Towards Accurate Training Time Estimation for

On-Device Heterogeneous Federated Learning

Kun Wang, Zimu Zhou, Member, IEEE, and Zhenjiang Li, Member, IEEE

Abstract—Accurate estimation of on-device model training time is increasingly required for emerging learning paradigms on mobile
edge devices, such as heterogeneous federated learning (HFL). HFL usually customizes the model architecture according to the
different capabilities of mobile edge devices to ensure efficient use of local data from all devices for training. However, due to
oversimplification of training time modeling, existing methods rely on a single coefficient to represent computational heterogeneity,
resulting in sub-optimal HFL efficiency. We find that existing methods ignore the important impact of runtime optimization of deep
learning frameworks, which we call development-chain diversity. Specifically, layers of a model may have different algorithm
implementations, and deep learning frameworks often have different strategies for selecting the algorithm they believe is the best
based on a range of runtime factors, resulting in different training latencies and invalid predictions from existing methods. In this paper,
in addition to considering this diversity to ensure synchronized completion time of model training, we also study how to select the best
algorithm each time to reduce the latency of the per-round training, thereby further improving the overall efficiency of federated training.
To this end, we propose LATTE, which consists of a novel data-driven selector that identifies the best algorithm at runtime based on
relative runtime factors. By further integrating it into our training latency model, LATTE provides accurate training time estimation,
significantly outperforming traditional heuristic approaches. To further improve the robustness of LATTE, we proposed dynamic device
adapter to cope with the dynamic joining and exiting of the clients. We develop LATTE as middleware, compatible with different deep

learning frameworks. Extensive results show significantly improved training convergence speed and model accuracy compared to

state-of-the-art methods.

Index Terms—On-Device Learning, Heterogeneous Federated Learning, Training Time Estimation

1 INTRODUCTION

S mobile edge devices such as NVIDIA Jetson

series becoming increasingly powerful and IoT
applications [45], [30], [18], [78], [77] becoming more
advanced, these devices not only can efficiently perform
model inference tasks [70], [67], [69], [19], [75], but also can
perform certain model training tasks [26]. However, since
the computing capability of mobile edge devices is far
less than that of personal computers or servers, on-device
training at the mobile edge is not positioned to replace
traditional model training. It mainly focuses on updating
the model according to the requirements of many emerging
learning paradigms, such as federated learning (FL) [24],
[38], [40], [54], [55], [63], [66], [62].

Training time is a key factor in determining the efficiency
of federated learning on mobile edge devices as different
devices may have vastly different computing and com-
munication capabilities, known as system heterogeneity [81].
Specifically, multiple edge devices (as clients) collaborate to
train a model under the coordination of the server [52]. In
each round of training, the server assigns the current model
to the devices. Each device then trains the model using its
own data and returns updates to the server, which are ag-
gregated into the next round of models. Primarily due to the
heterogeneity in computing capability [56], devices usually

o K. Wang and Z. Li are with the Department of Computer Sci-
ence, City University of Hong Kong, Hong Kong, China. E-mail:
kwang69@cityu.edu.hk, zhenjiang.li@cityu.edu.hk.

e Z. Zhou is with the Department of Data Science, City University of Hong
Kong, Hong Kong, China. E-mail: zimuzhou@cityu.edu.hk.

cannot complete training of the same model at the same
time, and the server must wait for updates of the slowest
device in each round [52], leading to significant overall
training latency measured in wall-clock time. This latency
can seriously harm the availability of federated learning sys-
tems, especially in time-sensitive scenarios such as personal
assistants, drone fleets, and robot swarms [23], [51], [73].
When the number of federated devices is large (e.g., hun-
dreds or thousands), recent work has found that training
efficiency can be improved through client selection [37], [40],
[43], [47] or asynchronous FL [74], [63], mitigating the im-
pact of weak devices on training. However, a more general
solution, known as heterogeneous federated learning (HFL),
is to allocate appropriate sub-models according to the com-
puting capability of the device [14], [25], [59], [24], [54], [48].
The HFL literature shows that having each device complete
each round of model training simultaneously as much as
possible can lead to better performance [76], [42]. This not
only utilizes the training data on each participating device,
but also significantly improves the efficiency of the overall
federated training. It is particularly useful in most mobile
edge applications in practice with medium-sized device net-
works, where each device may contain a unique set of data.
Since training time is critical for federated learning,
the training time for each device needs to be accurately
estimated to allocate appropriate sub-models. To this
end, existing work typically predicts the latency by
performing linear regression on the computational load
of the model [25], [24], such as the number of floating
point operations (FLOPs). They characterize computational
heterogeneity across devices by computing capability

related coefficients (e.g., float point per second (FLOPS)) de-
termined offline. Some recent studies have further proposed
finer-grained layer-wise modeling [14], [48], acknowledging
that different layer types may exhibit different execution
times on the same platform but follow the same estimation
principle. In this paper, we find that existing approaches
ignore an important impact of different deep learning
frameworks (e.g., PyTorch and TensorFlow) exhibit distinct
behaviors in invoking acceleration libraries (e.g., cuDNN)
during runtime optimization [80], [49], [44], which we refer
to as development-chain diversity. It can cause significant
deviations in training latency for the same model, even on
the same device. This can make the characterization based
on hardware parameters learned in advance inaccurate.

By delving into the runtime behaviors of deep learning
frameworks, we discover that the core reason is the diversity
of layer algorithms. For example, the convolutional layers,
essential in many neural networks, can be implemented
through various algorithms, such as direct convolution,
matrix multiplication, and fast Fourier transform. However,
different deep learning frameworks have different strategies
to select what they think is the best layer algorithm at run-
time based on hardware specifications, layer configuration,
and available runtime resources. This selection needs to be
made for both forward and backward propagation of layers
before training, so the choice of layer algorithm can signifi-
cantly affect the overall training latency. As shown in § 2.3,
training the same model can have a 30.1% time difference
and be 2.68 x slower than the optimal for this reason.

If we deliberately measure the latency differences caused
by the diversity of algorithm choices at each layer and take
this into account when assigning sub-models, different de-
vices can achieve synchronized completion times of model
training. However, in addition to uncovering this key ques-
tion, we aim to go one step further: Can every device also
choose the best algorithm each time? If possible, training can
not only be completed synchronously across devices, but the
latency in each round can also be minimized (so that we can
allocate the largest sub-model), which will further improve
the overall training efficiency and performance [25].!

To this end, we propose LATTE, a Layer Algorithm-
aware Training Time Estimator for HFL, which adapts to
the diversity of layer algorithms in the development chain to
achieve accurate training time estimation. A key challenge
in designing LATTE is that layer algorithm selection is
affected by certain runtime parameters, such as resource
availability and model configuration, which results in the in-
ability to enumerate the consequences of choices in advance.

To solve this problem, LATTE provides a lightweight
and accurate layer algorithm selector. A main novelty in its
design is the generation of training data and ground truth
for the selector. Specifically, we design a acquisition tool that
can derive a set of training data and leverage the functional
modules from existing deep learning frameworks to gener-
ate corresponding ground truth for training the selector in
a device-independent manner so that the generation can be
executed just once offline before deployment.

1. For ease of description, we do not discuss communication latency
here, which is a relatively independent problem from training latency,
but we do incorporate communication latency into our sub-model
allocation design and experimental evaluations.

During selector development, we identified a severe im-
balance in training data label distribution and proposed two
key improvements: first, through statistical analysis of rare
label configurations, we shifted key configuration features
toward smaller values and regenerated training datasets,
effectively alleviating label distribution skew; second, we
introduced focal loss function to dynamically adjust sample
importance, ensuring the selector maintains high prediction
accuracy even for rare layer algorithms.

Trained on comprehensive, high-quality data, the
selector can accurately select the best algorithm to
match the model configurations and runtime resources
of the development chain. Specifically, our enhanced
selector achieves 97% prediction accuracy, significantly
outperforming traditional heuristic-based approaches that
only achieve 73% accuracy. By further integrating the
selected algorithm into our fine-grained training latency
modeling, LATTE can accurately estimate the latency for
each single-pass (forward and backward) propagation.

With accurate training latency estimation, LATTE facil-
itates configuring sub-models across devices to complete
local training simultaneously. Due to our local training time
estimation capability, we can move from traditional server-
driven assignment to client-side sub-model allocation, which
enhances adaptability to resource dynamics within and
across training rounds. In addition, we also considered
practical federated learning scenarios with dynamic device
join and exit. By collecting device hardware information and
historical resource information, we proposed two key de-
signs, reliability aggregation and fast-{ generator, success-
fully maintaining high performance and fast convergence in
environments with dynamic device participation.

We develop LATTE as a middleware compatible to
DL frameworks (e.g., PyTorch and TensorFlow). It is
lightweight, requires only a one-time offline building, and
integrates transparently with mainstream FL frameworks
like Flower [16], making it a readily deployable tool for
building more robust and efficient real-world HFL systems.
We evaluate LATTE on popular deep learning tasks by
considering both IID and non-IID data distributions,
including image classification on CIFAR-10/100 and
Openlmage datasets, speech recognition using the Google
Speech dataset, and human activity recognition using the
HARBox dataset. We compare LATTE with seven classical
or state-of-the-art methods, such as FedRolex [14] and
TailorFL [24]. Extensive results show that LATTE not only
significantly speeds up convergence across tasks by 1.22x
to 3.18x, but also improves the accuracy of the central
model by 2.49% to 9.79%. Moreover, LATTE exhibits unique
orthogonal capabilities to personalized FL methods such as
Hermes [38], demonstrating versatility in non-IID scenarios.
Our main contributions are summarized below.

o We reveal the problem of development-chain diver-
sity in federated learning systems and identify diverse
layer algorithms as the key to explain the variability
in training time. Based on this, accurate estimation of
model training time can be achieved without complex
operator or kernel-level modeling.

o We devise LATTE, with a novel layer algorithm selector
and training time estimator, to accurately estimate the
single-pass (forward /backward) propagation latency of

a model given its architecture, expected hardware and
runtime memory. We further showcase its usability in a
client-side sub-model selection for HFL.

o We conduct extensive experiments to evaluate LATTE
in five typical HFL scenarios. The results show signifi-
cant improvements in performance compared to seven
classical or state-of-the-art methods.

2 BACKGROUND & MOTIVATION

We first review how system heterogeneity affects FL (§ 2.1)
and then propose the definition of development chain di-
versity (§ 2.2), and finally point out the limitation of con-
ventional training time modeling in FL (§ 2.3).

2.1 Primer of HFL

System Heterogeneity. Real-world FL deployments faces
system heterogeneity [56]. One main reason is the diverse
computing capabilities of participating devices. Such varia-
tions can lead to notable discrepancies in training latency of
the same model, which affects the overall efficiency of FL.
In a typical FL process, such as the widely-used Fed Avg
[52], training occurs in rounds. Each device first downloads
the current model from the server, trains the model on its
local data for multiple epochs, and then uploads the up-
dated model back to the server. Then the server aggregates
these updates as the model for the next round. However, not
all devices can complete the same amount of computation in
each round. Slower devices can significantly delay the entire
training process, leading to long wall-clock training time.

HFL Strategies. HFL is proposed to handle the system
heterogeneity, and an effective approach studied in recent
work [14], [25], [59], [24], [54], [48] is to tailor the model
architecture to fit the capabilities of each device, i.e., larger
models are allocated to devices with higher capabilities,
while smaller models are designated for less powerful de-
vices. The goal is to synchronize the training completion
time across all devices. These model-level operations lead
to a general solution to cope with the system heterogeneity
in FL systems, while we find that a key issue in their
training time modeling that still limits the effectiveness of
federation.?

2.2 Development Chain Diversity

In practical production environment that including different
devices, there existing variations and inconsistencies during
the runtime execution of machine learning models due
to differences in the development tools, frameworks, and
how they invoke the acceleration libraries, and we define
this phenomenon as development chain diversity. Specifi-
cally, this concept acknowledges that even when the same
neural network model is deployed on identical hardware,
its performance can vary significantly rely on how devel-
opment chain optimizing runtime processes. This runtime
optimization often influenced by hardware specifications,
layer configurations, and resource availability. In federated

2. When the number of edge devices is quite large in FL systems, e.g.,
hundreds or even thousands, some other orthogonal methods are also
studied in the literature such as client selection and asychronous/semi-
asychronous FL, which are detailed in related work (§5).

Comp. Load C (FLOPs)

o 100G
°.” FLOPs
———————— w

T-- @ 2.06

256 o-e-e, I FLOPS
Flops cee” I |
- |
0.56 i ;

FLOPS "

Comp. Capability r(d) (FLOPS)

Fig. 1: Allocating a sub-model with computational load
proportional to the capability r4 of device d.

learning scenarios, this diversity becomes critical because
edge devices may rely on different development chain, lead-
ing to invalidation of the existing training time modeling.

2.3 Existing Training Time Modeling in FL

Most HFL studies [14], [25], [59], [24], [54], [48] focus on the
allocation and aggregation of heterogeneous models for ef-
fective training. They match the models with devices by as-
suming a linear mapping between the network architecture
and its training latency, expecting that the computational
loads of the allocated models are within the devices’ capaci-
ties and that all devices finish their training simultaneously.
However, this method can lead to inconsistent training time
estimates due to the development-chain diversity, as explained
below.

Conventional Modeling. Assume local training uses stan-
dard mini-batch gradient descent. The training time 7},4n
of a model architecture M on a device d can be estimated
as:

Tirain = E - (b ’ TL) T, 1)

where E is the number of epochs, b is the batch size, n
is the number of batches, and 7' represents the latency of
single-pass backpropagation (forward and backward) dur-
ing training. Although E, b, and n are deterministic, latency
T can vary from device to device. Specifically, the latency
of a single pass of backpropagation is typically assumed to
be proportional to the computational load C); of the model
M,ie.,
T= CiM, @)
Td
where r4 is a computing capability related coefficient, in-
dicating the average processing speed of device d. For a
fixed model architecture M, existing work assumes that C's
remains constant, suggesting that measuring the r(d) suffices
to accurately estimate the training latency [24], [25], which
can be performed offline as a one-time effort, given known
hardware specifications. We can then allocate sub-models to
devices based on Equation (2), as shown in Figure 1.
Specifically, to ensure roughly the same training latency
T(M,) = T(My), the server allocates sub-models M; and
My proportional to the capability of device d; and d», as
Tdy

follows:
o _ ©)
C Mo Td2 ’

because the computational load C}y, in Equation (3) of a
model architecture M; is constant given its topology. 3

3. It should be noticed that this equation and following equation (4)
represent ideal allocation principle.

g (a) Different Frameworks aE> 9 (b) Different Memory Budgets
Ez E<

= 490 F 2100

= i = o O

£9 £E

c c

£2 80 £2 80

e o

Fa = 3

g5 60 To 60

N2 Nc

T© O ® 0

Ed 40 [[EpyTorch EMTensorFlow|| £ B 40| [E3c8 RAM EE6GB RAM
o o

= MobileNet-V2 ResNet50 Z3 MobileNet-V2 ResNet50

Fig. 2: Wall-clock training times of (a) using different frame-
works on same models, and (b) using same framework on
the same model but with different memory resources. Since
absolute training times differ for each setting, we normalize
them for clarity.

Limitations. However, this modeling of training time is
oversimplified because computing capability is not the
only source of system heterogeneity. Diversity in the
development-chain of neural networks also matters. To re-
veal this, we conduct preliminary experiments on NVIDIA
Jetson devices.

e We first run the same neural network on the same
device, but using different deep learning frameworks.
Figure 2(a) shows that across two popular models,
the wall-clock training time of a single round with
TensorFlow is only from 72.3% to 76.0% compared to
using PyTorch.

 Even if developed using the same deep learning frame-
work, models show different training times on the
same hardware due to varied runtime resources (e.g.,
memory). Figure 2(b) shows that the wall-clock training
time of single epoch round with 6GB memory budget
is only from 69.9% to 82.0% compared to a 3GB budget.

Implications. These experiments imply that training time is
also related to the runtime optimizations of the deep learning
framework. Furthermore, it links to runtime resources such
as memory. These observations challenge the conventional
training latency estimation and requires a new, more fine-
grained modeling beyond hardware specifications to achieve
more accurate training time estimation.

3 SYSTEM DESIGN

Our design is inspired by fine-grained analysis of the under-
lying runtime optimization strategy of current deep learn-
ing frameworks (§ 3.1), which reveals several key insights.
Guided by the key insights, this section presents LATTE’s
design to solve the problems above. Figure 3 illustrates the
functional modules of LATTE and here we list the detail
functionality of each module.

o Layer algorithm selector (§ 3.2). Based on the key
design insight to be described, this module first ranks
candidate algorithms by considering the layer config-
uration, runtime memory, and hardware specifications.
The selector then selects the fastest algorithm that sat-
isfies the resource constraint as the output.

e Training time estimator (§ 3.3). This module further
estimates the training time by explicitly incorporating
the algorithm selection. We integrate the selected layer
algorithm into our latency modeling and extend it to
the entire model training. To achieve this estimation, we

LATTE

Training Time
Estimator (§3.3)

Sub-Model
Selector (§3.4)

Layer Algorithm
Predictor (§3.2)

Predictor Training Time Selecting
Construction - Modeling - Sub-Model
3 3 +
Predict Optimal Training Time Adaptation to
Algorithm Ranking Estimation Dynamic Resource
Reliability Agg! Fast 8 G Device Adapter (§3.5)

Fig. 3: Architecture of the LATTE design.

also propose effective ways to profile the relationship
between computation and latency.

e Sub-model allocator (§ 3.4). This module finally em-
ploys the accurate training time estimation to allo-
cate suitable sub-models for devices. It allows client-
side sub-model adaptation to dynamic resource with a
mechanism to ensure that all model parameters can be
equally trained despite the varying sub-model architec-
tures across different training rounds.

e Dynamic Device Adapter (§ 3.5). This module en-
hances LATTE’s robustness to the dynamic joining and
exiting of clients. It introduces a reliability aggregation
mechanism to mitigate the impact of unstable clients
and a fast-3 generator to accelerate the onboarding
of new clients, maintaining high performance and fast
convergence in dynamic environments.

3.1 Key Observation and Insight
3.1.1 Diversity of Layer Algorithms

After we analyze the source code of current deep learning
frameworks (e.g., TensorFlow and PyTorch), we found that
the same layer can have different implementations at run-
time. For example, NVIDIA’s cuDNN library include multi-
ple algorithms (see Table 1) to implement forward convolu-
tion (cudnnConvolutionFwdFilterAlgo_t), e.g., direct
method (CUDNN_CONVOLUTION_FWD_ALGO_DIRECT), ma-
trix product (CUDNN_CONVOLUTION_FWD_ALGO_GEMM), to
name a few.

Different algorithms are also available for backward fil-
ter convolution (cudnnConvolutionBwdFilterAlgo_t),
and also exist in (cudnnConvolutionBwdDataAlgo_t),
which refers to backward data convolution, etc.* Devices
that primarily use CPUs (e.g., Raspberry Pi) also have di-
verse layer algorithms provided by their vendors [7], [1].

The same layer implemented by different algorithms
results in different trade-offs. Some algorithms are general,
which are compatible with most types of layer configu-
rations, but their latency is always moderate, and their
memory consumption is not small (e.g., DIRECT in Table 1).
In contrast, some algorithms are tailored for certain layer
configurations, with optimized performance (e.g., WINO-
GRAD in Table 1 is optimized for small kernels), but suffer

4. We use convolutions as an example to explain our insights and
methods because they are among the most of optimized operations
by deep learning frameworks and GPU vendors, which makes their
latency estimation more challenging than less optimized operations.

Layer Algorithms Generality ~ Memory Efficiency
GEMM T+ 4

FFT + ++
FFT_TILING + +4++
IMPLICIT_GEMM +4++ ++
IMPLICIT_PRECOMP_GEMM ++ ++
DIRECT ++ +
WINOGRAD + +++
WINOGRAD_NONFUSED ++ ++

TABLE 1: Candidate forward convolution layer algorithms
and their characteristics. More '+’ signs indicate better val-
ues for this characteristic category.

substantial latency when applied to relatively incompatible
configurations. Due to this diversity, all frameworks require
algorithm selection before model training. Although strate-
gies in different frameworks can vary significantly, they
generally follow two steps [12], [10]:

1) Ranking: rank candidate algorithms for a given layer
by the predicted latency based on their layer estimation
strategies, and

e 2) Selecting: estimate the corresponding memory foot-
print and select the top-ranked (fastest) algorithm that
satisfies the predefined memory constraint.

Thus, the layer algorithm selection could affect the training
time estimation in two aspects. First, given enough memory
for the same model, layer algorithm selection strategies
in different DL frameworks may produce different results,
primarily because these strategies obtain rankings of the
candidate algorithms in different ways (e.g., heuristic
strategy in PyTorch may not return the best ranking).
Second, given limited memory budget, the same strategy
may also return different algorithm ranking results even
in the same device, since the selection must adhere to the
memory limit. These two reasons lead to the obervations of
Figure 2(a) and (b) in §2.

3.1.2 Reformulation of Training Time Modeling

The diversity of layer algorithms invalidates the conven-
tional practice for sub-model allocation, i.e., Equation (3),
because different layer algorithms also lead to different
latencies. Therefore, given a model architecture M, its com-
putational load is a function of the layer algorithms {algo}
rather than a constant, ie., Cpy = Cir(algo). Hence, to
ensure T'(M;) = T(M>) on two devices d; and ds, the sub-
models M; and M, should satisfy:

CM1 (algol) _ Tdy
Cu,(algos) Ty’

(4)

where Cyy, (algor) and Cyy, (algoz) are the actual workloads
for M, and M, given layer algorithms algo; and algos. That
is, the sub-model architecture allocated to the device should
be calibrated by layer algorithm, as illustrated in Figure 4. Oth-
erwise, training latency on devices with the same computing
capabilities may differ significantly.

If we profile all layer algorithms in advance and con-
sider their latency difference at each layer when allocating
sub-models, devices can still complete per-round training
simultaneously even when using different deep learning
frameworks. However, beyond revealing this key design

Comp. Load C
algol

algo?2

>

Comp. Capability r(d)

Fig. 4: The relationship between the model’s computational
load and the device’s computing capability is essentially
described by a series of lines due to the diversity of layer
algorithms. Accurate training time estimation requires se-
lecting the correct line first.

insight, we aim to go one step further in this paper: Can we
pick the best (fastest) algorithm every time? If possible, we
can use this strategy in different frameworks to ensure that
each round of federated training can not only be completed
synchronously across devices, but also the latency in each
round can be minimized (to allocate the largest sub-model),
which will further improve overall training efficiency and
performance.

3.1.3 Design Challenge

However, it is difficult to achieve such best selection strat-
egy for HFL systems. To understand this, we first analyze
how layer algorithm selection is performed in existing
deep learning frameworks, which usually form two cate-
gories: exhaustive testing (e.g., LaunchConv2DOp in Ten-
sorFlow) and black-box heuristics (e.g., cudnnGetConvolu
tionForwardAlgorithm in PyTorch).

The former, which exhaustively tests all layer algorithms
on the target device and selects the fastest implementation,
can achieve the best selection, but is very costly. Since
sub-models could vary for each device and each training
round in HFL systems, such high testing overhead may
overwhelm the training latency. Figure 5 shows that even
when all device memory is used, the latency of exhaustive
testing (e.g., TensorFlow) in first round training still accounts
for 18.8-38.4% of the overall training latency. The latter
uses heuristic rules to predict the best algorithm without
actual on-device testing, which is fast but inaccurate, e.g., its
prediction accuracy is only around 73% of the exhaustive
testing (see § 4.4.3), which can easily lead to inappropriate
sub-model allocation.

Therefore, the main problem that challenges the design
of new layer algorithm selection strategy is how to avoid
the limitations of existing framework strategies and ensure
the accuracy and efficiency of layer algorithm selection.

3.2 Layer Algorithm Selector

The above challenge motivates a new design of the layer
algorithm selection without runtime assessments, which can
override and replace the corresponding module in commer-
cial deep learning frameworks to achieve a lightweight and
accurate selection.

(a) MobileNet-V2 (b) ResNet-50
[TensorFlow [Pytorch [TensorFlow [Pytorch

Training Time (min)
Training Time (min)

Rest rounds

First round

Rest rounds

First round

Fig. 5: In the first round of training, exhaustive testing strat-
egy (e.g., in TensorFlow) lead to much higher latencies than
heuristic-based strategy (e.g., in Pytorch) on two models (a)
MobileNet and (b) ResNet.

3.2.1

Since all candidate algorithms have been given in the op-
timization library of each layer [12], [10], our main idea
to achieve an accurate and practical design is to treat
this problem as a classification problem and propose an
efficient classifier for selection. We test different types of
ML classifier like decision trees, SVMs and XGBoost but
found their low accuracy as heuristic rules. Fortunately, we
found the MLPs can meet these requirements effectively, like
lightweight and high accuracy. The testing results are show
in Figure 6. Below, we introduce our MLP selector design.

Idea and Design

100 94.1%

Accuracy
©
[3,]

~
o

D Tree SVM XGBoost MLP

Fig. 6: Performance of different ML classifiers.

1) Architecture of the selector. For lightweight selection,
we design a simple multi-layer perceptron (MLP) classifier.
It takes a layer configuration as input and outputs a score
for each layer algorithm, indicating its latency ranking. We
reuse the inputs of existing heuristic strategy’s API (e.g., I/O
dimension, convolution kernel size, padding, stride, dilation
etc. in cudnnGetConvolutionForwardAlgorithm as in-
puts in our MLP, see Figure 7). The output of the softmax
layer represents the probability of the fastest layer algorithm
(and thus their rankings). We design a 6-layer MLP from
the result of Neural Architecture Search with speed and
accuracy target and Cross Entropy due to it is the most
commonly used loss function for classification task.

2) Feature enhancement. We further integrate feature im-
portance analysis method [31] to pick important features,
into our design to improve performance. For example,
stride_height and stride_width tend to be more
important than input_h, input_w, and output_c for
forward convolution. Thus, we add an attention layer after
the input layer to assign greater weights to these important
features.

3.2.2 Training Dataset Construction

With the above classifier design, we further propose a tool,
responsible to acquire and label diverse layer configurations
to train the classifier.

1: int perf_count;

2: std::unique_ptr<perf_t[]> perf_results(new perf_t[num_algos]);
3: if (!benchmark) {

4 AT_CUDNN_CHECK_WITH_SHAPES(cudnnGetConvolution

5: ForwardAlgorithm_v7(

6: args.handle,

7 args.idesc.desc(),

8 args.wdesc.desc(),

9: args.cdesc.desc(),

10: args.odesc.desc(),

11: num_algos,

12: &perf_count,

13: perf_results.get()), args);
14: }

Fig. 7: Features of cuDNN's official heuristic API.

1) Layer configuration generation. The acquisition tool first
samples and then derives a wide spectrum of layer config-
urations, including I/O size, filter size, stride, padding, etc.,
from a set of models widely used in HFL scenarios. In our
current development, the tool samples from 28 widely used
models (see Table 2), resulting in 30,000 configurations.

Model Family =~ Model Instances

VGG VGG-11/13/16/19

MobileNet MobileNet-V1/V2

ShuffleNet ShuffleNet-V1/V2

ResNet ResNet-18/34/50/50-V2/101/101-V2/152/152-V2
EfficientNet EfficientNet-B0/B1/B2/B3/B4/B5/B6/B7

Others GoogLeNet/SqueezeNet/Xception/DenseNet-121

TABLE 2: Models used to collect layer configurations.

2) Ground-truth acquisition. After collecting sufficient con-
figuration samples, the main issue is to obtain the ground-
truth, i.e., which algorithm is the best choice for each con-
figuration that is difficult to analyze manually. To solve
this issue, we propose to reuse the functional APIs of the
exhaustive testing-based deep learning frameworks in our
design. However, current APIs are binding with deep learn-
ing frameworks, we cannot utilize them independently.

To address the above issue, we proposed that by
separating the exhaustive search module from the
framework, the module can be re-engineered into a
lightweight, standalone groundtruth acquisition tool,
and the tool thus can be invoked independently without
training. Specifically, we referenced the implementation of
the exhaustive search mechanism within the TensorFlow
source code. We then manually re-engineered this
functionality by creating the necessary data structures
and descriptors (e.g.,, cudnnTensorDescriptor_t,
cudnnFilterDescriptor_t, cudnnConvolutionDes
criptor_t).

While this initial separation requires careful manual
coding, the resulting ground-truth acquisition tool is fully
automated and general. It is not limited to a specific layer
type. It can be invoked independently to find the best
algorithm for any layer that has multiple candidates, simply
by providing the appropriate layer configurations. Once this
tool is built, it can generate ground-truth data for tens of
thousands of configurations without any further manual
intervention.

3) Obtaining Ground-truth. By using the tool, now we can
easily obtained the groundtruth without redundant opera-
tions. As discussed previously (§3.1), this type of exhaustive

(a) Original Data Distribution (b) Augmented Data Distribution

geo o geo
g)
g40 1 g40 31
Q 4 o 16
o 20 320 13 g 12
5 2 333 2| & & 58
))
01 2 3 4 5 6 7 01 2 3 4 5 6 7
Label Index Label Index

Fig. 8: (a) Original data distribution. (b) Augmented data
distribution.

search strategy is very slow during on-device tests. How-
ever, since the latency ranking is based on the computational
load of each algorithm rather than the absolute latency
value, the ground-truth data is device-independent, and the
overhead of collecting it is acceptable when it occurs during
a one-time offline phase on a powerful server. Furthermore,
we consider distributing the obtained layer configurations
to clients with GPU capabilities in proportion to their com-
putational power. This enables parallel processing between
the server and clients, reducing the time overhead.

After training with layer configurations and their corre-
sponding best choices collected by the tool, we can obtain
an accurate selector that is also lightweight and does not
require any runtime testing when selecting layer algorithms.

Incorporating Memory Constraint. Given the algorithm
rankings obtained by the classifier, the selector ul-
timately selects the fastest algorithm within memory
budget mem as output (to be used by the train-
ing time estimator). We employ an accurate estimator
(cudnnGetConvolutionWorkspaceSize) to retrieve the
memory usage of each layer algorithm.

3.2.3 Enhancing the Layer Algorithm Selector Performance

While our selector significantly outperforms heuristic strate-
gies (e.g., 94% vs. 73% accuracy), a performance gap remains
compared to an exhaustive search. We identified the pri-
mary cause as a severe imbalance in our training dataset.

1) Skewed-Dataset Problem. Statistical analysis revealed
that three algorithms (labels 0, 1, and 2) accounted for
approximately 80% of our training samples, as shown in Fig-
ure 8(a). This skew reflects how deep learning frameworks
often default to these algorithms in practice. However, this
imbalance impairs the selector’s ability to generalize, lead-
ing to poor performance on rare labels that correspond to
critical, specialized use cases.

2) Data Augmentation. To address this, we first attempted
data augmentation. We observed that the most frequent
labels were typically associated with configurations having
larger input, kernel, and padding sizes. Based on this, we
generated new layer configurations using smaller values for
these key factors to specifically augment the rare labels. This
strategy improved the label distribution (see Figure 8(b)) but
only partially mitigated the overall imbalance.

3) Limitation of current loss function. Since data aug-
mentation alone was insufficient, we turned to improv-
ing the MLP’s training components. The standard Cross-
Entropy loss function, CE(p;) = —log(p:), is ill-suited for
imbalanced datasets because it treats all classes equally.
This causes the model to prioritize accuracy on the domi-

nant classes, while the minimal loss contribution from rare
classes leads to poor performance on them.

4) Focal Loss. We first conducted multiple re-sampling
experiments but still found significant class imbalance, be-
cause some algorithms are actually rarely selected in prac-
tice, making re-sampling method ineffective.

Among the potential solutions, focal loss [46] offers a
promising solution to class imbalance by down-weighting
well-classified examples and focusing on difficult or under-
represented samples. Its formula is:

FL(pt) = —ay - (1 — py)7 - log(py) ()

where p; is the model’s predicted probability for the true
class, «a; is a class-balancing factor, and + is the focusing
parameter that reduces the contribution of well-classified
examples.

For our MLP training, we set v = 2 (the default value
effective for most imbalanced datasets) and made «ay in-
versely proportional to class frequency (a; = m)
This approach assigns higher weights to rare classes and
lower weights to common ones. Implementation of these
parameters successfully improved model accuracy.

3.3 Training Time Estimator

The selector (§3.2) is designed to accommodate the diversity
of layer algorithms to achieve accurate training time estima-
tion. In this subsection, we describe how to integrate the
selection results into our training time estimator.

In general, given a model M, a memory budget mem,
and a target device d, the training time estimator (see
Figure 9(a)) predicts its single-pass propagation latency
T. We decompose the model into key layers and non-key
layers (§ 3.3.1), integrate layer algorithms into the latency
modeling of key layers (§ 3.3.2), and profile the coefficients
for both key and non-key layers (§ 3.3.3). This approach
can provide accurate latency estimates with low profiling
overhead.

3.3.1 Key Layer Identification

Given a model, its key layers are the layers with more
than one layer algorithms defined in the deep learning
framework, e.g., for CNNs, these mainly refer to the
convolutional layers, while those with a single and same
algorithm implementation are defined as non-key layers,
e.g., FC and activation layers. Therefore, we can easily
classify each layer as key or non-key based on layer type.

3.3.2 Layer Algorithm Aware Training Time Modeling

We incorporate the layer algorithms by extending tradi-
tional latency modeling i.e., Equation (2), as follows:

ChY (algo;) CrFY (algo;)
_ fwd bwd go;
= (Z g 2 e) ©
l
”

Cran . Cpa
fwald) — rhoa(d)
where C”;ZZ(algoi) and CF¢(algo;) are the computational
loads of key layer i of model M in the forward and back-
ward pass, implemented by layer algorithm algo;. Similar

Existing A peclge, A A~ Training Time
Models Y 006 Profilin Mod g|
° . Key Layers N *4 b odeling
@ $0 et
(X} ® Ttraining =
Y . Profiling I :
L4 Wangity — Tkey + Tnon-key
Non-Key Layers
l Device-specific p l Compute
B _non-key
Selection Key Layer | Comp. BLie
Results from —p _ Config Cost =
N Cont gl ICosi NN
[- §3.2 e) Algos | B _fwd |B_bwd
ooo | — Algo_1 | B_fwd_1 | B_bwd_ 1
(b) Layer_5_config | C(Ks) N 5
New NI:;:(':Y Algo_2 | B_fwd 2 | B_bwd 2 Training
Model Comp. Cost: Time
config SIN) Layer_i_config | C(Ki) MgoLi | B fwai | B_bwdi Estimation

Fig. 9: (a) Construction of training time estimator. (b) Train-
ing time estimation for a new model.

to existing deep learning frameworks, LATTE also selects
the same algorithm for the same key layers of forward and
backward propagation. Similarly, C77% and Cpi0% are the
total computation of all the non-key layers of model M
in the forward and backward pass. The latency is linear
to the computational load when the layer algorithm can

be determined, given coefficients r’;iyd(d), rffufl(d), rioa(d),

and (/2" (d). The rationale of our training latency modeling
is as follows:

e We decompose the model M into key and non-key lay-
ers to reduce the profiling overhead while maintaining
high latency estimation accuracy.

o As non-key layers have a single and same implemen-
tation, they are modeled the same as the traditional
approach, ie., Equation (2), and can be profiled in
advanced and applied in forward and backward passes.

o The modeling of key layers explicitly takes into account
the diversity of layer algorithms.

For practical usage, we further rephrase Equation (6) as:

T(d) = (B} (algoi,d) + Byely(algoi,d)) - C(K;) (7)

+(Bfwald) + Brod(d)) - C(N),

where C(K;) is the computational load of key layer K;
with direct implementation (e.g., the direct method for con-
volution), and C(NV) is the total computations loads of all
non-key layers. Both C(K;) and C(N) are deterministic
given the model architecture M. In contrast, 5(algo,d) =
C(algo)/r(d) absorbs all algorithm- and device-dependent
variations. This formula makes it easy to estimate the single-
pass training latency for each layer from a table (see Fig-
ure 9(b)).

It should be noticed that due to optimizations of modern
operating systems and hardware (e.g., efficient memory
bandwidth management [79] and caching strategies [22])
significantly mitigate the effects of non-linear interactions
(e.g., memory bandwidth bottlenecks, cache effects) in most
practical deployment scenarios, making our linear assump-
tion reasonable and effective under most conditions. How-
ever, in some extreme conditions, non-linear interactions
may lead to inaccurate estimations. We will undertake this
challenge in the future.

3.3.3 Profiling Coefficient (3
From Equation (7), we should profile ﬂ’;fuyd(algo,d),

<Y (algo, d), Fou(d) and B2 (d) in advance for runtime

@send P, F&U

[3 1
0] ® .
Server s LATTE s Clients
® Round Duration U Layer Algorithm ©Profiling p
Selector ¥ update «< e e
+ Table S « .
es e Sub-Model Training Time ® Devi]—’ °
« & (@Tables Esti _Device Sub-Model
g + +
© Model Frequency Sub-Model Frequency _, Sub-Model
Params P () Table F Allocator Table F Training

T@ Table F & Parameters Aggregation |

Fig. 10: Overall HFL workflow with LATTE.

training latency estimation. The profiling is performed for
all device types in the federation. Furthermore, we need to
profile each layer algorithm for each key layer ﬁ’;ffd(al go,d)
and ;% (algo,d). Recall that B(algo,d) = C(algo)/r(d)
without coupling between algo and d. So, the profiling
overhead scales linearly with max{algo, d} rather than their
product, which is more manageable. We reuse the model
family in Table 2 and extract 1,000 layer configurations to
profile the coefficients in the current design of LATTE. We
manage [by periodically monitoring processor utilization
and updating 3 by multiplying the new utilization to avoid
the overhead of re-estimating it. It should be noticed that
LATTE monitors device temperature before profiling, ensur-
ing a stable thermal state by cooling the device to normal
operating temperatures, while employing short profiling
sessions to prevent overheating; additionally, it terminates
or pauses non-essential background processes and monitors
CPU, GPU, and memory usage in real-time to prevent
resource contention. Upon detecting thermal throttling or
abnormal resource usage, LATTE pauses profiling until the
device cools down or resources stabilize.

3.4 Sub-Model Allocator

With accurate training latency estimation, we describe how
LATTE allocates sub-models to devices to ensure synchro-
nized local model training in each round for HFL systems.

Unlike the previous HFL schemes [14], [25], where
clients passively train server-assigned sub-models, clients
in LATTE can actively determine sub-models to better suit
their own resource dynamics due to LATTE’s local training
latency estimation capabilities. In the following, we first de-
scribe the entire client-server interaction in LATTE (§ 3.4.1)
and then detail our client-side sub-model allocation design
(§3.4.2).

3.4.1 Overall Client-Server Interactions

Figure 10 shows the overall HFL workflow with LATTE.

@® On initialization, the server determines the round
duration U, the global model architecture M, its complete
model parameters P, and the frequency table F' (introduced
and used in §3.4.2). The server then generates candidate
sub-model configurations (200 configurations in our case,
which is a trade-off between the granularity of sub-model
assignment and the estimation overhead, e.g., it takes about
40 seconds to estimate 200 sub-models on a Jetson Nano
device, and we will automate the selection of this number
in the future.) via model scaling, storing them into the
sub-model table S. Note that other methods of generating

Freq, count X x 0 oo 00 o0 00
AN
EE] -+
_ @ o [| | J @ 4
Table F @ @ @
Round 7 Round 8 Round N

Fig. 11: Parameter prioritizing via frequency table F'.

candidate architectures are also applicable. Afterwards, the
server sends the sub-model configuration table S for all
clients. Each client profiles its layer algorithm- and device-
dependent coefficients 3, then updates the sub-model table
S, estimates its training latency and measures its memory
usage. These estimation can be performed quickly and are
a one-time effort.

@ In each round, the server sends the current complete
model parameters P, round duration U, and frequency table
F' to all clients for local training.

® Each client polls the current memory budget mem
and bandwidth B via the bandwidth monitoring tool e.g.,
bmon [2]. It then calculates the overall training time T34,
using the single-pass training latency 7" stored in the sub-
model S and the communication latency T%opm, based on
the bandwidth B and the model size [24]. Each client then
selects the largest sub-model configuration in S such that
Tivain + Teomm < U, instantiates the sub-model from the
full model parameters P and updates the frequency table
F, following the scheme in § 3.4.2, and then starts training
on its local dataset.

@ The local parameters and frequency table F' are sent
back to the server for aggregation. We apply the standard
aggregation scheme as in FedAvg [52]. Since the client sub-
mits a sub-model to the server, only the updated parameters
are averaged [25], [14], [82], [24]. Due to accurate training
time estimates, all devices are expected to return updated
model parameters within the deadline U. Steps @-® are
iterated until the global model converges.

3.4.2 Sub-Model Allocation at Client

As mentioned above, LATTE allows dynamic client-side
sub-model allocation to adapt to resource dynamics. How-
ever, such adaptation may affect the effectiveness of feder-
ated training. This is because if sub-model allocation takes
resource dynamics into account, parameters in the global
model may not be equally trained. In LATTE, we design
a priority-aware sliding window scheme for sub-model allo-
cation, which facilitates efficient training while maintaining
adaptability to resource dynamics.

Our main idea is to train a subset of model parameters in
rounds on a rolling basis, so that all parameters are trained
evenly in the long run. Previous work [14] implemented this
idea, and it was also shown to converge [84]. This approach
uses a sliding window for each layer of fixed size and stride
length, assuming that the sub-model size is the same across
rounds, but this is invalid in our problem as the sub-model
size on the client may change due to available resources.

Method. Since LATTE selects a different sub-model archi-

tecture in each round based on current resource availability
to meet local training deadlines, the sub-model architecture

naturally translates into a set of windows per layer, the
size of which can vary from round to round. Therefore,
the challenge is to ensure even training of all parameters
under different window sizes over rounds. Our solution is
to prioritize rarely trained model parameters into a sliding
window for training. This is achieved by tracking how
often the model parameters are trained. Specifically, we
maintain a parameter trained frequency table F' on each
device, recording the training frequency of each parameter.
The server also maintains a general table Fy¢yqe,-. Only when
the sub-model architecture changes due to resource dynam-
ics, the client will upload its parameter trained frequency
table to the server for aggregation and then distribute to
each client. The size of each table is small, e.g., only 2.3-
24.5 MB, and the communication overhead of maintaining
these tables is negligible. Figure 11 shows our parameter
prioritizing process across rounds.

3.5 Dynamic Device Adapter

In practical federated learning scenarios, dynamic device
participating and exiting is common. However, existing
LATTE designs do not take this factor into account, resulting
in some problems. For example, when existing devices exit,
it will affect the final model’s convergence and performance,
while new devices participating require device factor pro-
filing from scratch, which is a time-consuming process. To
address these, we propose dynamic device adapter in this
chapter as shown in Figure 12, maintaining two tables on
server and two corresponding design, Reliability Aggrega-
tion (green part of Figure 12) and Fast-/3 Generator (blue
part of Figure 12) to support efficient training in scenarios
with dynamic device participating and exiting.

3.5.1 Device Information Collector

At first, we maintaining two tables in server side, specifi-
cally:

e A table A,; of device real-time resource, includ-
ing available memory, bandwidth condition and
CPU/GPU utilization. After federated learning begins,
clients send resource status to the server each round
(less than 1 KB). When server does not receive updates
from device, it records the device as exit status.

e A table Ay, of device hardware information, including
hardware specifications (e.g., CPU/GPU architecture,
core frequency) and 3 coefficients. Before federated
learning begins, clients register their hardware speci-
fications and 3 coefficients with profiling records to the
server.

These two tables are maintained for next two section (2) and
(3), which will describe in detail later.

3.5.2 Reliability Aggregation

The reliability aggregation is a server-side module (green
part of Figure 12) that enhances model aggregation robust-
ness through reliability assessment and weighted aggrega-
tion, to relief the effect of device exiting. Specifically, by
utilizing the historical resource data trace provided by the
table A, in server, we set a reliability score to represent the
reduction of available resources in the short term in each
device.

Reliability Score: S

Micro-benchmark
Server Resource

.. ﬁsim Ahw Ars Assess |A

Thew ‘ . ‘ Records
0 Tw T
L / I ’\ Wd_new =SxWyd

Brew = Bsim *(Tsim/ Tnew)
Wa1

L
® = ES =

New Device

Wda2 Wads3

Clients Pool Old Device

Fig. 12: Overview of design dynamic device adapter.

In detail, we define a sliding window W, which used
to analyze the short term resource dynamics provided by
A, . For the device D and resource type R;, the available
resource value of the rounds 7' are denoted as R4 ;)-
Then we determine whether the resources have decreased
significantly by comparing with adjacent rounds. We define
the tolerance threshold €,. If Ry ;) > (1 — €;) * R(q1-1),
it is considered that the resources have not decreased sig-
nificantly, indicating that the equipment is keeping stable in
this round. In W, round, count the stable round ratio as re-
liability score .S; of resource type R;. We further considering
multiple resources, the total reliability score S of device D is
the average of the scores of each resource ;. In this way, the
influence of different resources can be balanced to ensure a
comprehensive assessment of equipment reliability.

The reliability score is used for weighted model update.
For each device D that submits update, the original weight
to be uploaded is Wy. By integrating our design, the weight
to be uploaded become Wy e, = S * Wy When S=1, all
resources do not show a significant decrease in a short time,
refer to the stable and reliable, the uploaded weight remains
unchanged, and the default aggregation method will be
executed subsequently. When S<1, there is a significant
resources reduction in short time, indicating a decrease in
the reliability of this device. Therefore, the importance of
this device should be reduced. This method ensures that
devices with stable resources contribute more to the global
model and reduces the impact of unreliable devices.

It should be noticed that the tolerance threshold ¢, is the
important hyperparameter, initially initialized at 10%. As
federated learning progresses, the server continuously col-
lects the resource variation amplitude of the actual exiting
devices, and then updates this hyperparameter by taking
the typical fluctuation amplitude.

3.5.3 Fast-3 Generator

The fast-3 generator is a client and server coordinate mod-
ule (blue part of Figure 12) designed to accelerate new
devices participating into FL by quickly estimating 3 co-
efficients. Specifically, when new devices are joined, by
querying the table Ap,, in server, the most similar de-
vices are identified based on hardware specifications (such
as CPU/GPU architecture and core frequency), then their
device factors S, and profiling records are sent to new
device.

Subsequently, the new device performs lightweight
micro-benchmark profiling (sampling around 20 layers in

10

original 1000 layers profiling) in each algorithms, and mea-
sures the execution time T{new,). By comparing with the
results of similar devices T{sm) (from profiling records),

. — Tim,)
scaling factors are calculated as § = 7=

mating the /5 values for new device Spew iy im X 5.

Finally, the new device uploads hardware information
and estimated /3 values with profiling records to the Ay, in
server for future use. This method greatly reduces the initial-
ization time from the minutes-level device factor profiling
to the seconds-level micro-benchmark, accelerating the new
devices join the FL.

In conclusion, the Dynamic Device Adapter is a mod-
ular enhancement for HFL's practical robustness, with two
components having different dependencies on our core time
estimator. The first, a Reliability Aggregation Mechanism
for handling device exits, is general in most of scenarios. It
uses historical data to assign reliability weights to clients,
a feature broadly applicable to any weighted aggregation
scheme like FedAvg. The second, a Fast-8 Generator for
new devices, is tailored for LATTE. It specifically accelerates
the initial profiling for our time estimator, serving as an
input to enable fast and accurate predictions for new clients.
While the adapter enhances practicality, our paper’s central
contribution is the time estimator itself, which stands on its
own.

, thereby esti-

4 EVALUATION
4.1 Implementation

We implement LATTE using Python 3.6, C++ 14, CUDA
10.2 [4], PyTorch 1.6.0 [9] and TensorFlow 1.14.0. [11]. To
train the selector, we generate large amount of key layer
configurations and then conduct benchmarking to obtain
the ground truth with our acquisition tool. The develop-
ment of acquisition tool is supported by cuDNN [5] and
is compiled using NVCC [8]. Then the selector function
overrides the default layer algorithm selection function [10],
[12] in source code of deep learning frameworks (e.g., in
the file aten/src/ATen/native/cudnn/Conv_v7.cpp)
and then recompiling the frameworks, which ensures na-
tive, overhead-free execution without altering the user-
facing API. For practical HFL scenarios and evaluation,
LATTE is integrated into the advanced and mainstream FL
framework Flower [16].

4.2 Experimental Setups
4.2.1 Test-bed

We evaluate on a client pool of 10 devices, consisting of
three tiers as shown in Table 3. We include 2 devices per
type, running different frameworks, i.e., TensorFlow for one
and PyTorch for the other. The central server is a computer
equipped with Intel i7-9700K CPU and NVIDIA RTX
2080Ti GPU. Default bandwidth is 100Mbps and we use
Wondershaper [13] to control the bandwidth of each client.
Device processor frequency is fixed during evaluation.

4.2.2 Tasks, Datasets, and ML Models

We test on IID datasets and real-world non-IID datasets.
Each dataset corresponds to a task, and we test different
models for each task.

Category Type RAM CPU GPU
Higher-end Dell Inspiron 5577 8GB i5-7300HQ GTX 1050
Mid-tier Jetson Xavier NX 8GB ARMvVS8.2 Pascal

Jetson TX2 8GB ARM A57 Volta
L rend Jetson Nano 4GB ARM A57 Maxwell
owere Raspberry Pi4B 8GB ARM A72 —

TABLE 3: Device configuration in the client pool.

i) Tasks with IID Datasets.
e Image Classification. We use CIFAR-10 and CIFAR-
100 [3] and train MobileNet-V2 [60] and ResNet-50 [27]
respectively for these tasks.

e Human Activity Recognition. We utilize the classical
HAR [15] dataset, and train a simple customized CNN
with 3 convolutional layers and 2 dense layers.

ii) Tasks with non-IID Datasets.

o Image Classification. We utilize the Openlmage [36]
dataset, where we select 50 image classes, and train
MobileNet-V2 for this task.

e Speech Recognition. We choose the Google Speech
dataset [71], and train ResNet-50 for this task.

e Human Activity Recognition. We choose the HAR-
Box [55] dataset and adopt the same pre-processing
method as [40]. We train the same customized CNN
as in i) the IID scenario for this task.

4.2.3 Baselines

We compare LATTE with the following;:

HeteroFL [25]: a classic HFL method that assigns differ-
ent sub-models to devices according to their computing
capabilities.

FedConv [61]: a state-of-the-art HFL scheme with learn-
ing the parameters of the heterogeneous sub-models
via convolutional compression to improve training ac-
curacy.

FedRolex [14]: a state-of-the-art HFL scheme with a
sliding window sub-model allocation mechanism to
improve the training accuracy.

FedAvg [52]: the classic generic FL algorithm without
accounting for system heterogeneity.

TailorFL [24]: the state-of-the-art FL method which
considers both data and system heterogeneity.

Fjord [29]: a classical dropout based HFL method to
handle data heterogeneity.

FedSEA [63]: the state-of-the-art semi-asynchronous FL
method for edge devices.

FedAsync [74]: a classical asynchronous FL method.
Oort [37]: a classical client selection based HFL method
to handle system heterogeneity.

4.2.4 Evaluation Metrics
We compare different methods using the following metrics.
o Time-to-Convergence. It is the actual wall-clock time

for training a model till convergence. Not all methods
will converge within a specified time limit.

e Model Test Accuracy. It is the accuracy on the test
datasets obtained by the model trained through FL.

11

(a) MobileNet-V2

~ (b) ResNet-50 (c) Customized CNN

80

©
S

o

S
-3
S

m——LATTE
= FedConV
=== FedRolex
== HeteroFL
FedAvg |

1 2 3
Time(hours)

m——LATTE
= FedConV
=== FedRolex
== HeteroFL
FedAvg

3 6
Time(hours)

m——LATTE
= FedConV
=== FedRolex
=== HeteroFL
FedAvg

2 4
Time(hours)

S
a
S

Accuracy(%)
N

Accuracy(%)
Accuracy(%)

o

0 6

Fig. 13: Overall performance on IID datasets.

o Estimator Precision. It is the precision between the
estimated latency and the actual training time, i.e.,

Testimate - Treal
b
Treal

where T,stimate is from the training time estimator
(§3.3) of LATTE, and 7.4, is the real wall-clock training
time. A high precision means an accurate estimator.

FEstimate Precision =1 —

®)

4.3 Overall Performance
4.3.1 Performance on IID Datasets

This experiment compares LATTE with the-state-of-the-art
HFL schemes to handle system heterogeneity alone.

Setups. We compare LATTE with HeteroFL [25], Fe-
dRolex [14] and FedConv [61], three representative HFL
schemes that allocate diverse sub-models to devices ac-
cording to their capabilities. To isolate the impact of sys-
tem heterogeneity, we conduct experiments on three IID
datasets (CIFAR-10, CIFAR-100, and HAR). We also include
FedAvg [52] as the baseline that does not explicitly address
system heterogeneity.

Results. Figure 13 shows the results on the three IID
datasets.

Time-to-Convergence. LATTE consistently achieves the
fastest convergence. When training MobileNet on CIFAR-
10, LATTE converges in 1.03 hours, 2.14x, 2.72x and
3.18x faster than FedConv, FedRolex and HeteroFL,
respectively. FedAvg fails to converge within the 20-
hour limit, highlighting the necessity to explicitly deal
with system heterogeneity. When training ResNet-50 on
CIFAR-100, LATTE converges in 2.60 hours, shortening the
convergence by 1.40x, 2.36x and 2.57x than FedConv,
FedRolex and HeteroFL, respectively. LATTE’s time-to-
convergence is 1.98 hours when training Customized CNN
on HAR, 2.18%, 2.89x and 3.03x faster than FedConv,
FedRolex and HeteroFL, respectively.

Model Test Accuracy. LATTE also achieves the high-
est test accuracy at convergence, reaching an accuracy of
85.78%, 60.99%, and 78.11% on MobileNet, ResNet, and
Customized CNN respectively, which is 2.49% to 3.45%
higher than FedRolex, and 4.23% to 9.79% higher than
HeteroFL. FedConv performs comparably to LATTE, as
FedConv mainly optimize the model accuracy.

Figure 13 shows that LATTE notably improves both
the efficiency and effectiveness of federated learning under
system heterogeneity than the state-of-the-art HFL methods.
It should be noticed that performance differences across
tasks are common and often stem from task-specific char-
acteristics, such as dataset size, model complexity, and data

(a) MobileNet-V2

—

s LATTE+TailorFL

(b) ResNet-50 (c) Customized CNN

—

e L ATTE +TailorFL

s TailorFL

e | ATTE+Fjord
Fjord

23
S

o

S
3
S

N
S

a

S

)
S
a
S

w
S

e L ATTE +TailorFL

s TailorFL

e | ATTE+Fjord
Fjord

[T
S

S

s TailorFL
e L ATTE#Fjord
Fjord

Accuracy(%)
Accuracy(%)

Accuracy(%)

N
S

N

=]

|
0

o

3 6 9
Time(hours)

12 0 5 10 15 20

Time(hours)

5 10 15
Time(hours)

Fig. 14: Overall performance on non-IID Datasets.

(a) MobileNet-V2 (b) ResNet-50 (c) Customized CNN

80

©

S
o
S

-3
S

o
S

FN

S

IS
S

= LATTE
/0 Selector

e LATTE

e w/0 Selector
wlo Estimator

====wlo Allocator

e LATTE
w0 Selector
wl/o Estimator
wl/o Allocator

a
S

Accuracy(%)

Accuracy(%)
Accuracy(%)

N
]

wl/o Estimator
wl/o Allocator

N
S

o

0 1 2
Time(hours)

3 0 3 6

Time(hours)

0 2 4

Time(hours)

6

Fig. 15: Contributions of individual modules.

distribution. Therefore, the generalizability of LATTE is
guaranteed.

4.3.2 Performance on non-IID Datasets

This experiment aims to further evaluate the effectiveness
of LATTE under both data and system heterogeneity. As a
transparent design, LATTE can be easily integrated with FL
solutions that handle data heterogeneity to improve their
efficiency.

Setups. We integrate LATTE into Fjord [29] and Tai-
lorFL [24], two representative FL schemes that combat data
heterogeneity by training personalized models. We test their
performance on three non-IID datasets (Openlmage, Google
Speech, and HARBox) with heterogeneous edge devices
with and w/o the enhancement of LATTE.

Results. Figure 14 shows performance gains with LATTE.

Time-to-Convergence. The personalized FL methods con-
verges notably faster after adding LATTE. When train-
ing MobileNet on Openlmage, the LATTE-enhanced Tai-
lorFL and Fjord converge in 3.91 hours and 5.92 hours
respectively, which are 2.72x and 1.24x faster than the
standalone versions. When training ResNet-50 on Google
Speech, LATTE +TailorFL converges 2.09x faster than Tai-
lorFL, and LATTE +Fjord is 1.29x faster than Fjord. When
training Customized CNN on HARBox, TailorFL and Fjord
are accelerated by 2.42x and 1.26x, respectively.

Model Test Accuracy. Integration with LATTE also im-
proves the test accuracy. LATTE improves the accuracy of
TailorFL by up to 2.81%, reaching 48.29%, 52.86%, and
62.14% on MobileNet, ResNet, and Customized CNN, re-
spectively. Similarly, LATTE improves the accuracy of Fjord
by up to 5.82%, reaching 42.82%, 47.81%, and 56.22% on
MobileNet, ResNet, and Customized CNN, respectively.

These results affirm that LATTE can complement ex-
isting FL. methods for data heterogeneity, achieving both
accurate and fast training under both data and system
heterogeneity.

12

(a) MobileNet-V2

(b) ResNet-50 (c) Customized CNN

80

@
S

< s Q

o~ o~

2 50 S oo

> 60 > =

%) 2] 40 %)

o e)

3 40 =/ Adapter 3 30 = v/ Adapter 3 = W/ Adapter
] wlo Adapter|| © m— /0 Adapter| © wlo Adapter
< < <

Oort Oort

Oort

0 1 2
Time(hours)

3 0 3 6

Time(hours)

)

2 4
Time(hours)

6

Fig. 16: Performance of Dynamic Device Adapter.

4.4 Ablation Study
4.4.1 Performance Breakdown

This experiment evaluates the contributions of each module
to the overall performance.

Setups. We implement three variants of LATTE:

o LATTE w/o Selector: it replaces the layer algorithm se-
lector (§ 3.2) with the default APIs [12], [10] provided by
deep learning frameworks.

o LATTE w/o Estimator: it replaces the training time esti-
mator (§ 3.3) with the naive modeling in Equation (2).

o LATTE w/o Allocator: it replaces the sub-model allocator
(§ 3.4) with the sliding window scheme in [14].

Results. Figure 15 shows the results of different variants.

Time-to-Convergence. The variant w/o selector suffers
from notable slowdown (0.46x to 0.53x that of LATTE).
This is because the default APIs may not recommend the
fastest layer algorithm, leading to inaccurate time estimates.
The variant w/o estimator also experiences significant slow-
down (0.34x to 0.54x that of LATTE). This is because
the naive latency modeling ignores the impact of layer
algorithms, which is the key to inconsistent training time
estimates. The variant w/o selector shows a mild slowdown
(0.56x to 0.65x that of LATTE), mainly due to the lack of
adaptation to resource dynamics. This can lead to sub-model
mismatch when resources on the device change frequently.

Model Test Accuracy. Overall, the degradation in test
accuracy is less severe than the degradation in convergence
speed. On the three datasets, for the variants w/o selector,
estimator, and allocator, the accuracy drops by 2.68% to
4.78%, 2.97% to 5.44%, and 1.69% to 3.81%, respectively.

In summary, removing individual modules from LATTE
mainly affects the convergence speed. The convergence
slowdown is less drastic for the variants w/o selector and
w/o allocator than that w/o estimator. This is because
the default APIs still provide about 73% layer algorithm
prediction accuracy, and system resources do not vary all
the time. In contrast, the variant w/o estimator falls back to
the HFL scheme ignoring the diversity of layer algorithms,
which is the primary motivation of our work.

4.4.2 Effectiveness of Dynamic Device Adapter

Setups. Specifically, we set up a dynamic clients pool, where
1-3 clients randomly join or leave at regular intervals. We
also selected the client selection method Oort and LATTE
without adapter as baselines.

Results. The experimental results show that compared to
traditional client selection algorithms and LATTE without

(NI Selector-enhanced I Selector MM Heuristic

-
(=]
o

©
o

Prediction
Accuracy (%)

=]
o

~
o

CustomCNN

MobileNet-V2 ResNet-50

Fig. 17: Effectiveness of the layer algorithm selector.

consideration for dynamicity, LATTE with the dynamic de-
vice adapter achieved faster model convergence and higher
accuracy in dynamic environments, exceeding from 3.06%
to 8.65% final accuracy and converge from 1.26x to 2.56x
faster respectively. This demonstrates that the introduced
dynamic device adapter provides robustness to handle de-
vices dynamically joining and exiting.

4.4.3 Effectiveness of Layer Algorithm Selector

A key to the convergence speedup of LATTE is the layer
algorithm selector (§ 3.2). This experiment zooms into its
performance against the default APIs in deep learning
frameworks.

Setups. We compare the accuracy of our enhanced LATTE
layer algorithm selector with the normal LATTE selector
and the heuristic API [10] provided by PyTorch for the
200 sub-models listed in the sub-model table on the three
IID datasets and three non-IID datasets, and use the results
from the on-device measurement API [12] of TensorFlow as
ground truth (§ 3.2).

Results. In Figure 17, normal selector reaches 95.08%,
94.13%, and 95.84% accuracy on MobileNet, ResNet and
Customized CNN, respectively. Our enhanced layer algo-
rithm selector achieves 98.34%, 97.37%, and 98.18% accu-
racy respectively, which effectively augmented the efficiency
and performance of the layer algorithm selection. Heuristic
method only provides 73.24%, 73.03%, and 73.25% accu-
racy respectively, which is not sufficient for subsequent
training time estimates.

Estimation
Precision (%)

CustomCNN

MobileNet-V2 ResNet-50

Fig. 18: Effectiveness of the training time estimator.

4.4.4 Effectiveness of Training Time Estimator

The training time estimator (§ 3.3) is also essential for the
convergence speedup of LATTE. This experiment aims to
show the applicability of our training time estimator across
diverse devices.

Setups. We measure the estimator precision of the train-
ing latencies on ten different devices using the three IID
datasets. It covers three device types, with two devices per
type.

Results. In Figure 18, our training latency estimator leads
to a precision of 94.26% to 98.41%, 92.73% to 97.99%, and

13

170 I w/ PT W/ TF

150

Training Time (s)

Pi

Nano TX2 NX LT

Fig. 19: LATTE alleviates the variations in training time
across deep learning frameworks.

96.38% to 98.56% on MobileNet, ResNet and Customized
CNN, respectively. The estimator precision of ResNet-50 on
CIFAR-100 is slightly lower due to the more complex net-
work architectures. In contrast, the precision of Customized
CNN on HAR is higher, as there are fewer key layers.
However, as shown in § 4.3, the precision of our training
time estimator already significantly improves the overall
training convergence.

4.5 Micro-benchmarks
4.5.1

This experiment validates that the layer algorithm is the
key reason for variations in observed training times due
to development-chain diversity, which can be resolved by
LATTE. Specifically, we integrate LATTE with either Ten-
sorFlow or PyTorch (i.e., replacing their default APIs) and
measure the training latency of the same model on two
identical devices, one developed with TensorFlow and the
other with PyTorch. As shown in Figure 19, the wall-clock
training times on the two devices using different deep
learning frameworks are similar to each other. Recall that
the wall-clock training time of a single epoch round with
TensorFlow is only from 72.3% to 76% of that of PyTorch
without LATTE calibration (see § 2.3).

Impact of Deep Learning Frameworks

N ri-1 EllNano-1 [Tx2-1 INX-1 LT
[Pi-2 Il Nano-2 [1Tx2-2 [INX-2 [ILT-2

100% Memory

Estimation
Precision (%)

75% Memory 50% Memory

Fig. 20: Impact of the memory resource budget.

4.5.2

This experiment tests LATTE under various runtime mem-
ory budgets. We employ memhog [6] to periodically change
the available memory resources on each device, cycling from
100% available memory to 75% to 50%, and measure the
precision of our training time estimator. Figure 20 shows
that when the memory budget decreases, the estimation
precision increases. This is because a tighter memory budget
means a simpler sub-model should be selected. In Fig-
ure 22(a), the convergence time under dynamic memory is
2.18x that of the normal state, and the model test accuracy
decreases by 3.95%. This is because the drastic change
in available memory force clients to conservatively select
smaller sub-models, leading to a decrease in convergence
speed and model test accuracy.

Impact of Dynamic Memory

-
o
=3

5
g5 o
2% s
o
100Mbps 50Mbps 10Mbps
Fig. 21: Impact of the communication bandwidth.
4.5.3 Impact of Dynamic Bandwidth

This experiment tests LATTE under different bandwidths.
We assigned distinct bandwidth ranges to different devices
(e.g., Nano from 10 to 20Mbps, NX from 50 to 100Mbps,
Laptop from 100 to 300Mbps) and periodically selected
bandwidth values within these ranges. Additionally, we also
introduced periodically changes to the bandwidth ranges to
simulate realistic network conditions. We use Wondershaper
[13] to change the communication bandwidth on each de-
vice. Figure 21 shows that the precision of training time
estimator increases when the bandwidth decreases. This
is because, given a fixed deadline, as the communication
latency increases, the budget for model training is shorter,
causing LATTE to choose simpler sub-models and thus
estimate the training time more accurately. Figure 22(a)
shows that under dynamic bandwidth conditions, both the
convergence speed and model test accuracy are similar to
the normal state. The convergence time increases slightly
to 1.14x of the stable state, and the model test accuracy
decreases by 1.48%.

(a) Dynamic resources (b) Async methods

=3
=]

-]
=]

'S
=)

e LATTE
— FedSEA
FedAsync

s LATTE
s Dynamic Bandwidth
Dynamic Memory |

Accuracy(%)
Accuracy(%)

N
=)

=)

1 2
Time(hours)

3 1 2

Time(hours)

3

Fig. 22: Time-to-accuracy (a) under dynamic resources and
(b) compared between different schemes.

4.5.4 Comparison with Semi- and Fully-Asynchronous FL

This experiment compares the performance of LATTE with
FedAsync [74], a fully asynchronous FL method, and Fed-
SEA [63], a state-of-the-art semi-asynchronous FL method.
Figure 22(b) shows that both FedSEA and FedAsync con-
verge faster than LATTE, since they do not wait for slow
devices. However, their test accuracy is lower for aggre-
gating slate model updates. For example, the test accuracy
of FedSEA decreases by 9.19%, while the test accuracy of
FedAsync suffers from a drastic drop by 28.96%.

In addition, it should be noticed that although LATTE is
designed to enable synchronized training, its main designs
also provide specific gains even in asynchronous FL sce-
narios. By enabling clients to select the fastest algorithm, it
reduces local training times and mitigates update staleness,
leading to better model accuracy. The server can also use
LATTE to predict client completion times, allowing it to

14

(a) Uniform (b) Positive (c) Negative
distribution skewed distribution skewed disribution
65 65 D1 65 8
Sao0f B ¥ 331 Sa0 30 S 40 30
3 3 3
C15 G5t § C15 3
Low Mid High Low Mid High Low Mid High

Fig. 23: Three distributions used in the simulation.

efficiently manage aggregation by ignoring updates that are
likely to be too stale.

4.5.5 Impact of Client Heterogeneity Distribution

To understand this impact, we conduct a simulation-based
evaluation. We simulate 100 clients using a server with
24 Xeon-Gold-6142 CPUs and 4 Tesla V100 32GB GPUs.
All clients are initialized by Flower’s VCE (Virtual Client
Engine) function, half of which have TensorFlow installed
and the other half have PyTorch installed. Clients are
divided into three categories: low-end, mid-tier, and high-
end, with a computational power ratio of 1:2:5 respectively.
In this experiment, we train MobileNet on CIFAR-10
and perform the evaluation using three common device
distributions, as shown in Figure 23.

Results. Figure 24(a) shows that under the uniform dis-
tribution, LATTE converges 2.07x and 2.35x faster than
FedRolex and HetetoFL, respectively. Its test accuracy is
also 2.3% and 9.36% higher than FedRolex and HetetoFL,
respectively.

When the devices follow a positively skewed distribu-
tion, Figure 24(b) shows that all three methods can ac-
celerate convergence and improve test accuracy. However,
LATTE still outperforms the two baselines, with from 1.69 x
to 2.15x faster convergence and from 2.65% to 6.35% higher
test accuracy. This is because more clients have sufficient
computational power, allowing them to select larger and
better sub-models, thus contributing more to the overall
system performance.

(a) Uniform
distribution

(b) Positive
skewed distribution

(c) Negative
skewed disribution

/"

e ATTE
=== FedRolex
= HeteroFL

3
S
3
S
3
S

-3
S
-3
S
o
S

e ATTE
=== FedRolex
= HeteroFL

e | ATTE
=== FedRolex
= HeteroFL

B
S
N
S

Accuracy(%)
B

N
S

Accuracy(%)

Accuracy(%)

N
S
N
S

0

20 40
Time(mins)

60 0 20 40

Time(mins)

60 0 20 40

Time(mins)

60

Fig. 24: Performance comparison under different device
distributions in the simulation.

When the devices follow a negatively skewed
distribution, LATTE still maintains its advantages.
Compared with the two baselines, LATTE converges
1.89-2.23x faster and improves test accuracy by 5.09-10.1%
in Figure 24(c). Under this distribution, more clients have
insufficient computational power, forcing them to select
smaller sub-models. However, LATTE’s more accurate
training time estimation enables it to select larger sub-
models, leading to better performance. Overall, LATTE
achieves faster convergence and higher model accuracy
under different device heterogeneity distributions.

ResNet-50 MobileNetV2
Selector 191KB 191KB 191KB
Sub-model Table 509.6KB 197.6KB 52KB
Frequency Table 186KB 25KB 16KB
Selector 40ms 11ms 8ms

TABLE 4: LATTE memory and latency overhead on different
models.

e Direct LATTE |
36¢ 1T hmemrsirteorivvert || T
5 11 :
24+ Idle : | Training 1 ldle -
8 Sub-model

2 | ' Ny Selection | | | |

1 2 3 4 5 6 7
Time (min)

Fig. 25: Power consumption of LATTE.

4.6 System Overhead

Memory Overhead. LATTE introduces three types of mem-
ory/transmission overhead, including the parameters of
selector, sub-model table, and frequency table, as shown
in upper part of Table 4. In particular, each model used
requires 191 KB memory of selector parameters. Sub-model
tables take from 52 KB to 509.6 KB, on ResNet, MobileNet
and Customized CNN, respectively. Frequency tables are
optimized with delta encoding, only changes in train-
ing frequencies (delta values) are saved and transmitted,
rather than the entire frequency table. Given that frequency
changes are typically sparse and incremental, this reduces
the transmitted data to a few hundred KB per round, which
occupy from 16 KB to 186 KB on the aforementioned models
in the same order. Such memory overhead is also considered
within the memory budget during sub-model selection.

Latency Overhead. We have conducted experiments to mea-
sure the selector’s runtime latency (from around 10ms to
40ms, as shown in lower part of Table 4.), confirming its
negligible impact on overall training time (from 200s to
1000s). This is due to the selector is executed only once
before the training begins, rather than repeatedly running
in each iteration. Therefore, its latency does not accumulate
as the number of training rounds increases. Results show
that the selector’s execution time is minimal (e.g., j0.1%
of a training round’s latency), ensuring LATTE remains
lightweight.

Power Consumption. Low power consumption is impor-
tant to mobile edge devices, and we measure the power
consumption of LATTE on Jetson NX devices using the
INA3221 power monitor [65]. As a baseline, we first mea-
sure the power consumption of direct training. We then
measure LATTE for same duration of time. Figure 25 shows
that the idle state of device consumes about 3 W. Before
training, the power consumption of LATTE is slightly higher
than the baseline, reaching 4.28 W, which is due to the fast
sub-model allocation. During training, the power consump-
tion is 5.84 W (by LATTE) and 5.6 W (by direct training),
where LATTE itself consumes about 0.24 W only during
resource polling.

15

Customized CNN 5 RELATED WORK

Heterogeneous Federated Learning. Federated learning
with edge and IoT devices face the challenges of data and
system heterogeneity [81]. Compared to centralized learning,
data heterogeneity affects model accuracy [85], [50] and is
often resolved by training personalized models [64], [39],
[66], [55], [24], [83]. However, data heterogeneity is not the
only factor affecting the model performance, and system
heterogeneity also has a significant impact. System hetero-
geneity comes from the diverse computation and communi-
cation capabilities of devices, which can affect the training
efficiency and is the focus of heterogeneous federated learn-
ing (HFL) [56].

HFL roughly falls into model and system level solutions.
Model-level approaches [14], [25], [29], [58], [24], [54], [48],
[61] assign sub-models tailored to the computation power of
each device so that they can return the locally trained mod-
els almost simultaneously. The sub-models are extracted
via masking [59], [25], [14], [24], [54], dropout [29], [58],
knowledge distillation [86], [41], etc. Orthogonally, system-
level strategies either perform client selection [37], [40],
[43], [53] or adopt semi-asynchronous [63], [72] and fully
asynchronous [33], [82], [20] model aggregation schemes to
exclude or mitigate the impact of slow devices. Our work
targets at model-level HFL solutions because client selec-
tion might ignore valuable data on slow devices whereas
asynchronous model aggregation might affect model con-
vergence. We focus on masking-based sub-model extraction
for its widespread adoption and provide accurate local
training time estimates so that the allocated sub-models
match with the capabilities of devices. With the LATTE
design, future methods to address data heterogeneity can
be directly integrated to further improve FL performance.
We provided a comparable Table 5 with four metrics to
summarize the distinctions between our proposed solution
and other related works, including the conference version of
this paper. The ratios in the table derived from a qualitative
comparison based both on the rationale of existing works
and the empirical findings presented in our evaluation re-
sults. We can observe that our work holds a leading position
across all metrics.

Related Works ~ Type Methods M1 M2 M3 M4
QOort [37] Client Selection @ @ @ @
Papaya [33] System-lvl Asynchronous ® @ & @
FedSEA [63] Semi-Asyn 2 ¢ O 9
FedGen [86] KD O @€ & O
Fjord [29] Dropout > @€ & O
HeteroFL [25] Model-ly] Masking > @€ & O
TailorFL [24] O™ Masking > @ 3 O
FedRolex [14] RollingMask @ @ @ O
LATTE-Conf [68] RolingMask @ @ @ O
This Work Model-lvl RollingMask @ @ @ @

TABLE 5: Comparing our work with related HFL works
in four metrics. M1: Overall training speed. M2: Clients
coverage ratio, M3: Final model performance, M4: Dynamic
device adaptivity

Model Latency Estimation. Evaluating the latency of model
execution on specific devices is crucial for the optimization

of model inference [21] and training [34]. Due to various
model architectures, device types, and deep learning de-
velopment chains, there is an increasing interest to predict
the execution latency rather than measuring it exhaustively.
These predictors model latency at the network, layer, or
operator level [44]. For example, the number of FLOPs or
MAC of the entire network is a common proxy for its latency
[28], [47]. Mainstream predictors [17], [57], [35] resort to the
layer level, where different layer features (e.g., FLOPs or
layer types) and hardware features are leveraged to train
a regresssor to predict layer-wise latencies, which are then
summed up as the overall model latency. Recent predictors
[80] dive into the operator level to explicitly account for
runtime optimizations such as operator fusion. However,
our work lies in predicting training time, rather than infer-
ence or compilation as in prior works like [21] (focused on
compile-time inference latency prediction) or [80] (focused
on operator fusion during inference).

Our work is inspired by them yet aims at accurate
latency prediction of model training. ElasticIrainer[32] pro-
posed more fine-grained modeling of training time, but still
overlooked the diversity of layer algorithm. By identify-
ing layer algorithms as the previously overlooked feature,
we devise a lightweight training latency estimator at the
layer level. Our evaluations show such layer-level modeling
matches with the current runtime optimization for model
training on edge devices and delivers high accuracy despite
its simplicity.

6 DISCUSSION

We present the following discussion related to this paper.

1) Compatibility of LATTE in other model structures.
In recent years, some more diverse model structures have
emerged, including diffusion models and transformer mod-
els. We have investigated that newer model architectures
typically have only a single algorithm implementation for
their core components (e.g., attention mechanisms) within
existing DL frameworks, which is very different from typical
structure like CNNs. We hypothesize that this disparity
exists because low-level, hardware-specific optimizations
for these newer architectures are still in a early stage of
exploration. As these models mature, we expect a similar
evolution of specialized algorithms to occur. Our frame-
work’s model-agnostic design makes it inherently extensible
and prepared to directly optimize these future models once
multiple algorithm options become available.

2) Analysis between MLP and Bayes optimization.
Our MLP-based selector is significantly more effective than
Bayesian Optimization (BO) for on-the-fly layer algorithm
selection for two key reasons. First, regarding latency, our
MLP provides a near-instant decision via a single forward
pass, having been trained offline; BO, conversely, would re-
quire a slow, iterative search for each layer at runtime, mak-
ing it computationally prohibitive. Second, from a problem-
framing perspective, our MLP learns a general, scalable
mapping from configuration to algorithm. BO handles each
layer as an isolated optimization, failing to learn a reusable
model and restarting its expensive search for every new
instance. Therefore, the MLP’s ability to “learn once and
infer instantly” is essential for this application, whereas

16

BO’s “search every time” methodology is fundamentally
impractical in HFL scenario.

7 CONCLUSION

This paper presents LATTE, a new middleware design for
accurate estimation of on-device training of deep learning
models on mobile edge devices. Our core design insight is
that even for the same model on the same device, training
times can vary significantly due to runtime optimizations
of deep learning frameworks. We solve this problem by
designing a novel and more accurate layer algorithm selec-
tor with enhanced dataset and incorporating it into LATTE
for accurate delay estimation. We further showcase the
usability of our design in heterogeneous federated learning.
Extensive experiments demonstrate significant performance
improvements compared to state-of-the-art methods. A pre-
liminary version of this study has been published in [68].

ACKNOWLEDGEMENT

This work was sponsored by the GRF grant from Research
Grants Council of Hong Kong under Grant CityU 11202623
and CityU 11206425. Zimu Zhou and Zhenjiang Li are the
corresponding authors.

REFERENCES
(1]

(2]
(3]
(4]

[5]
[6]
(7]
(8]

[9]
(10]

Arm compute library.
ComputeLibrary.

bmon bandwidth monitor. https://github.com/tgraf/bmon.
Cifar datasets. https:/ /www.cs.toronto.edu/~kriz/cifarhtml.
CUDA Toolkit Documentation. https://docs.nvidia.com/cuda/
cuda-runtime-api/.

cudnn. https://developernvidia.com/cudnn.

memhog. https://github.com/afeinberg/memhog.

MKkl-dnn. https:/ /oneapi-src.github.io/oneDNN/v0/index.html.
NVIDIA CUDA Compiler Driver NVCC. https://docs.nvidia.
com/cuda/cuda-compiler-driver-nvee/.

PyTorch. https://github.com/pytorch/pytorch.

Pytorch runtime optimization. https://github.com/pytorch/
pytorch/blob/main/aten/src/ATen/native/cudnn/Conv_v7.
cpp-

TensorFlow. https:/ /github.com/TensorFlow /TensorFlow.
Tensorflow runtime optimization. https:/ /github.com/
tensorflow /tensorflow /blob /v1.14.0/ tensorflow /stream_
executor/cuda/cuda_dnn.cc.

Wondershaper. https:/ /github.com/magnific0/wondershaper.
Samiul Alam, Luyang Liu, Ming Yan, and Mi Zhang. Fedrolex:
Model-heterogeneous federated learning with rolling sub-model
extraction. In Proc. of NeurIPS, 2022.

Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and
Jorge Luis Reyes-Ortiz. A public domain dataset for human
activity recognition using smartphones. In Proc. of ESANN, 2013.
Daniel] Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Javier
Fernandez-Marques, Yan Gao, Lorenzo Sani, Hei Li Kwing,
Titouan Parcollet, Pedro PB de Gusmao, and Nicholas D Lane.
Flower: A friendly federated learning research framework. arXiv
preprint arXiv:2007.14390, 2020.

Ermao Cai, Da-Cheng Juan, Dimitrios Stamoulis, and Diana Mar-
culescu. Neuralpower: Predict and deploy energy-efficient convo-
lutional neural networks. In Proc. of PMLR ACML, 2017.

Jiani Cao, Jiesong Chen, Chengdong Lin, Yang Liu, Kun Wang,
and Zhenjiang Li. Practical gaze tracking on any surface with
your phone. IEEE Transactions on Mobile Computing, 2024.

Jiani Cao, Chengdong Lin, Yang Liu, and Zhenjiang Li. Gaze
tracking on any surface with your phone. In Proc. of ACM SenSys,
2022.

Ming Chen, Bingcheng Mao, and Tianyi Ma. Efficient and robust
asynchronous federated learning with stragglers. In Proc. of ICLR,
2019.

https:/ /github.com/ARM-software/

[11]
[12]

[13]
[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

(30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

Tianqgi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie
Yan, Haichen Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu,
Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy. Tvm: An
automated end-to-end optimizing compiler for deep learning. In
Proc. of USENIX OSDI, 2018.

Xuhao Chen, Li-Wen Chang, Christopher I Rodrigues, Jie Lv, Zhiy-
ing Wang, and Wen-Mei Hwu. Adaptive cache management for
energy-efficient gpu computing. In 2014 47th Annual IEEE/ACM
international symposium on microarchitecture, pages 343-355. IEEE,
2014.

Allan de Barcelos Silva, Marcio Miguel Gomes, Cristiano André
da Costa, Rodrigo da Rosa Righi, Jorge Luis Victoria Barbosa, Gus-
tavo Pessin, Geert De Doncker, and Gustavo Federizzi. Intelligent
personal assistants: A systematic literature review. Elsevier Expert
Systems with Applications, 2020.

Yongheng Deng, Weining Chen, Ju Ren, Feng Lyu, Yang Liu,
Yunxin Liu, and Yaoxue Zhang. Tailorfl: Dual-personalized fed-
erated learning under system and data heterogeneity. In Proc. of
ACM SenSys, 2022.

Enmao Diao, Jie Ding, and Vahid Tarokh. Heterofl: Computation
and communication efficient federated learning for heterogeneous
clients. In Proc. of ICLR, 2020.

In Gim and JeongGil Ko. Memory-efficient dnn training on mobile
devices. In Proc. of ACM MobiSys, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proc. of IEEE CVPR,
2016.

Yihui He, Ji Lin, Zhijian Liu, Hanrui Wang, Li-Jia Li, and Song
Han. Amc: Automl for model compression and acceleration on
mobile devices. In Prof. of Springer ECCV, 2018.

Samuel Horvath, Stefanos Laskaridis, Mario Almeida, Ilias Leon-
tiadis, Stylianos Venieris, and Nicholas Lane. Fjord: Fair and
accurate federated learning under heterogeneous targets with
ordered dropout. In Proc. of NeurIPS, 2021.

Ningning Hou, Yifeng Wang, Xianjin Xia, Shiming Yu, Yuanging
Zheng, and Tao Gu. Molora: Intelligent mobile antenna system for
enhanced lora reception in urban environments. In Proc. of ACM
SenSys, 2025.

Kai Huang and Wei Gao. Real-time neural network inference on
extremely weak devices: agile offloading with explainable ai. In
Proc. of ACM MobiCom, 2022.

Kai Huang, Boyuan Yang, and Wei Gao. Elastictrainer: Speeding
up on-device training with runtime elastic tensor selection. In
Proc. of ACM MobiSys, 2023.

Dzmitry Huba, John Nguyen, Kshitiz Malik, Ruiyu Zhu,
Mike Rabbat, Ashkan Yousefpour, Carole-Jean Wu, Hongyuan
Zhan, Pavel Ustinov, Harish Srinivas, Kaikai Wang, Anthony
Shoumikhin, Jesik Min, and Mani Malek. Papaya: Practical,
private, and scalable federated learning. In Proc. of MLSys, 2022.
Zhihao Jia, Matei Zaharia, and Alex Aiken. Beyond data and
model parallelism for deep neural networks. In Proc. of MLSys,
2019.

Daniel Justus, John Brennan, Stephen Bonner, and An-
drew Stephen McGough. Predicting the computational cost of
deep learning models. In Proc. of IEEE BigData, 2018.

Alina Kuznetsova, Hassan Rom, Neil Alldrin, Jasper Uijlings, Ivan
Krasin, Jordi Pont-Tuset, Shahab Kamali, Stefan Popov, Matteo
Malloci, Alexander Kolesnikov, Tom Duerig, and Vittorio Ferrari.
The open images dataset v4: Unified image classification, object
detection, and visual relationship detection at scale. Springer
International Journal of Computer Vision, 2020.

Fan Lai, Xiangfeng Zhu, Harsha V Madhyastha, and Mosharaf
Chowdhury. Oort: Efficient federated learning via guided partici-
pant selection. In Proc. of USENIX OSDI, 2021.

Ang Li, Jingwei Sun, Pengcheng Li, Yu Pu, Hai Li, and Yiran
Chen. Hermes: an efficient federated learning framework for
heterogeneous mobile clients. In Proc. of ACM MobiCom, 2021.
Ang Li, Jingwei Sun, Xiao Zeng, Mi Zhang, Hai Li, and Yiran
Chen. Fedmask: Joint computation and communication-efficient
personalized federated learning via heterogeneous masking. In
Proc. of ACM SenSys, 2021.

Chenning Li, Xiao Zeng, Mi Zhang, and Zhichao Cao. Pyramidfl:
A fine-grained client selection framework for efficient federated
learning. In Proc. of ACM MobiCom, 2022.

Daliang Li and Junpu Wang. Fedmd: Heterogenous federated
learning via model distillation. arXiv preprint arXiv:1910.03581,
2019.

17

[42]

(43]

[44]

[45]

[46]

[47]

[48]

(49]

(50]

(51]

[52]

(53]

[54]

[55]

[56]

[57]

(58]

[59]

[60]

[61]

[62]

[63]

Tian Li, Anit Kumar Sahu, Ameet Talwalkar, and Virginia Smith.
Federated learning: Challenges, methods, and future directions.
IEEE signal processing magazine, 2020.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet
Talwalkar, and Virginia Smith. Federated optimization in hetero-
geneous networks. In Proc. of MLSys, 2020.

Ying Li, Yifan Sun, and Adwait Jog. Path forward beyond sim-
ulators: Fast and accurate gpu execution time prediction for dnn
workloads. In Proc. of IEEE/ACM MICRO, 2023.

Chengdong Lin, Kun Wang, Zhenjiang Li, and Yu Pu. A workload-
aware dvfs robust to concurrent tasks for mobile devices. In
Proceedings of the 29th Annual International Conference on Mobile
Computing and Networking, 2023.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr
Dollér. Focal loss for dense object detection. In Proc. of IEEE ICCV,
2017.

Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differen-
tiable architecture search. In Proc. of ICLR, 2019.

Ruixuan Liu, Fangzhao Wu, Chuhan Wu, Yanlin Wang, Lingjuan
Lyu, Hong Chen, and Xing Xie. No one left behind: Inclusive
federated learning over heterogeneous devices. In Proc. of KDD,
2022.

Sicong Liu, Bin Guo, Cheng Fang, Ziqi Wang, Shiyan Luo, Zimu
Zhou, and Zhiwen Yu. Enabling resource-efficient aiot system
with cross-level optimization: A survey. IEEE Communications
Surveys & Tutorials, 2023.

Zili Lu, Heng Pan, Yueyue Dai, Xueming Si, and Yan Zhang.
Federated learning with non-iid data: A survey. IEEE Internet of
Things Journal, 2024.

Patrick McEnroe, Shen Wang, and Madhusanka Liyanage. A
survey on the convergence of edge computing and ai for uavs:
Opportunities and challenges. IEEE Internet of Things Journal, 2022.
Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson,
and Blaise Aguera y Arcas. Communication-efficient learning
of deep networks from decentralized data. In Proc. of PMLR
AISTATS, 2017.

Takayuki Nishio and Ryo Yonetani. Client selection for federated
learning with heterogeneous resources in mobile edge. In Prof. of
IEEE ICC, 2019.

Chaoyue Niu, Fan Wu, Shaojie Tang, Lifeng Hua, Rongfei Jia,
Chengfei Lv, Zhihua Wu, and Guihai Chen. Billion-scale feder-
ated learning on mobile clients: A submodel design with tunable
privacy. In Proc. of ACM MobiCom, 2020.

Xiaomin Ouyang, Zhiyuan Xie, Jiayu Zhou, Jianwei Huang, and
Guoliang Xing. Clusterfl: a similarity-aware federated learning
system for human activity recognition. In Proc. of ACM MobiSys,
2021.

Kilian Pfeiffer, Martin Rapp, Ramin Khalili, and Jérg Henkel. Fed-
erated learning for computationally-constrained heterogeneous
devices: A survey. ACM Computing Surveys, 2023.

Hang Qi, Evan R Sparks, and Ameet Talwalkar. Paleo: A perfor-
mance model for deep neural networks. In Proc. of ICLR, 2016.
Xinchi Qiu, Javier Fernandez-Marques, Pedro PB Gusmao, Yan
Gao, Titouan Parcollet, and Nicholas Donald Lane. Zerofl: Efficient
on-device training for federated learning with local sparsity. In
Proc. of ICLR, 2021.

Martin Rapp, Ramin Khalili, Kilian Pfeiffer, and Jorg Henkel.
Distreal: Distributed resource-aware learning in heterogeneous
systems. In Proc. of AAAI 2022.

Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmogi-
nov, and Liang-Chieh Chen. Mobilenetv2: Inverted residuals and
linear bottlenecks. In Proc. of IEEE CVPR, 2018.

Leming Shen, Qiang Yang, Kaiyan Cui, Yuanqing Zheng, Xiao-
Yong Wei, Jianwei Liu, and Jinsong Han. Fedconv: A learning-on-
model paradigm for heterogeneous federated clients. In Proc. of
ACM MobiSys, 2024.

Leming Shen, Qiang Yang, Kaiyan Cui, Yuanqing Zheng, Xiao-
Yong Wei, Jianwei Liu, and Jinsong Han. Hierarchical and het-
erogeneous federated learning via a learning-on-model paradigm.
IEEE Transactions on Mobile Computing, 2025.

Jingwei Sun, Ang Li, Lin Duan, Samiul Alam, Xuliang Deng, Xin
Guo, Haiming Wang, Maria Gorlatova, Mi Zhang, Hai Li, and
Yiran Chen. Fedsea: A semi-asynchronous federated learning
framework for extremely heterogeneous devices. In Proc. of ACM
SenSys, 2022.

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

(84]

(85]

(86]

Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards
personalized federated learning. IEEE Transactions on Neural Net-
works and Learning Systems, 2022.

Texas Instruments Inc. INA3221 power monitor. https:/ /www.ti.
com/product/INA3221, 2016.

Linlin Tu, Xiaomin Ouyang, Jiayu Zhou, Yuze He, and Guoliang
Xing. Feddl: Federated learning via dynamic layer sharing for
human activity recognition. In Proc. of ACM SenSys, 2021.

Kun Wang, Jiani Cao, Zimu Zhou, and Zhenjiang Li. Swapnet:
Efficient swapping for dnn inference on edge ai devices beyond
the memory budget. IEEE Transactions on Mobile Computing, 2024.
Kun Wang, Zimu Zhou, and Zhenjiang Li. Latte: Layer algorithm-
aware training time estimation for heterogeneous federated learn-
ing. In Proc. of ACM MobiCom, 2024.

Manni Wang, Shaohua Ding, Ting Cao, Yunxin Liu, and Fengyuan
Xu. Asymo: scalable and efficient deep-learning inference on
asymmetric mobile cpus. In Proc. of ACM MobiCom, 2021.

Qipeng Wang, Mengwei Xu, Chao Jin, Xinran Dong, Jinliang Yuan,
Xin Jin, Gang Huang, Yunxin Liu, and Xuanzhe Liu. Melon:
Breaking the memory wall for resource-efficient on-device ma-
chine learning. In Proc. of ACM MobiSys, 2022.

Pete Warden. Speech commands: A dataset for limited-vocabulary
speech recognition. arXiv preprint arXiv:1804.03209, 2018.

Wentai Wu, Ligang He, Weiwei Lin, Rui Mao, Carsten Maple,
and Stephen Jarvis. Safa: A semi-asynchronous protocol for
fast federated learning with low overhead. IEEE Transactions on
Computers, 2020.

Yu Xianjia, Jorge Pefia Queralta, Jukka Heikkonen, and Tomi West-
erlund. Federated learning in robotic and autonomous systems.
Elsevier Procedia Computer Science, 2021.

Cong Xie, Sanmi Koyejo, and Indranil Gupta. Asynchronous
federated optimization. arXiv preprint arXiv:1903.03934, 2019.
Huatao Xu, Pengfei Zhou, Rui Tan, Mo Li, and Guobin Shen.
Limu-bert: Unleashing the potential of unlabeled data for imu
sensing applications. In Proc. of ACM SenSys, 2021.

Qiang Yang, Yang Liu, Tianjian Chen, and Yongxin Tong. Feder-
ated machine learning: Concept and applications. ACM Transac-
tions on Intelligent Systems and Technology, 2019.

Shiming Yu, Xianjin Xia, Ningning Hou, Yuanqging Zheng, and Tao
Gu. Revolutionizing lora gateway with xgate: Scalable concurrent
transmission across massive logical channels. In Proc. of ACM
MobiCom, 2024.

Shiming Yu, Xianjin Xia, Ningning Hou, Yuanqing Zheng, and
Tao Gu. Xgate: Scaling lora communications to massive logical
channels. IEEE Transactions on Networking, 2025.

Heechul Yun, Gang Yao, Rodolfo Pellizzoni, Marco Caccamo, and
Lui Sha. Memory bandwidth management for efficient perfor-
mance isolation in multi-core platforms. IEEE Transactions on
Computers, 65(2):562-576, 2015.

Li Lyna Zhang, Shihao Han, Jianyu Wei, Ningxin Zheng, Ting
Cao, Yuging Yang, and Yunxin Liu. Nn-meter: Towards accurate
latency prediction of deep-learning model inference on diverse
edge devices. In Proc. of ACM MobiSys, 2021.

Tuo Zhang, Lei Gao, Chaoyang He, Mi Zhang, Bhaskar Krish-
namachari, and A Salman Avestimehr. Federated learning for
the internet of things: Applications, challenges, and opportunities.
IEEE Internet of Things Magazine, 2022.

Tuo Zhang, Lei Gao, Sunwoo Lee, Mi Zhang, and Salman Aves-
timehr. Timelyfl: Heterogeneity-aware asynchronous federated
learning with adaptive partial training. In Proc. of IEEE CVPR,
2023.

Wenhao Zhang, Zimu Zhou, Yansheng Wang, and Yongxin Tong.
Dm-pfl: Hitchhiking generic federated learning for efficient shift-
robust personalization. In Proc. of KDD, 2023.

Hanhan Zhou, Tian Lan, Guru Prasadh Venkataramani, and
Wenbo Ding. Every parameter matters: Ensuring the convergence
of federated learning with dynamic heterogeneous models reduc-
tion. In Proc. of NeurIPS, 2024.

Hangyu Zhu, Jinjin Xu, Shiqing Liu, and Yaochu Jin. Federated
learning on non-iid data: A survey. Elsevier Neurocomputing, 2021.
Zhuangdi Zhu, Junyuan Hong, and Jiayu Zhou. Data-free knowl-
edge distillation for heterogeneous federated learning. In Prof. of
ACM ICML, 2021.

18

Kun Wang received the B.E. degree from Xi-
dian University, Xi’an, China, in 2020, and the
Ph.D. degree from the City University of Hong
Kong, Hong Kong, China, in 2024. He is cur-
rently a Postdoctoral Fellow at the Department
of Computer Science, City University of Hong
Kong. His research interests lie in designing and
building efficient on-device Al systems, including
on-device inference, on-device training and on-
device large language models.

Zimu Zhou received the B.E. from the Depart-
ment of Electronic Engineering, Tsinghua Uni-
versity, Beijing, China, in 2011, and the Ph.D.
from the Department of Computer Science and
Engineering, Hong Kong University of Science
and Technology, Hong Kong, in 2015. He is cur-
rently an Assistant Professor at the Department
of Data Science, City University of Hong Kong.
His research focuses on mobile and ubiquitous
computing.

Zhenjiang Li received the B.E. degree from
Xi'an Jiaotong University, China, in 2007, and
the M.Phil. and Ph.D. degrees from the Hong
Kong University of Science and Technology,
Hong Kong, China, in 2009 and 2012, respec-
tively. He is currently an Associate Professor
with the Department of Computer Science, City
University of Hong Kong. His research interests
include edge/embedded Al systems, Artificial In-
ternet of Things (AloT), and low-power systems.

