
lightweight models to devices with lower resources [51],
[88]. For example, Li et al. [52] utilize knowledge distilla-

tion to aggregate models. However, for clients with lower
resources but abundant data, assigning lightweight models
may impair the extraction of that portion of knowledge.
The latter mainly fall into client selection-based methods
[10], [47], [48], asynchronous FL (AFL) [16], [40], and semi-
asynchronous FL (SAFL) methods [49], [50]. First, client
selection-based methods [47], [48] select devices with sim-
ilar performance during each round of FL to avoid waiting
issues. For example, FedBalancer [10] optimizes the selec-
tion of clients based on both device capacity and data distri-
bution, thereby enhancing convergence speed. Second, adap-
tive model aggregation or asynchronous FL [29], [30], [31]
controls staleness by scheduling model updates. Specifically,
ArtFL achieves similar local training times across different
devices by adjusting the amount of training data. Third,
adaptive weight dropping, or semi-asynchronous FL [33], [49],
[50], discards extremely stale models. However, these meth-
ods overlook critical learning periods, leading to signifi-
cant degradation. In mobile scenarios, selecting clients with
similar performance during each round in FL is infeasible.
Therefore, ClassTer adopts asynchronous methods to opti-
mize efficiency.

Existing methods [34], [35] demonstrate that during
critical learning periods in FL, gradient errors introduced
by staleness issue in semi-/asynchronous FL can impair
the model’s learning ability irreversibly. ClassTer embraces
the asynchronous paradigm for its latency benefits and
addresses aggregation challenges from stragglers and irre-
versible damage during critical learning periods by employ-
ing critical learning period-aware adaptive synchronization
frequency schedule methods.

8 CONCLUSION

Due to the ubiquity of data heterogeneity and test-time
data shift in mobile applications, we present ClassTer, a
shift-robust personalized FL using class-wise clustering on
mobile devices. First, we present a paradigm shift from
traditional client-wise clustering to class-wise clustering for
combating test-time mobile data shifts, which allows the
effective aggregation of cluster models into a generalized
one via knowledge distillation. Second, we extend ClassTer
to support asynchronous mobile clients for faster conver-
gence, measured by wall clock time, where clusters ag-
gregate updates as soon as they are available from each
mobile client. Supporting asynchronous mobile clients en-
hances ClassTer’s practicality, addressing the heterogeneous
resource availability and dynamic network bandwidth in
real-world FL systems. By harnessing critical learning periods
and performing both intra- and inter-cluster scheduling,
we control staleness issues and optimize convergence in
asynchronous shift-robust PFL. Evaluations on diverse pop-
ular mobile tasks and real-world scenarios over twenty
mobile devices show that ClassTer achieves training time
reductions of up to 91%, accuracy improvements of up to
50.45%, and communication cost reduction of up to 74.6%.
In the future, we plan to expand ClassTer to handle more
complex tasks by using hierarchical federated learning to
improve class-wise clustering performance and distribute
network traffic, making it adaptable to various network
environments.



JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, JULY 2024 13

ACKNOWLEDGMENT

This work was partially supported by the National Science
Fund for Distinguished Young Scholars (62025205) the Na-
tional Natural Science Foundation of China (No. 62032020,
62102317,62472354), and CityU APRC grant No. 9610633.

REFERENCES

[1] Yang, L., Huang, J., Lin, W., & Cao, J. (2023). Personalized federated
learning on non-iid data via group-based meta-learning. ACM
Transactions on Knowledge Discovery from Data, 17(4), 1-20.

[2] McMahan B, Moore E, Ramage D, et al. Communication-efficient
learning of deep networks from decentralized data[C]//Artificial
intelligence and statistics. PMLR, 2017: 1273-1282.

[3] Sun J, Li A, Duan L, et al. FedSEA: a semi-asynchronous
federated learning framework for extremely heterogeneous de-
vices[C]//Proceedings of the 20th ACM Conference on Embedded
Networked Sensor Systems. 2022: 106-119.

[4] Xie C, Koyejo S, Gupta I. Asynchronous federated optimization[J].
arXiv preprint arXiv:1903.03934, 2019.

[5] Vahidian S, Morafah M, Wang W, et al. Efficient distribution simi-
larity identification in clustered federated learning via principal an-
gles between client data subspaces[C]//Proceedings of the AAAI
Conference on Artificial Intelligence. 2023, 37(8): 10043-10052.

[6] Li Z, Shang X, He R, et al. No fear of classifier biases: Neural
collapse inspired federated learning with synthetic and fixed clas-
sifier[C]//Proceedings of the IEEE/CVF International Conference
on Computer Vision. 2023: 5319-5329.

[7] Li T, Sahu A K, Zaheer M, et al. Federated optimization in heteroge-
neous networks[J]. Proceedings of Machine learning and systems,
2020, 2: 429-450.

[8] Karimireddy S P, Kale S, Mohri M, et al. Scaffold: Stochastic
controlled averaging for federated learning[C]//International con-
ference on machine learning. PMLR, 2020: 5132-5143.

[9] Li T, Hu S, Beirami A, et al. Ditto: Fair and robust federated learning
through personalization[C]//International conference on machine
learning. PMLR, 2021: 6357-6368.

[10] Shin J, Li Y, Liu Y, et al. Fedbalancer: Data and pace control for effi-
cient federated learning on heterogeneous clients[C]//Proceedings
of the 20th Annual International Conference on Mobile Systems,
Applications and Services. 2022: 436-449.

[11] Li C, Zeng X, Zhang M, et al. PyramidFL: A fine-grained client se-
lection framework for efficient federated learning[C]//Proceedings
of the 28th Annual International Conference on Mobile Computing
And Networking. 2022: 158-171.

[12] Yang L, Huang J, Lin W, et al. Personalized federated learning on
non-iid data via group-based meta-learning[J]. ACM Transactions
on Knowledge Discovery from Data, 2023, 17(4): 1-20.

[13] Tan A Z, Yu H, Cui L, et al. Towards personalized federated
learning[J]. IEEE Transactions on Neural Networks and Learning
Systems, 2022.

[14] Vettoruzzo A, Bouguelia M R, Rögnvaldsson T. Personalized
Federated Learning with Contextual Modulation and Meta-
Learning[C]//Proceedings of the 2024 SIAM International Confer-
ence on Data Mining (SDM). Society for Industrial and Applied
Mathematics, 2024: 842-850.

[15] Fallah A, Mokhtari A, Ozdaglar A. Personalized federated learn-
ing with theoretical guarantees: A model-agnostic meta-learning
approach[J]. Advances in Neural Information Processing Systems,
2020, 33: 3557-3568.

[16] Li X, Liu S, Zhou Z, et al. EchoPFL: Asynchronous Personalized
Federated Learning on Mobile Devices with On-Demand Staleness
Control[J]. Proceedings of the ACM on Interactive, Mobile, Wear-
able and Ubiquitous Technologies, 2024, 8(1): 1-22.

[17] Ouyang X, Xie Z, Zhou J, et al. Clusterfl: a similarity-
aware federated learning system for human activity recogni-
tion[C]//Proceedings of the 19th Annual International Conference
on Mobile Systems, Applications, and Services. 2021: 54-66.

[18] Vettoruzzo A, Bouguelia M R, Vanschoren J, et al. Advances and
challenges in meta-learning: A technical review[J]. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, 2024.

[19] Wang K, Mathews R, Kiddon C, et al. Federated evaluation of
on-device personalization[J]. arXiv preprint arXiv:1910.10252, 2019.

[20] Zhang L, Shen L, Ding L, et al. Fine-tuning global model
via data-free knowledge distillation for non-iid federated learn-
ing[C]//Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 2022: 10174-10183.

[21] Ouyang X, Xie Z, Fu H, et al. Harmony: Heterogeneous multi-
modal federated learning through disentangled model train-
ing[C]//Proceedings of the 21st Annual International Conference
on Mobile Systems, Applications and Services. 2023: 530-543.

[22] Smith V, Chiang C K, Sanjabi M, et al. Federated multi-task
learning[J]. Advances in neural information processing systems,
2017, 30.

[23] Deng Y, Kamani M M, Mahdavi M. Adaptive personalized feder-
ated learning[J]. arXiv preprint arXiv:2003.13461, 2020.

[24] Mansour Y, Mohri M, Ro J, et al. Three approaches for person-
alization with applications to federated learning[J]. arXiv preprint
arXiv:2002.10619, 2020.

[25] Rabanser S, Günnemann S, Lipton Z. Failing loudly: An empirical
study of methods for detecting dataset shift[J]. Advances in Neural
Information Processing Systems, 2019, 32.

[26] Huang K, Yang B, Gao W. ElasticTrainer: Speeding Up On-Device
Training with Runtime Elastic Tensor Selection[C]//Proceedings
of the 21st Annual International Conference on Mobile Systems,
Applications and Services. 2023: 56-69.

[27] Jothimurugesan E, Hsieh K, Wang J, et al. Federated learning
under distributed concept drift[C]//International Conference on
Artificial Intelligence and Statistics. PMLR, 2023: 5834-5853.

[28] Zhang W, Zhou Z, Wang Y, et al. DM-PFL: Hitchhiking
Generic Federated Learning for Efficient Shift-Robust Personaliza-
tion[C]//Proceedings of the 29th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining. 2023: 3396-3408.

[29] Liu J, Jia J, Che T, et al. Fedasmu: Efficient asynchronous
federated learning with dynamic staleness-aware model up-
date[C]//Proceedings of the AAAI Conference on Artificial Intelli-
gence. 2024, 38(12): 13900-13908.

[30] You L, Liu S, Wang T, et al. AiFed: An adaptive and integrated
mechanism for asynchronous federated data mining[J]. IEEE Trans-
actions on Knowledge and Data Engineering, 2023.

[31] Zhang T, Gao L, Lee S, et al. TimelyFL: Heterogeneity-aware
Asynchronous Federated Learning with Adaptive Partial Train-
ing[C]//Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2023: 5064-5073.

[32] Wu W, He L, Lin W, et al. SAFA: A semi-asynchronous protocol
for fast federated learning with low overhead[J]. IEEE Transactions
on Computers, 2020, 70(5): 655-668.

[33] Ma Q, Xu Y, Xu H, et al. FedSA: A semi-asynchronous federated
learning mechanism in heterogeneous edge computing[J]. IEEE
Journal on Selected Areas in Communications, 2021, 39(12): 3654-
3672.

[34] Yan G, Wang H, Li J. Seizing critical learning periods in federated
learning[C]//Proceedings of the AAAI Conference on Artificial
Intelligence. 2022, 36(8): 8788-8796.

[35] Yan G, Wang H, Yuan X, et al. Criticalfl: A critical learning pe-
riods augmented client selection framework for efficient federated
learning[C]//Proceedings of the 29th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining. 2023: 2898-2907.

[36] Li T, Hu S, Beirami A, et al. Ditto: Fair and robust federated
learning through personalization[C]//International conference on
machine learning. PMLR, 2021: 6357-6368.

[37] Qin Z, Yang L, Wang Q, et al. Reliable and interpretable per-
sonalized federated learning[C]//Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2023:
20422-20431.

[38] Jothimurugesan E, Hsieh K, Wang J, et al. Federated learning
under distributed concept drift[C]//International Conference on
Artificial Intelligence and Statistics. PMLR, 2023: 5834-5853.

[39] Reisizadeh A, Farnia F, Pedarsani R, et al. Robust federated learn-
ing: The case of affine distribution shifts[J]. Advances in Neural
Information Processing Systems, 2020, 33: 21554-21565.

[40] Xie C, Koyejo S, Gupta I. Asynchronous federated optimization[J].
arXiv preprint arXiv:1903.03934, 2019.

[41] Park J, Han D J, Choi M, et al. Sageflow: Robust federated learning
against both stragglers and adversaries[J]. Advances in neural
information processing systems, 2021, 34: 840-851.

[42] Sun J, Li A, Duan L, et al. FedSEA: a semi-asynchronous
federated learning framework for extremely heterogeneous de-
vices[C]//Proceedings of the 20th ACM Conference on Embedded
Networked Sensor Systems. 2022: 106-119.



JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, JULY 2024 14

[43] Zhang L, Shen L, Ding L, et al. Fine-tuning global model
via data-free knowledge distillation for non-iid federated learn-
ing[C]//Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition. 2022: 10174-10183.

[44] Wang H, Li Y, Xu W, et al. Dafkd: Domain-aware federated knowl-
edge distillation[C]//Proceedings of the IEEE/CVF conference on
Computer Vision and Pattern Recognition. 2023: 20412-20421.

[45] Wang H, Yurochkin M, Sun Y, et al. Federated learning with
matched averaging[J]. arXiv preprint arXiv:2002.06440, 2020.

[46] Huang K, Yang B, Gao W. ElasticTrainer: Speeding Up On-Device
Training with Runtime Elastic Tensor Selection[C]//Proceedings
of the 21st Annual International Conference on Mobile Systems,
Applications and Services. 2023: 56-69.

[47] Li C, Zeng X, Zhang M, et al. PyramidFL: A fine-grained client se-
lection framework for efficient federated learning[C]//Proceedings
of the 28th Annual International Conference on Mobile Computing
And Networking. 2022: 158-171.

[48] Lai F, Zhu X, Madhyastha H V, et al. Oort: Efficient federated learn-
ing via guided participant selection[C]//15th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 21). 2021:
19-35.

[49] Wu W, He L, Lin W, et al. SAFA: A semi-asynchronous protocol
for fast federated learning with low overhead[J]. IEEE Transactions
on Computers, 2020, 70(5): 655-668.

[50] Sun J, Li A, Duan L, et al. FedSEA: a semi-asynchronous
federated learning framework for extremely heterogeneous de-
vices[C]//Proceedings of the 20th ACM Conference on Embedded
Networked Sensor Systems. 2022: 106-119.

[51] Horvath S, Laskaridis S, Almeida M, et al. Fjord: Fair and accu-
rate federated learning under heterogeneous targets with ordered
dropout[J]. Advances in Neural Information Processing Systems,
2021, 34: 12876-12889.

[52] Li D, Wang J. Fedmd: Heterogenous federated learning via model
distillation[J]. arXiv preprint arXiv:1910.03581, 2019.

[53] Ghosh A, Chung J, Yin D, et al. An efficient framework for
clustered federated learning[J]. Advances in Neural Information
Processing Systems, 2020, 33: 19586-19597.

[54] Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural
network[J]. arXiv preprint arXiv:1503.02531, 2015.

[55] Tan A Z, Yu H, Cui L, et al. Towards personalized federated
learning[J]. IEEE Transactions on Neural Networks and Learning
Systems, 2022.

[56] Ye M, Fang X, Du B, et al. Heterogeneous federated learning: State-
of-the-art and research challenges[J]. ACM Computing Surveys,
2023, 56(3): 1-44.

[57] Zhao Y, Li M, Lai L, et al. Federated learning with non-iid data[J].
arXiv preprint arXiv:1806.00582, 2018.

[58] Chen D, Wang D, Darrell T, et al. Contrastive test-time adapta-
tion[C]//Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2022: 295-305.

[59] Zhang M, Levine S, Finn C. Memo: Test time robustness via
adaptation and augmentation[J]. Advances in neural information
processing systems, 2022, 35: 38629-38642.

[60] Nguyen A T, Torr P, Lim S N. Fedsr: A simple and effective
domain generalization method for federated learning[J]. Advances
in Neural Information Processing Systems, 2022, 35: 38831-38843.

[61] Qu Z, Li X, Duan R, et al. Generalized federated learning via
sharpness aware minimization[C]//International conference on
machine learning. PMLR, 2022: 18250-18280.

[62] Sanh V, Debut L, Chaumond J, et al. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter[J]. arXiv preprint
arXiv:1910.01108, 2019.

[63] Howard A G, Zhu M, Chen B, et al. Mobilenets: Efficient con-
volutional neural networks for mobile vision applications[J]. arXiv
preprint arXiv:1704.04861, 2017.

[64] Flower Summit 2023 — Federated Learning Meets
the shop floor in Siemens PCB production facili-
ties. (2023). YouTube. Retrieved June 14, 2024, from
https://www.youtube.com/watch?v=uxIcS7n5vHg

[65] Jiang L, Lin T. Test-time robust personalization for federated
learning[J]. arXiv preprint arXiv:2205.10920, 2022.

[66] Kim H, Kwak Y, Jung M, et al. ProtoFL: Unsupervised Feder-
ated Learning via Prototypical Distillation[C]//Proceedings of the
IEEE/CVF International Conference on Computer Vision. 2023:
6470-6479.

[67] Li Y, Wang X, An L. Hierarchical clustering-based personalized
federated learning for robust and fair human activity recognition[J].

Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 2023, 7(1): 1-38.

[68] Canales L, Martı́nez-Barco P. Emotion detection from text: A
survey[C]//Proceedings of the workshop on natural language
processing in the 5th information systems research working days
(JISIC). 2014: 37-43.

[69] Krizhevsky A, Hinton G. Learning multiple layers of features from
tiny images[J]. 2009.

[70] Hsu T M H, Qi H, Brown M. Measuring the effects of non-
identical data distribution for federated visual classification[J].
arXiv preprint arXiv:1909.06335, 2019.

[71] Li Y, Su H, Shen X, et al. Dailydialog: A manually labelled multi-
turn dialogue dataset[J]. arXiv preprint arXiv:1710.03957, 2017.

[72] Sanh V, Debut L, Chaumond J, et al. DistilBERT, a distilled version
of BERT: smaller, faster, cheaper and lighter[J]. arXiv preprint
arXiv:1910.01108, 2019.

[73] Wang K, Mathews R, Kiddon C, et al. Federated evaluation of
on-device personalization[J]. arXiv preprint arXiv:1910.10252, 2019.

[74] Reiss T, Hoshen Y. Mean-shifted contrastive loss for anomaly
detection[C]//Proceedings of the AAAI Conference on Artificial
Intelligence. 2023, 37(2): 2155-2162.

[75] Reiss T, Cohen N, Bergman L, et al. Panda: Adapting pretrained
features for anomaly detection and segmentation[C]//Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. 2021: 2806-2814.

[76] Zeng X, Fang B, Shen H, et al. Distream: scaling live
video analytics with workload-adaptive distributed edge intelli-
gence[C]//Proceedings of the 18th Conference on Embedded Net-
worked Sensor Systems. 2020: 409-421.

[77] Hard A, Rao K, Mathews R, et al. Federated learning for mobile
keyboard prediction[J]. arXiv preprint arXiv:1811.03604, 2018.

[78] Niu C, Wu F, Tang S, et al. Billion-scale federated learn-
ing on mobile clients: A submodel design with tunable pri-
vacy[C]//Proceedings of the 26th Annual International Conference
on Mobile Computing and Networking. 2020: 1-14.

[79] Bakopoulou E, Tillman B, Markopoulou A. Fedpacket: A federated
learning approach to mobile packet classification[J]. IEEE Transac-
tions on Mobile Computing, 2021, 21(10): 3609-3628.

[80] Chen D, Wang D, Darrell T, et al. Contrastive test-time adapta-
tion[C]//Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2022: 295-305.

[81] Taori R, Dave A, Shankar V, et al. Measuring robustness to natural
distribution shifts in image classification[J]. Advances in Neural
Information Processing Systems, 2020, 33: 18583-18599.

[82] Hsu T M H, Qi H, Brown M. Measuring the effects of non-
identical data distribution for federated visual classification[J].
arXiv preprint arXiv:1909.06335, 2019.

[83] Gong B, Xing T, Liu Z, et al. Adaptive clustered federated learning
for heterogeneous data in edge computing[J]. Mobile Networks and
Applications, 2022, 27(4): 1520-1530.

[84] Gong B, Xing T, Liu Z, et al. Adaptive client clustering for
efficient federated learning over non-iid and imbalanced data[J].
IEEE Transactions on Big Data, 2022.

[85] Gong B, Xing T, Liu Z, et al. Towards Hierarchical Clustered
Federated Learning with Model Stability on Mobile Devices[J].
IEEE Transactions on Mobile Computing, 2023.

[86] Jiang S, Shuai X, Xing G. ArtFL: Exploiting Data Resolution in
Federated Learning for Dynamic Runtime Inference via Multi-Scale
Training[C]//2024 23rd ACM/IEEE International Conference on
Information Processing in Sensor Networks (IPSN). IEEE, 2024: 27-
38.

[87] Fang C, Liu S, Zhou Z, et al. AdaShadow: Responsive Test-
time Model Adaptation in Non-stationary Mobile Environments[J].
arXiv preprint arXiv:2410.08256, 2024.

[88] Liu S, Luo H, Li X C, et al. AdaKnife: Flexible DNN Offloading for
Inference Acceleration on Heterogeneous Mobile Devices[J]. IEEE
Transactions on Mobile Computing, 2024.

[89] Liu S, Li X, Zhou Z, et al. AdaEnlight: Energy-aware low-light
video stream enhancement on mobile devices[J]. Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technolo-
gies, 2023, 6(4): 1-26.

[90] Liu S, Guo B, Fang C, et al. Enabling resource-efficient aiot system
with cross-level optimization: A survey[J]. IEEE Communications
Surveys & Tutorials, 2023.

[91] Liu S, Guo B, Ma K, et al. AdaSpring: Context-adaptive and
runtime-evolutionary deep model compression for mobile applica-



JOURNAL OF LATEX CLASS FILES, VOL. 00, NO. 0, JULY 2024 15

tions[J]. Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies, 2021, 5(1): 1-22.

[92] Wang H, Guo B, Liu J, et al. Context-aware adaptive surgery:
A fast and effective framework for adaptative model partition[J].
Proceedings of the ACM on Interactive, Mobile, Wearable and
Ubiquitous Technologies, 2021, 5(3): 1-22.

[93] Chu H, Zheng X, Liu L, et al. nnPerf: Demystifying DNN Runtime
Inference Latency on Mobile Platforms[C]//Proceedings of the 21st
ACM Conference on Embedded Networked Sensor Systems. 2023:
125-137.

[94] Wang Z, Liu K, Hu J, et al. Attrleaks on the edge: Exploiting in-
formation leakage from privacy-preserving co-inference[J]. Chinese
Journal of Electronics, 2023, 32(1): 1-12.

[95] Zhang T, Fu Y, Zhang J, et al. Deep Guided Attention Network for
Joint Denoising and Demosaicing in Real Image[J]. Chinese Journal
of Electronics, 2024, 33(1): 303-312.

Xiaochen Li is a Master’s student at Northwest-
ern Polytechnical University, China. He received
B.E. from Northwest University in 2022. His re-
search interests include resource-efficient mo-
bile deep learning and mobile systems.

Sicong Liu received the PhD degree in school
of computer science and technology from Xi-
dian University in 2020. Now she is an asso-
ciate professor with school of computer science,
Northwestern Polytechnical University. Her re-
search interests include mobile computing and
resource-efficient mobile deep learning. She has
served as the TPC member of MobiSys 2021
and BigCom 2021.

Zimu Zhou is currently an assistant professor in
the Department of Data Science, City University
of Hong Kong. He obtained his Ph.D. from the
Hong Kong University of Science and Technol-
ogy in 2016 and B.E. from Tsinghua University
in 2011. His research interest lies broadly in
mobile and ubiquitous computing, with a focus
on AIoT. zimuzhou@cityu.edu.hk Zimu Zhou’s
research is supported by CityU APRC grant (No.
9610633).

Yuan Xu is a Master’s student at Northwestern
Polytechnical University, China. He received his
B.E. from Northwest University in 2023. His in-
terest is in Artificial Intelligence of Things (AIoT).

Bin Guo received the PhD degree in computer
science from Keio University, Japan, and then
was a postdoc researcher with Institut Telecom
SudParis, France. He is a professor with North-
western Polytechnical University, China. His re-
search interests include ubiquitous computing,
mobile crowd sensing, and HCI. He has served
as an associate editor of the IEEE Communi-
cations Magazine and the IEEE Transactions
on Human-Machine-Systems, the guest editor of
the ACM Transactions on Intelligent Systems.

Zhiwen Yu received the Ph.D. degree in com-
puter science from Northwestern Polytechnical
University, Xi’an, China, in 2005. He is currently
a Professor and the Dean of the School of
Computer Science, Northwestern Polytechnical
University, Xi’an, China. He was an Alexander
Von Humboldt Fellow with Mannheim University,
Germany, and a Research Fellow with Kyoto
University, Kyoto, Japan. His research interests
include ubiquitous computing, HCI, and mobile
sensing and computing.


	Introduction
	Problem Statement
	Preliminaries
	Problem Definition

	Mobile Shift-Robust PFL
	Key Idea: Class-Wise Clustering
	Solution Overview

	ClassTer with Synchronous Clients
	Local Contrastive Learning
	Inter-Cluster Scheduling
	Generalized Model Extraction

	Supporting Asynchronous Clients
	Critical Learning Period in FL
	Asynchronous Intra-Cluster Scheduling
	Asynchronous Inter-Cluster Scheduling

	EXPERIMENT
	Experiment Setup
	Performance Comparison
	Performance in Various Scenarios
	Performance under Different Data Shifts
	Performance over Different Non-IID Settings
	Performance on Different Mobile Devices
	Communication Overhead
	Scalability to Transformer Models

	Micro-benchmark
	Impact of Parallel Number
	Impact of Single-class Model Size
	Impact of Local Training Round
	Impact of knowledge distillation phase

	Case Study

	Related Work
	Conclusion
	References
	Biographies
	Xiaochen Li
	Sicong Liu
	Zimu Zhou
	Yuan Xu
	Bin Guo
	Zhiwen Yu


