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Abstract—Federated learning (FL) enables mobile devices to collabora-
tively train deep learning models while maintaining data privacy and min-
imizing communication overhead. However, traditional FL methods typ-
ically assume access to pre-collected datasets, an impractical assump-
tion for real-world mobile devices that continuously collect sensor data
streams without retaining them while operating, due to limited memory
constraints. Streaming Federated Learning (SFL) partially addresses
this limitation by supporting online learning and asynchronous model
aggregation directly from live data streams. Yet, a critical challenge in
mobile data streams is the temporal class imbalance, which may biase
the streaming FL process toward early-arriving data classes during the
critical learning period (CLP), the initial training phase when the model
exhibits the highest plasticity. To address this, we propose AdaCLP, a
training scheduler that tracks global model plasticity using a staleness-
decayed mechanism specifically designed for the dynamics of real-
world mobile environments. AdaCLP dynamically adjusts local training
hyperparameters in SFL to prolong the CLP, thereby preserving model
plasticity in the face of time-varying, imbalanced data distributions. Fur-
thermore, a CLP-aware dynamic voltage and frequency scaling (DVFS)
strategy is integrated to reduce the energy cost of prolonged training,
aligning with the tight energy budgets of mobile devices. Experimental
results demonstrate that AdaCLP can effectively handle either tempo-
rally imbalanced or periodic data, improving accuracy by up to 11%
while reducing energy consumption by 69.5% compared to state-of-the-
art methods, without modifying the standard FL training pipeline. These
demonstrate that AdaCLP is a practical and efficient solution for real-
world mobile FL deployment, enabling robust on-device adaptation to
evolving data streams.

Index Terms—Streaming Federated Learning, Critical Learning Period,
Temporal Class Imbalance, Mobile Devices

1 INTRODUCTION

Federated Learning (FL) [2] empowers mobile devices
(clients) to collaboratively train deep neural networks
(DNNSs) under coordination of a server while keeping their
data localized. This paradigm has been adopted in various
mobile computing applications such as activity recognition
[24], [25], [39], personalized recommendations [22], [30],
[48], intelligent transportation [28], [33]], [36], [49], etc., en-
hancing data privacy and reducing communication over-
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head. Traditionally, FL assumes that all devices have pre-
collected, static datasets ready for training. This assumption
introduces significant inefficiencies in real-world mobile
scenarios, as it requires a lengthy data accumulation phase
before training can begin, particularly impractical for mobile
devices with limited memory.

For example, consider federated updates of a human
activity recognition model in applications like the Google Fit
App [69] or Apple Health [70], which may need daily model
refreshes. A typical smartwatch can generate around 1.2 GB
of accelerometer data per day, yet mobile devices like the
Apple Watch Series 4 offer less than 32 GB of total storage,
shared across all apps and system processes [51]. Under
such constraints, storing several days’ worth of sensor data
for training is infeasible, exposing a fundamental conflict
between traditional FL assumptions and real-world mobile
deployment.

Streaming Federated Learning (SFL) [3] emerges as a
promising alternative by enabling online training directly
on continuous data streams, thereby eliminating the need
for extensive storage or long data accumulation periods.
Rather than waiting for sufficient data to be gathered, SFL
allows immediate local updates as data arrives, making it
particularly suited to mobile environments characterized
by limited resources and rapid data turnover. A further
advantage of SFL lies in its support for asynchronous model
aggregation [4], [62], where updates from mobile clients are
integrated by the server as they arrive. This is critical in
open-world mobile scenarios, where mobile clients” local
training times can vary significantly due to heterogeneity
in computing resources, network connectivity, and battery
levels. Without asynchronous aggregation, FL systems must
either wait for straggling devices, introducing latency—or
proceed prematurely, sacrificing accuracy, both of which
undermine deployment efficiency.

Despite these advantages, the practical deployment of
SFL in real-world mobile applications remains challenging.
Foremost among them is the issue of temporal heterogene-
ity in mobile data streams. Unlike traditional FL, where
large, pre-collected datasets are often curated to be class-
balanced, SFL operates on live sensor data, preserving only
a small window of recent samples for training. Within such
limited temporal windows, the data distribution is often
highly imbalanced. For example, a user fitness tracking
app may receive mostly sleep-related data during the night
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and walking or running data during the day (see Fig. [I).
Since SFL updates the model incrementally based on the
current window, the model may overfit to the most recent
dominant class, e.g., learning only to recognize sleep if
training happens overnight. This temporal class imbalance
undermines generalization and compromises the model’s
long-term effectiveness across diverse activity types.

Existing methods attempt to mitigate temporal imbal-
ance by rebalancing class distributions through historical data
retrieval [3]], [38], [52], [62]] or knowledge distillation [5], [13],
[19], [46], [65]], [66]. However, they require storing samples
of old classes or rely on additional public datasets, which
contradicts SFL’s goal of lightweight, memory-efficient mo-
bile learning. Other method leverage meta learning [37],
parameter specialization [17]], or calibration methods [67] to im-
prove adaptation to evolving distributions. Yet, they require
modifications to training losses or procedures, making them
difficult to integrate with existing FL frameworks.

Fundamentally, we observe that the temporal imbalance
issue in mobile SFL is fundamentally tied to the model’s
critical learning period (CLP) [12], during which the model
exhibits high plasticity and rapidly assimilates incoming
data. As training continues, this plasticity naturally declines,
making the model increasingly resistant to updates from
new classes that appear later in the stream. Consequently, if
early-arriving classes dominate during the CLP, the model
becomes biased toward them, impairing its ability to adapt
to later-emerging classes and thus compromising general-
ization across the full range of target activities.

Motivated by this observation, we tackle the temporal
class imbalance problem in SFL from an orthogonal per-
spective. Instead of enlarging data buffers or modofying
training losses, we present to extend the model’s critical
learning period (CLP), i.e., a phase marked by high plasticity
and sensitivity to diverse data. The key idea is inspired by
“stay hungry, stay foolish”. Also, the feasibility of extending
the CLP rests on two well-known facts: i) the CLP is both
measurable and tunable through training hyperparameters
like learning rate and batch size. ii) its duration is naturally
limited by the recurring patterns of classes in the data
stream. For example, extending the CLP to cover one full
day can capture diverse daily activities without indefinite
extension (see Fig. [I). However, extending the CLP in
mobile SFL is non-trivial.

e Challenge #1: CLP measurement under asynchronous
SFL. Asynchronous SFL [64] improves latency by aggre-
gating models as they arrive, but this desynchroniza-
tion complicates CLP estimation. Centralized or syn-
chronous SFL computes CLP via the Fisher Information
Matrix (FIM) [1], [12]. While asynchronous settings in-
volve local models at varying stages, naively averaging
their FIMs yields inaccurate estimates due to staleness.

o Challenge #2: Managing energy cost of prolonged CLP.
Extending the CLP requires tuning hyperparameters
that increase local computation and communication,
raising energy consumption, a major constraint for
mobile devices. Although prior work explores CLP for
improving learning [12], [32], [32], few consider com-
putation overhead [32], and none offer energy-efficient
CLP extension strategies for on-device SFL.

2

To this end, we introduce AdaCLP, a training scheduler
to enhance the efficiency of mobile SFL by dynamically
extending CLP. AdaCLP features a federated CLP regulator
that monitors the plasticity of the global model and extends
the CLPs of local training. It adopts a staleness-aware aggre-
gation of local Fisher Information Matrices (FIMs), ensuring
accurate plasticity measurement in asynchronous updates.
These measurements are then propagated to mobile clients,
who then adjust training hyperparameters, such as learning
rate, batch size, and dropout, to prolong local CLPs. To
manage the energy cost of extended CLPs, AdaCLP uses the
dynamic voltage frequency scaling (DVFS) method avail-
able in modern mobile devices [8], [9], [57], in a CLP-aware
manner. During the CLP, it lowers CPU/GPU frequencies
to to conserve energy and slow down wall-clock training,
effectively lengthening the CLP duration. After the CLP
ends, AdaCLP gradually restores frequencies to accelerate
convergence. Our main contributions are summarized as
follows.

« To our knowledge, this is the first to incorporate adap-
tive CLP control into SFL to address temporal class
imbalance arising from user-driven data streams and
limited mobile data buffer. It requires no modifications
to existing applications or learning procedures.

o We develop AdaCLP, a plasticity-aware learning sched-
uler to enhance the accuracy of SFL on mobile de-
vices. AdaCLP ensures accurate CLP estimation under
asynchronous updates and manages energy cost from
prolonged training, making it practical for deployment
on heterogeneous, battery-constrained mobile devices.

o Extensive experiments across diverse mobile tasks,
platforms, and scenarios show that AdaCLP consis-
tently outperforms classical and continual FL (both
synchronous and asynchronous), achieving up to 11%
accuracy gain and 69.5% energy reduction. Moreover,
AdaCLP can be combined with existing methods for
further improvements (see Sec. [5.4.4).

2 OVERVIEW

This section presents an overview of AdaCLP, an CLP-
adaptive training scheduler for streaming federated learn-
ing on mobile devices.

2.1 Motivation

As mentioned in Sec. [1} streaming federated learning (SFL)
[3] enables online, asynchronous model training on data
streams, thus reducing storage and latency for data collec-
tion on mobile devices. However, SFL often suffers from
degraded accuracy due to temporal class imbalance inherent
in user-driven data streams, limited mobile buffers, and the
streaming learning paradigm itself. Unlike traditional FL,
which relies on large, pre-collected, and often class-balanced
datasets, SFL trains on live sensor data while preserving
only a small, recent window of samples. Within these limited
temporal windows, class distributions tend to be highly
imbalanced. Moreover, early-arriving classes dominate the
initial training phase, causing the model to overfit to these
classes and hindering its ability to generalize to classes
appearing later.
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Fig. 1. lllustration of temporal class imbalance of data streams collected by different mobile users for human activity recognition.
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Fig. 2. Impact of sequential learning on accuracy when trained on
continuously varying single-class data (e.g., walking, hopping, phone
calls, waving, and typing) over a period T (T’ 1,50, 100, 200, 400)
across 120 mobile clients.

To illustrate this issue, we conduct an experiment with
120 mobile clients using the SFL framework, where the
server enforces sequential class learning, i.e., each client
trains on a single class for 17" rounds before transitioning
to the next class. We use five classes (e.g., walking, hopping,
phone calls, waving, and typing) from the HARBox dataset
and vary T across 1, 50, 100, 200, and 400 rounds. As
shown in Fig. 2| increasing T, i.e., prolonging the period
a class is exclusively trained on, leads to a clear decline
in the model’s overall accuracy across all classes. This
demonstrates how temporal class imbalance, amplified by
mobile SFL’s small buffer windows and streaming nature,
severely degrades performance and underscores the need
for training mechanisms to mitigate this imbalance.

2.2 Design Rationales

In mobile environments, the arrival patterns of data classes
are dynamic and inherently nonstatistical, they are influ-
enced by diverse user behaviors, objectives, and dynamic
environmental factors. This unpredictability leads to agnostic
temporal class imbalance, where certain classes may dom-
inate the data stream during specific periods, skewing the
model’s learning process. Our key insight is that this issue is
fundamentally tied to the critical learning period (CLP) in SFL,
a phase where the model exhibits high plasticity, meaning
it rapidly absorbs and adapts to incoming data. However,
as training progresses, the model’s plasticity diminishes,
making it less receptive to new class distributions appear-
ing later in the stream. This insight suggests an orthogonal
approach, i.e., instead of controlling the uncontrollable data

arrival patterns or extending the data buffer, we can prolong
the CLP in SFL, keeping the model in its high-plasticity
state for an extended duration. This allows the model to
incorporate a broader range of classes before stabilization,
mitigating the overfitting bias toward early-arriving classes.
This approach is particularly feasible for two reasons:

o We can identify whether a DNN is within its CLP by
measuring the Fisher information of its model parame-
ters [1], [12], and prolong the CLP by adjusting the
learning rate, batch size, and dropout rate, etc. during
training [12], [43]. This process allows for fine-tuned
control over the model’s capacity to absorb new classes.

e We can harness the statistical periodicity of class ap-
pearances in mobile applications to bound the maximum
CLP extension. Mobile apps, such as those for human ac-
tivity recognition, experience classes of data in a cyclical
or predictable pattern. By extending the CLP just a
few times beyond its typical duration, measured in
rounds, we can mitigate the problem of temporal class
imbalance, effectively handling situations where some
classes appear more frequently or at certain times. This
is crucial for ensuring that the model can generalize
well, even in the face of imbalanced data.

2.3 System Architecture

AdaCLP transforms the above rationales into a practical
FL system tailored for asynchronous, resource-limited, and
data-imbalanced mobile devices. It consists of two major
modules, as illustrated in Fig. 3, each designed to address
significant challenges:

o Federated Critical Learning Period Regulator (Sec.[3). To ad-
dress Challenge #1, this module accurately measures and
controls the CLP of the global model with asynchronous
mobile clients. Traditional CLP was only measured in
centralized training [11], and synchronous FL [1].
We adapt CLP measurements to asynchronous FL with
dedicated staleness control at the server. Furthermore, we
jointly configure key hyperparameters, such as learning
rate, batch size, and dropout rate, at each mobile client
to actively prolong the CLP, ensuring better plasticity
and generalization in the model.
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Fig. 3. Overview of AdaCLP for streaming federated learning with asynchronous mobile devices and temporal imbalanced mobile data.

o CLP-Aware Dynamic Voltage Frequency Scaling (Sec.[). To
resolve Challenge #2, this module minimizes the addi-
tional energy consumption at mobile clients (battery-
powereed mobile devices) due to extended CLP via
dynamic voltage frequency scaling (DVFS). We utilize
DVES in a CLP-aware manner, the built-in energy-
saving technique in modern mobile devices to adjust
the power consumption during and after CLP. By low-
ering processor frequencies during CLP, we conserve
energy, implicitly extending CLP in wall-clock time,
and by increasing frequencies after CLP, we acceler-
ate local training. We further enhance the FL system
by developing frequency scaling strategies for both
CPU+GPU and CPU-only mobile devices.

3 FEDERATED CRITICAL LEARNING PERIOD REG-
ULATOR

As mentioned above, the arrival patterns of mobile data
classes are imbalanced and inherently uncontrollable, pre-
senting a significant challenge in streaming federated learn-
ing. To better handle the dynamic nature of real-world data
streams, where the arrival of new classes may be sporadic
and imbalanced, we aim to ensure more robust learning
and improved performance over time. Rather than trying to
control these unpredictable patterns, we propose extending
the Critical Learning Period (CLP), keeping the model in a
high-plasticity state for a longer duration. This allows it to
adapt to late-arriving new classes without prematurely sta-
bilizing, thereby mitigating the negative effects of temporal
class imbalance in sequential data.

This section demonstrates how AdaCLP addresses this
challenge by measuring and extending the CLP within the
context of asynchronous and streaming federated learn-
ing. By adapting the CLP extension strategy to work in
asynchronous settings, we ensure that the model remains
sufficiently plastic to accommodate late-arriving classes,
regardless of their timing or frequency.

3.1 Staleness-Decayed CLP Probing

We first explain how to measure the critical learning period
(CLP) in streaming federated learning with asynchronous

mobile clients. Rather than a fixed interval, we treat the
CLP as a tunable metric of high plasticity, quantified by
the trace of the Fisher Information Matrix (FIM). This mea-
surement offers a principled and generalizable signal under
distributed, label-sparse, and temporally evolving updates.
And we adapt existing CLP measurement techniques to
asynchronous SFL settings characterized by heterogeneous
mobile devices and stale client updates.

3.1.1 CLP Premier

The critical learning period (CLP) [12] of a DNN is associ-
ated with the empirical observation that the DNN exhibits
high plasticity in the early training epochs and its plasticity
declines drastically over time. This non-trivial phenomenon
has been adopted to explain the problem of overfitting to
early-arriving classes in sequential learning. Notably, exclud-
ing key classes during the CLP can result in irreversible
accuracy degradation.

The CLP represents the duration (in epochs) when the
DNN maintains high plasticity, and can be measured by the
Fisher Information matrix (FIM) trace I’ of model weights
w in centralized training [11], [12].

)

where g(z, 7) is the gradient of the loss computed for a sam-
ple (z,y) via model p,, (y|z) parameterized by w, and || II?
is the squared norm. Studies show that F' increases rapidly
during initial training, and drops as training continues. A
predefined threshold is often utilized to mark the turning
point, i.e., the end of the CLP.

AN (12
F = Eonx goputuin) |19, )11

3.1.2 Limitations of Prior CLP Measurement Methods

In federated learning, the CLP can be calculated as the
weighted average of the Fisher Information Matrix traces
of local model weights [1]. However, it only applies to syn-
chronous clients because, in synchronous FL, the weighted
average of the Fisher information matrix trace of local
model weights inherently represents the training effect of
the previous global model across the selected clients” data.
In contrast, asynchronous FL introduces uncertainty in
the global model version received by each client, making
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Fig. 4. lllustration of asynchronous aggregation of models uploaded by
diverse fast and slow mobile devices in streaming federated learning.

it challenging to compute the Fisher information matrix
trace average based on a consistent global model. In real-
world asynchronous scenarios with heterogenous (e.g., fast
and slow) mobile devices, the local models are trained from
different versions of the global model. This discrepancy,
often referred to as staleness, arises because slower devices
upload updates based on outdated global models, while
faster devices contribute more frequently.

Naively aggregating the Fisher Information Matrix
traces derived from these asynchronous local models can
lead to inaccurate CLP measurements. Fig. [ illustrates an
example of the inconsistency in asynchronous aggregation.
In the first 6 rounds, the local models uploaded to the
server are from client [2, 3, 2, 1, 2, 3], but the corresponding
global model versions (circled in red) are [0, 0, 1, 0, 3,
2]. The inconsistency in the start point (i.e., global model
versions due to staleness) of local FIM traces causes errors
in estimating the CLP, as the FIM traces are influenced by
the specific model initialization and the data encountered
during training.

3.1.3 Measuring CLP with Asynchronous Mobile Clients

To address this unique challenge in real-world asynchronous
mobile scenarios, we propose a staleness-aware CLP measure-
ment method for SFL. Inspired by weight caching and decay
techniques commonly used for effective model aggregation
in asynchronous federated learning, our approach adapts
these methods to ensure accurate CLP assessment in scenar-
ios with asynchronous clients.

e We cache and track the versions of global models.
Specifically, each global model on the server is assigned
a version index T = 1,2,... which increments after
each new aggregation. Mobile clients receive the global
model with a version index, allowing them to trace back
to the corresponding global model when uploading
their local models for CLP calculation.

e Then, we compute the CLP on a sliding window basis,
and penalize the outdated local FIM traces via an
exponential decay. Let Ficceived(T) be the local FIM
trace received by the server in the T-th round, where
Freceived(T) is calculated by each client as Equ.. The
Fisher Information Matrix trace of the global model is
then estimated as:

Teceived(T - .])

L
nop g
@

where m is the window size, and I(7") represents the
original version index of the local model aggregated in

-I(T-/)]

5

the T-th round, which is trackable due to our caching
mechanism above. ) is a hyperparameter to penalize
the staleness of local FIM traces.

We illustrate the calculation process of the global FIM trace
in Fig. 5| As shown in Fig. [fa] we present the traditional
calculation method used in synchronous FL. In each global
round, the server collects the FIM trace uploaded by all
clients in the current round and performs an average ag-
gregation. Since all clients in the same round share the same
model index (having received the same global model), there
is no interference caused by staleness, allowing for precise
CLP measurement.

However, directly applying this method to asynchronous
settings is still non-trivial. As shown in Fig. simply
extending the computation window across multiple rounds
and averaging the FIM trace within the window results
in substantial errors due to staleness. For instance, when
computing with models from rounds [2, 3, 4], the model
received in round 4 may have a version index of 0, which
deviates significantly from the current round. Averaging
these traces would lead to bias, undermining the accuracy
of CLP measurement.

Our proposed asynchronous FIM measurement method
is shown in Fig. [5c|to address these challenges. Leveraging
the cached global model version indices, we apply decay
penalties proportional to the staleness (e.g., the difference
between the current round and the version index of the
client model). This mitigates the impact of staleness on
CLP measurement. For example, when computing the FIM
trace for rounds [2, 3, 4], the global version indices are
[0, 1, 0]. Correspondingly, we apply decay weights of
[e=2*,e72* 7] to each trace, effectively balancing the
staleness impact and enabling accurate global FIM trace
measurement in asynchronous settings.

Finally, we determine whether the global model is in the
CLP based on the following criterion.

if Fe(M~Fe(T-1)

CLP — True Fo(T-1) >0 3)
False otherwise

In essence, the global model is considered to be within
the CLP if the growth rate of the global Fisher Information
Matrix (FIM) trace exceeds a predefined threshold o. This
approach ensures that significant changes in the FIM trace
are appropriately recognized as indicators of high plasticity.

3.2 CLP Extension via Hyperparameter Refinement

As discussed in Sec. [I} extending the CLP during federated
learning (FL) enables the model to learn from a broader
range of classes while in its high-plasticity state. This ap-
proach is particularly effective for handling heterogeneous
and periodic data streams. Since the global model’s CLP
is derived from the aggregated weights of local models,
we propose extending the CLP by carefully controlling key
hyperparameters during local training. Specifically, we achieve
this by: i) reducing the learning rate 7, ii) decreasing the
batch size B, and iii) introducing dropout operations D. The
details of these strategies are elaborated below:

1

)t =y - Fg (1)~ )

n=no-(2
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1

B=1+By —
R T I (Fa(T)

©)

D=Dy-(1-0(B-(Fa(T) = Fe(T 1))  (©)

where 19, By, and Dy are the initial learning rate, batch
size, and dropout probability, and £ is an adjustable hyper-
parameter, o(+) is the sigmoid function.

In traditional training with non-streaming data, a larger
learning rate or smaller batch size typically enables the
model to explore a broader parameter space. In continual
training with streaming data, it is more effective to gradu-
ally reducing the learning rate and batch size [12], [43]. We
adopt the scheduling methods proposed in continual learn-
ing while dynamically adjusting these parameters based on
the current Fisher Information Matrix (FIM) measurement
F¢(T). Furthermore, dropout [53] enhances model plastic-
ity by randomly removing trained neurons. To extend the
CLP, we dynamically (controlled by «) adjust the dropout
rate based on changes in successive FIM measurements,
enabling the model to re-enter the CLP.

We provide theoretical insights into the design motiva-
tions of our three adaptive scheduling strategies. First, in
Equ.(@), we introduce a Fisher-aware decay function, where
the learning rate 7 adaptively responds to the Fisher infor-
mation trace F(T), which reflects the model’s confidence
and loss landscape curvature. As F(T) increases, indi-
cating reduced plasticity, a smaller learning rate mitigates
catastrophic forgetting while enabling gradual updates. The
power-law form ensures a smoother decay than exponential
schemes, effectively prolonging the Critical Learning Period
(CLP). Second, in Equ.@, we reduce the batch size as
F¢(T) increases, injecting controlled gradient noise during
stable phases to extend the CLP. This design leverages the
theoretical observation that smaller batches introduce bene-
ficial stochasticity, helping escape sharp minima and main-
tain generalization. Our batch-size scheduling is bounded,
smooth, and progressively enhances noise in later stages
while avoiding numerical instability. Finally, in Equ.(6), we

dynamically adjust the dropout rate based on changes in
Fe(T). As the model transitions from the CLP to a non-CLP
state, indicated by a gradual decrease in F(T)— Fg(T—1),
the increased dropout strength helps enhance the plasticity
of the model structure. Meanwhile, the dynamic dropout
mechanism periodically perturbs the network, allowing it to
re-enter a plastic state and avoid getting trapped in locally
stable states, thereby improving adaptability and continual
learning performance.

We conduct a preliminary validation under asyn-
chronous federated learning, and Fig. [f demonstrates the
impact of extending the CLP through hyperparameter tun-
ing. The figure presents the asynchronous CLP curve under
three different conditions: without adjustment, adjusting
learning rate and batch size, and adjusting dropout rate.
Initially, without hyperparameter adjustment, the CLP inter-
val spans rounds [0, 2662]. After applying dynamic learning
rate and batch size adjustments, the CLP curve, instead
of rapidly declining after reaching the first peak, gradu-
ally rises, extending the CLP. Furthermore, with dynamic
dropout adjustment, the initial CLP interval is extended
from [0, 2662] to [0, 2993], and the model re-enters the CLP
for a period after round 5000.

In practical mobile scenarios, we divide the entire FL
training process into multiple segments and perform the
hyperparameter refinement above for each segment. This is
clever because, instead of exploiting the natural periodicity
of incoming classes in mobile data streams, which would
be impractical, we attempt to extend the CLP. By focusing
on manageable segments, we ensure that the model adapts
efficiently to the continuously changing data distribution
and strike a balance between maintaining the model’s plas-
ticity and ensuring practical feasibility, allowing the system
to handle the dynamic nature of real-world data streams
effectively. To achieve this, we empirically define a maxi-
mum round R.,q based on the degree of temporal class
imbalance, and partition the training process into segments.
At the start of each segment, we reset the three hyperpa-
rameters 19, By, and Dy. Within each segment R.,q, we
dynamically adjust the learning rate hyperparameters 1 and
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Fig. 6. Performance comparison of adjusting learning rate, batch size,
and dropout rates on the critical learning period (CLP).

batch size B as defined in Equ.(@#) and Equ.(f) to extend the
CLP, effectively prolonging the CLP. If the model is detected
to have left the CLP, we further dynamically increase the
dropout rate as Equ.(6)) to help the model to re-enter the CLP
for high-plasticity state. After R.,q4, we stop tracking the
CLP and hyperparameter adjustments, resuming standard
asynchronous federated learning to accelerate convergence.
This design balances the need for precise CLP management
during critical periods with the efficiency required for real-
world ubiquitous applications.

4 CLP-AwARE DYNAMIC VOLTAGE FREQUENCY
SCALING

Extending the CLP improves model adaptability to imbal-
anced data streams but also increases energy consump-
tion, a critical concern for battery-powered mobile devices.
To address this trade-off, AdaCLP integrates CLP-aware
scheduling with system-level energy optimization via Dy-
namic Voltage and Frequency Scaling (DVEFS). Specifically,
it introduces a lightweight, FIM-guided DVFS controller
that lowers CPU/GPU frequencies during high-plasticity
CLP phases to reduce energy usage while preserving model
receptiveness to diverse classes. After the CLP ends, fre-
quencies are gradually increased to accelerate convergence
during the stable phase. This hybrid coordination between
learning dynamics and hardware scheduling allows Ada-
CLP to retain the benefits of extended CLP while signifi-
cantly reducing energy overhead. To our knowledge, this is
the first FL framework that aligns training plasticity with
adaptive DVFS in asynchronous mobile SFL settings. We
detail the design below.

4.1 Device-specific Frequency Scaling Principles

Dynamic Voltage and Frequency Scaling (DVFS) [8], [9], [57]
is a key technique in mobile computing, that enables mobile
processors to adjust their operating frequency dynamically
in response to workload demands. Building upon DVES,
we propose a novel frequency scaling strategy specifically
designed for the extended Critical Learning Period (CLP)
in federated learning, leveraging the unique characteristics
of mobile devices. Our strategy integrates low processor
frequencies within the CLP and high frequencies after the
CLP, with the following principles:
o Extend CLP Measured in Wall-Clock Time. The hyper-
parameter refinement strategies introduced in Sec.
extend the CLP duration measured in training rounds.

7

By dynamically reducing the processor operating fre-
quency during the CLP, each training round consumes
more wall-clock time. This extends the CLP in real-time,
allowing the model to observe a wider diversity of data
classes under the same class arrival rate in data streams.
Such an approach mitigates temporal class imbalance, a
common challenge in asynchronous federated learning
on mobile devices. Additionally, the reduced frequency
compensates for the increased energy consumption as-
sociated with the prolonged CLP in training rounds,
aligning well with the dynamic energy constraints of
mobile devices.

o Accelerate Post-CLP Training Measured in Wall-Clock Time.
After the CLP, we implement a strategy to gradually
increase the processor operating frequency, accelerating
the local training process while balancing energy ef-
ficiency. This approach ensures that training remains
effective during the post-CLP phase, where the model
transitions to standard federated learning updates. Un-
like naive high-frequency settings, which risk unnec-
essary energy consumption, our gradual scaling strat-
egy aligns with findings from empirical studies, such
as [44], which highlight that optimal model training
performance often occurs below maximum power lev-
els. By carefully tuning the operating frequency based
on workload demands, we achieve faster convergence
in wall-clock time without imposing excessive en-
ergy costs on resource-constrained mobile devices. This
adaptive frequency adjustment not only accelerates
post-CLP training but also enhances the practicality
of deploying federated learning on heterogeneous mo-
bile platforms, where energy efficiency and real-time
responsiveness are critical.

4.2 CLP-aware Frequency Scaling Strategies

Building on the principles outlined in Sec. we design op-
erating frequency adjustment strategies tailored for mobile
devices. These strategies aim to optimize energy efficiency
and training performance during FL. Fig. [/| illustrates the
workflow of CLP-aware frequency scaling strategies. We
will elaborate on our proposed approach in the following
subsections.

4.2.1 Scaling Strategy for CPU-Only Mobile Devices

Assume N increasing CPU operating frequencies {f,},
wheren = 0,1,..., N — 1. We configure the CPU frequency
in two phases.

e Within CLP: During the critical learning period, we
configure the CPU to operate at the lowest available
frequency, fo. This minimizes energy consumption and
extends the CLP measured in wall-clock time, allowing
the model to process more diverse data classes and
address temporal class imbalance effectively.

o After CLP: Once the model exits the CLP, we grad-
ually increase the CPU frequency to accelerate local
training. Let the CPU frequency in the (n — 1)-th
training round after the CLP be f,_;. In the n-th
round, we incrementally raise the frequency to the next
available level, f,, provided the reduction in training
time At = tag(fn—1) — tavg(fn) exceeds a predefined



JOURNAL OF IATEX CLASS FILES, VOL. 00, NO. 0, MARCH 2025

During CLP

After CLP

Training

Training
CPU frequency Training

[ Training | Training SRS

Idle time Idle time !

Ar>S At>5

Training

Training
GPU frequency

[Training | Training 1l

Idle time Idle time

At>5

Training

E

Training
\

Traini
’m‘g The optimal training
frequency for the CPU

Training
\ \ \

|

The optimal training
frequency for the GPU

At<S

Fig. 7. lllustration of CLP-aware dynamic voltage frequency scaling scheme in mobile devices.

threshold. Here, t,.s(f) represents the average local
model training time at frequency f, which is measured
by dividing the training time by the number of training
data over the recent training iterations. If the increase in
frequency no longer yields significant acceleration (i.e.,
At falls below the threshold), we maintain the current
frequency to avoid unnecessary energy cost.

The proposed CLP-aware adaptive scaling strategy balances
energy efficiency and computational performance, ensuring
that battery-powered mobile devices can sustain prolonged
CLP in federated learning processes without compromising
responsiveness or battery life.

4.2.2 Scaling Strategy for CPU+GPU Mobile Devices

For mobile devices equipped with both CPUs and GPUs, we
focus on dynamically scaling the GPU frequency. We follow
the principles outlined in Sec. replacing CPU scaling
with GPU scaling, to optimize energy efficiency and fully
exploit the GPU’s computational power for deep neural
network training.

Discussion. As introduced above, AdaCLP dynamically
adjusts processor frequency based on the model’s position
within the CLP. During the CLP, it lowers the frequency to
extend wall-clock time, allowing the model to encounter a
broader range of data classes, enhancing early-stage class
diversity at the cost of fewer local training rounds. This
introduces a trade-off between class diversity and training
depth, i.e., early exposure to diverse classes improves gen-
eralization, while later rounds refine accuracy. As we will
show Sec. 5.4.6)by prioritizing class diversity during the
plastic phase and emphasizing convergence after CLP, Ada-
CLP’s dynamic frequency scheduling achieves a balanced
optimization of model performance and energy efficiency.

5 EXPERIMENT

5.1 Experiment Setup

Implementation. We implement AdaCLP using Python
3.11.7 and PyTorch 2.2.2 for the server and mobile clients,
respectively. The server is equipped with two RTX 3080
GPUs and 29GB RAM. We use 20 mobile and embedded
devices across five types: Jetson Nano (Cj), Jetson NX
Xavier (C3), Jetson Nano Orin (C3), Jetson AGX Xavier
(Cy), and Raspberry Pi 4 (C5). To simulate heterogeneous
computing environments, we configure 120 clients with
varying capabilities, distributed as 20% C5, 20% Ca, 20%
(3, and 40% C5 by default.

Datasets and Models. We conduct experiments on
three datasets for Human Activity Recognition (HAR):
CAPTURE-24 [58], HARBox [39], HHAR [47]. Tab. [1] sum-
marizes the dataset configurations. HARBox tracks the daily
activities of 121 users (ages 17-55) across 5 activity cate-
gories. HHAR involves 9 users performing 6 activities on 12
devices. CAPTURE-24 provides full-day data from 150 users
across 11 activity categories. We use two representative
models on them: an LSTM (2.1MB) with 900 input features,
128 hidden units, and 1 layer for HarBox, HHAR, and
CAPTURE-24 datasets and a Transformer (243MB) with 10
layers and 8 attention heads on the CAPTURE-24.

Temporal Class Imbalance Configuration. We simulate the
imbalanced and periodic arrival of data classes in human
activity recognition applications in two settings: extreme and
non-extreme.

o Extreme setting: Each client trains only one class in each
round. Specifically, the server sequentially selects one
class C; from all classes and enforces all clients to train
the local model on data of class C; for a period of T; be-
fore switching to the next class. If a client does not have
data of class Cj, it randomly picks another class from
its local dataset. The duration of T; follows a periodic
scheme, i.e., Gaussian distribution T; ~ N (u, o), where
we set ;4 = 400 and ¢ = 50 to introduce randomness in
the switching time.

o Non-extreme setting: Each client trains multiple classes
in each round. Specifically, the server selects a subset
of classes {C;} for all clients to train in each period
T; following the Dirichlet distribution. We vary the
parameter S in the Dirichlet distribution to 0.1, 0.2, 0.3,
0.4, and 0.5, to simulate five levels of temporal class
imbalance. Other settings are the same as the extreme
case.

Performance metrics. We evaluate performance using six
key metrics: accuracy, training time, latency, idle time, and
energy consumption. Accuracy is calculated as the average
accuracy over a period, covering all observed classes. La-
tency is measured as the average time per training round,
indicating system responsiveness. Training time is deter-
mined by multiplying the number of training rounds by
the average duration of each round. Idle time is obtained
by subtracting the training time from the total runtime. For
energy consumption, we simulate the total energy usage for
a single client: Energy consumption is estimated based on the
energy consumed during both the training and idle phases.
Total energy consumption is computed as the sum of energy
used in both training and idle periods.
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TABLE 1
Overview of datasets.

Learn-

Dataset Users | Number of classes Number of Data Records
HarBox 121 | 5(Walking, Hopping, Phone calls, Waving and Typing) 32,935
HHAR 9 6(Biking, Sitting, Standing, Walking, Stair Up and Stair 69,941
down)
CAPTURE-24 150 11(Sleep, Sitstand+lowactivity, Sitstand+activity, Walk- 934,762
ing, Vehicle, Sitting, Walking-+activity, Bicycling, Stand-
ing, Sports, Gym)

[J FedAvg [ FedCurv BN FedCurv+CLP I Ours local models and uses it to reduce weight divergence
<50 7l FedAsyn A CriicalFL 4 AFedCurv during local training. We use synchronous aggregation
< here.
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< 30 Method gation, ensuring that the global model learns enough
ethods category knowledge within the CLP.
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Fig. 8. Comparison of (a) accuracy vs. (b) energy cost between AdaCLP
and other baselines in extreme setups over 9 hours.

Baselines. We adopt six representative federated learning
(FL) algorithms with mobile devices as performance com-
parison baselines, reflecting diverse dimensions of FL sce-
narios. Standard FL methods, including synchronous (Fe-
dAvg) and asynchronous (FedAsyn), serve as benchmarks
for accuracy and convergence in traditional settings. Feder-
ated Continual Learning addresses evolving data streams,
pushing the boundaries of continuous adaptation. CLP-
based FL emphasizes high accuracy by prioritizing key
updates during synchronous training. Hybrid Approaches
explore combined constraints, we introduce Synchronous
Federated Continual Learning + CLP optimizing tempo-
ral performance, while Asynchronous Federated Continual
Learning enhances scalability in dynamic environments.
They are configured as follows:

o Classical FL: The server waits for all clients in each
round, setting it as the accuracy baseline because it has
the most comprehensive knowledge from all clients. It
also sets a high communication cost threshold due to
its infrequent communication frequency.

— FedAvg [2] The server calculates the average of all
clients” weights and broadcasts the updated global
model back to all clients.

— FedAsync [64]: It aggregates the model and dis-
tributes updates to clients in an asynchronous man-
ner.

o Federated Continual Learning (FedCurv): FedCurv
[67] is inspired by Elastic Weight Consolidation (EWC)
[56], which calculates the Fisher information matrix of

cal asynchronous federated framework, our approach
integrates the Federated CLP Regulator with CLP-
based dynamic voltage and frequency scaling (DVFS)

5.2 Performance Comparison

We compare AdaCLP with six baselines, i.e., FedAvg [2],
FedAsync [64], FedCurv [67], CriticalFL [32], AFedCurv,
FedCurv+CLP on three datasets, i.e., HarBox, HHAR, and
CAPTURE-24. We evaluate their overall performance in
terms of accuracy and energy cost in both extreme and non-
extreme settings.

5.2.1 Performance Comparison in Extreme Setups

We first conduct experiments in the extreme setting as
Sec. using a subset of classes C; consisting of a single
class, with T'" = 400 as the period before switching to the
next class. Results are measured over 9-hour periods using
the Harbox dataset. Fig.[8|presents the results. First, AdaCLP
shows the best balance between model accuracy and energy
cost compared to all the baselines. Second, as illustrated
in Fig. AdaCLP achieves a 4%-11% improvement in
accuracy over the best FedCurv+CLP approaches. This im-
provement is primarily due to the CLP extension, which
fine-tunes hyperparameters to mitigate overfitting during
training with highly heterogeneous data streams. Third, as
shown in Fig. AdaCLP reduces energy consumption by
up to 12%, compared to FedAsyn and AFedCurv, the best
AFedCurv, after 9 hours of training. This is because AdaCLP
employs lower CPU frequencies during CLP, extending the
duration of the process and minimizing energy usage.

To further test robustness, we introduce aperiodic data
conditions, simulating irregular class occurrences, such as
rare or event-driven behaviors—by assigning each class C' a
distinct appearance probability across time. This breaks the
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Fig. 9. Comparison of accuracy vs. energy cost between AdaCLP and other baselines in non-extreme setups.

strong temporal periodicity assumed in many FL settings.
Tab. 2] shows the results. AdaCLP remains more robust
than all baselines under such irregular conditions, adapting
learning dynamics via Fisher information-guided CLP con-
trol. While performance degrades as aperiodicity increases,
AdaCLP maintains a significant advantage without relying
on fixed timing assumptions or explicit class frequency
heuristics.

Summary. AdaCLP outperforms six baselines in both
accuracy and energy efficiency under extreme class imbal-
ance and heterogeneity. Its ability to adapt to sporadic and
non-periodic class arrivals further demonstrates its prac-
ticality for real-world mobile SFL applications in energy-
constrained and temporally diverse environments.

5.2.2 Performance Comparison in Non-Extreme Setups

We adopt a non-extreme setting as in Sec. where the
subset of classes C; follows a Dirichlet distribution ~ Dir(3)
with 8 = 0.2, and 7" = 400 is the period before switching
to the next class. We measure the accuracy and energy
consumption over 9-hour and 15-hour periods.

Fig. E] shows the experimental results. First, AdaCLP
exhibits the best overall performance in terms of accuracy
and energy cost compared to all the baselines. While syn-
chronous methods consume less energy, they result in lower
accuracy within the same timeframe. In contrast, AdaCLP
achieves the highest accuracy with the lowest energy cost by
learning a sufficiently generalized base model with minimal
energy within the CLP, while training quickly outside the
CLP to reach high accuracy. Second, AdaCLP shows the
highest accuracy across all datasets, outperforming all base-
line methods. For example, as shown in Fig. AdaCLP
achieves 1.57%-14.1% higher accuracy than the baselines.
This is due to AdaCLP’s ability to extend the Critical Learn-
ing Period (CLP), mitigating the global model generaliza-
tion limitations caused by class imbalance, and allowing
the model to learn more categories within the CLP. Third,
AdaCLP exhibits the lowest energy consumption among
all asynchronous baseline methods across three tasks. As
shown in Fig. 0b] AdaCLP reduces energy consumption
by 7% compared to FedAsyn and AFedCurv. However,
AdaCLP’s energy consumption is higher than that of syn-
chronous methods in the same timeframe. This is due to
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Fig. 11. Performance compared to centralized learning across different
scenarios.

the waiting time caused by device heterogeneity, leading
to fewer total training rounds in synchronous methods
compared to asynchronous ones.

Summary. AdaCLP strikes an optimal balance between
accuracy and energy efficiency, leveraging the extended
Critical Learning Period (CLP), adaptive hyperparameter
tuning, and CLP-aware DVFS. In non-extreme scenarios, it
achieves 14.11% higher accuracy and 12% lower energy cost
compared to asynchronous baselines. This highlights Ada-
CLP’s effectiveness in overcoming real-world class imbalance
and system heterogeneity, making it a robust solution for fed-
erated learning in human activity recognition applications.

5.2.3 Performance Comparison to Centralized Learning

We compare AdaCLP and centralized learning under ex-
treme and non-extreme conditions (Sec. 5.I). Centralized
baselines include: i) Centralized-Extreme aggregates data
from all 120 clients with a class switch every T'=40 time
units; ii) Centralized-Non-extreme uses the similar aggrega-
tion with moderately skewed data (8=0.3); iii) Centralized-
IID: pooled IID data from all clients without any temporal
or distributional skew. All centralized experiments use the
same model architecture as AdaCLP but without communi-
cation or personalization constraints. As shown in Fig.
centralized achieves 87% in IID, drops to 72% in non-
extreme, and 31% in extreme. AdaCLP achieves 60% (12%
lower) in non-extreme, and 48% (17% higher) in extreme.
Summary. These results highlight AdaCLP’s robustness
to real-world dynamics such as class imbalance, temporal
drift, and distributed heterogeneity, showing it can even
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TABLE 2
Accuracy under extreme non-periodic settings.

Extreme Setting Accuracy (%)
Uniform Class Probability 48.50%
One Class at 1% Probability 45.04%
Two Classes at 1% Probability 38.9%
Four Classes at 1% Probability 32.04%

outperform centralized training under highly skewed con-
ditions.

5.3 Performance in Various Scenarios

5.3.1 Performance with Various Periodic Scheme of Data
Streams

We test AdaCLP and six baselines in four periodic data stream
scenarios under realistic, non-extreme settings (Sec. ,
where class subsets C; ~ Dir(0.2) and period durations
T € 100,400, 800 reflect different data dynamics. We mea-
sure accuracy and energy over 9-hour and 15-hour dura-
tions to capture temporal and environmental variations in
mobile scenarios.

As shown in Fig. first, AdaCLP achieves consis-
tently higher accuracy, with the advantage increasing as
T grows—outperforming baselines by up to 12.87% at
T = 800 thanks to its adaptive CLP extension mitigating
temporal imbalance. Second, AdaCLP reduces energy con-
sumption more effectively as 1" increases, saving up to 7.84%
at 7' = 800 via CLP-based DVFS optimizing idle training
time.

Summary. AdaCLP effectively addresses long-period
temporal class bias with the following advantages: i) Adap-
tive CLP extension enhances model plasticity, achieving
the highest accuracy across varying periods. ii) CLP-based
DVES optimizes idle time for training, significantly reducing
energy cost without sacrificing accuracy. These make Ada-
CLP ideal for energy-constrained mobile HAR FL systems
with highly periodic data streams.
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TABLE 3
Settings of asynchronous (i.e., fast and slow) devices

Slow /Fast device Slow /Fast device
Index . . .
quantity proportion | performance ratio
D1 1:1 1:5
D2 1:1 1:10
D3 1:1 1:15
D4 1:1 1:20

5.3.2 Performance with Various Heterogeneity of Data
Stream

We evaluate AdaCLP and six baselines under four heterogene-
ity levels in both non-extreme and extreme settings (Sec. p.1),
with class subsets C; ~ Dir(8) (8 = 0.3,0.1,0.01) and
periodic duration T = 400. To reflect real-world variations,
we measure accuracy and energy over 9-hour and 15-hour
periods.

As shown in Fig.[12] first, AdaCLP achieves the highest
accuracy except at § = 0.3, with its advantage increasing
as (3 decreases—outperforming FedAvg by up to 3.76% at
B = 0.01. Second, AdaCLP delivers more significant energy
savings as heterogeneity increases, reaching up to 10.37%
at § = 0.01, thanks to CLP-based DVFS continuously
optimizing energy over long training periods.

Summary. AdaCLP addresses long-period temporal
class bias with two main advantages: i) CLP extension
maximizes global model plasticity, achieving superior ac-
curacy across varying time periods; ii) CLP-based DVFS
efficiently leverages idle time for training, reducing energy
consumption without compromising accuracy.

5.3.3 Performance over Heterogeneous Mobile Devices.

We evaluate AdaCLP, FedAvg, and FedAsyn on heteroge-
neous devices under an extreme setting (Sec. p.1I), where C;
contains a single class and 7" = 400. Clients are evenly
split into fast and slow devices, with training time ratios
of 1:5, 1:10, 1:15, and 1:20 (Tab. EI), simulating real-world
GPU/non-GPU heterogeneity. We measure the time to reach
accuracy thresholds and the highest accuracy within fixed
training time. We measure the time taken by AdaCLP and
the baselines to achieve various accuracy thresholds within
a 9-hour training window.
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As shown in Fig. (13| first, AdaCLP achieves target accu-
racy fastest, reducing time by up to 69.5% under D1-D3 and
outperforming Fed Asyn by 23.87% even under extreme D4.
Second, AdaCLP consistently reaches higher accuracy within
15 hours, achieving 45% accuracy in 263427 minutes under
D1-D3, which neither baseline achieves.

Summary. AdaCLP effectively addresses the challenges
posed by device heterogeneity. By leveraging a staleness-
decayed CLP measurement, it accurately evaluates and ex-
tends the CLP, mitigating the impact of temporal class bias
on accuracy.

5.3.4 Energy Cost on CPU-only and CPU+GPU Devices

We evaluate AdaCLP against Fed Avg and Fed Asyn on CPU-
only (Raspberry Pi 4) and CPU+GPU (Jetson Xavier NX)
devices under an extreme setting (Sec. [5.T), with a single-
class C; and period 7' = 400. Energy cost to reach target
accuracy within 15 hours is measured.

As shown in Fig.[14} first, on CPU-only devices, AdaCLP
achieves the target accuracy fastest and with the lowest
energy, cutting energy by 44.82% vs. FedAvg and 57.09%
vs. FedAsyn (Fig. [14b). Second, similar results hold for
CPU+GPU, with energy savings of 44.71% and 80.12%, re-
spectively (Fig.[14d), thanks to CLP-based DVFS exploiting
idle time for significant savings.

5.4 Micro-benchmark and Ablation Study
5.4.1 Impact of Batch Size

We test AdaCLP with batch sizes of 10, 30, and 50 under an
extreme setting (Sec. [5.I), with a single-class C; and period
T = 400, to assess the impact of initial batch size. As shown
in Fig. accuracy improves from 45.27% to 47.98% as
batch size increases, since larger batches enable learning
more data within the same time. We recommend a batch
size of about 50 for optimal performance.

5.4.2 Impact of Learning Rate

We evaluate AdaCLP with learning rates of 0.01, 0.05, and
0.001 under an extreme setting (Sec. [5.1), with single-class
C; and period T = 400. As shown in Fig. accuracy
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improves from 41.74% to 48.31% as the learning rate in-
creases, since larger rates allow faster adaptation via CLP.
We recommend a learning rate of 0.01 for best performance.

5.4.3 Maximum round R.,,q of CLP Extension

We evaluate AdaCLP with maximum rounds R,,,4 of 10000,
20000, and 30000 under an extreme setting (Sec. , using
single-class C; and period T' = 400, to assess the impact of
CLP extension. As shown in Fig. increasing Reyq raises
accuracy from 39.49% to 41.73%, highlighting the benefit of
longer CLP extension. We recommend setting R4 to 30000
for optimal performance.

5.4.4 Effectiveness of federated CLP regulator

We evaluated the Federated CLP Regulator’s orthogonal
feasibility by integrating it with AFedCurv under an extreme
setting (Sec. [5.1), using single-class C; and period 7' = 400.
As shown in Fig. applying the CLP Regulator improved
AFedCurv’s accuracy by 2.29%, confirming its positive, non-
intrusive effect when combined with other asynchronous
methods.

5.4.5 Computation Overhead

We measure the per-client training time with/without FIM
on Harbox, using Transformer and LSTM across 120 clients.
Fig. 17 shows FIM adds <40% overhead, which drops from
40% (LSTM) to 32% (Transformer) as model size increases,
since training time grows faster than FIM cost.
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TABLE 4
Trade-off of Class Diversity vs. Local Updates in CLP-aware DVFS

Methods Accuracy(%)
FedAsync 38.78
AdaCLP (Fixed at lowest frequency) | 42.43
AdaCLP (CLP-aware DVES) 43.93

5.4.6
DVFS

Class Diversity vs. Local Updates in CLP-aware

AdaCLP uses DVFS to lower CPU/GPU frequency during
CLP, enhancing early class diversity but reducing rounds.
We compare three cases: (i) FedAsync, (ii) AdaCLP with
fixed low frequency, (iii) AdaCLP with dynamic frequency.
As Table 6 shows, FedAsync performs worst, and dy-
namic AdaCLP improves over fixed by 1.5% due to bet-
ter late-stage convergence. This demonstrates that adap-
tive scheduling effectively balances early diversity and late
training depth, improving final performance.

5.4.7 Sensitivity analysis of A

We evaluate the staleness decay parameter A in our CLP-
based scheme (Eq. under an extreme scenario with
A € {1,0.5,0.1,0.05,0.01,0.001}. As shown in Fig. 18, A
in [0.01, 0.1] achieves high accuracy and robustness, while
extreme values (near 1 or 0.001) cause instability and perfor-
mance drop. We set A = 0.01 by default.
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Fig. 16. We employed 20 users, each using different mobile devices to simulate an asynchronous Federated Learning (FL) setup, with users
subjected to different non-extreme and extremely personalized data category shifts over two days.
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5.5 Case Study

We conducted a two-day study, as shown on the left side
of Fig. using a free smartphone application (Sensor
Logger app) to collect acceleration data from 20 participants.
These participants included 5 engineering undergraduates,
5 sports students, 5 engineering lecturers, and 5 restaurant
staff. Following the data collection approach of the HarBox
dataset [39], participants carried their smartphones during
daily activities to capture five types of behaviors: Walking,
Hopping, Phone Calls, Waving, and Typing. As on the right
side of Fig. we present examples of several actions
performed by three participants. Each device stored nine-
axis inertial measurement unit (IMU) data over two days.
Additionally, 5 volunteers performed standardized actions
from the training dataset 10 times to create a benchmark
test set.

To evaluate AdaCLP ’s performance under varying set-
tings, participants engaged in free activities on the first day
to simulate non-extreme temporal category biases. On the
second day, they followed guided tasks at specific times to
simulate extreme temporal category biases. Fig. [16]illustrates

Fig. 19. lllustration of user data collection and test.
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Fig. 20. Average accuracy across 20 mobile devices.

the temporal shifts over the two days. Fig. 20| shows that,
compared to FedAsyn, AdaCLP enabled mobile client mod-
els to better adapt to temporal category biases. Meanwhile,
the global model maintained stable accuracy (i.e., 6.22%
higher than FedAsyn) despite extreme data biases, demon-
strating AdaCLP ’s effectiveness in handling streaming data
scenarios with temporal class imbalance bias.

6 RELATED WORK

FL in Mobile Applications. Federated learning (FL) has
been widely adopted in mobile applications, such as activity
recognition [24], [25], [39], personalized recommendations
[22], [26], [27], [29], and intelligent transportation systems
(28], [33], [36], among others. Deploying FL on mobile de-
vices (e.g., smartphones, wearables) enhances data privacy
and minimizes communication overhead during the train-
ing of DL models. Generic FL frameworks typically aim to
train a single global model for all clients, with Fed Avg [2] be-
ing the standard method. To address data heterogeneity across
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diverse clients, various enhancements have been proposed,
e.g., regularization [15], [16]], [55] and hyperparameter con-
trol [35], [41] to mitigate gradient divergence caused by
non-IID data at the client side. And server-side approaches
include weight matching [68] and knowledge distillation
[6], 17], [61] to improve model aggregation. Despite these
advancements, most FL solutions assume pre-collected data
on mobile clients, overlooking real-world scenarios where
data arrives in streams [21]], [54]. And they often exhibit
diverse periodic patterns and heterogeneity, further complicated
by asynchronous model updates across devices with varying
computational capacities [29], [64].

Memory-efficient Streaming Federated Learning with Live
Data Streams. Streaming Federated Learning (SFL) reduces
memory requirements and training latency via immediate
local training and asynchronous aggregation. However, such
immediacy often causes overfitting to temporal data distri-
butions. Existing works mitigate this through historical data
retrieval [3]], [38]], [52], [62] or weight reqularization [5], [18]],
[54]. The former alleviates temporal overfitting by combin-
ing past and current data but increases storage cost, while
the latter controls local update divergence to improve gen-
eralization without storage overhead [54]. AdaCLP achieves
similar benefits without explicit regularization, offering a
lightweight solution for constrained devices. Recent studies
also explore streaming and mobile FL from complementary
angles. Hu et al. [71] employ a Lyapunov drift-plus-penalty
framework for non-periodic data streams, jointly optimizing
scheduling and energy efficiency. Chen et al. [72] leverage
Hierarchical Federated Learning (HFL) to show that mobil-
ity enhances convergence and accuracy by diversifying data
and accelerating fusion. In contrast, AdaCLP focuses on
periodic user data with strong temporal skew (e.g., time-of-
day behavior patterns), formally introduces temporal class
imbalance, and employs a plasticity-guided, energy-efficient
learning mechanism to mitigate early overfitting and im-
prove generalization under heterogeneous mobile settings.

Critical Learning Period-aware Learning. The Critical
Learning Period (CLP) refers to specific phases in the train-
ing of DNNSs that are highly susceptible to overfitting, par-
ticularly in the presence of non-IID data [12], [42]. During
the early training stages, DNNs are especially vulnerable
to overfitting, which can result in irrecoverable accuracy
degradation [1f], [32]. Originally introduced for centralized
training, the concept of CLP has recently been extended to
federated learning (FL). For instance, Yan et al. [1]] utilize
the Fisher Information Matrix traces of the global model to
quantify CLP in FL. Additionally, incorporating more clients
during this critical phase has been shown to mitigate non-
IID effects and reduce overfitting [32]. However, existing
methods focus on quantifying and exploiting CLP within
synchronous FL settings, leaving asynchronous scenarios,
such as Streaming Federated Learning (SFL), unaddressed.
In contrast, AdaCLP intends to adapt and leverage the
CLP specifically for asynchronous real-world mobile environ-
ments, offering a novel perspective tailored to the challenges
of SFL.

DVFS on Mobile Devices. Dynamic Voltage and Frequency
Scaling (DVES) is a widely adopted technique that dynam-
ically adjusts processor voltage and frequency on mobile
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devices to reduce energy consumption and manage thermal
effects [10], [34], [50], [60], [63]. For DNN applications,
existing DVFS strategies primarily target at achieving lower
latency while avoiding device overheating by determin-
ing the thermal throttling boundaries of mobile devices
through deep reinforcement learning combined with trans-
fer learning [34], [40], and minimizing energy consumption
with minimal performance degradation via adaptive sensor
power gating units [31], [45], [59]. In the context of streaming
FL tasks, which operate intermittently, our focus in AdaCLP
is on optimizing energy efficiency rather than mitigating
thermal issues, aligning with the sporadic nature of these
workloads.

7 CONCLUSION

In this paper, we address the temporal class imbalance
problem in streaming federated learning (SFL) via AdaCLP,
a novel plasticity-aware training scheduler. By extending
the critical learning period (CLP) of deep neural networks,
AdaCLP enhances model adaptability and accuracy without
relying on additional data storage or modifications to stan-
dard training processes. The proposed federated CLP regu-
lator ensures accurate plasticity measurements even in asyn-
chronous settings through a staleness-decayed averaging
mechanism. Additionally, the integration of dynamic volt-
age frequency scaling (DVFS) mitigates the energy overhead
of prolonged CLPs, making AdaCLP a practical solution
for resource-constrained mobile devices. Empirical results
on 20 mobile devices demonstrate that AdaCLP achieves
notable improvements in accuracy and energy efficiency. It
establishes AdaCLP as a robust framework for SFL, paving
the way for collaborative and continual learning on mobile
devices. In the future, we plan to integrate AdaCLP with
more advanced asynchronous FL algorithms and extend it
for training personalized models.
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