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Zheng Yang, Senior Member, IEEE, Xu Wang, Member, IEEE, Jiahang Wu, Student Member, IEEE, Yi
Zhao, Student Member, IEEE, Qiang Ma, Member, IEEE, Xin Miao, Member, IEEE, Li

Zhang, Member, IEEE, Zimu Zhou, Member, IEEE

Abstract—Accurate, real-time object detection on resource-constrained devices enables autonomous mobile vision applications such
as traffic surveillance, situational awareness, and safety inspection, where it is crucial to detect both small and large objects in crowded
scenes. Prior studies either perform object detection locally on-board or offload the task to the edge/cloud. Local object detection yields
low accuracy on small objects since it operates on low-resolution videos to fit in mobile memory. Offloaded object detection incurs high
latency due to uploading high-resolution videos to the edge/cloud. Rather than either pure local processing or offloading, we propose
to detect large objects locally while offloading small object detection to the edge. The key challenge is to reduce the latency of small
object detection. Accordingly, we develop EdgeDuet, the first edge-device collaborative framework for enhancing small object detection
with tile-level parallelism. It optimizes the offloaded detection pipeline in tiles rather than the entire frame for high accuracy and low
latency. Evaluations on drone vision datasets under LTE, WiFi 2.4GHz, WiFi 5GHz show that EdgeDuet outperforms local object
detection in small object detection accuracy by 233.0%. It also improves the detection accuracy by 44.7% and latency by 34.2% over
the state-of-the-art offloading schemes.
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1 INTRODUCTION

B Ringing advanced machine vision to mobile devices
such as drones and robots enables a wide spectrum of

autonomous mobile vision applications. Examples include
mobile phones for localization [1] and navigation [2], drones
for cost-effective traffic surveillance [3], and robot dogs to
enforce social distancing during the COVID-19 pandemic
[4]. Crucial in these applications is the capability to detect
objects from video inputs. An ideal object detection engine
for autonomous mobile vision applications should be ac-
curate, real-time, and resource-efficient. (i) Drones and robots
should accurately detect a large number of big and small
objects in the scene (e.g., vehicles and pedestrians in an aerial
view of a busy street). (ii) Fast object detection (i.e., 30-60
fps) on continuous videos enables decision-making on the
go. For instance, a robot may identify the crowd density
from live videos and broadcast alerts when moving in a
park. (iii) resource-efficient: For portability and mobility, the
computation and memory resources in commercial drones
are still limited. Object detection algorithms need to be
optimized to fit in the resource budgets of mobile devices.

Existing object recognition solutions for resource-limited
devices fail to satisfy the accuracy and real-time require-
ments. For example, in mobile AR/MR scenarios, their
systems require to run at 60fps and 2K resolution for the
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object detection or object segmentation tasks [5]. For the
huge computing resources requirements, the commercial
mobile AR solutions such as ARKit [6] and ARCore [7]
only track the pose of the camera and fail to track the
locations of moving targets in real-time, which results in
unnatural virtual effects [8]. (i) One promising approach for
fast object detection is to run the model locally on-board.
Model compression techniques can dramatically reduce the
workload of deep learning models [9]. However, local ob-
ject detection with compressed models is sub-optimal for
autonomous mobile vision because accurate small object
detection requires high-resolution input [10], which easily
overwhelms mobile memory. (ii) An alternative is to offload
object detection to the edge, which utilizes the powerful
edge to run large models on high-resolution inputs for
accurate detection. Nevertheless, offloading incurs a long
delay since it involves the wireless transmission of high-
resolution videos to the edge (i.e., a 2000kbps 2k video with
10Mbps wireless network bandwidth means 200ms delay).
Long end-to-end detection delay leads to large detection
errors as the mobile device’s view is constantly changing
[11].

Pioneer studies [5], [11] avoid transmitting every frame
by using cached detection results of previous frames to track
objects in the current frame and only offloading key frames
to update the cached results. This “detect+track” strategy
supports real-time object detection in case of high band-
width networks. Its performance tends to deteriorate in the
case of low-bandwidth, e.g., outdoors, which autonomous
mobile vision applications often target at.

Instead of pure local processing or offloading, we pro-
pose to split the object detection task between the mobile
device and the edge. Specifically, we offload small object
detection to the edge. The rationale is intuitive. Commercial
mobile devices are now able to accurately and rapidly de-
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Fig. 1. An illustration of the popular “detect+track” framework for of-
floaded object detection. The detection results of the current frame
are obtained by applying trackers on the cached detection results. The
cached results are routinely updated by offloading key frames.

tect large- to medium-sized objects by running compressed
models on low-resolution videos [12], [13]. Hence only
data relevant to small objects need to be uploaded to the
edge in high quality, thus reducing the overall offloading
delay and improving detection accuracy. The “small” size is
empirically tuned to achieve optimal performance, and we
will detail the classification method later.

Realizing the above idea for accurate and real-time object
detection needs a systematic design on (i) what and how
to offload to the edge and (ii) how to aggregate the detection
results. We base our design upon “detect+track” (Fig. 1),
the prevailing framework, to accelerate offloaded object
detection [5], [11]. The detection results of the current frame
are obtained by adapting cached detection results of prior
frames using lightweight trackers [14]. The cached results
are routinely updated by offloading key frames for expen-
sive yet highly accurate object detection. In our case, the
trackers and the detectors for big objects are lightweight.
Hence the bottleneck for real-time detection is the offloaded
small object detection. Since the detection results of the
current frame rely on the cached results, the bottleneck for
accurate detection, especially for small objects, lies in the
freshness of the cached results.

We propose EdgeDuet, an accurate, real-time object de-
tection engine, which tiles and offloads small object de-
tection to the edge (Fig. 2). EdgeDuet tackles the afore-
mentioned accuracy and real-time bottlenecks via the fol-
lowing techniques. (i) Optimizing offloaded small object
detection with region-of-interest (RoI) frame encoding and
content-prioritized tile offloading. EdgeDuet applies RoI frame
encoding to save network traffic. Only pixel blocks po-
tentially containing small objects are transmitted in high
quality, while the rest of the frame is compressed to low
quality. EdgeDuet adopts content-prioritized tile offloading
to accelerate small object detection at the edge. It processes
videos in the unit of tiles rather than the entire frame, so as
to improve the parallelism of offloading. It also prioritizes
the offloading of tiles containing more objects, so that the
cached detection results of more objects are freshly updated.
(ii) Real-time tracking via cache management and adaptive
tracker configuration. EdgeDuet aggregates the detection re-
sults from the local and remote object detectors to obtain
fresh and consistent cached results via a cache management
mechanism. It also applies adaptive tracker configuration to

improve the resource efficiency and real-time performance
of the trackers.

We implement EdgeDuet as a cross-platform framework
and evaluate its performance with mobile phones on Vis-
Drone [15], a public video dataset captured by drone-
mounted cameras. Evaluations show that pure local object
detection yields a detection accuracy in terms of only 0.096
for small objects, while EdgeDuet achieves an accuracy of
0.319 for small objects.

The main contributions of this work are summarized
below.

• EdgeDuet is the first framework that enhances small
object detection in crowded scenes via collaboration
between the edge and the mobile device.

• We push the state-of-the-art offloaded object de-
tection studies [5], [11] from task-level parallelism
to tile-level parallelism, which notably reduces the
offloading latency. EdgeDuet is a systematic design
that enables accurate, real-time object detection on
mobile devices even in the case of low network
bandwidth.

• We implement EdgeDuet as a cross-platform frame-
work. Evaluations on VisDrone [15] show that Edge-
Duet improves the overall accuracy by 44.7% and the
end-to-end latency by 34.2% over the state-of-the-art
object detection offloading schemes [5], [11].

In the rest of this paper, we give an overview of Edge-
Duet in Sec. 3 and elaborate on its functional modules in
Sec. 4, Sec. 5 and Sec. 6. We present the implementation of
EdgeDuet in Sec. 7 and the evaluations in Sec. 8. We review
related work in Sec. 2 and finally conclude in Sec. 10.

2 RELATED WORK

Our work is relevant to the following categories of research.
Object Detection Models. Advances in deep learning have
resulted in various accurate and fast object detection models
such as two-stage models e.g., Faster-RCNN [16] and one-
stage models e.g., YOLO [17]. Model compression and ac-
celeration techniques [9], [18]–[22] can substantially reduce
the computation workload of deep learning-based models.
However, the compressed models suffer from low accuracy
on small object detection if the input image/video is low in
resolution [10]. For accurate and fast small object detection,
customized models [10], [23], [24] have been developed to
detect objects on sub-regions of the input image/video.
However, these models are computed heavily. Our work
also performs object detection on sub-regions. However,
rather than design new object detection models, we exploit
existing YOLO-family models of different capabilities [17]
to process different sub-regions of video frames.
Edge/Cloud Offloading. A popular strategy to enable
highly accurate object detection on resource-constrained
mobile devices is to offload the compute-intensive object
detection to the powerful edge/cloud server [?], [5], [11],
[25]–[33]. However, offloading may incur long delays since
large amounts of videos need to be uploaded to the server
via wireless networks. To enable offloaded object detection
on continuous videos, Glimpse [11] proposes to only send
trigger frames and proposes the “detect + track” framework
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Fig. 2. An overview of EdgeDuet. Rectangles in different colors represent the three functional modules (offloaded small object detection (blue)
(Sec. 4), local object detector (yellow) (Sec. 5) and real-time tracking (green) (Sec. 6). EdgeDuet is implemented as a cross-platform framework
consisting of both edge-side and device-side modules (Sec. 7)).

for fast object detection. EAAR [5] compresses the uploaded
frames via RoI based video encoding and applies parallel
streaming and inference techniques to reduce the offload-
ing latency further. Our work is built upon the “detect +
track” framework and the pipelined offloading principle,
but improves the parallelism of the offloading pipeline to
tile-level. Furthermore, these studies do not optimize small
object detection. DDS [29] differentiates small and large
object detection by first offloading high-resolution, low-
quality video frames to detect large objects and locate small
objects. Regions containing small objects are then encoded
in high quality and offloaded again to detect small objects.
The method improves the accuracy of small object detection
but doubles the delay for object detection. Unlike DDS,
which detects large and small objects sequentially, we run
a fast model on low-resolution frames to detect large objects
and offload small object detection with high-quality frames
at the same time.

Tile-based Video Streaming. Tiling feature [34] in video
codecs has provided better quality gains for video stream-
ing [35]–[38]. In tile-based video streaming, the video is first
cut into tiles and important tiles are transmitted in high
quality, whereas others are transmitted in low quality or not
transmitted at all. Since all of them are based on existing
video codecs, they encode the whole frame into the bit-
streams then process each tile’s bit-stream independently.
Differently, we redesign the video encoder such that it
outputs the bit-stream of each tile once it is encoded and
transmits the bit-stream to the edge server immediately to
reduce the offloading latency.

Single Object Tracking. There are many existing accurate
tracking algorithms [39], such as optical-flow based Lucas-
Kanade tracking [40], correlation-filter based KCF [14], deep
learning based Siamese RPN [41]. Most of these techniques
require lots of computational resources, and are not ef-
ficient for applications on mobile devices with real-time
requirements. We choose KCF as our tracking algorithm for
its excellent efficiency and accuracy, and limited resource
requirements.

3 EDGEDUET OVERVIEW

As shown in Fig. 2, EdgeDuet consists of three functional
modules:

i) An offloaded small object detection module which up-
loads high-resolution frames to the edge to detect small ob-
jects. EdgeDuet optimizes offloaded small object detection
with region-of-interest (RoI) frame encoding and content-
prioritized tile offloading to save network traffic and accel-
erate small object detection at the edge. EdgeDuet processes
videos in the unit of tiles rather than the entire frame, so as
to improve the parallelism of offloading.

ii) A local object detector module which detects large
objects from low-resolution frames. The local object detector
aims to detect medium- to large- sized objects in the video
frames locally on the mobile device. We empirically decide
the model and input resolution for the local object detector
to meet the constraints of resources on the mobile device.

iii) A real-time tracking module which associates the de-
tection results (bounding boxes, a.k.a bboxes) from both
the edge and the mobile device and tracks each object with
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single-object trackers. EdgeDuet adopts multiple single-
object trackers for object tracking and it also applies adap-
tive tracker configuration to improve the resource efficiency
and real-time performance of the trackers.

We elaborate on the detailed designs of each functional
module in the subsequent sections.

4 OFFLOADED SMALL OBJECT DETECTION

This module aims to (i) reduce the data for transmission to
the edge and (ii) accelerate the offloading pipeline for timely
updates of the cached detection results on the mobile device.
EdgeDuet exploits RoI frame encoding to compress video
frames, and content-prioritized tile offloading for highly
parallel object detection at the edge.

4.1 RoI Frame Encoding
As mentioned in Sec. 1, accurate small object detection
relies on high-resolution, high-quality frames as input. Yet
uploading high-quality frames to the edge impairs real-time
object detection [23], [24], [26]. The RoI frame encoding
module reduces the amount of transmitted data by only
keeping the pixel blocks containing small objects in high
quality while compressing the rest of the frame to low
quality. Although RoI frame encoding has been used in
other offloading schemes [5], [29], the definition of RoI
(i.e., blocks containing small objects in our case) and the
compression level varies and should be tuned for specific
applications.

4.1.1 Determining Blocks Containing Small Objects
A pixel block is considered as containing small objects if (i)
the local object detector cannot classify the block into a class
(or reports low confidence scores); and (ii) the remote object
detector can classify the block to a class (or reports high
confidence scores). Due to the high temporal correlation
between successive frames, we use the detection results of
the previous frame to identify blocks potentially containing
small objects in the current frame. For simplicity, we decide
whether an object is small using a fixed size. The size is
empirically tuned such that objects below this size cannot
be accurately detected by the local object detector but can be
accurately detected by the remote object detector. The object
size is considered as accurately detected if the recall is above
90%. Experiments show that the optimal size threshold for
small objects varies across classes. For example, a size of
2000 pixels results in almost 100% recall for pedestrians but
less than 40% recall for cars (see Fig. 3). Hence a different
size threshold is set for each targeting class.

4.1.2 Determining Compression Levels
Blocks which are determined as containing no small objects
cannot be compressed to arbitrarily low quality. This is
because the decision is made based on the detection results
of the previous frame. If a new object appears in the current
frame, the blocks containing this object may be so heavily
compressed that the object cannot be detected by the remote
object detector. To avoid missing detection of new objects,
we tune a low-quality compression level. Fig. 4 shows
the rationality. For low-quality images, the object detection
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Fig. 3. An example of the class-dependent size threshold for small ob-
jects. Details of datasets, local and remote object detectors see Sec. 7.

model could approximately detect most objects’ locations by
lowering its confidence score. We choose the compression
level such that the remote object detector outputs low con-
fidence scores on the compressed blocks but will not fail to
locate objects. These low confidence objects are also returned
to the device for offloading their blocks at the next frame,
so as to be accurately detected in the next frame. To avoid a
cold start, we just offload the whole frame in high quality.

4.1.3 Implementing RoI Frame Encoding
We use the High Efficiency Video Coding (HEVC, a.k.a
h.265) codec [42] to encode pixel blocks containing small
objects to high quality and compress the rest of the frame
to low quality. The Quantization Parameter (QP) is one crit-
ical arguments in video compression performance. Larger
values mean that there will be higher quantization, more
compression, and lower quality. Lower values mean the
opposite. In our scheme, we generate a delta QP map
describing the delta QP values of each macroblock in the
raster order and encode the current frame with the HEVC
codec. Fig. 5a and Fig. 5b show an example image before
and after RoI frame encoding.

4.2 Content-Prioritized Tile Offloading
This module enables real-time small object detection via
fine-grained (tile-level) parallel offloading. It also facilitates
timely updates of cached detection results on the mobile
device by prioritizing the processing of tiles that contain
more small objects. Pipelined offloading proves effective
for fast object detection [5], where the offloading process
is split into frame encoding, frame upload, frame decoding,
object detection, and result downloading. Nevertheless, ex-
isting work [5] pipelines the offloading process on a frame
basis, which limits the achievable parallelism. In contrast,
EdgeDuet breaks a frame into tiles and enables tile-level
parallelism, thus allowing faster pipelined and parallel of-
floading. We explain how to realize tile-level parallelism and
content-based priority below.

4.2.1 Enabling Tile-Level Parallelism
A tile is a rectangular region in a frame defined in HEVC
[34]. Fig. 5c shows an example of 5x3 tiles. To support tile-
level parallelism, we need to modify the frame encoding,
frame decoding, and object detection stage, as they are
designed to operate on a frame basis. The principle is
to eliminate dependencies among tiles for each stage, as
described in detail below.
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Fig. 4. Detected objects for different image quality. (a) Low quality, low confidence objects. (b) Low quality, high confidence objects. (c) High quality,
low confidence objects. (d) High quality, high confidence objects.
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Fig. 5. An example of key steps in EdgeDuet. (a) Input frame. (b) Frame after RoI frame encoding, where blocks containing no small objects are
compressed to low quality. (c) Tiles. (d) The output of video decoder after enabling tile-level parallelism. (e) Overlap-tiling. (f) Remote object detector
results of tiles (red rectangles). (g) Local object detector results of the low-resolution frame (yellow rectangles). (h) Cache management of remote
and local object detectors.
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Fig. 6. Video encoding parallelism of Kvazaar and EdgeDuet.

• Frame Encoding. Existing video encoders [43]–[45]
output the encoded bit-stream after processing all
the tiles in a frame. We redesign the video encoder
such that it outputs the bit-stream of each tile once
it is encoded. Our method is based on Kvazaar
[45], which treats the encoding of each tile as an
individual task and allows parallel tile encoding via a
dynamic task graph. However, Kvazaar outputs bit-
streams on a frame basis. Fig. 6(a) shows the task
dependencies among tile encoding tasks and frame
bit-stream tasks of the current frame and the next
frame in Kvazaar. We modify its bit-stream writing
module so that the bit-stream tasks operate on a tile
basis, as the task dependencies shown in Fig. 6(b).
Specifically, we break the bit-stream of a frame into
a picture parameter set (PPS) and each tile’s bit-

streams. PPS contains the meta information of each
frame on entropy coding mode, slice groups, motion
prediction, quantization parameters (QP), and de-
blocking filters. Consequently, each tile’s bit-stream
only depends on PPS and the tile encoding task.
Hence the video encoder will first output the PPS,
and once one tile is encoded, its bit-stream will be
output and sent for offloading. We also introduce a
fake bit-stream task to mark the end of the bit-stream
tasks in a given frame.

• Frame Decoding. Existing video decoders operate on
a frame basis. They assume the bit-streams of all the
tiles in a frame arrive sequentially and utilize the
offset from the first tile in the frame to locate the
other tiles. For example, in HEVC, only the location
of the first tile is signaled in the slice header. All the
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other tiles transmit their bit-stream offsets in the slice
header, which introduces dependencies on the first
tile. We eliminate such dependencies and enable tile-
level parallelism in frame decoding by forcing every
tile in a frame as a “first tile”. This is implemented
by modifying the bit-stream of each tile in the video
encoder (Kvazaar) and the HEVC parser in the video
decoder (OpenHevc [46]) accordingly. Fig. 5d shows
an example of tile-level frame decoding. Each tile is
decoded to its position independent of the other tiles
(shown in black).

• Object Detection. Performing object detection on each
tile separately may miss objects which cross the
boundaries of adjacent tiles. We mitigate such de-
pendencies among tiles during object detection via
overlap-tiling. That is, we split the frame into M ×N
tiles, where M and N are odd numbers. We use (i, j)
to denote each tile, where i ∈ [1,M ] and j ∈ [1, N ]
are the row index and column index, respectively.
We classify tiles into two categories. If both i and
j are odd numbers, the tile (i, j) is a primary tile.
Otherwise, the tile is an overlay tile. Fig. 5e shows
an example. Since tile 2 can be denoted as (1, 3), tile
2 is a primary tile. We can conclude that tile 2 and 4
are primary tiles and tile 1, 3, 5, 6, 7, 8 are overlap
tiles. We group each primary tile with its surround-
ing overlap tiles for small object detection. In this
example, tile 1, 2, 3, 5, 6, 7 will be grouped. Detecting
objects for each tile group reduces the probability
of missing objects that exceed the boundary of a
primary tile. We only group the surrounding tiles
because our remote detector targets at small objects.
Only large objects may be present in two primary
tiles crossing the overlap tiles, as person A and B in
Fig. 5f. The overlap size Soverlap (minimal width and
height of overlap tiles) is set to the least multiple
large coding unit (LCU), which is larger than the
maximal size of small objects defined in Sec. 4.1.1
and complies with the tile definition in HEVC. The
formula is illustrated as

Soverlap = dmaxc{max{wc, hc}}
LCU WIDTH

e×LCU WIDTH

(1)
where wc and hc are the width and height of
the small object threshold for the targeting class c.
LCU WIDTH is the width of LCU. As object size
can be arbitrary, the approach of overlap-tiling may
not always work well in some extreme cases, we
overcome it by simply running object detection on
the whole image after the last tile is transmitted.
Fig. 5f shows an example of detection results using
our method.

4.2.2 Enabling Content-based Priority

Prioritizing tiles containing more objects over those contain-
ing fewer objects allows the cached detection results of more
objects to stay fresh. Since our implementation of tile-level
parallelism (Sec. 4.2.1) ensures tiles are offloaded early to
return detection results early, we only need to prioritize tiles
at the frame encoding stage.
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• Implementing Tile Priority for Frame Encoding. We mod-
ify the task schedule module in Kvazaar by adding
a dynamic priority mapping module to enable the
ordering of tiles (see Fig. 7). Specifically, the dynamic
priority mapping layer associates a priority value p
to each primary tile according to the input content,
where p ∈ [0, N) and N is the number of primary
tiles, and each overlap tile calculates its priority p
as the maximum priority of its surrounding primary
tiles. Then the encoding task of each tile is assigned
a priority value of p while its bit-stream task is
assigned a priority value of p+N . This is to force the
bit-stream task to execute once the tile is encoded,
which can be before other tiles’ encoding tasks.

• Assigning Tile Priority based on Content. To determine
the priorities (i.e., p) of the N primary tiles, we count
the number of small objects of the corresponding tile
group. The priority value p of each primary tile is the
index in ascending order.

5 LOCAL OBJECT DETECTOR

The local object detector aims to detect medium- to large-
sized objects in the video frames locally on the mobile
device. Since mobile devices have limited resources com-
pared with the edge, the local object detector should be
lightweight and operate on low-resolution frames. We em-
pirically decide the model and input resolution for the local
object detector. The local object detector should balance
between offline accuracy and latency to achieve high online
accuracy. The offline accuracy refers to the accuracy of the
object detector, while the online accuracy refers to the ac-
curacy in the “detect+track” framework [5], [11]. Accuracy
is measured by metrics such as IoU, as will be defined in
Sec. 8.1.5.

Table 1 shows the performance of different combinations
of object detectors and input resolutions evaluated on the
VisDrone dataset with an iPhone 11. For resource efficiency,
the models are quantized to float16. Since the “real-time”
detector is not a must with the “detect+track” framework,
we choose YOLOv3 (640x640) as the local object detector
based on the analysis. Fig. 5g shows an example of detection
results of the local object detector. Note that we only aim to
show the feasibility of running an object detector locally for
accurate and real-time medium- to large-sized objects. An
exhaustic search on the optimal local object detector is out
of the scope of this paper.

6 REAL-TIME TRACKING

This module aggregates the offloaded and the local detec-
tion results into the cache and adjusts the cached results via
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TABLE 1
Performance of local detector on iPhone 11.

Model IoU (offline) Latency IoU (online)

YOLOv3-tiny (320x320) 0.015 12.4ms 0.012
YOLOv3-tiny (640x640) 0.078 19.5ms 0.052
YOLOv3-tiny (960x960) 0.140 38.9ms 0.090

YOLOv3 (320x320) 0.176 23.8ms 0.092
YOLOv3 (640x640) 0.361 62.5ms 0.193
YOLOv3 (960x960) 0.522 178.7ms 0.161
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Fig. 8. General workflow using multiple single-object trackers.

object trackers to output the bounding boxes for the current
frame. EdgeDuet adopts multiple single-object trackers for
object tracking, as in [5], [11]. Fig. 8 shows the general
workflow. Trackers return latest updated bounding boxes
so as to query as the same fps as the video input. Since we
target at video streams with high frame rates (30/60/120
fps) and the cached results come from two object detectors,
the general workflow needs to be optimized for EdgeDuet,
as we describe below.

6.0.1 Cache Management
We cache the detection results received from the local or
remote object detector and discard the old results upon
receiving new ones. One issue in our cache management
is that the local and the remote detector may introduce
duplicated detection results of the same object. We drop the
results of the local detector for small objects and those of the
remote detector for medium- to large-sized objects in case
of duplicated results. Fig. 5h shows an example of merging
local detection results and remote detection results.

6.0.2 Adaptive Tracker Configuration
To optimize the tracking performance on mobile devices, we
consider the following.

• Choice of Single-object Tracker. We empirically choose
KCF [14] as our single-object tracker since it is both
faster and more accurate than the optical flow based
tracker in [11] and has higher accuracy than the
motion vector based tracker in [5].

• Priority-based Tracker Scheduling. To execute multi-
ple single-object trackers on resource-constrained
devices, we adaptively update the tracking results
based on the speed of the objects, because it is un-
necessary to frequently update the tracking results of
objects that are static or moving slowly. Specifically,
we estimate the object’s speed by the object’s move
distance in continuously tracked frames. Then we
set a different weight for each speed range, and the

Fig. 9. Internal Architecture of Apple A13 SoCs.

priority of each tracker is updated to the product of
its weight value and the default priority (distance
between the current frame and last tracked frame in
sequential task scheduling). We schedule the tracker
with high priority to track first to ensure high-speed
objects frequently updated. To accelerate the tracking
module, we use a thread pool to execute multiple
trackers parallelly.

7 IMPLEMENTATION

This section presents the implementation of EdgeDuet on
the device-side and the edge-side.

7.1 Implementation of Core Device-Side Modules

We implement the device-side of EdgeDuet on a popular
mobile device, iPhone 11, which equips the A13 Bionic
chip. As shown in Fig. 9, this SoC contains 4 processors:
two high-performance Lightning CPU cores running at 2.65
GHz, four energy-efficient Thunder cores running at 1.80
GHz, four GPU cores with 0.69 TFLOPS for FP32 floating
point computing and eight Neural Engine cores with 5.5
TOPS for AI computing [47]. Benefiting from the excellent
performance, the Soc makes it efficient for the tasks of video
compression, object detection and real-time object tracking.

The device-side modules of EdgeDuet consist of a video
streamer, a video encoder, a local object detector and an
object tracker. Each module has a unique thread and com-
municates with other modules by blocking queues. The
video streamer simulates the video camera streaming pro-
cess and feeds raw frames to the video encoder, the local
object detector and the object tracker with different frame
rates. The video encoder encodes raw frames to bit-stream
and sends network packets to the server. The local object
detector runs a light-weight object detection model and
updates the frame cache for object tracking. The object
tracker tracks all objects detected from both the local object
detector and the remote object detector. Most modules on
the device side are implemented in C++ 17 [48] for easy
deployment on different platforms such as iOS Frameworks
[49], Android NDK [50] and Nvidia Jetson [51]. We next
explain more detail for each module.

7.1.1 Video Streamer

This module is used for simulating the video camera stream-
ing process using standard video datasets. The streamer
loads a video file and feeds video frames into EdgeDuet
at 30/60/120 fps. The module is implemented in C++ using
the VideoCapture module in OpenCV [52] to read RGB
images from a video file and convert the image to I420
format for video encoding.
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7.1.2 Video Encoder
This module is implemented in C++ based on Kvazaar
[53], an open-source HEVC encoder. We modify the library
to support tile-based parallel encoding and priority, as de-
scribed in Sec. 4.2.1 and Sec. 4.2.2. The modified library
is open-sourced at https://github.com/xu-wang11/kvazaar. We
empirically encode and offload frames at a fixed frame rate
(e.g., 5 fps).

7.1.3 Local Object Detector
This module is implemented in Objective-C [54] with Core
ML [55], which optimizes on-device performance by jointly
leveraging the CPU, GPU, and Neural Engine. We use
the pre-trained compressed YOLOv3 model YOLOv3FP16
(640x640). for medium- to large-sized object detection, as
explained in Sec. 5. We empirically run the local object
detector at a fixed frame rate (e.g., 10).

7.1.4 Object Tracker
This module is implemented in C++ with the KCF [14]
Tracker and ThreadPool [56] to schedule multiple ob-
ject tracking. We use the implementation of KCFcpp [57]
without the HOG features [58] for fast object tracking, as
described in Sec. 6.0.2.

7.2 Implementation of Core Edge-Side Modules
We implement the edge-side modules of EdgeDuet on a
CentOS 7.0 server. It is equipped with two 8-core Intel Xeon
CPU E5-2560 v4 CPUs, two GTX 2080ti GPUs and 256GB
memory. The edge-side modules of EdgeDuet consist of
a video decoder and a remote object detector. The video
decoder receives packets from the device-side and converts
them to image tiles. The image tiles will be queued in the
remote object detector for object detection.

7.2.1 Video Decoder
The video decoder is implemented in C++ based on the
OpenHEVC library [46]. We modify the library to support
tile-based parallel decoding as in Sec. 4.2.1. We use OpenCV-
Python bindings [59] for Python to run the decoder and
access the decoding results from memory.

7.2.2 Remote Object Detector
The detector for small objects on the edge is implemented
as a pre-trained full-precision YOLOv3-spp [60] model in
PyTorch [61]. We run the model in multiple processes for
parallel inference on tiles. The GPU is set to CUDA Multi-
Process Service mode [62] to reduce GPU context switching.

7.3 Implementation of Auxiliary Modules
For the edge- and device-side modules to work in synergy,
we also implement the necessary functions for network
communication, inter-thread communication, and data log-
ging.

7.3.1 Network Communication
The communication between the edge and the mobile device
is via TCP [63]. We use the sockpp [64] library for net-
work programming. The up-link traffic is transmitted as bit-
streams, and the down-link traffic (bboxes from the edge)
is transmitted in the format of JSON. The device will parse
it with the JSON [65] library.

7.3.2 Inter-thread Communication
In our implementation, each module works as an indepen-
dent thread. We use the concurrentqueue [66] library to
block the thread when no task is put into the queue.

7.3.3 Data Logging
We use spdlog [67] to log the timestamps of each process-
ing step for tracing the entire workflow.

Similarly, we use “queue” for message communication,
“socket” for network communication, “logging” for logging
the work flow. All of them are in the python standard
library.

8 EVALUATION

This section presents the evaluations of EdgeDuet.

8.1 Experiment Setup
8.1.1 Datasets
To evaluate the performance for small object detection, we
compare different methods on VisDrone, a dataset of videos
captured by drone-mounted cameras, which contains lots of
small objects. We filter out the low-resolution videos and
only keep six 2K videos (2560x1440) captured along a street.
The count of frames is 1886. We upsample the origin 30fps
videos to 60/120 fps with Super-SloMo [14] to evaluate the
performance with the video frame rate.

Table 2 gives the basic statistics of the dataset. Fig. 10
shows certain vital statistics of the VisDrone dataset. From
Fig. 10a, the average number of objects in each frame is
132. As we will show later, adaptive tracker configuration
is beneficial to track such many objects in real-time. We
analyze the threshold of small objects by running the local
object detector and remote object detector on the dataset.
We use the detection results of the remote object detector
as the ground truth and the areas of bounding boxes as the
sizes of objects to calculate the recall-size curves of each
class. Fig. 3 shows the results of the car class and pedestrian
class. We set the threshold of the small car as 5150 pixels
and the threshold of the small person as 1698 pixels. From
Fig. 10b and Fig. 10c, 75.1% of cars and 71.8% of pedestrians
are small objects. We will show the performance gain of
offloading small object detection over local detection shortly.

8.1.2 Compared Methods
We compare our EdgeDuet with the following object detec-
tion schemes.

• Glimpse [11]: a continuous, real-time object de-
tection system that first proposes the “detect + track”
framework on mobile devices. It offloads frames to
the cloud and uses optical flow based tracker for real-
time tracking.

• EAAR [5]: a state-of-the-art real-time object de-
tection system with offloading. It exploits parallel
streaming and inference as well as motion vector
based object tracking.

• LaT: a variant of EdgeDuet (Local object detector +
adaptive Tracking configuration) that only performs
local object detection and tracks with our adaptive
tracker configuration.
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Fig. 10. Characteristics of VisDrone dataset. There are numbers of objects in each frame, and most objects are small in size.

TABLE 2
Dataset Statistics

scenario #videos #avg duration #frames #categories #avg objects of each frame resolution year

drone 6 10.5s 1886 2 132 3840x2160 2018

To demonstrate the effectiveness of RoI frame encoding
module and Content-prioritized tile offloading module in
our EdgeDuet, we also compare the performance of the
following variants of EdgeDuet.

• EdgeT The variant only utilizes tile-level parallelism
for small object detection.

• EdgeTR The variant is EdgeT enhanced with RoI
frame encoding.

8.1.3 Implementation and Settings of Compared Methods
The implementation of EdgeDuet and LaT can be found in
Sec. 7. We briefly explain the implementation of Glimpse,
EAAR, and parameter settings for all methods below.

• Frames Encoding. To ignore the difference of JPEG
encoders and video encoders, we use Kvazaar
to get compressed JPEGs for Glimpse and video
frames for EAAR and EdgeDuet. This setting ensures
the same frame quality for a fair comparison. For
Glimpse, we encode each frame to I frame by setting
Group of pictures (GOP) as 1. For EAAR and Edge-
Duet, the GOP is set to 10. We use the ultrafast
preset for real-time video encoding. We tune high-
quality QP as 22 and low-quality QP as 44 for RoI en-
coding in EAAR and EdgeDuet. EAAR uses Kvazaar
to encode one frame to 1x4 tiles and pack each tile
into one slice, as the default setting. EdgeDuet splits
the frame into 5x3 tiles for offloading, as in Fig. 5c.

• Remote Object Detector. We use the same remote object
detection model, i.e., YOLOv3-spp, for Glimpse,
EAAR, and EdgeDuet. Glimpse operates on the input
size of 2560x2560. EAAR operates on 1280x1280 but
returns the detection results in 2560x2560. Specifi-
cally, we first cache the object detection results of
each 2560x2560 frame in the memory and implement
the Dependency Aware Inference by detecting on only
one tile and overlooking other tiles for convenience.
Since we return the detection results of the whole
frame, our setting has the same accuracy but allows

a lower latency of EAAR compared with its origin
dependency aware inference. EdgeDuet operates on
960x960 for overlap-tiling inference. The overlap size
is set to 128 (2 macroblocks) as in Sec. 4.2.1.

• Real-time Object Tracking. We implement the optical
flow based tracker with calcOpticalFlowPyrLK
for Glimpse. For EAAR, the motion vector based
tracker is implemented as an offline process. When
received from the server, each track frame is asso-
ciated with a refer frame ID. We use ffmpeg to
compress the refer and track frames and extract the
motion vector based on the refer frame to simulate
RPS Control in EAAR. LaT uses the same tracking
module of EdgeDuet. They both split the speed range
into two groups and set the weight as 2.0 for the
fast speed range and 1.0 for the slow speed range, as
explained in Sec. 6.0.2. The fast speed range is set as
[30 pixels/s,+∞), and the slow speed range is set as
[0, 30 pixels/s). We query the tracking results of the
previous frame when the current frame is fed for all
methods.

8.1.4 Network Setting
Since autonomous mobile vision applications are often de-
ployed outdoors, the network connections vary. Accord-
ingly, we compare the methods in different network settings.
We connect the mobile device and the edge with WiFi 5GHz
and emulate different types of networks with Network
Link Conditioner, a developer tool provided by Apple.
We use it to simulate different network conditions (LTE,
WiFi 2.4GHz, WiFi 5GHz), and network bandwidths, Table 3
summarizes the parameters of the three network conditions.
Network conditions with high network propagation delay
is overlooked since our system requires offloading high-
resolution frame.

8.1.5 Metrics
We evaluate the performance of different methods with the
following metrics.
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TABLE 3
Parameters of three network conditions.

Parameter LTE WiFi 2.4GHz WiFi 5GHz

In Bandwidth (Kbps) 50000 40000 250000
Out Bandwidth (Kbps) 10000 33000 100000
In Delay (ms) 50 1 1
Out Delay (ms) 65 1 1

• Latency: The evaluation metric measures the delay of
the detected objects. Lower latency will benefit the
accuracy of object tracking. Since our detection re-
sults are composed of medium- to large-sized objects
in frames from the local object detector and small
objects in tiles from the remote object detector. We
average latency for all objects, which is compatible
with the definition of latency in EAAR. Specifically,
supposing that there are M frames Fm uploaded to
the edge server, the M-th frame is captured at time
t(Fm) and contains Nm objects. The bounding box
and class label of each object On

m are sent to the client
at time t(On

m). Therefore, the latency can be obtained
by:

Latency =
1∑M

m=1 Nm

M∑
m=1

Nm∑
n=1

t(On
m)− t(Fm) (2)

• Accuracy: We use the average IoU [68] to measure the
real-time object detection accuracy as in Glimpse
and EAAR. The IoU of object o is defined as the
Intersection over Union overlap with its ground-
truth box.

IoUo =
|BBox(o) ∩ BBox(g)|
|BBox(o) ∪ BBox(g)|

(3)

where | · | is the area of the geometry, BBox(·) is the
bounding box of the geometry. g is the ground truth
of the object o. We take the object accurately detected
if IoU >= 0.8. The IoU is averaged over all objects in
all frames.

8.2 End-to-End Performance

Fig. 11 summarizes the accuracy and latency of different
methods under LTE, WiFi 2.4GHz, WiFi 5GHz network
conditions. Fig. 12 highlights the accuracy of small objects.
We present our observations and explain the results below.
Fig. 13 shows the sample of detection results.

8.2.1 Overall Comparison
EdgeDuet notably outperforms the two offloading schemes,
Glimpse and EAAR, in both accuracy and latency under
all three network conditions. LaT is the fastest because it
only performs local detection. However, pure local detection
has the worst accuracy, especially for small object detection.
EdgeDuet achieves 160.2%, 242.9%, 287.8% improvement in
IoU metric for small object detection accuracy under the
three network conditions, respectively. Under slow network
connection, e.g., LTE, LaT achieves similar accuracy with
Glimpse and EAAR. This indicates the necessity of a local
object detector when network conditions vary, which is

common outdoors. Since LaT performs badly for small
objects, we exclude it for the subsequent evaluations.

Among the variants of EdgeDuet, EdgeRT achieves a
higher IoU (1.47%, 2.80%, 1.43%) and lower latency(5.42%,
2.16%, 8.28%) than EdgeT. This demonstrates the effec-
tiveness of RoI Frame Encoding. EdgeDuet achieves a
higher IoU (4.06%, 5.20%, 8.90%) and lower latency (1.47%,
18.79%, 11.41%) than EdgeTR. This shows the effectiveness
of Content-prioritized tile offloading.

8.2.2 Comparison with Offloading Schemes on Latency
EdgeDuet achieves 48.8%, 39.6%, 38.6% latency improve-
ment than Glimpse and 35.4%, 35.2%, 32.2% latency im-
provement than EAAR under the three network conditions.
The improvement in latency is more notable under slower
networks, e.g., LTE. EAAR achieves shorter latency than
Glimpse since it transmits encoded videos instead of raw
JPEGs. EdgeDuet is faster than EAAR for the following
reasons.

• Detection of medium- to large-sized objects of Edge-
Duet is from a local object detector. The latency of
the local object detector is lower than offloading.

• Only small object detection is offloaded in EdgeDuet.
Therefore fewer data need to be transmitted.

• EdgeDuet accelerates the offloading pipeline with
tile-level parallelism. EAAR only implements task-
level parallelism, so that the detection results have
to wait for processing the entire frame.

8.2.3 Comparison with Offloading Schemes on Accuracy
EdgeDuet achieves 52.8%, 45.5%, 47.6% IoU improvement
gain over Glimpse, 50.2%, 43.6%, 41.3% IoU improve-
ment over EAAR under the three network conditions. EAAR
achieves slightly better accuracy than Glimpse under LTE
and WiFi 2.4GHz. The reason might be that motion vec-
tor based tracker behaves badly when latency increases.
EdgeDuet yields the highest accuracy because it trades off
between the tracker’s accuracy and efficiency and employs
adaptive tracking to update fast-moving objects.

8.2.4 Comparison with Offloading Schemes on Small Ob-
ject Detection.
EdgeDuet achieves 34.9%, 34.9%, 44.5% IoU improvement
for small objects over Glimpse, 72.3%, 68.0%, 61.7% IoU
improvement for small objects over EAAR. EAAR is worse
than Glimpse for small object detection, although it has
a higher overall detection accuracy. This is because small
objects contain very few macroblocks to extract motion
vectors, making it inaccurate to represent the object.

Among the variants of EdgeDuet, EdgeRT achieves a
little higher IoU (0.9%, 0.7%, 3.4%) than EdgeT. EdgeDuet
achieves higher IoU (11.4%, 13.5%, 14.5%) than EdgeTR.
This demonstrates Content-prioritized offloading module
contributes a lot for small object detection.

8.3 Impacting Factors on Overall Performance
8.3.1 Impact of Bandwidth
Fig. 14 shows the accuracy of different methods under
different bandwidths. Thanks to the local object detector
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Fig. 11. End-to-end object detection accuracy (bars in red) and latency (bars in blue) of different methods under three network connections.
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Fig. 12. Small object detection accuracy of different methods under three network connections. Pure local object detection (LaT) is excluded from
subsequent evaluations for its low detection accuracy on small objects.

(a) Input Frame (b) Detection Results

Fig. 13. Output Sample of EdgeDuet.

and optimized offloading, EdgeDuet consistently achieves
better accuracy than Glimpse and EAAR. Particularly, when
the bandwidth is limited (below 10Mbps), the accuracy of
Glimpse and EAAR drops dramatically.

8.3.2 Impact of Frame Rate

Fig. 16 shows the accuracy of different methods when feed-
ing videos of different frame rates. EdgeDuet consistently
achieves higher accuracy than Glimpse and EAAR, even
at 120fps. With the increase of frame rate, the accuracy of
Glimpse drops. This is because the real-time tracker of
Glimpse only works in an fps lower than 30fps. As for
EAAR, increasing the frame rate motion does not impact
the motion vector based tracker and thus the accuracy. An
interesting finding is the accuracy of EdgeDuet increases
with the frame rate. The reason may be that we use adap-
tive tracker configuration to update trackers of high speed
objects frequently to reduce the influence of the skipped
frames. Our tile-level parallelism may also help since once
each tile’s results are received, they do not wait for the new
frame fed with high fps video input.

8.4 Benefits of Individual Modules in EdgeDuet

8.4.1 Benefits of RoI Frame Encoding

We evaluate the benefits of RoI frame encoding by com-
paring the offloading file size with EAAR and Glimpse. We
average the bits count of frames with the same index in GOP.
Since Glimpse only contains I frame, we only average the
corresponding frames with the same frame index. Fig. 15
shows the average frame size of GOP. Since Glimpse does
not apply inter-frame prediction and RoI frame encoding,
its frame size is the largest, especially when the frame is
encoded to P frame in EAAR and EdgeDuet. Since EdgeDuet
does not offload medium- to large-sized objects, its frame
size is smaller than EAAR.

8.4.2 Benefits of Content-prioritized Tile Offloading

We show the benefits of content-prioritized tile offloading
by comparing EdgeDuet with two variants. The variant
Frame-Level encodes frames without splitting into tiles.
The variant Tile-Level splits frames into tiles, but does
not change their priority. Fig. 17 shows the accuracy and la-
tency of EdgeDuet and the two variants. EdgeDuet achieves
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8.1% and 5.0% accuracy improvement over Frame-Level
and Tile-Level. EdgeDuet achieves 12.1% and 5.1% la-
tency improvement over Frame-Level and Tile-Level.

8.4.3 Benefits of Adaptive Tracker Configuration

We evaluate the benefits of adaptive tracker configura-
tion by comparing EdgeDuet with a variant SeqTracking
which sequentially updates each tracker. Fig. 18 shows the
accuracy of EdgeDuet and SeqTracking. Our adaptive
tracker configuration improves the overall accuracy by 4.7%.

9 LIMITATIONS AND DISCUSSION

• Commercial HEVC Codec Support. EdgeDuet uti-
lizes Kvazaar as the video codec. Since Kvazaar is
a CPU-based video encoder, it requires lots of com-
puting resources for high-resolution video compres-
sion, which burdens a lot for most mobile devices.
Hardware acceleration will help it for efficient video
compression, however, the commercial codecs have
not supported the tile feature yet. We hope some
AI-driven solutions like EdgeDuet will give more
attention to the feature.

• Adaptive Local Object Detector. The performance of
EdgeDuet is influenced by the local object detector.
An efficient and accurate local object detector will
reduce the size of the uploaded video frame and
improve the accuracy of the trackers. However, the
local object detector will compete for the computing
resources with the trackers, which is not analyzed in
EdgeDuet. We don’t search the optimal local object
detector choice according to the computing resources
and the video input.

10 CONCLUSION

This paper presents EdgeDuet, the first splits object detec-
tion between the mobile device and the edge for accurate,
real-time object detection on resource-constrained devices.
Specifically, EdgeDuet offloads small object detection to the
edge while detecting medium- to large-sized objects locally
on the mobile device. EdgeDuet exploits RoI frame encoding
and priority-based tile offloading to reduce the network traf-
fic and accelerate the offloading pipeline. It also optimizes
the cache detection results and tracker configurations for
real-time object tracking. Evaluations on VisDrone, a video
dataset from drone-mounted cameras, show that EdgeDuet
outperforms local object detection in small object detection
accuracy by 233.0%. It also improves the overall accuracy
by 44.7% and end-to-end latency by 34.2% over the state-
of-the-art offloading schemes, especially in low bandwidth
and high frame-rate input.
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[23] V. Rŭžička and F. Franchetti, “Fast and accurate object detection
in high resolution 4k and 8k video using gpus,” in Proc. of IEEE
HPEC, 2018.

[24] M. Gao, R. Yu, A. Li, V. I. Morariu, and L. S. Davis, “Dynamic
zoom-in network for fast object detection in large images,” in Proc.
of IEEE CVPR, 2018.

[25] S. Han, H. Shen, M. Philipose, S. Agarwal, A. Wolman, and A. Kr-
ishnamurthy, “Mcdnn: An approximation-based execution frame-

work for deep stream processing under resource constraints,” in
Proc. of ACM MobiSys, 2016.

[26] J. Wang, Z. Feng, Z. Chen, S. George, M. Bala, P. Pillai, S.-W. Yang,
and M. Satyanarayanan, “Bandwidth-efficient live video analytics
for drones via edge computing,” in Proc. of IEEE/ACM SEC, 2018.

[27] X. Ran, H. Chen, X. Zhu, Z. Liu, and J. Chen, “Deepdecision: A
mobile deep learning framework for edge video analytics,” in Proc.
of IEEE INFOCOM, 2018.
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