
2

Unified Route Planning for Shared Mobility: An
Insertion-based Framework

YONGXIN TONG, SKLSDE Lab and IRI, Beihang University, China

YUXIANG ZENG, The Hong Kong University of Science and Technology, China

ZIMU ZHOU, Singapore Management University, Singapore

LEI CHEN, The Hong Kong University of Science and Technology, China

KE XU, SKLSDE Lab and IRI, Beihang University, China

There has been a dramatic growth of shared mobility applications such as ride-sharing, food delivery, and

crowdsourced parcel delivery. Shared mobility refers to transportation services that are shared among users,

where a central issue is route planning. Given a set of workers and requests, route planning finds for each

worker a route, i.e., a sequence of locations to pick up and drop off passengers/parcels that arrive from time

to time, with different optimization objectives. Previous studies lack practicability due to their conflicted

objectives and inefficiency in inserting a new request into a route, a basic operation called insertion. In ad-

dition, previous route planning solutions fail to exploit the appearance patterns of future requests hidden

in historical data for optimization. In this paper, we present a unified formulation of route planning called

URPSM. It has a well-defined parameterized objective function which eliminates the contradicted objectives

in previous studies and enables flexible multi-objective route planning for shared mobility. We propose two

insertion-based frameworks to solve the URPSM problem. The first is built upon the plain-insertion widely

used in prior studies, which processes online requests only, whereas the second relies on a new insertion op-

erator called prophet-insertion that handles both online and predicted requests. Novel dynamic programming

algorithms are designed to accelerate both insertions to only linear time. Theoretical analysis shows that

no online algorithm can have a constant competitive ratio for the URPSM problem under the competitive

analysis model, yet our prophet-insertion-based framework can achieve a constant optimality ratio under

the instance-optimality model. Extensive experimental results on real datasets show that our insertion-based

solutions outperform the state-of-the-art algorithms in both effectiveness and efficiency by a large margin

(e.g., up to 30× more effective in the objective and up to 20× faster).

Yongxin Tong and Ke Xu’s work is partially supported by the National Key Research and Development Program of

China under Grant No. 2018AAA0101100, the National Science Foundation of China (NSFC) under Grant Nos. 61822201,

U1811463 and 62076017, the CCF-Huawei Database System Innovation Research Plan No. CCF-HuaweiDBIR2020008B,

and the State Key Laboratory of Software Development Environment Open Funding No. SKLSDE-2020ZX-07. Yuxiang

Zeng and Lei Chen’s work is partially supported by National Key Research and Development Program of China Grant No.

2018AAA0101100, the Hong Kong RGC GRF Project 16209519, RIF Project R6020-19, CRF Project C6030-18G, C1031-18G,

C5026-18G, AOE Project AoE/E-603/18, Theme-based project TRS T41-603/20R, China NSFC No. 61729201, Guangdong Ba-

sic and Applied Basic Research Foundation 2019B151530001, Hong Kong ITC ITF grants ITS/044/18FX and ITS/470/18FX,

Microsoft Research Asia Collaborative Research Grant, HKUST-NAVER/LINE AI Lab, Didi-HKUST joint research lab,

HKUST-Webank joint research lab grants.

Authors’ addresses: Y. Tong and K. Xu, SKLSDE Lab and IRI, Beihang University, Xueyuan Road, Beijing, China, 100191;

emails: {yxtong, kexu}@buaa.edu.cn; Y. Zeng and L. Chen, The Hong Kong University of Science and Technology, Clear

Water Bay, Hong Kong SAR, China; emails: {yzengal, leichen}@cse.ust.hk; Z. Zhou, Singapore Management University, 81

Victoria Street, Singapore, Singapore, 188065; email: zimuzhou@smu.edu.sg.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2022 Association for Computing Machinery.

0362-5915/2022/05-ART2 $15.00

https://doi.org/10.1145/3488723

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

https://orcid.org/0000-0002-5598-0312
https://orcid.org/0000-0002-8257-5806
mailto:permissions@acm.org
https://doi.org/10.1145/3488723

2:2 Y. Tong et al.

CCS Concepts: • Information systems → Spatial-temporal systems; Geographic information sys-

tems;

Additional Key Words and Phrases: Route planning, Ride-sharing, Insertion, Dynamic programming

ACM Reference format:

Yongxin Tong, Yuxiang Zeng, Zimu Zhou, Lei Chen, and Ke Xu. 2022. Unified Route Planning for Shared

Mobility: An Insertion-based Framework. ACM Trans. Database Syst. 47, 1, Article 2 (May 2022), 48 pages.

https://doi.org/10.1145/3488723

1 INTRODUCTION

Shared mobility refers to transportation services that are shared among users, such as ride-sharing,
food delivery, and crowdsourced parcel delivery [45]. By altering routes and filling under-used
vehicles, shared mobility mitigates pollution, reduces transportation costs, and provides last-mile
delivery [53]. It is predicted as an efficient and sustainable alternative to urban transportation.

A key enabler for practical shared mobility is route planning among workers and requests. A
worker can be a driver in ride-sharing services or a courier in food and parcel delivery services;
and a request specifies an origin for pickup, and a destination for drop off. Route planning finds for
each worker a route i.e., a sequence of locations to pick up and drop off passengers/parcels that
arrive dynamically, with different optimization objectives.

Route planning for shared mobility has attracted extensive research interests from the database,
data mining, and transportation science communities. Most studies consider a single or a subset
of the following objectives: (i) minimizing the total travel distance [23, 25, 33, 39, 44, 47]; (ii) maxi-
mizing the number of served requests [12, 16, 23, 27, 44, 63]; and (iii) maximizing the total revenue
[2, 3, 70, 71]. Many solutions are heuristic and rely on an operation called insertion, which inserts
the origin and the destination of a new request into the current route [10, 12, 25, 33, 39, 44, 47, 63].
In practice, previous studies have the following limitations.

• Limitation 1. Existing proposals sometimes adopt multiple vague or even conflicted optimiza-
tion objectives. For example, in [23, 25, 33, 39, 44], the goal is to minimize the total travel
distance of workers without specifying how many requests should be served. Hence, an “op-
timal” solution is to serve no request at all, which contradicts common sense and the goal
to maximize the number of served requests. A unified route planning problem with flexible

and consistent optimization objectives is desirable for real-world applications.
• Limitation 2. The insertion operations in existing solutions [10, 25, 33, 34, 63] are inefficient

for large-scale shared mobility platforms. It takes at least quadratic time complexity to in-
sert a new request into a route, making insertion a bottleneck to process large numbers of
requests.
• Limitation 3. Most studies on route planning (e.g., [2, 10, 25, 32–34]) assume a pure online

setting [5], i.e., without any prior knowledge on the appearance of requests. Consequently,
they fail to exploit the availability of big urban data and the advances in urban mobility
prediction [20, 30, 48, 62], which may improve the effectiveness of route planning algorithms.

To address these limitations, we first define a new problem called Unified Route Planning

for Shared Mobility (URPSM). It unifies mainstream optimization objectives into a well-defined
objective function where individual objectives are compatibly integrated. The URPSM problem
also offers the flexibility to adjust the optimization goals for specific applications. We show that
the three optimization goals above can be reduced as special cases of the URPSM problem.

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

https://doi.org/10.1145/3488723

Unified Route Planning for Shared Mobility: An Insertion-based Framework 2:3

As the efficiency bottleneck of many route planning algorithms is the insertion operation (plain-

insertion in our context), we design a novel dynamic programming (DP) algorithm that reduces
its time complexity from cubic or quadratic [10, 12, 25, 33, 63] to linear. The key insight is that
dynamic programming can be utilized to find the best pickup location in O (1) time for each enu-
merated drop-off location. Then, we devise a greedy-based framework using the DP-based plain-
insertion to solve the URPSM problem under a pure online setting.

To further improve the effectiveness, we take advantage of the (offline) prediction on future
requests. Specifically, we define a new insertion operator called prophet-insertion. Compared with
the plain-insertion used in existing studies [25, 33, 54, 58], prophet-insertion plans the route for
not only newly appeared requests, but also predicted requests. The routes of the predicted requests
(a.k.a., guidance routes) are viewed as the guidance of the idle workers. That is, they will no longer
move aimlessly [25] or passively stay in place [1, 33, 54, 58], but are guided to where new requests
may appear in advance. Accordingly, we extend our DP-based techniques to achieve linear time
complexity for prophet-insertion, as well as our greedy-based framework.

Last but not the least, unlike previous efforts that ignore the hardness of approximation analysis,
we conduct a systematic theoretical analysis of the URPSM problem. We clarify and prove that
there is no algorithm, either deterministic or randomized, with a constant competitive ratio for
the URPSM problem and its special cases. The negative results imply that the competitive analysis

model [5] for general online algorithms is unfit for the theoretical analysis of the solutions to the
URPSM problem. Therefore, we take the instance-optimality model [17] to show the theoretical
guarantees of our proposed algorithms.

Our main contributions are summarized as follows.

• We abstract a unified formulation of the route planning problem for shared mobility, i.e.,
URPSM, by a well-defined parameterized objective function. It eliminates the contradicted
objectives in previous studies and benefits flexible multi-objective route planning in real-
world shared mobility applications.
• We design a novel dynamic programming (DP) algorithm to accelerate the widely used

plain-insertion operation. Our algorithm reduces the time complexity of this basic operation
from cubic or quadratic to linear. On basis of our DP-based insertion, we further devise an
effective and efficient framework called pGDP to solve the URPSM problem.
• We propose a new insertion operator called prophet-insertion exploiting predictions on future

requests from historical data. We extend our DP-based techniques to achieve linear time
complexity for prophet-insertion and propose a prediction-based solution named Prophet.
• We comprehensively analyze the hardness of approximation of the URPSM problem and

theoretical guarantees of our proposed algorithms. Specifically, under the competitive analy-

sis model [5], we prove that there is no polynomial-time online algorithm with a constant
competitive ratio for the URPSM problem and its variants. However, under the instance-

optimality model [17], our algorithm Prophet can achieve a constant optimality ratio (0.47)
with high probability to maximize the number of served requests or the total revenue.
• Extensive experiments on real datasets with large-scale road networks show the superior

performance gains of our proposed algorithms over the state-of-the-arts [1, 25, 33, 54]. Specif-
ically, compared with the non-prediction-based methods [1, 25, 33], our algorithm pGDP is
always more effective (e.g., up to 412×more effective than [1, 33] in the objective) and up to
23× faster than [1, 25]. Compared with the prediction-based method [54], pGDP is compar-
atively effective, but much more efficient (e.g., up to 80× faster than [54]). Our prediction-
based method, Prophet, is always the most effective and also faster than [54]. For instance,
Prophet yields up to 13× higher served rate (i.e., the percentage of the served requests among
all the requests) than [54] with up to 20× lower time cost.

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

2:4 Y. Tong et al.

In the rest of this paper, we review related work in Section 2, formulate the URPSM problem, and
discuss its generalizability as well as its hardness in Section 3. We present the plain-insertion-based
framework in Section 4 and propose our linear-time plain-insertion in Section 5. We then introduce
our prophet-insertion-based framework in Section 6 and linear-time prophet-insertion in Section 7.
Finally, we present the experimental evaluations in Section 8 and conclude in Section 9.

2 RELATED WORK

Research on route planning for shared mobility (RPSM) dates back to the dial-a-ride problem
proposed in 1975 [57] and has been studied by the database, data mining, and transportation
science communities. This section briefly reviews different variants of the RPSM problem and
their solutions.

2.1 Variants of RPSM Problems

An important setting in RPSM problems is static or dynamic. In a static (offline) RPSM problem,
information of workers and requests is known in advance. Conversely, in a dynamic (online) set-
ting, workers or requests appear dynamically, and requests need to be served within a short time
or even immediately. Dynamic RPSM problems are more aligned with real-world shared mobility
applications [2, 3, 12, 25, 33, 39, 47, 63] and hence will be our main focus.

Mainstream objectives of RPSM problems include minimizing the total travel distance [4, 8, 22],
maximizing the number of served requests [12, 27, 31, 32, 44, 63], and maximizing the total revenue
[2, 3, 54, 70, 71]. The total travel distance is the distance traveled by workers to serve requests. A
short travel distance indicates a low travel cost and little pollution [24, 40, 46]. A large number of
served requests contribute to the total revenue [63]. A more common goal is to minimize the total
travel distance while serving all the requests [25, 33, 39, 47]. Other studies focus on minimizing
the completion time of the requests [18], minimizing the average waiting time of the requests
[65], maximizing the social utilities between workers and requests [10, 29], ensuring the price
fairness [19], or answering the skyline queries [6, 9]. Our aim is to analyze the relationship among
mainstream objectives and integrate them into a compatible and flexible formulation.

2.2 Solutions to Dynamic RPSM Problems

Many solutions to the dynamic RPSM problems have been proposed [12, 25, 33, 39, 47, 51, 63],
where a core operation, called insertion, is widely utilized. Ma et al. [33, 34] use the enumeration
strategy to search for the best insertion location, which needs to satisfy the constraints of the
inserted requests. With additional constraints on the number of requests, the feasible insertions
can be further reduced but optimal ones may also be mistakenly removed [39, 42]. Parallelism also
applies to speed up insertion [39]. Insertion is frequently used in solutions to large-scale dynamic
RPSM problems. However, the insertion has quadratic or even cubic time complexity, which is a
bottleneck of efficiency. This motivates us to devise a linear-time insertion algorithm.

Solutions to the dynamic RPSM problems can be categorized into batch-based and real-time.
Batch-based Solutions. In these methods, each newly appeared request may need to wait for

a specific time interval (i.e., the batch size) until its response [1, 4, 66, 70, 71]). Specifically, Alonso-
Mora et al. [1] first generate many groups of requests which may be shared in each batch, and
then iteratively insert each group of requests into the current route of each worker. Zheng et al.
[70, 71] and Bei et al. [4] apply similar ideas as in [1]. Although they all use a bipartite graph to
represent the relationships between the groups of requests and the workers, they focus on different
objectives. Zheng et al. [70, 71] and Zeng et al. [66] maximize the total revenue of the platform. Bei
et al. [4] minimize the total travel distance when each request has no deadline and the capacity of
any worker is 2. Generally speaking, the size of the batch largely determines the time efficiency

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

Unified Route Planning for Shared Mobility: An Insertion-based Framework 2:5

of the batch-based solutions. For example, in our experiments, the average response time of [1]
is nearly half of the batch size (e.g., 60s). This is because the requests, which are released at the
beginning of each duration of 60s, are processed together at the end of the duration.

Real-Time Solutions. In these methods, the decision on whether there is an available worker
who can serve the request is made right upon the request [25, 31–33, 54]. For example, for each
newly appeared request, Ma et al. [33, 34] first search a set of candidate workers through grid index
and then insert the request to the candidate with minimum increased distance. Huang et al. [25]
propose an index (kinetic tree) to store all possible routes and use a similar insertion procedure to
minimize the total travel distance. Luo et al. [32] propose a novel index for the road network to
calculate the lower bound of the shortest distances in order to improve time efficiency. Wang et al.
[54] consider the balance between future demand and current supply when planning the routes.
Liu et al. [31] study a special scenario, where some requests may be invisible to the platform.

Due to the vast literature on the solutions to the RPSM problem, we compare our methods with
the most representative and competitive schemes as baselines.

Specifically, we analyze the results of [1] to show that batch-based solutions often hardly can
achieve real-time efficiency. We empirically compare T-share [33], the first work in the database
community to study dynamic ride-sharing. We also empirically compare Kinetic [25], since their
designed data structures, kinetic trees, are often used in existing studies (e.g., [9, 47, 69]). Finally,
we compare a recent work [54] which utilizes predictions to outperform other solutions (e.g., [64]).

We exclude [32] in our baselines, because their road network index is orthogonal to our proposed
solutions (e.g., used as the distance lower bound in Section 5.2.4). We also exclude [31] since it only
applies to situations where drivers can secretly pick passengers without informing platforms.

A preliminary version of this work has been published in [50]. The new contributions over the
preliminary work [50] are highlighted as follows.

(1) We propose a new solution framework (Section 6) based on a new insertion operator called
prophet-insertion (Section 7). The solution in the preliminary version relies on the plain-insertion,
which handles online requests only. In comparison, the new framework is more effective since the
prophet-insertion processes both online and predicted requests. Moreover, we devise non-trivial
DP-based techniques to accelerate the prophet-insertion from cubic-time to linear-time (Section 7).

(2) We exploit the instance-optimality model, which is better suited to differentiate solutions to
the URPSM problem than the competitive analysis model in the preliminary version (Section 3.3).
Our prophet-insertion-based framework can achieve a constant optimality ratio in maximizing the
number of served requests or total revenue, while the plain-insertion-based method in [50] cannot.

(3) We conduct experiments with more state-of-the-art algorithms on larger datasets. Evalua-
tions show that our new framework is up to 30×more effective than the solution in [50] (Section 8).

3 PROBLEM STATEMENT

In this section, we introduce the basic concepts (Section 3.1) and define the URPSM problem (Sec-
tion 3.2), which unifies the objective functions of many prior studies. We also present our analysis
models and hardness results in Section 3.3. The major notations are listed in Table 2.

3.1 Basic Concepts

Definition 1 (Road Network). A road network is denoted by an undirected graphG = (V ,E) with
a vertex set V and an edge set E. Each edge (u,v) ∈ E is associated with a travel time dis(u,v).

Definition 2 (Worker). A worker w = 〈ow , cw 〉 has an initial location ow and a capacity cw .

The capacity cw is the maximum number of passengers a taxi can take or the maximum number
of items a courier’s box can contain at any time.W = {w1, . . . ,w |W | } represents all the workers.

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

2:6 Y. Tong et al.

Definition 3 (Request). A request is denoted by r = 〈or ,dr , tr , er ,pr , cr 〉 with an origin or , a
destination dr , and a size cr . It appears on the shared mobility platform (platform for short) at the
release time tr and needs to be served before the deadline er . A request is served if (1) a worker
first picks up r at or after tr ; and (2) the same worker then delivers r at dr before er . If a request is
not served (or rejected), the platform will receive a penalty pr .

Here the size cr specifies the number of passengers in a ride-sharing request or the number of
items in a food-delivery order. Since it is difficult to serve every request in practice, a platform
may reject a certain request, which incurs a loss, i.e., penalty pr , due to the loss in income from the
served requests or user experience. The penalty is application-specific. We use R = {r1, . . . , r |R | }
to denote all the requests. We further denote Rw as the set of requests served by worker w , R+ =⋃

w ∈W Rw as all the served requests, and R− = R − R+ as all the rejected requests.

Definition 4 (Route). A route of a worker w is denoted by Sw = 〈l0, l1, . . . , ln〉, where l0 = ow is
the worker’s initial location, and 〈l1, . . . , ln〉 is an ordered sequence of the origins and destinations
of Rw , i.e., li ∈ {or | r ∈ Rw } ∪ {dr | r ∈ Rw }. A route is feasible if (1) ∀r ∈ Rw , or precedes dr

in the route Sw ; (2) ∀r ∈ Rw , the time when w arrives at dr is no later than the deadline er ; (3) At
any time, the total number of passengers/items (i.e., the total size of the requests) that have been
picked up but not delivered, does not exceed the capacity cw of the worker w .

We use D (Sw) to denote the total travel time of Sw , i.e., D (Sw) =
∑n

i=1 dis(li−1, li).

3.2 Unified Objective and URPSM Problem

Based on the basic concepts above, we first define a new problem called Unified Route Planning

for Shared Mobility (URPSM) as follows.

Definition 5 (URPSM). Given a road network G, a set of workers W , a set of requests R which
are only known at their released time, and a weight coefficient α , the URPSM problem is to find,
for each worker w ∈W , a route Sw , such that the unified cost UC (W ,R) is minimized

UC (W ,R) = α
∑

w ∈W
D (Sw) +

∑
r ∈R−

pr (1)

and meets (1) the feasibility constraint: each worker is arranged a feasible route; (2) the invariable
constraint: once requests are rejected, they cannot be revoked. Otherwise, they must be served.

We next illustrate the URPSM problem by a toy example.

Example 1. Suppose a ride-sharing platform with two workers (drivers)w1-w2 and three dynam-
ically appeared requests r1-r3. The workers’ initial locations are labeled on a road network with
eight vertices v1-v8 as shown in Figure 1(a). Table 1 lists the details of the requests. We further
assume each worker has a capacity of 4 (i.e., cw = 4) and the weight coefficient α = 1.

At time 5 (tr1), a request r1 is released with an origin at v2 and destination at v4. To serve r1, the
platform needs to plan a route to pick up r1 at v2 and deliver it at v4 before its deadline er1 . One
feasible route for w1 to serve r1 is 〈v7 (ow1),v2,v4〉. Between every two adjacent vertices in this
route, the workerw1 follows their shortest path and hence he can reachv4 at time 5+ (5+1)+ (5+
5) = 21. Specifically,w1 starts fromv7 at time 5 and moves fromv7 tov2 throughv1. Then,w1 picks
up r1 at v2 and travels from v2 to v4 through v8. Finally, w1 delivers r1 at the destination v4 before
the deadline 28. The platform can also reject the request, which will incur a penalty pr1 = 20. The
URPSM problem plans routes for the workers and minimizes the unified cost, which is composed of
both total travel cost and total penalty of the rejected requests. For instance, Figure 1(b) illustrates
a feasible solution, where w1 starts his route at time 0 and w2 starts his route at time 10. Based on

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

Unified Route Planning for Shared Mobility: An Insertion-based Framework 2:7

Fig. 1. The toy example of this paper (a road network, two workers w1-w2 and three requests r1-r3).

Table 1. Detailed Information of the Dynamically Appeared Requests r1-r3

Request Release time tr Deadline er Origin or Destination dr Penalty pr Size cr

r1 5 28 v2 v4 20 1

r2 10 31 v3 v5 10 1

r3 11 26 v8 v5 9 1

Table 2. Summary of Major Notations

Notation Description

R,W a set of requests and a set of workers

or ,dr the origin and destination of the request r
pr , cr the penalty and size of the request r
ow , cw the initial location and capacity of the worker w
R+,R− a set of served requests and a set of unserved requests

Sw ,D (Sw) the route of worker w and its total travel time

α the weight coefficient for unit travel time of workers

UC (·, ·) the unified cost (i.e., the objective of our URPSM problem)

dis(·, ·) the shortest travel time between two vertices on the road network

the planned routes, the total travel cost α
∑

w ∈W D (Sw) is 1 × (D (Sw1) + D (Sw2)) = 26 + 10 = 36.
The total penalty of the rejected requests is 0, since all the requests can be served by the routes
(e.g., r1, r3 are served by w1 and r2 is served by w2). Thus, the unified cost is 36 + 0 = 36.

Finally, we show many prior studies are special cases of URPSM with specific α and pr settings.

• Minimize the total travel time [25, 33, 38, 41, 47]. When α = 1 and∀r ,pr = ∞, minimizing
Equation (1) is equivalent to minimizing the total travel time while serving all the requests.
• Maximize the number of served requests [12, 16, 27, 63]. By setting α = 0 and ∀r ,pr = 1,

minimizing Equation (1) is equivalent to minimizing the number of unserved requests (i.e.,
maximizing the number of served requests) since every request’s penalty is 1.
• Maximize the total revenue [2, 3, 70, 71]. The total revenue of the platform consists of the

income of workers and the fare from the served requests. The income of a worker is related
to the total working time and the income for unit time fw . The fare of a request is relevant

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

2:8 Y. Tong et al.

to its length and the fare for unit time fr . Then the total revenue is calculated as:

REV (W ,R) = fr
∑

r ∈R+

dis(or ,dr) − fw
∑

w ∈W
D (Sw) (2)

Set α = fw and ∀r ∈ R,pr = fr × dis(or ,dr):

UC (W ,R) = fw
∑

w ∈W
D (Sw) + fr

∑
r ∈R−

dis(or ,dr) (3)

Substitute R+ = R − R− and Equation (3) into Equation (2):

REV (W ,R) = fr
∑
r ∈R

dis(or ,dr) −UC (W ,R) (4)

Since the requests are given (i.e., fr
∑

r ∈R dis(or ,dr) is a constant), minimizing UC (W ,R) in
Equation (1) is equivalent to maximizing the total revenue REV (W ,R) in Equation (4).

Remark. Existing studies consider the requests’ completion time [18] or waiting time [65] as the
objectives. Here, a request’s completion time is the time when it is delivered at the destination, and
the waiting time is the duration from its release time to the completion time. Although they are
not the special cases of our unified cost, the URPSM problem also considers them in the constraint.
Specifically, each request r has a release time tr and a deadline er in Definition 3. It restricts that
r must be completed before er and its waiting time is no longer than er − tr . To extend into their
objectives, we can replace the total travel cost of workers (i.e.,

∑
w ∈W D (Sw)) in Equation (1) with

the completion time of the last served request [18] or total waiting time of the served requests
[65].

3.3 Analysis Models and Hardness Results

The URPSM problem is NP-hard since the above special cases are all NP-hard problems (e.g., [33]).
To analyze the effectiveness guarantee, we present two analysis models, i.e., competitive analysis

model (Section 3.3.1) and instance-optimality model (Section 3.3.2). Though competitive model [5]
is one of the evaluation standards in theoretical computer science to analyze the effectiveness of
an online algorithm, our hardness result shows that no algorithms can achieve a good theoretical
guarantee (e.g., a constant competitive ratio). In other words, competitive analysis model fails
to discriminate and to suggest good approaches to the URPSM problem. Thus, we introduce the
instance-optimality model, which has been widely used in the database community [17].

3.3.1 Competitive Analysis Model and Hardness Result. Competitive ratio [5] is one of the most
widely-used evaluation standards to analyze the effectiveness guarantee of an online algorithm. It
measures how good an online algorithm is compared with the optimal result.

Definition 6 (Competitive Ratio). The competitive ratio of an online algorithm for the URPSM
problem is the minimum ratio between the result of this online algorithm and the optimal result
over all possible instances:

competitive ratio = min
∀ instance (G,W ,R)

UC (W ,R)

UC∗ (W ,R)
(5)

where UC (W ,R) is the unified cost of this online algorithm and UC∗ (W ,R) is the optimal result.

Though many existing papers have studied the special cases of URPSM, they lack theoretical
analysis in terms of competitive ratio. In fact, only [2] proves that no deterministic algorithm can
guarantee a constant competitive ratio to maximize the total revenue, but it is unknown whether

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

Unified Route Planning for Shared Mobility: An Insertion-based Framework 2:9

the conclusion applies to randomized algorithms. Thus, we further analyze the competitive hard-
ness by studying whether any randomized algorithm can guarantee a constant competitive ratio
in Theorem 1. If no such randomized algorithm exists, nor will any deterministic algorithm [5].

Theorem 1. Neither a deterministic algorithm nor a randomized algorithm has a constant com-

petitive ratio for the three special cases of the URPSM problem.

The negative results for each special case are shown by Lemmas 1, 2, and 3.

Lemma 1. When α = 0 and ∀r ,pr = 1, no algorithm has a constant competitive ratio to maximize

the number of served requests in the URPSM problem.

Proof. We only need to show that no randomized algorithm can guarantee a constant com-
petitive ratio. We first generate a distribution of the input and prove the expected value of any
deterministic algorithm on this input is not constant (e.g.,∞). Then applying Yao’s Principle [61],
no randomized algorithm has a constant competitive ratio.

The distribution χ of the requests, workers, and road network is generated as follows: (1) We
assume the road network G is an undirected cycle graph with |V | vertices (|V | is even) and the
length of each edge is 1. (2) We assume a single worker with initial location ow = v1 and capacity
cw = 2. (3) A request r is released at time tr = |V | whose or is generated uniformly at random
from all vertices V . We set dr = or , er = tr + ϵ, ϵ > 0 and pr = cr = 1.

Since the request is released at time |V | and there are |V | vertices in the graph, the worker in the
optimal solution has enough time (i.e., |V |) to arrive at or when the request r is released. Hence,
r can always be served by the optimal solution and the expected number of unserved requests is
zero, i.e., E[UC∗ (W ,R)] = 0.

Consider a generic deterministic online algorithm a which has its worker at point (not vertex)
u when r is released. As long as the shortest distance between u and or is no greater than ϵ , it
is able to serve r with a probability ≤ 2ϵ

|V | . Since there is only one request, the expected number

of unserved requests of algorithm a is E[UC (W ,R)] ≥ 1 − 2ϵ
|V | . Hence, the competitive ratio is

(1 − 2ϵ/|V |)/0, which is unbounded. �

Lemma 2. When α = fw and ∀r ,pr = fr × dis(or ,dr), no algorithm has a constant competitive

ratio to maximize the total revenue in the URPSM problem.

Proof. We prove Lemma 2 by adjusting the setting of the distribution in the proof of Lemma 1.
Specifically, we generate the distribution dr for the request r as follows. dr is always chosen from
a vertex in the cycle graph whose distance from or is |V |/2. Because the distance from the location
of worker and or is no more than |V |/2 on an undirected cycle graph, and dis(or ,dr) = |V |/2, the
worker will move another |V |/2 to serve r . Therefore, the total travel distance of the worker is
no more than |V |/2 + |V |/2 = |V |. We also assume a sufficiently large fr , otherwise an optimal
solution may reject r when the total distance of the worker is close to |V |. Then, we have

E[UC∗ (W ,R)] ≤ α |V | = fw |V | and E[UC (W ,R)] ≥
(
1 − 2ϵ

|V |

)
· pr =

(
1 − 2ϵ

|V |

)
· fr ·

|V |
2

If ϵ is small enough, then the competitive ratio becomes to Ω(
fr

fw
), which is not constant. �

Lemma 3. When α = 1 and ∀r ,pr = ∞, no algorithm has a constant competitive ratio to minimize

the total travel time in the URPSM problem.

Proof. We prove Lemma 3 using the distribution in the proof of Lemma 1. According to previous
analysis, the total distance of the optimal route under this distribution is bounded by |V | and any

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

2:10 Y. Tong et al.

deterministic algorithm has probability of 1 − 2ϵ
|V | to reject r . Thus, we have

E[UC∗ (W ,R)] ≤ α |V | = |V | and E[UC (W ,R)] ≥
(
1 − 2ϵ

|V |

)
· pr

So the competitive ratio is worse than
pr

|V | (1 −
2ϵ
|V |). By setting a sufficiently small ϵ and pr = ∞,

the above competitive ratio becomes unbounded. �

Remark. There exists a special case of the URPSM problem, where a constant competitive ratio
may exist. For example, when the penalty of every request is extremely small (e.g., O (1/|R |)), a
simple solution, which rejects all requests, has a unified cost of O (1). Thus, this solution may
have a constant competitive ratio under this case. However, this case is meaningless in practice,
since a real-world platform often aims to avoid rejecting the requests by setting large penalties.
For the general URPSM problem, no algorithm can achieve a constant competitive ratio, since the
competitive ratio in Definition 6 depends on the worst case (e.g., the special cases in Lemma 1–3).

3.3.2 Instance-Optimality Model. The negative result in Theorem 1 indicates that the compet-
itive model fails to differentiate good solutions to the URPSM problem, as no algorithm can have
a good guarantee under the model. Thus, we focus on another analysis model, instance-optimality

model, in the rest of this paper. The instance-optimality model was first proposed in [17] and has
been widely used in the database community. It measures how good a specific algorithm is over a
family of algorithms on every instance of a dataset.

Definition 7 (Instance-Optimality). Given a family of online algorithms A and a dataset I with
multiple instances, we say an online algorithm a is instance optimal if (1) a ∈ A and (2) for every
online algorithm b ∈ A and every instance (G,W ,R) ∈ I we have

UCa (W ,R) ≤ ρ ×UCb (W ,R) + o(1) (6)

where UCa (W ,R) and UCb (W ,R) denote the unified cost of algorithm a and algorithm b, respec-
tively, and ρ is also known as optimality ratio.

Compared with the competitive analysis model (Definition 6), the instance-optimality model is
also practical and powerful due to the following reasons.

• It is more practical since it compares with the online algorithms. On the contrary, the compet-
itive model compares with the optimal result, i.e., the result of an offline optimal algorithm
that knows the workers and tasks beforehand.
• It is also powerful since instance-optimality corresponds to optimality in every instance.

We will introduce the scope of the instance-optimality model used in this paper in Section 4.3,
including the algorithm family A and the dataset I in Definition 7.

4 PLAIN-INSERTION-BASED FRAMEWORK

Solutions built upon the plain-insertion are widely adopted for the variants of the URPSM problem.
This section presents the plain-insertion-based framework and analyzes its instance-optimality.
We review a prevalent plain-insertion in Section 5.1 and propose our linear-time plain-insertion
in Section 5.2.

4.1 Framework Overview

Existing studies [25, 33, 54] solve the URPSM problem greedily. Specifically, for each newly ap-
peared request, if it is not rejected, then it is assigned to the worker who can serve the request

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

Unified Route Planning for Shared Mobility: An Insertion-based Framework 2:11

with the minimum increased travel time. An insertion operation is used to calculate the minimum
increased travel time. Formally, an insertion operation can be defined as follows [25, 26, 33].

Definition 8 (Plain-Insertion). Given a worker w with his current route Sw containing n + 1
locations (l0, . . . , ln), and a new request r , the plain-insertion finds a new feasible route S∗w with
the minimum increased travel time to serve r by inserting both or and dr into Sw , such that the
order of locations in Sw remains the same in S∗w .

By inserting the new request that has a minimum increased travel time, it also minimizes the
total travel time. Thus, the goal is aligned with our URPSM problem, which minimizes the sum of
weighted total travel time and the total penalty of unserved requests. The plain-insertion operation
also keeps the relative order of the n locations unchanged. This improves efficiency by avoiding

enumerating all possible routes (e.g., the number of these routes is (n + 2)!/2(0.5n+1) [40]).

4.2 Framework Details

Algorithm 1 shows the plain-insertion-based framework. In line 1, we construct the grid index
and initialize R−. For each newly appeared request, we first determine a set Cand of candidate
workers by a range filtering on the grid index with radius er − tr − dis(or ,dr) (line 3). Lines 4–7
find a candidate worker amongCand , whose current route has the minimum increased travel time
to insert the new request. Specifically, let w∗ denote such a worker and Δ∗ denote the minimum
increased travel time (line 4). For each candidate worker, we calculate his increased travel time Δ
to insert the new request (lines 5–6) and maintain the best onew∗ with minimum increased travel
time Δ∗ (line 7). Lines 8–10 decide whether it accepts the new request or not based on its penalty
and the increased travel cost (i.e., α · Δ∗). If the penalty is larger than the increased travel cost, we
decide to serve the request and update the route of w∗ by plain-insertion (line 9). Otherwise, we
can choose to reject the request (line 10).

Example 2. Back to our toy example. When the request r1 is released at time 5, we assume
that the candidate workers Cand are {w1,w2} in line 3. In line 6, we calculate the increased travel
time Δ to insert the new request for each worker in Cand . Based on Definition 8, the increased
travel time for w1 and w2 are 16 and 17, respectively. The algorithm details of plain-insertion
will be elaborated in Sections 5.1 and 5.2. Accordingly, we have w∗ = w1 and Δ∗ = 16 in line 8.
Since the penalty of r1 (20) is larger than the increased travel cost (α · Δ∗ = 1 × 16 = 16), we
decide to serve the request r1 and assign it to the worker w1. We also plan a route for w1, i.e.,
Sw1 = 〈v7 (ow1),v2 (or1),v4 (dr1)〉. Between every two adjacent vertices in Sw1 , the worker w1 can
follow their shortest path. For instance, when w1 travels from v7 to v2, he will first start from v7,
then come to v1 and finally arrive at v2. When the next request r2 appears at time 10, w1 moves
to v1 and w2 stays at v3. Similarly, in lines 5–6, we can calculate that w∗ = w1 has the minimum
increased travel time (i.e., Δ∗ = 8), which will be further discussed in Example 3. As the penalty
pr2 is larger than the increased travel cost, we also decide to serve the request. We will assign r2

to w1 and update his route (Sw1 = 〈v7,v2,v3,v4,v5〉). When the last request r3 appears at time 11,
it will be assigned to w2 and the planned route for him is Sw2 = 〈v3,v8,v5〉. Finally, we calculate
the unified cost as 1 × ((6 + 7 + 8 + 3) + (5 + 5)) + 0 = 34, which is lower than the result in
Figure 1(b).

Complexity Analysis. Assume the plain-insertion algorithm takes O (T) time. The time complexity
of Algorithm 1 is O (|R | |W |T), since there are O (|R |) iterations in line 2 and O (|W |) iterations in
line 5, and other lines take no longer than O (T) time.

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

2:12 Y. Tong et al.

Fig. 2. Locations of the workers and requests in the worst case of Theorem 2.

ALGORITHM 1: Plain-insertion-based framework pruneGreedyDP (pGDP for short)

input : weight α , workersW and requests R
output : the unified cost UC (W ,R) ← α

∑
w ∈W D (Sw) +

∑
r ∈R− pr

1 Construct grid index and initialize R− with ∅;
2 foreach newly appeared request r ∈ R do

3 Cand ← filter the infeasible workers inW by grid index;

4 w∗ ← not exists,Δ∗ ← ∞;

5 foreach candidate worker w ∈ Cand do

6 Δ← plain-insertion(w, r);

7 if Δ < Δ∗ then w∗ ← w,Δ∗ ← Δ;

8 if w∗ is not empty and pr ≥ α · Δ∗ then

9 serve r and insert it into the route of w∗ by plain-insertion;

10 else reject r and R− ← R− ∪ {r } ;

4.3 Instance-Optimality Analysis

We first introduce the scope of our instance-optimality model used in the rest of this paper.
Based on Definition 7 (instance-optimality), we focus on the algorithm family of insertion-based
online algorithms [52] and the datasets, where requests dynamically arrive following an iden-

tical independent distribution (IID) which is predictable. Specifically, this algorithm family
uses the plain-insertion operator in Definition 8 to assign each request to the worker who has
the minimum increased travel cost to serve it. We select this algorithm family due to two rea-
sons: (1) the URPSM problem is an online problem and we have proved that there is no online
algorithm with a constant competitive ratio. Thus, we can only consider heuristic algorithms in-
stead of approximate solutions; (2) insertion-based online algorithms have been widely used to
address the three mainstream cases of the URPSM problem in Section 3.2. Their performances
have been verified by extensive experiments on real datasets (e.g., [25, 33, 34, 50, 58]). Besides, the
assumption of IID is mild and commonly used in prior studies on online planning algorithms (e.g.,
[13–15, 36, 49, 59, 60, 68]), since many studies have been proposed to learn the arrival patterns of
online requests (e.g., [20, 30, 48, 62, 67]).

Then, we prove the optimality ratio of Algorithm 1 under this instance-optimality model as
follows.

Theorem 2. The optimality ratio of Algorithm 1 is unbounded.

Proof. To prove this result, we first create a worse case as shown in Figure 2. In this worst case,
there is only one worker w1 whose initial location is (0, 0) and there are n requests r1, r2, . . . , rn .

The requests’ distribution is as follows. For each request ri , its release time is i
n

, its deadline (i+1)
n

,

and its origin and destination are (−i
n
, 0) and (−(i+1)

n
, 0), respectively. Besides, the weight α , the

capacity or speed of the worker, and the penalty or size of each request are all 1. We assume that
the shortest travel distance between two locations is the Euclidean distance of their coordinates.

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

Unified Route Planning for Shared Mobility: An Insertion-based Framework 2:13

To solve the above instance, the workerw1 in Algorithm 1 will passively stay in place from time
0 to time 1

n
. When the request r1 appears at time 1

n
, w1 cannot serve this request earlier than its

deadline 2
n

. Similarly, when any other request appears, w1 cannot serve them either. As a result,
the total travel time is 0, the total penalty is n, and hence the unified cost of Algorithm 1 is n.

Consider another algorithm in the family of insertion-based online solutions, which first makes
the worker move from (0, 0) to (−1

n
, 0) at the beginning and then starts to serve the requests by the

same procedures in Algorithm 1. This time, when the request r1 appears, the worker will arrive
at (−1

n
, 0) and hence can serve it before the deadline. Similarly, when any other request ri appears,

the worker will locate at its origin and hence can serve it before the deadline. As a result, the total

travel time is (n+1)
n

, the total penalty is 0, and hence the unified cost is 1 + 1
n

. Thus, the optimality
ratio is Ω(n

1+ 1
n

) = Ω(n), which is as large as the number of requests (i.e., unbounded). �

Remark. The worst case in Theorem 2 may be counter examples for other methods (e.g., [54]),
where idle workers will passively stay in place unless they are assigned to new requests. Although
idle workers keep aimlessly moving in some other existing works (e.g., [25]), this will not help
improve the optimality ratio. For instance, when there are massive places for this aimless worker
w1 to move, the probability for him to reach (−1

n
, 0) exactly at time (1

n
, 0) will be very low. Then,

the (expected) optimality ratio will still be Ω(n). These results motivate us to propose a more
flexible solution in Section 6, which exploits the prior knowledge on the appearance of requests
by predictions.

5 ALGORITHMS FOR PLAIN-INSERTION

This section presents algorithms for the plain-insertion (i.e., handles online requests only). We
review the quadratic-time plain-insertion in existing studies in Section 5.1 and propose our
linear-time plain-insertion in Section 5.2. All the missing proofs involved in this section are in
Appendix A.

5.1 Understanding Existing Algorithms for Plain-Insertion

Existing methods for the plain-insertion have cubic [33] or quadratic [25] time complexity. The
main idea is to (1) enumerate all possible places (O (n2)) for inserting or and dr to obtain a new
route S ′w ; (2) check whether S ′w violates any constraint; and (3) replace S∗w by S ′w if no constraint is
violated and S ′w has a shorter increased travel time. The last two steps can be done in linear time
and hence the straightforward method [33] takes cubic time complexity.

In this subsection, we present a simple quadratic-time insertion. Given a pair of places (denoted
by (i, j)) for insertingor anddr , a quadratic-time insertion takesO (1) time to calculate the increased
travel time denoted by Δi, j and checks the feasibility of the updated route after insertion.

5.1.1 Calculating Increased Travel Time Δi, j inO (1) Time. Rather than calculate Δi, j = D (S ′w)−
D (Sw) from scratch withO (n) time, we calculate Δi, j inO (1) time leveraging the concept of detour.
Specifically, when inserting lk between li and li+1, the detour det(li , lk , li+1) is defined as

det(li , lk , li+1) = dis(li , lk) + dis(lk , li+1) − dis(li , li+1) (7)

The detour is the increased travel time when lk is inserted between li and li+1. Accordingly, Δi, j

can be calculated in O (1) time by Equation (8) using detours in Figure 3, where Figures 3(b) and
3(c) are two special cases (when i = j) while Figure 3(d) shows the general case (when i < j).
Note that j can be equal to n in Figure 3(d) and hence lj+1 (i.e., ln+1) becomes an empty loca-
tion (denoted by ∅). For definition consistency, we assume dis(lk , ∅) = dis(∅, lk) = 0 for any
location lk .

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

2:14 Y. Tong et al.

Fig. 3. Three cases of all O (n2) possible pairs (i, j).

Δi, j =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

dis(ln ,or) + dis(or ,dr), if i = j = n

dis(li ,or) + dis(or ,dr) + dis(dr , li+1) − dis(li , li+1), if i = j < n

det(li ,or , li+1) + det(lj ,dr , lj+1), otherwise

(8)

5.1.2 Checking Route Feasibility in O (1) Time. To check whether a new route is feasible, we
need to check all the three conditions in Definition 4. Specifically, condition (1) always holds since
i ≤ j guarantees that or precedesdr , where i and j denote the places to insert or anddr , respectively.
Since condition (2) is related to the deadlines of all the requests, we call it “deadline constraint” for
short. As condition (3) is related to the capacity of the worker, it is called the “capacity constraint”.

Checking Deadline Constraint. To check the deadline constraint in O (1) time, we borrow
the idea of slack time [26]. Denote ddl[k] as the latest time to arrive at lk without violating the
deadline constraint of the request at the location lk . We set ddl[k] as er ′ − dis(or ′,dr ′) if lk is the
origin of a request r ′; and er ′ if lk is the destination of a request r ′, i.e.,

ddl[k] =
⎧⎪⎨⎪⎩
er ′ − dis(or ′,dr ′), if lk is the origin of a request r ′

er ′, if lk is the destination of a request r ′
(9)

Denote arr[k] as the time when worker w arrives at the location lk , i.e.,

arr[k] = arr[k − 1] + dis(lk−1, lk) (10)

Further denote slack[k] as the maximal tolerable time for detour (i.e., slack time) between lk and
lk+1 to satisfy all the deadlines after lk (excluded). Since a detour after lk may cause the worker
to violate the deadlines of lk+1, . . . , ln , slack[k] should be small enough to satisfy the deadline of
location lk+1 (ddl[k + 1]− arr[k + 1]), and all the deadlines after location lk+1 (slack[k + 1]). Hence,
slack[k] is calculated as follows.

slack[k] = min{slack[k + 1], ddl[k + 1] − arr[k + 1]} (11)

Finally, we check the deadline constraint by Lemma 4.

Lemma 4. The deadline constraint is satisfied iff (1) arr[i] + dis(li ,or) ≤ er ; (2) det(li ,or , li+1) ≤
slack[i]; (3) arr[i] + dis(li ,or) + dis(or ,dr) ≤ er when i = j (Case 1-2 in Figure 3(b)–3(c)) or arr[j] +
det(li ,or , li+1) + dis(lj ,dr) ≤ er when i < j (Case 3 in Figure 3(d)); and (4) Δi, j ≤ slack[j].

Checking Capacity Constraint. To check the capacity constraint inO (1) time, we use pick[k]
to denote the size of requests that are currently picked up yet not delivered. In practice, pick[k]
represents the number of currently carried passengers/parcels in shared mobility. Thus, we have

pick[k] =
⎧⎪⎨⎪⎩

pick[k − 1] + cr ′, if lk is the origin of a request r ′

pick[k − 1] − cr ′, if lk is the destination of a request r ′
(12)

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

Unified Route Planning for Shared Mobility: An Insertion-based Framework 2:15

ALGORITHM 2: Quadratic-time plain-insertion

input : a worker w with a route Sw and a request r
output : a new route S∗w with the minimum increased travel time Δ after inserting r

1 S∗w ← Sw ,Δ← ∞;

2 Initialize ddl, arr, slack, pick by Equations (9) and (12);

3 foreach i ← 0 to n do

4 if Lemma 4 (1) is violated then break;

5 if Lemma 4 (2) is violated then continue;

6 if Lemma 5 (1) is violated then continue;

7 foreach j ← i to n do

8 if Lemma 5 (2) is violated then break;

9 Δi, j ← calculate by Equation (8);

10 if Lemma 4 (3)-(4) is violated then break;

11 if Δi, j < Δ then Δ, i∗, j∗ ← Δi, j , i, j;

12 if Δ < ∞ then S∗w ← insert or and dr after locations li∗ and lj∗ , respectively;

We then use Lemma 5 to check the capacity constraint.

Lemma 5. The capacity constraint is satisfied iff (1) pick[i] ≤ cw − cr , and (2) ∀k, i < k ≤
j, pick[k] ≤ cw − cr .

5.1.3 Algorithm Details. Algorithm 2 shows the detailed procedure of the quadratic-time inser-
tion. Specifically, Δ denotes the minimum increased travel time and S∗w denotes the corresponding
route after inserting the new request r . Line 2 performs the initialization by Equations (9) and (12).
Line 3 iterates the possible place (i) to insert the new request’s origin or and line 7 enumerates
the possible place (j) to insert its destination dr . To check the feasibility of the new route after
insertion, Lines 4, 5, and 10 test the deadline constraint by Lemma 4, and lines 6 and 8 test the
capacity constraint by Lemma 5. If the new route is feasible, we maintain the minimum increased
travel time Δ and best places (i∗, j∗) for inserting or and dr in line 11.

Complexity Analysis. Lines 2, 3, 7, and 12 take O (n) time and the other lines take O (1) time. Thus,
the time complexity of Algorithm 2 is O (n2) and the total memory cost is O (n). If the shortest
distance query takes O (q) time, the algorithm takes O (n2q) time.

5.2 Our Linear-Time Plain-Insertion

In this subsection, we propose our linear-time plain-insertion method, which is based on dynamic
programming. It finds the route with the minimum increased travel time without enumerating
all possible pairs of places (i, j) for insertion. The linear-time plain-insertion is built upon the
quadratic insertion algorithm, but leverages two insights: (1) it takes O (n) time to find the best
places (i∗, j∗) for the special cases (i.e., when i = j); and (2) for a given j, it takes O (1) time to
find the best i via dynamic programming in the general case (i.e., when i < j). The first insight is
trivial because Algorithm 2 takes O (1) time to check the feasibility and calculate increased travel
time, i.e., it also takes O (n) time when i = j. Hence, we mainly explain the second insight in the
following.

5.2.1 Enumerating Delivery Locations Only. Instead of enumerating all possible pairs (i, j), our
algorithm only enumerates the delivery location j to find the best route. Let Δj be the minimum

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

2:16 Y. Tong et al.

increased travel time among all possible insertion places such that dr is inserted after lj , i.e.,

Δj = min
i<j

Δi, j = min
i<j

(
det(li ,or , li+1) + det(lj ,dr , lj+1)

)
= det(lj ,dr , lj+1)+min

i<j
det(li ,or , li+1) (13)

The first term (det(lj ,dr , lj+1)) in Equation (13) is the detour of inserting dr after lj , which is con-
stant for a given j. The second term (mini<j det(li ,or , li+1)) is the shortest detour of inserting or

after li among all i < j. Thus, the main challenge is to calculate the second term in O (1) time, i.e.,
finding the best pickup location (i.e., the best place for inserting or) in O (1) time.

5.2.2 Finding the Best Pickup Location in O (1) Time. We use dio[j] to maintain the shortest
detour for insertingor among all i < j for a given j, i.e., dio[j] = mini<j det(li ,or , li+1). Accordingly,
we can rewrite Equation (13) as:

Δj = det(lj ,dr , lj+1) + dio[j] (14)

By dynamic programming (DP), dio[j] can be efficiently pre-processed as:

dio[j] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∞, if pick[j − 1] > cw − cr

dio[j − 1], if det(lj−1,or , lj) > slack[j − 1]

min{dio[j − 1], det(lj−1,or , lj)}, otherwise

(15)

Correctness. We first prove the last case based on the definition of dio[j] as follows.

dio[j] = min{det(lj−1,or , lj), min
i<j−1

det(li ,or , li+1)} = min{dio[j − 1], det(lj−1,or , lj)}

For the first two cases, we safely use dio[j] = ∞ to denote the situation that constraint is violated
when inserting or at such a place. For instance, when pick[j − 1] > cw − cr (i.e., the first case),
Lemma 5 will be violated. In the other case, when det(lj−1,or , lj) > slack[j − 1], Lemma 4 (2) will
be violated by inserting or after lj−1. However, some place before lj−1 may be still feasible to insert
or , so we set dio[j] as dio[j − 1].

Let plc[j] be the best place to insert or (corresponds to dio[j]). We can also update plc[j] by DP.

plc[j] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

not exists, if pick[j − 1] > cw − cr

plc[j − 1], if det(lj−1,or , lj) > slack[j − 1]

plc[j − 1], if dio[j − 1] < det(lj−1,or , lj)

j − 1, otherwise

(16)

Correctness. If no constraints are violated when inserting at the places (plc[j] and j), then we
obviously obtain the best feasible route for the given j. However, when some constraint is violated
when inserting or after plc[j], it is unknown whether no other i � plc[j] could form a feasible
route. We prove the correctness by Lemma 6.

Lemma 6. For a given j, if plc[j] violates constraints, then other i � plc[j] also violates constraints.

Based on the proof of Lemma 6 and the definitions of dio[·] and plc[·], for the given j, we can
simplify the feasibility tests in Lemma 4–5 by Corollary 1.

Corollary 1. For the given j, a feasible i for inserting or exists iff (1) pick[j] ≤ cw − cr , (2)

arr[j] + dio[j] + dis(lj ,dr) ≤ er , and (3) dio[j] + det(lj ,dr , lj+1) ≤ slack[j].

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

Unified Route Planning for Shared Mobility: An Insertion-based Framework 2:17

Table 3. ddl[·], arr[·], pick[·], slack[·], dio[·] and plc[·] in Example 3

k ddl[k] arr[k] pick[k] slack[k] dio[k] plc[k]

0 0 10 0 7 ∞ doesn’t exist

1 18 11 1 7 ∞ doesn’t exist

2 28 21 0 ∞ 5 1

ALGORITHM 3: Linear-time plain-insertion

input : a worker w with a route Sw and a request r
output : a new route S∗w with the minimum increased travel time Δ after inserting r

1 S∗w ← Sw ,Δ← ∞;

2 Initialize ddl, arr, slack, pick by Equations (9)–(12) and dio, plc by Equations (15)–(16);

3 foreach j ← 0 to n do

4 Update Δ, i∗, j∗ ← handle the special case when i = j by Algorithm 2;

5 if j > 0 and Corollary 1 is satisfiable then

6 Δj ← det(lj ,dr , lj+1) + dio[j] in Equation (14);

7 if Δj < Δ then Δ, i∗, j∗ ← Δj , plc[j], j;

8 if Δ < ∞ then S∗w ← insert or and dr after locations li∗ and lj∗ , respectively;

5.2.3 Putting It Together. Algorithm 3 is our linear-time plain-insertion algorithm. In line 2, we
perform the initialization by Equations (9)–(12) and Equations (15)–(16). We handle the special
case (when i = j) using the same way as in Algorithm 2. In lines 5–7, we handle the general case
(when i < j). Specifically, we first check the constraints by Corollary 1. If no constraint is violated,
we calculate the minimum increased travel time Δj and the best pickup location plc[j] for the given
j. In line 7, we maintain Δ and best places (i∗, j∗) for inserting or and dr .

Example 3. Back to our toy example. Suppose w1 is assigned to serve r1 following the route
Sw1 = 〈v7,v2,v4〉 (i.e., n = 2) when r1 appears at time 5. When r2 appears at time 10, w1 moves
to v1. So there are another 2 vertices in Sw1 except for the current location of w1 (i.e., v1). If we
insert r2 into the current route Sw1 , the arrays in line 2 of Algorithm 3 are initialized as in Table 3.
Specifically, ddl[0] = 0 since l0 = v1 is neither origin nor destination of r1. arr[0] = 10 since current
time is 10. pick[0] = 0 because w1 has not picked up any request yet. For k > 0, ddl[k], arr[k],
pick[k] are initialized using Equations (9), (10) and (12). For example, ddl[1] = er1 − dis(or1 ,dr1) =
28 − 10 = 18, ddl[2] = er1 = 28, since l1 = v2 is or1 and l2 = v4 is dr1 . arr[1] = arr[0] + dis(v1,v2) =
10 + 1 = 11, arr[2] = arr[1] + dis(v2,v4) = 11 + 10 = 21. According to Equation (11), slack[k] is
calculated from k = n to 0. slack[n] is always initialized with ∞ because all requests would have
been delivered after ln . slack[1] = min{slack[2], ddl[2] − arr[2]} = 7, slack[0] = min{slack[1],
ddl[1] − arr[1]} = 7. Besides, dio[0] = ∞, plc[0] = not exists, since a feasible i cannot exist for
j = 0 in the general case as shown in Figure 3(d). By using Equations (15) and (16), we have
dio[1] = dio[0], plc[1] = plc[0], since det(v1,or2 ,v2) = dis(v1,v3) + dis(v3,v2) − dis(v1,v2) =
8 + 7 − 1 = 14 > slack[0]. We then update dio[2] = min{dio[1], det(v2,or2 ,v4)} = 5, because
pick[1] = 1 ≤ cw − cr = 3 and det(v2,or2 ,v4) = 7 + 8 − 10 = 5 < slack[1] in Equation (15).
Similarly, plc[2] = 2 − 1 = 1 since dio[1] > det(v2,or2 ,v4) according to Equation (16). Then, lines
3–7 of Algorithm 3 work as follows. When j = 0, line 4 (i.e., route 〈v1,v3 (or2), v5 (dr2), v2,v4〉 as
Figure 3(c)) violates Lemma 4 (4), because Δi, j = dis(v1,v3) + dis(v3,v5)+dis(v5,v2)−dis(v1,v2) =
8+10+10−1 = 27 > slack[0]. When j = 1, line 4 (i.e., route 〈v1,v2,v3 (or2),v5 (dr2),v4〉 as Figure 3(c))
also violates Lemma 4 (4), because Δi, j = dis(v2,v3) + dis(v3,v5) + dis(v5,v4) − dis(v2,v4) =
7 + 10 + 3 − 10 = 10 > slack[1]. In line 5, Corollary 1 (2) is violated because dio[1] = ∞. Finally,

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

2:18 Y. Tong et al.

when j = 2, line 4 (i.e., route 〈v1,v2,v4,v3 (or2),v5 (dr2)〉 as Figure 3(b)) violates Lemma 4 (3), because
arr[2] + dis(v4,v3) + dis(v3,v5) = 21 + 8 + 10 = 39 > er2 . In line 5, all conditions in Corollary 1 are
satisfied. Thus, Δ2 = det(v4,dr2 , ∅) + dio[2] = (3 + 0 − 0) + 5 = 8 in line 6 and Δ = Δ2 = 8, i∗ =
plc[2] = 1, j∗ = 2 in line 7. In line 8, S∗w becomes 〈v1,v2,v3,v4,v5〉 by inserting or2 = v3 after
location li∗ = v2 and dr2 = v5 after location lj∗ = v4.

Complexity Analysis. Lines 2–4 and 8 takeO (n) time and the other lines takeO (1) time. Thus,
the time complexity of Algorithm 3 is O (n) and space complexity is O (n). If the shortest distance
query takes O (q) time, the algorithm takes O (nq) time.

5.2.4 Optimization by Pruning. Despite numerous pruning strategies [2, 10, 25] to filter candi-
date workers to serve the new request, they mostly rely on the duration of deadlines and grid in-
dices. They become ineffective with long deadlines of requests or large number of workers. Hence,
we propose a new pruning strategy to filter workers leveraging the lower bound of the increased
time (denoted by Δ↓) when inserting a new request. The pruning strategy is based on Lemma 7.

Lemma 7. Assume candidate workers Cand in line 3 of Algorithm 1 are already sorted in an as-

cending order by Δ↓. If wi is ahead of wi+1 in Cand and increased time Δ of wi is smaller than the

lower bound Δ↓ of wi+1, we can ignore all workers after wi (i.e., break the iterations in lines 5–7 of

Algorithm 1).

Implementation Details. To calculate the lower bound of the increased travel time (i.e., Δ↓),
our idea is to replace the real travel time with the corresponding lower bound (denoted by dis↓)
in Algorithm 3, e.g., the Euclidean distance between the vertices’ coordinates. Specifically, we use
len[i + 1] = arr[i + 1] − arr[i] to replace dis(li , li+1) (i.e., the travel time between li+1 and li) in the

current route and dis↓(li ,or)/dis↓(li ,dr) to replace the travel time between li and the new request’s
origin or /destination dr .

Since function dis↓ denotes the lower bound of the travel time function dis, we can calculate the
lower bound of detour in Equation (7) (denoted by det↓) as

det↓(li , lk , li+1) = dis↓(li , lk) + dis↓(lk , li+1) − len[i + 1] (where lk ∈ {or ,dr }) (17)

Similarly, we can infer the lower bound of Δi, j in Equation (8) (i.e., line 4 in Algorithm 3) and
the lower bound of Δj (i.e., line 6 in Algorithm 3) by Lemma 8.

Lemma 8. Let L = dis(or ,dr) be the request r ’s length. The lower bound Δ↓i, j of Δi, j is calculated

as

Δ↓i, j =
⎧⎪⎨⎪⎩

dis↓(ln ,or) + L, if i = j = n

dis↓(li ,or) + L + dis↓(dr , li+1) − len[i + 1], if i = j < n
(18)

The lower bound of Δj (denoted by Δ↓j) is calculated as

Δ↓j = det↓(lj ,dr , lj+1) + dio↓[j] (19)

where the lower bound of dio[·] in Equation (15) (denoted by dio↓[·]) is pre-processed as

dio↓[j] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∞, if pick[j − 1] > cw − cr

dio↓[j − 1], if det↓(lj−1,or , lj) > slack[j − 1]

min{dio↓[j − 1], det↓(lj−1,or , lj)}, otherwise

(20)

Remark. The calculation in Lemma 8 is efficient, since it needs only one shortest distance query
on the road network, i.e., L = dis(or ,dr). To efficiently implement Lemma 7, we can use the radix
sort which takes O (|W |) time complexity and hence the time complexity of Algorithm 1 will not

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

Unified Route Planning for Shared Mobility: An Insertion-based Framework 2:19

increase. Moreover, although we are using the lower bound of travel time, workers may still violate
capacity constraints or deadline constraints, who can be pruned before the sort.

6 PROPHET-INSERTION-BASED FRAMEWORK

Although the efficiency of the plain-insertion-based framework is improved by our linear-time
plain-insertion algorithm, our instance-optimality analysis shows that the effectiveness of the
framework can be bad, especially when there are limited numbers of workers. In response, we
design a new framework with a constant optimality ratio. The framework is based on a new inser-
tion operation called prophet-insertion, where a worker can wait at some location until a request
appears. In this section, we introduce the new framework and analyze its optimality ratio. We
present the naive cubic-time prophet-insertion in Section 7.1 and a linear-time prophet-insertion
in Section 7.2.

6.1 Framework Overview

The basic idea of our new framework is to exploit the prediction of requests to guide the cur-
rent route of workers. That is, if the platform is a prophet that can make accurate predictions on
the incoming requests, then the workers can arrive at the requests’ origins in advance and serve
more requests. The new framework exploits the recent success in predicting taxi requests in ride-
sharing [20, 30, 48, 62]. Our new framework is still insertion-based, but differs in the assumptions
on the prior knowledge of the requests. Specifically, when the request distributions are known
beforehand, a worker can arrive early at the requests’ origins and wait based on the predictions
in the following new framework. When the request distributions are unknown, the worker does
not have to wait at the request’s origin in the aforementioned framework. This difference leads
to a new and complex insertion operation (called “prophet-insertion”) which will be explained in
Section 7.

6.2 Framework Details

Our prophet-insertion-based framework processes the predicted and online requests differently.
The prophet-insertion mainly differs from the plain-insertion in the definition of routes (see below).

6.2.1 Processing Predicted Requests. Let R̃ be a set of predicted requests. We first introduce the
guidance route. It differs from the plain route (Definition 4) in terms of waiting time.

Definition 9 (Guidance Route). Given a set of requests R̃w ⊆ R̃ assigned to the worker w , a

guidance route of this worker w is denoted by S̃w = 〈(l0,wait[0]), (l1,wait[1]), . . . , (ln ,wait[n])〉,
where l0 = ow is the worker’s initial location, l1, . . . , ln are the requests’ origins or destinations

(i.e., li ∈ {or | r ∈ R̃w } ∪ {dr | r ∈ R̃w }), and wait[i] is the waiting time for this worker to stay at

the corresponding location li . A guidance route is feasible if (1) ∀r ∈ R̃w , or precedes dr in the

route Sw ; (2) ∀r ∈ R̃w , the time when w leaves from or is no earlier than the release time tr , and
the time when w arrives at dr is no later than the deadline er . (3) At any time, the total number
of passengers/items (i.e., the total size of the requests) that have been picked up but not delivered,
does not exceed the capacity of the worker.

Note that the plain route defined in Definition 4 is a special case of guidance route, where all the
waiting time is 0. Based on Definition 9, the total travel time of a guidance route is defined as the

sum of total moving time and total waiting time, i.e., D (S̃w) = (
∑n

i=1 dis(li−1, li)) + (
∑n

i=0 wait[i]).
We can now extend the concept of plain-insertion to prophet-insertion as follows.

Definition 10 (Prophet-Insertion). Given a workerw with his current guidance route Sw contain-
ing n + 1 locations (l0, . . . , ln), and a new request r , the prophet-insertion operation finds a new

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

2:20 Y. Tong et al.

ALGORITHM 4: Processing predicted requests

input : WorkersW and a set of predicted requests R̃

output : A guidance route S̃w for each worker w ∈W
1 A set of hypothetical workers W̃ ← ∅;
2 foreach next predicted request r ∈ R̃ do

3 Cand ← filter the infeasible workers in W̃ by grid index;

4 w̃∗ ← arg min
w̃ ∈W̃ prophet-insert(w̃, r), Δ∗ ← min

w̃ ∈W̃ prophet-insert(w̃, r);

5 if w̃∗ is not empty then insert r into the guidance route of w̃∗ by prophet-insert(w̃∗, r) ;

6 else w̃ ← a hypothetical worker at the location or to serve r , W̃ ← W̃ ∪ {w̃ } ;

7 Q ← a max-heap of W̃ based on the total number/revenue of the served requests in the guidance route

of w̃ ∈ W̃ ;

8 while Q is not empty andW is not empty do

9 w̃∗ ← pop the top element from Q , w ← the worker inW who can serve all the requests in the

guidance route of w̃∗ with minimum increased travel time;

10 if w is not empty then plan the guidance route of w based on w̃∗,W ←W \ {w } ;
11 else remove the first request in the guidance route of w̃∗, Q ← Q ∪ {w̃∗} ;

and feasible guidance route S∗w with the minimum increased travel time to serve r by inserting
both or and dr into Sw , such that the order of locations in Sw remains the same in S∗w .

For brevity, we use guidance route and route, prophet-insertion and insertion interchangeably
in the prophet-insertion-based framework.

Basic Idea. Given predicted requests R̃, we plan a guidance route S̃w for each worker as follows.

• Assume sufficient hypothetical workers (denoted by W̃) with initial locations at any origins.
• Sequentially insert all the requests and assign each request to the worker whose increased

travel time is minimum.
• Pick |W | hypothetical workers to plan the guidance routes for real workersW , whose guid-

ance routes have the largest number of served requests or the highest total revenue.

Algorithm Details. Algorithm 4 processes the predicted requests. For each request r in R̃, we first
determine a set Cand of candidate workers by grid index in line 3. Then, we apply the prophet-

insertion to find the worker w̃∗ ∈ W̃ , who has the minimum increased travel time (Δ∗) to insert
the predicted request r (line 4). If such a worker exists, we insert r in his guidance route in line 5.
Otherwise, we create a new hypothetical worker w̃ to serve r in line 6, whose initial location is the
origin of r . When all the predicted requests have been inserted, we assign the requests in the routes
of hypothetical workers to the (real) workers to construct their guidance routes. Specifically, we

use a max-heap Q to maintain the top hypothetical worker w̃∗ with the largest number of served

requests or the highest total revenue in lines 7–11. For each w̃∗, we iteratively try each worker in
W to serve all the requests by leaving from his origin at time 0 and then following the guidance

route of w̃∗. Accordingly, we can find the workerw who has the minimum increased travel time to
serve the requests and plan the guidance route for him (line 10). If such workerw does not exist, it

indicates no worker can reach the first origin in the guidance route of w̃∗ on time. So we remove

the firstly picked request in the guidance route of w̃∗ and push it back into the heap Q (line 11).

Example 4. Back to our toy example. For simplicity, we assume the prediction is accurate,

i.e., R̃ = R = {r1, r2, r3}. For the first predicted request r1, we create a hypothetical worker w̃1

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

Unified Route Planning for Shared Mobility: An Insertion-based Framework 2:21

ALGORITHM 5: Prophet-insertion-based framework named Prophet

input : weight α , workersW , requests R, and predicted requests R̃
output : the unified cost UC (W ,R) ← α

∑
w ∈W D (Sw) +

∑
r ∈R− pr

1 guidance routes {S̃w } ← process the predicted requests R̃ by Algorithm 4;

2 set cr ← 0, er ← ∞ for every predicted request r ∈ R̃;

3 foreach request r ∈ R do

4 Cand ← filter the infeasible workers inW by grid index;

5 w∗ ← not exists,Δ∗ ← ∞;

6 foreach candidate worker w ∈ Cand do

7 Δ← prophet-insert(w, r);

8 if Δ < Δ∗ then w∗ ← w,Δ∗ ← Δ;

9 if w∗ is not empty and pr ≥ α · Δ∗ then insert r it into the guidance route of w∗ ;

10 else reject r and R− ← R− ∪ {r } ;
11 Let the workers without any assignments keep moving by the guidance routes;

who locates at the initial location v2 (i.e., or1) with capacity 4 in line 6, since W̃ is currently
empty. w̃1 can serve r1 by the guidance route 〈(v2, 0), (v2, 5), (v4, 0)〉. For example, w̃1 will wait
at the location l1 = v2 for time 5 until r1 appears. When the next predicted request r2 is it-
erated in line 2, we use prophet-insertion to insert it into the guidance route of w̃1. The al-

gorithm details will be elaborated in Section 7, and we can calculate that w̃∗ = w̃1,Δ
∗ = 8

(line 4) and the new guidance route is 〈(v2, 0), (v2, 5), (v3, 0), (v4, 0), (v5, 0)〉 (line 5). Similarly,

when the last predicted request r3 is iterated in line 2, we can calculate that w̃∗ = w̃1,Δ
∗ = 2

and the new guidance route is 〈(v2, 0), (v2, 5), (v3, 0), (v8, 0), (v4, 0), (v5, 0), (v5, 0)〉. In line 9, we
pop w̃1 from the heap Q and check whether the (real) workers w1-w2 can serve the predicted re-
quests (i.e., r1-r3) in the guidance route of w̃1. For instance, a feasible guidance route for w1 is
〈(v7 (ow1), 0), (v2, 0), (v3, 0), (v8, 0), (v4, 0), (v5, 0), (v5, 0)〉. The guidance route for w2 is empty.

Complexity Analysis. Assume the prophet-insertion algorithm takes O (T) time and hence the it-
erations in lines 1–6 take O (|R | |W |T) time. Lines 7–11 take at most O (|R | log |R | + |R | |W |T) time,
because there are at most O (|R |) iterations in line 8 and lines 9–11 take at most O (log |R | + |W |T)
time. We can use prophet-insertion to check whether a worker can serve all the requests in a
guidance route in line 9. Thus, the time complexity of Algorithm 4 is O (|R | |W |T + |R | log |R |).

6.2.2 Processing Online Requests. Our prophet-insertion-based framework (named Prophet)
handles each online request based on the following main ideas.

• Insert the request into the guidance route of each worker.
• Pick the worker with the minimum increased travel time to serve the requests.
• Let workers without assignments keep moving by their guidance routes, since the on-

line requests may appear near to the guidance routes with high probability based on the
prediction.

Algorithm Details. Algorithm 5 processes the online requests. Specifically, we pre-process the guid-

ance routes {S̃w } by Algorithm 4 in line 1. In line 2, we set the size of each predicted requests R̃
to 0 and its deadline to∞, since they are not the actual requests. Otherwise, some actual requests
cannot be inserted, because the predicted requests have occupied some capacities of the work-
ers. For each online request r (line 3), we first get a set of candidate workers denoted by Cand in
line 4. Then, we apply the prophet-insertion operation to pick the workerw∗who has the minimum

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

2:22 Y. Tong et al.

increased travel time Δ∗ to serve the request r (lines 5–8). Next, we assign the request to the worker
w∗ (line 9), if the penalty is larger than the cost (i.e., pr ≥ α · Δ∗). Otherwise, we reject the request
(line 10). The workers who have no assignments will keep moving by the guidance routes (line 11).

Example 5. The guidance routes are S̃w1 = 〈(v7, 0), (v2, 0), (v3, 0), (v8, 0), (v4, 0), (v5, 0), (v5, 0)〉
and S̃w2 = 〈〉. When the first online request r1 is released at time 5, w1 moves to v1 and w2 stays
at v3. Assume the candidate workers are {w1,w2} (line 4). In line 7, we can calculate the minimum
increased travel time Δ = 0 and 17 to insert the new request for w1 and w2, respectively, where
the calculation details will be elaborated in Sections 7.1 and 7.2. Accordingly, we have w∗ = w1

and Δ∗ = 0 in line 9. Since the penalty of r1 (pr1 = 20) is larger than the increased travel cost
(α · Δ∗ = 0), we decide to serve the request r1 and assign it to w1. We also update his current guid-
ance route, i.e., 〈(v1, 0), (v2 (or1), 0), (v2, 0), (v3, 0), (v8, 0), (v4 (dr1), 0), (v4, 0), (v5, 0), (v5, 0)〉. Simi-
larly, when the other requests r2 and r3 appear, they will also be assigned to w1 with the min-
imum increased travel time Δ∗ = 0. Accordingly, the moving trajectory of w1 is marked by
blue arrows in Figure 1(b) and w2 always stays at his initial location v3. Thus, the unified cost
is 1 × ((6 + 7 + 5 + 5 + 3) + 0) + 0 = 26.

Complexity Analysis. Assume the prophet-insertion algorithm takes O (T) time. By Algorithm 4,

lines 1–2 take O (|R | |W |T + |R | log |R |) time, where O (|R |) = O (|R̃ |) in practice. For the other lines,
line 3 has O (|R |) iterations, line 6 has O (|W |) iterations, and line 7 takes O (T) time. Thus, lines
3–11 takeO (|R | |W |T) time. Overall, the time complexity of Algorithm 5 isO (|R | |W |T + |R | log |R |).

Remark. In practice, the traffic may become congested if too many workers with a long waiting
time are guided to the same area that potentially has many requests. To solve this issue, we can
borrow the techniques from existing work [7, 55, 56] on traffic congestion management. Specifi-
cally, a platform can control the guidance by adjusting the predicted requests if the future traffic
becomes congested [56]. For example, we can control the number of concurrent requests in each
area such that the number of workers guided to this area is below a reasonable threshold. This is
an external factor of the URPSM problem. Our experimental evaluations do not consider this issue
due to these reasons: (1) modeling a traffic jam involves many real-world factors [7, 55, 56], e.g.,
statistics of all vehicles, information of all transportation services, weathers, road conditions and
local regulations; (2) this issue may also affect the existing baselines (e.g., [25, 54]), since workers
may be self-motivated to stay in the areas with more requests to potentially get more assignments;
and (3) we want to follow the experimental settings in the existing baselines [1, 25, 33, 54].

6.3 Instance-Optimality Analysis

Basic Idea. We analyze the optimality ratio of our prophet-insertion-based framework to show that
it is nearly optimal among all the insertion-based algorithms. Our basic idea is as follows.

(1) We assume that the requests dynamically arrive following an identical independent dis-

tribution (IID) which is predictable (i.e., known beforehand). This assumption is mild and
commonly used in prior studies on online algorithms (e.g., [13–15, 36, 49, 59, 60, 68]). More-
over, many studies have been proposed to learn the arrival patterns of online requests (e.g.,
[20, 30, 48, 62, 67]).

(2) We first analyze the algorithm of processing predicted requests in Lemma 9. We will prove
Algorithm 4 can be used to obtain the upper bound of the number of served requests or the
total revenue by any insertion-based solution.

(3) We next analyze the algorithm of processing online requests in Theorem 3. Since the pre-
dicted requests may not appear in practice (i.e., prediction can be wrong), we will prove that
the optimality ratio of Algorithm 5 is a constant, which is better than 0.47 in practice.

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

Unified Route Planning for Shared Mobility: An Insertion-based Framework 2:23

ALGORITHM 6: Cubic-time prophet-insertion

input : a worker w with a route Sw and a request r
output : a new route S∗w with the minimum increased travel time Δ after inserting r

1 S∗w ← Sw ,Δ← ∞;

2 foreach i ← 0 to n do

3 foreach j ← i to n do

4 S ′w ← insert or and dr after locations li and lj , respectively;

5 Δi, j ← D (S ′w) − D (Sw);

6 if S ′w is feasible then

7 if Δi, j < Δ then S∗w ← S ′w ,Δ← Δi, j ;

The proofs of Lemma 9 and Theorem 3 are presented in Appendix B.

Lemma 9. Under the assumption of known IID, Algorithm 4 can be used to obtain the upper bound

of the number of served requests or the total revenue by any insertion-based online algorithm.

By Lemma 9, we can infer that the optimality ratio is optimal when the prediction is completely
accurate. Theorem 3 presents the theoretical result when the prediction is inaccurate.

Theorem 3. Under the assumption of known IID, Algorithm 5 has a constant (expected) optimality

ratio to maximize the number of served requests or total revenue, where the constant is better than

0.47.

7 ALGORITHMS FOR PROPHET-INSERTION

In this section, we present the cubic-time prophet-insertion in Section 7.1 and propose our linear-
time prophet-insertion in Section 7.2. All missing proofs involved in this section are in Appendix B.

7.1 Naive Cubic-Time Prophet-Insertion

Basic Idea. An intuitive method to implement the prophet-insertion is to (1) enumerate all possible
pairs (e.g., (i, j)) of places for inserting or and dr to obtain a new route S ′w ; (2) check whether the
new route S ′w violates any constraint and then calculate the increased travel time byD (Sw)−D (S ′w);
and (3) replace S∗w by S ′w if no constraint is violated and S ′w increases a shorter travel time.

Algorithm Details. Algorithm 6 illustrates the naive prophet-insertion. In lines 2–3, we enu-
merate all possible pairs (i, j) of insertion places for the new request’s origin and destination. Then,
we have a new route S ′w in line 4 and calculate the increased travel time (Δi, j) in line 5. If S ′w is
feasible, we maintain the currently best route S∗w and the minimum increased travel time Δ in
lines 6–7.

Example 6. In Example 4, a predicted request r2 is inserted into the route 〈(v2, 0), (v2, 5), (v4, 0)〉.
We can use Algorithm 6 to calculate the minimum increased travel time. For example, when i =
1, j = 2, we obtain a new route 〈(v2, 0), (v2, 5), (v3 (or2), 0), (v4, 0), (v5 (dr2), 0)〉 in line 4. In line 5,
we calculate its increased travel time, i.e., Δi, j = 23 − 15 = 8. In line 6, we check the feasibility
of this new route based on Definition 9. Line 7 ensures that S∗w has the minimum increased travel
time Δ.

Complexity Analysis. The time complexity of Algorithm 6 is O (n3) and its space complexity
is O (n). If the shortest distance query takes O (q) time, the algorithm will take O (n3q) time.

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

2:24 Y. Tong et al.

7.2 Our Linear-time Prophet-Insertion

Our linear-time prophet-insertion algorithm extends the optimization techniques in Section 5.2
for the plain-insertion. We first introduce the main idea of the linear-time prophet-insertion in
Section 7.2.1, then elaborate on how to handle the special case (i = j) in Section 7.2.2 and general
case (i < j) in Section 7.2.3, and finally present the complete algorithm in Section 7.2.4.

7.2.1 Overview. The main idea of a linear-time prophet-insertion is similar to the optimization
techniques for the plain-insertion algorithm in Section 5.2. We first handle the special case (when
i = j) in linear time and then apply dynamic programming (DP) to address the general case
(when i < j). The major difference is that we need to consider the worker’s waiting time in the
prophet-insertion. This is because a worker can come to the (predicted) request’s origin earlier
before the request appears. For example, if the release time of a predicted request is 7:05 am, the
worker can arrive at 7:00 am and wait 5 minutes until the request appears.

Let wait[k] be the waiting time at the location lk of the route Sw . Then we have:

wait[k] =
⎧⎪⎨⎪⎩

max{tr ′ − arr[k], 0}, if lk is the origin of a request r ′

0, otherwise
(21)

Hence the definition of arr[·] is changed into Equation (22).

arr[k + 1] = max{arr[k], tr ′ } + dis(lk , lk+1) (22)

The formulation is correct from two aspects: (1) dis(lk , lk+1) is the travel time between the locations
lk and lk+1 and (2) max{arr[k], tr ′ } is the leaving time at the location lk . Here, we use the max
function since a worker may arrive at the origin lk before the request r ′ appears at time tr ′ .

We also use swait[k] to denote the sum of waiting time from location lk to location ln , i.e.,
swait[k] =

∑n
i=k

wait[i], which can be initialized as follows.

swait[k] =
⎧⎪⎨⎪⎩

0, if k = n + 1,

swait[k + 1] + wait[k], otherwise
(23)

The waiting time also affects the concept slack[·] in Section 5.1, which represents the maximal
tolerable time for detour between lk and lk+1 to satisfy all the requests’ deadlines after location lk
(excluded). That is, slack[k] should be small enough to satisfy the inequalities below. Specifically,
when waiting time all equals to 0 in the plain-insertion, slack[k] is no larger than ddl[k ′]− arr[k ′]
for each k ′ > k in Equation (11). In the prophet-insertion, a worker may wait at lk+1 for some time
until the request at lk+1 is released, so he can further detour a longer time between lk and lk+1 and
reduce the waiting time (up to 0) at lk+1. This is why we add wait[k +1] after ddl[k +1]−arr[k +1]
in the right hand side (RHS) of the first inequality. Similarly, a worker may further wait at lk+2

and hence we add wait[k + 1] +wait[k + 2] after ddl[k + 2] − arr[k + 2] in the RHS of the second
inequality. Inductively, we can also infer the other inequalities.

slack[k] ≤ ddl[k + 1] − arr[k + 1] + wait[k + 1]

slack[k] ≤ ddl[k + 2] − arr[k + 2] + wait[k + 1] + wait[k + 2]

· · ·
slack[k] ≤ ddl[n] − arr[n] + wait[k + 1] + · · · + wait[n]

According to the inequalities above, slack[k] is defined as

slack[k] = min
k+1≤i≤n

⎧⎪⎪⎨⎪⎪⎩
ddl[i] − arr[i] +

i∑
j=k+1

wait[j]
⎫⎪⎪⎬⎪⎪⎭

(24)

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

Unified Route Planning for Shared Mobility: An Insertion-based Framework 2:25

Based on the definition of slack[k] in Equation (24), we also have

slack[k + 1] = min
k+2≤i≤n

⎧⎪⎪⎨⎪⎪⎩
ddl[i] − arr[i] +

i∑
j=k+2

wait[j]
⎫⎪⎪⎬⎪⎪⎭

(25)

Thus, we can infer the DP equation of slack[k] as follows.

slack[k] = min
k+1≤i≤n

⎧⎪⎪⎨⎪⎪⎩
ddl[i] − arr[i] +

i∑
j=k+1

wait[j]
⎫⎪⎪⎬⎪⎪⎭

= wait[k + 1] + min
k+1≤i≤n

⎧⎪⎪⎨⎪⎪⎩
ddl[i] − arr[i] +

i∑
j=k+2

wait[j]
⎫⎪⎪⎬⎪⎪⎭

= wait[k + 1] +min
⎧⎪⎪⎨⎪⎪⎩

ddl[k + 1] − arr[k + 1], min
k+2≤i≤n

⎧⎪⎪⎨⎪⎪⎩
ddl[i] − arr[i] +

i∑
j=k+2

wait[j]
⎫⎪⎪⎬⎪⎪⎭
⎫⎪⎪⎬⎪⎪⎭

= wait[k + 1] +min {ddl[k + 1] − arr[k + 1], slack[k + 1]} (26)

Thus, the arrays of wait, arr, swait, slack are initialized in linear time by Equations (21), (22), (23),
and (26), respectively. The other arrays, ddl and pick, are still initialized by Equations (9) and (12).

7.2.2 Handling Special Case i = j. Since the number of special cases (i = j as in Figures 3(b) and
3(c)) is O (n), we will process the special cases in linear time if we can (1) calculate the increased
travel time Δi, j in O (1) time, and (2) check the constraints in O (1) time.

Calculating Δi, j inO (1) Time. Since the worker may wait at the new request’s origin, we first
use waitr to denote the waiting time at the origin in the following, i.e.,

waitr = max{0, tr − (arr[i] + wait[i] + dis(li ,or))} (27)

Next, we show the calculation of the increased travel time Δi, j in O (1) time from two cases.

• Case i = j = n in Figure 3(b). In this case, the origin and destination of the new request r
is appended at the end of the current route Sw . Thus, the increased travel time consists of
three parts: the travel time from the end of Sw (i.e., location ln) to the new request’s origin
or , the waiting time at or , and the travel time from the origin or to the destination dr , i.e.,

Δi, j = dis(ln ,or) + waitr + dis(or ,dr) (when i = j = n) (28)

• Case i = j < n in Figure 3(c). In this case, the origin and destination of the new request r
are sequentially inserted between the locations li and li+1. Our idea is to first compute the
detour between li and li+1 and then infer the increased travel time (Δi, j) of this insertion.
Specifically, let detOD(i) denote the increased travel time between locations li and li+1:

detOD(i) = dis(li ,or) + waitr + dis(or ,dr) + dis(dr , li+1) − dis(li , li+1) (29)

The sum of the first four terms is the travel time from li to li+1 by the new route. Thus,
the value of detour is obtained by subtracting the original travel time dis(li , li+1) from it.
Accordingly, the increased travel time can be derived from Lemma 10.

Lemma 10. Given a function detOD(i) defined in Equation (29), we have

Δi, j = max{detOD(i) − swait[i + 1], 0} (when i = j < n) (30)

Checking Constraints inO (1) Time. We use Lemma 11 to check both capacity constraint and
deadline constraint in O (1) time.

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

2:26 Y. Tong et al.

Lemma 11. The constraints are satisfied iff (1) pick[i] ≤ cw − cr , (2) detOD(i) ≤ slack[i], and (3)

arr[i] + wait[i] + dis(li ,or) + waitr + dis(or ,dr) ≤ er .

7.2.3 Handling General Case i < j. In the general case in Figure 3(d), there are O (n2) possible
pairs for (i, j), i.e., i < j and j = 1, . . . ,n. Thus, we will only achieve quadratic time complexity
if we can (1) calculate the increased travel time Δi, j in O (1) time and (2) check the constraints in
O (1) time. To achieve linear time complexity, we also apply the dynamic programming techniques
as mentioned in Section 5.2. Specifically, we also (3) enumerate the delivery location of the new
request (i.e., j = 1, . . . ,n) in O (n) time, and (4) find the best pickup location in O (1) time, which
has the minimum increased travel time for a fixed j. Details of these four steps are introduced as
follows.

Step 1: Calculating Δi, j in O (1) time. In the general case, the increased travel time involves
two parts: the detour of inserting origin or after location li (denoted by detO(i)) and the detour of
inserting destination dr after location lj (denoted by detD(j)). They are defined as follows, where
waitr represents the waiting time at the new request’s origin as in Equation (27).

detO(i) = dis(li ,or) + waitr + dis(or , li+1) − dis(li , li+1) (31)

detD(j) =
⎧⎪⎨⎪⎩

dis(lj ,dr) + dis(dr , lj+1) − dis(lj , lj+1) if j < n

dis(lj ,dr) if j = n
(32)

Accordingly, we can calculate the increased travel time Δi, j in O (1) time by Lemma 12.

Lemma 12. Given functions detO(i) and detD(j) defined in Equation (31) and (32), we have

Δi, j = max{detO(i) + detD(j) − swait[i + 1], detD(j) − swait[j + 1], 0} (when i < j)

Step 2: Checking Constraints in O (1) Time. We use Lemma 13 to check both capacity con-
straint and deadline constraint in O (1) time.

Lemma 13. The constraints are satisfied iff (1) ∀k ∈ [i, j], pick[k] ≤ cw −cr , (2) detO(i) ≤ slack[i],
(3) detD(j) + max{detO(i) − (swait[i + 1] − swait[j + 1]), 0} ≤ slack[j], and (4) arr[j] + wait[j] +
max{detO(i) − (swait[i + 1] − swait[j + 1]), 0} + dis(lj ,dr) ≤ er .

Step 3: Enumerating Delivery Locations in O (n) Time. Our linear-time prophet-insertion
algorithm enumerates only the delivery location j in O (n) time. Let Δj be the minimum increased
travel time for a given j and Δ as the minimum increased travel time for all possible j, i.e.,

Δj = min
i<j
{Δi, j } (33)

Δ = min
0<j≤n

min
i<j
{Δi, j } = min

0<j≤n
{Δj } (34)

Let plc[j] be the best place for inserting the new request’s origin or (corresponding to Δj), i.e.,

plc[j] = arg min
i<j
{Δi, j } (35)

Next, we explain how to efficiently calculate Δj and plc[j] in O (1) time.
Step 4: Finding the Best Pickup Location inO (1) Time. Since the best pickup location plc[j]

corresponds to the minimum increased travel time Δj for the given j, we first focus on efficiently
calculating Δj in Lemma 14.

Lemma 14. Given an array dio[j] = mini<j {detO(i)− swait[i+1]}, we can calculate the minimum

increased travel time Δj for the given j in O (1) time as

Δj = max{detD(j) + dio[j], detD(j) − swait[j + 1], 0} (36)

if dio[·] can be pre-processed in O (n) time.

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

Unified Route Planning for Shared Mobility: An Insertion-based Framework 2:27

Now we show how to pre-process dio[·] in Lemma 14 in O (n) time. Since the conditions of the
constraints in Lemma 13 involve the terms of i , let dio[j] = ∞ be the case when some constraints
are violated if we insertor after the location li . Accordingly, we can initialize dio[j] by Equation (37).

dio[j] =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∞, if pick[j − 1] > cw − cr

dio[j − 1], if detO(j − 1) > slack[j − 1]

min{dio[j − 1], detO(j − 1) − swait[j]}, otherwise

(37)

Correctness. We prove the correctness of Equation (37) as follows. The first case pick[j − 1] >
cw − cr violates the capacity constraint (i.e., Lemma 13 (1)). Thus, dio[j] = ∞ because the origin
or cannot be inserted after any location before lj−1 (including). The second case detO(j − 1) >
slack[j − 1] violates the deadline constraint (i.e., Lemma 13 (2)). It only indicates that the origin or

cannot be inserted after lj−1. Since someplace before lj−1 (excluded) may be still feasible to insert
or , we set dio[j] as dio[j − 1]. The last case can be derived by DP as follows.

dio[j] = min
i<j
{detO(i) − swait[i + 1]}

= min
{

min
i<j−1

{detO(i) − swait[i + 1]}, detO(j − 1) − swait[j]
}

= min{dio[j − 1], detO(j − 1) − swait[j]}

Based on Equation (37), the best pickup location plc[j] for the given j is:

plc[j] =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

not exist, if pick[j − 1] > cw − cr

plc[j − 1], if detO(j − 1) > slack[j − 1]

plc[j − 1], if dio[j − 1] < detO(j − 1) − swait[j]

j − 1, otherwise

(38)

The correctness of Equation (38) is guaranteed by Lemma 15.

Lemma 15. For the given j, if plc[j] violates constraints, then other i � plc[j] also violates con-

straints.

By the proof of Lemma 15 and the definitions of dio[·] and plc[·], we can simplify the tests of
the constraints in Lemma 13 by Corollary 2.

Corollary 2. For the given j, a feasible i for inserting or exists iff (1) pick[j] ≤ cw − cr , (2)

detD(j) +max{dio[j] + swait[j + 1], 0} ≤ slack[j], and (3) arr[j] + wait[j] +max{dio[j] + swait[j +
1], 0} + dis(lj ,dr) ≤ er .

7.2.4 Putting It Together. Algorithm 7 illustrates our linear-time prophet-insertion algorithm.
In line 1, we use S∗w to denote the new route with the minimum increased travel time Δ after
inserting the request r . In line 2, we perform the initialization of pick, ddl, arr, swait, slack, dio, plc

by Equations (9), (12), (22), (23), (24), (37), and (38), respectively. In line 3, we determine the feasible
ranges for inserting the new request’s destination by our pruning strategy in Lemma 16, i.e., j ∈
[beдj, endj]. In lines 4–7, we address the special case (when i = j). Specifically, for each possible j
from beдj to endj, we first check the constraints by Lemma 11 (line 5), then calculate the increased
travel time Δi, j by Equations (28) or (30) (line 6), and finally maintain Δ, i∗, j∗ (line 7). In lines 8–11,
we focus on the general case (when i < j). In line 8, we also enumerate each possible j from beдj
to endj. For each j, we check the constraints in line 9 and calculate the minimum increased travel
time Δj by Equation (36) in line 10. If Δj is smaller than Δ, we maintain the minimum increased
travel time Δ and the best insertion places (i∗, j∗) for origin or and destination dr in line 11. Finally,

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

2:28 Y. Tong et al.

Table 4. wait[·], swait[·], ddl[·], arr[·], pick[·], slack[·], dio[·] and plc[·] in Example 7

k wait[k] swait[k] ddl[k] arr[k] pick[k] slack[k] dio[k] plc[k]

0 0 5 0 0 0 18 ∞ doesn’t exist

1 5 5 18 0 1 13 12 0

2 0 0 28 15 0 ∞ 5 1

ALGORITHM 7: Linear-time prophet-insertion

input : a worker w with a route Sw and a request r
output : a new route S∗w for the worker w

1 S∗w ← Sw ,Δ← ∞;

2 Initialize ddl, pick, arr, swait, slack, dio, plc;

3 [beдj, endj]← the feasible range for j by Lemma 16;

4 foreach j ← beдj to endj do /* handle the special case i = j */
5 if Lemma 11 is violated then continue;

6 Δi, j ← calculate by Equations (28) or (30);

7 if Δi, j < Δ then Δ, i∗, j∗ ← Δi, j , j, j;

8 foreach j ← beдj to endj do /* handle the general case i < j */
9 if j > 0 and Corollary 2 is satisfied then

10 Δj ← calculate by Equation (36);

11 if Δj < Δ then Δ, i∗, j∗ ← Δj , plc[j], j;

12 if Δ < ∞ then S∗w ← insert or and dr after locations li∗ and lj∗ , respectively;

we obtain the new route S∗w with the minimum increased travel time Δ to insert the request r in
line 12.

Optimization by Pruning. Since the route Sw may contain many predicted requests, we also
propose pruning strategies to avoid impossible j for our linear-time prophet-insertion as follows.

Lemma 16. Let rlk
be the request of the location lk in the route Sw and r be the new request:

(1) If the deadline of rlk
is earlier than the release time of r , we can safely prune any j < k .

(2) If the arrival time at lk has exceeded the deadline of r , we can safely prune any j ≥ k .

Example 7. Back to Example 6. A predicted request r2 is inserted into a route 〈(v2, 0), (v2, 5),
(v4, 0)〉. We can use Algorithm 7 to calculate the minimum increased travel time. The arrays in line
2 of Algorithm 7 are initialized as in Table 4. Specifically, the waiting time wait[k] is calculated
by Equation (21), e.g., wait[1] = max{tr1 − arr[1], 0} = 5. By Equation (23), we can calculate
swait[k], e.g., swait[1] = wait[1] + swait[2] = 5. By Equations (9) and (12), we initialize ddl[·]
and pick[·] as in Example 3. By Equation (22), we can initialize the array arr[k], e.g., arr[2] =
max{arr[1], tr1 }+dis(v2,v4) = max{0, 5}+ 10 = 15. By Equation (26), we have slack[1] = wait[2] +
min{ddl[2]−arr[2], slack[2]} = 0+min{28− 15,∞} = 13, slack[0] = wait[1] + min{ddl[1]−arr[1],
slack[1]} = 5 + min{18 − 0, 13} = 18. Besides, dio[0] = ∞, plc[0] = not exists, since a feasible i
cannot exist for j = 0 in the general case as shown in Figure 3(d). By using Equations (37) and
(38), we have dio[1] = min{dio[0], detO(0) − swait[1]} = min{∞, 17 − 5} = 12, plc[1] = 1 − 1 = 0,
since detO(0) = dis(v2,or2) + waitr2 + dis (or2 ,v2) − dis(v2,v2) = 7+ 3+ 7− 0 = 17 < slack[0] (i.e.,
the last case of Equation (37)) and dio[0] > detO(0) − swait[1] (i.e., the last case of Equation (38)),
where waitr2 = max{0, tr2 − (arr[0] + wait[0] + dis(v2,or2))} = max{0, 10 − (0 + 0 + 7)} = 3 by
Equation (27). Similarly, we also have dio[2] = min{dio[1], detO(1)−swait[2]} = min{12, 5−0} = 5,

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

Unified Route Planning for Shared Mobility: An Insertion-based Framework 2:29

plc[2] = 2− 1 = 1, since detO(1) = dis(v2,or2) +waitr2 + dis(or2 ,v4) − dis(v2,v4) = 7+ 0+ 8− 10 =
5 < slack[1] (i.e., the last case of Equation (37)) and dio[1] > detO(1)−swait[2] (i.e., the last case of
Equation (38)), where waitr2 = max{0, tr2−(arr[1] + wait[1]+dis(v2,or2))} = max{0, 10−(0+5+7)} =
0 by Equation (27). In line 3, we have [beдj, endj] = [0, 2] by Lemma 16.

In lines 4–7, we handle the special case i = j. When j = 0, we find that Lemma 11 (2) is
violated in line 5, since detOD(0) = dis(v2,or2) +waitr2 + dis(or2 ,dr2) + dis(dr2 ,v2) − dis(v2,v2) =
7 + 3 + 10 + 10 − 0 = 30 > slack[0], where waitr2 = max{0, tr2 − (arr[0] +wait[0] + dis(v2,or2))} =
max{0, 10 − (0 + 0 + 7)} = 3 by Equation (27). When j = 1, Lemma 11 is satisfied. Specifically,
Lemma 11 (1) checks the capacity constraint, which is obviously satisfied. To check Lemma 11 (2),
we have detOD(1) = dis(v2,or2)+waitr2+dis(or2 ,dr2)+dis(dr2 ,v4)−dis(v2,v4) = 7+0+10+3−10 =
10 < slack[1], where waitr2 = max{0, tr2−(arr[1]+wait[1]+dis(v2,or2))} = max{0, 10−(0+5+7)} =
0 by Equation (27). As for Lemma 11 (3), we have arr[1]+wait[1]+dis(v2,or2)+waitr2+dis(or2 ,dr2) =
0+5+7+0+10 = 22, which is smaller than er2 = 31. In line 6, we calculate the increased travel time
Δi, j = max{detOD(1) − swait[2], 0} = max{10 − 0, 0} = 10 by Equation (30). When the iterations
in lines 4–7 stop, we have Δ = Δi, j = 10, i∗ = 1, j∗ = 1.

In lines 8–11, we handle the general case i < j. When j = 1, Corollary 2 (2) is violated in
line 9, since detD(1) + max{dio[1] + swait[2], 0} = 3 + max{12 + 0, 0} = 15 > slack[1], where
detD(1) = dis(v2,dr2) + dis(dr2 ,v4) − dis(v2,v4) = 10 + 3 − 10 = 3 by Equation (32). when j =
2, Corollary 2 is satisfied. For instance, Corollary 2 (2) is satisfied, since slack[2] = ∞. As for
Corollary 2 (3), we have arr[2] + wait[2] + max{dio[2] + swait[3], 0} + dis(v4,dr2) = 15 + 0 +
max{5 + 0, 0} + 3 = 23, which is smaller than er2 = 31. In line 10, we calculate the increased
travel time Δj . By Equation (36), we have Δ2 = max{detD(2) + dio[2], detD(2) − swait[3], 0} =
max{3 + 5, 3 − 0, 0} = 8 by Equation (36), where detD(2) = dis(v4,dr2) = 3 by Equation (32). Since
Δ2 < Δ, we update Δ = Δ2 = 8, i∗ = plc[2] = 1, j∗ = j = 2 in line 11. Finally, we can obtain a new
route 〈(v2, 0), (v2, 5), (v3 (or2), 0), (v4, 0), (v5 (dr2), 0)〉 in line 12, which is same as in Example 6.

Complexity Analysis. In Algorithm 7, lines 2–3, 4, 8, and 12 takeO (n) time and the other lines
take O (1) time. Thus, the time complexity of Algorithm 3 is O (n) and space complexity is O (n). If
the shortest distance query takes O (q) time, the algorithm takes O (nq) time.

8 EXPERIMENTAL STUDY

This section presents the experimental evaluations of our proposed algorithms.

8.1 Experimental Setup

Datasets. We conduct experimental evaluations on two real citywide taxi datasets: Chengdu and
NYC. The first is collected by Didi Chuxing in Chengdu, China, which is published through its
GAIA initiative [11]. The second is a public dataset [37] collected from two types of taxis (yellow
and green) in New York City, USA, and has been used in previous large-scale ride-sharing studies
as benchmarks [1, 2, 43, 47]. As shown in Table 5, we randomly pick seven days of records to
conduct the experiments. Each record includes the detailed information of each request (e.g., its
release time, origin, and destination). Since only NYC contains the request size cr , we generate cr

in Chengdu according to its distribution in NYC. Table 5 also reports the numbers of vertices and
edges in each road network, which is downloaded from Geofabrik [21]. The numbers of vertices
and edges in NYC are 43×-85× and 59×-78× larger than the road networks in [9, 25, 33, 54].

We simulate ride-sharing, a representative shared mobility application following the settings
in [25, 33, 40, 54]. The origin and the destination of each request are mapped to the closest vertex
in the road network. The initial location of a worker is randomly chosen from the vertices in the
road network. Since a taxi usually travels at different speeds on different types of roads (e.g., 23

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

2:30 Y. Tong et al.

Table 5. Statistics of Datasets

Dataset Collection date #(Requests) #(Vertices) #(Edges)

NYC April 8th-14th, 2016 392,157-517,850 5,270,965 11,151,356

Chengdu November 2nd-8th, 2016 214,649-242,811 214,440 466,330

Table 6. Parameter Settings (the default settings are marked in bold)

Parameters Settings

Number of workers |W | 500, 1000, 2000, 3000, 4000, 5000

Worker’s capacity cw 3, 4, 6, 10, 20

Delivery deadline er (second) 300, 600, 900, 1200, 1500 (+tr + dis(or ,dr))
Weight α 0, 1

Penalty coefficient β 10, 20, 30, 40, 50

Penalty pr when α = 1, pr = βdis(or ,dr); when α = 0, pr = 1

m/s in motorways or 6 m/s in residential streets), we assign a constant speed for each type of road
(80% of the maximum legal speed limit in their cities). Table 6 summarizes the major parameters.
Specifically, the delivery deadline is calculated as the parameter in the table added by the release
time of the request and the travel time between its origin and destination. For example, the default
deadline for a request r is er = tr + dis(or ,dr) + 600. The parameter α in Equation (1) is 1 or 0. As
explained in Section 3, when α = 0 and each request’s penalty pr = 1, minimizing the unified cost
is equivalent to the special case of maximizing the number of served requests. When α = 1, the
first term of the unified cost in Equation (1) is equivalent to the total travel time of workers, and
the penalty pr is calculated as the penalty coefficient β multiplied by the travel time between the
origin or and the destination dr , i.e., pr = β ×dis(or ,dr). We use β = 10 ∼ 50 to represent the other
special cases (i.e., maximizing the total revenue and minimizing the total travel time). The special
case of minimizing the total travel time requires that β is a very large number. Here, we consider
β = 50 as a large enough penalty coefficient, since it shows similar experimental patterns with a
larger value (e.g., β = 200). Besides, we do not consider β = 0 in our experiments. When β = 0
and ∀r ,pr = 0, a simple solution, which rejects all the requests and plans an empty route for each
worker, achieves the lowest unified cost (i.e., 0). We omit this case (β = 0) which has no penalty to
reject a request, since it is impractical for real-world applications of shared mobility.

Compared Algorithms. In the following experiments, we compare our proposed algorithms
pruneGreedyDP (pGDP for short) and Prophet with the state-of-the-art solutions.

• T-share [33]. It filters workers via a bi-directional searching process and applies cubic-time
insertion to find a worker with minimum increased distance for each online request.
• Kinetic [25]. It uses a kinetic tree to maintain every possible route to serve all the remaining

requests. Unlike T-share, the insertion operation in Kinetic takes quadratic time complexity.
• PNAS [1]. It is a batch-based solution, so it periodically plans the set of requests that arrive

within a specific time interval (e.g., 60 seconds in our experiments).
• DAIF-DP* [54]. It is a demand-aware route planning algorithm, which applies quadratic-

time insertion and prior knowledge of the requests. To demonstrate the superior perfor-
mance of our algorithm, we let the prediction of DAIF-DP* be completely accurate in our
experiments. Note that its effectiveness may become lower when the prediction is inaccu-
rate.
• pGDP. It is the implementation of Algorithm 1 with linear-time plain-insertion.

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

Unified Route Planning for Shared Mobility: An Insertion-based Framework 2:31

• Prophet. It is the implementation of Algorithm 5 with linear-time prophet-insertion. Unlike
DAIF-DP*, we do not assume prediction is accurate in Prophet. To justify the assumption of
IID, we use past records as the prediction results (i.e., historical average [20]). For example,
in the NYC dataset, we use the record collected on April 1st as the prediction of the testing
data on April 8th, and so forth. In Chengdu dataset, we use the record collected on November
1st as the prediction of the testing data on November 2nd, and so forth.

Implementation. The experiments are conducted on a server with 40 Intel(R) Xeon(R) E5
2.30GHz processors with 128GB memory. The total running time for processing one-day records
is limited to 24 hours, since a real-time solution should process all the requests before the time lim-
itation. The shortest distance and shortest path queries are both on the fly, using the hub labeling
based algorithm (SHP) proposed in [28]. An LRU cache with one million entries is maintained for
the shortest distance and path queries by SHP in all the compared algorithms. Moreover, a grid
index is also used in these algorithms, where the grid length is 1,000 meters by default. Under this
setting, T-share needs at least 790GB spaces in NYC to maintain its data (e.g., spatially-ordered
grid cell lists [33]) in the grid index, which is too large for a single server. Thus, we use a longer
grid length (3,000 meters) for T-share in NYC dataset only. All the algorithms are implemented in
GNU C++. Each experimental setting is repeated 7 times and the average results are reported.

Metrics. All the algorithms are evaluated in terms of served rate (i.e., |R+ |/|R |), unified cost (i.e.,
objective of the URPSM problem), average response time (i.e., average time to answer a ride-sharing
request), total running time (i.e., total time to answer all the requests, update the index and maintain
the workers’ spatiotemporal data), and memory usage. All these five metrics are widely used in the
related studies [25, 31–33, 58]. Note that the time to process the predictive requests is excluded in
the total running time of Prophet, since they are pre-processed. Instead, we report the time cost of
processing the predictive requests in Tables 7 and 8. For brevity, we use effectiveness to represent
the performances of served rate and unified cost and use efficiency to represent the performances
of average response time, total running time, and memory usage.

Except for these five mainstream metrics, we also consider two additional metrics: the (served)
requests’ average waiting time and the number of assigned requests to individual workers. Specifi-
cally, a request’s waiting time is the duration from its release time to its completion time (i.e., when
it is delivered at the destination). The number of assigned requests to a worker is the number of
requests delivered by him on a daily average, which also indicates his potential salary.

8.2 Experimental Results

In the following, we present the results of the five major metrics in Section 8.2.1–8.2.6 and the
results of the other two metrics in Section 8.2.7–8.2.8. Our experimental findings are summarized
in Section 8.2.9. Due to page limitations, we omit some results which have similar patterns with
the provided ones and please refer to our online appendix for the experiment on the prediction
accuracy.

8.2.1 Impact of the Number of Workers |W |. Figure 4 presents the results of varying the num-
ber of workers. In terms of effectiveness, we can observe that our algorithm Prophet always out-
performs the other algorithms. Specifically, the served rate of Prophet is up to 0.8×-14× and 13×-
26× higher than the other algorithms in Chengdu and NYC datasets, respectively. In other words,
when the number of workers is limited, Prophet can serve many more requests. The unified cost
of Prophet can be up to 20× lower than the other algorithms in the NYC dataset. Among the other
algorithms, the effectiveness of DAIF-DP* and pGDP are very close. For instance, the average dif-
ference of their served rate is less than 0.05% in either dataset and the unified cost of DAIF-DP* is
only slightly lower than the unified cost of pGDP (e.g., no more than 0.0017× on average). Kinetic

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

2:32 Y. Tong et al.

Fig. 4. Performance of varying the number of workers when α = 1 in Chengdu and NYC datasets.

is less effective than DAIF-DP* and pGDP, while it is much more effective than T-share and PNAS.
Besides, we observe the unified cost of Prophet first decreases and then increases. We also observe
the served rate of Prophet has already approached to 100% when |W | equals 2000. The variation
pattern is reasonable, because the increased unified cost is due to the travel cost of the increased
workers on their guidance routes. As for average response time, T-share is the most efficient and
our algorithm pGDP is the runner-up. For example, the average response time of pGDP is up to
4× and 80× shorter than Kinetic and DAIF-DP*, respectively. Our algorithm Prophet is also a real-
time solution, which is up to 20× faster than DAIF-DP*. PNAS is the only non-real-time solution.
Since those requests released during every 60 seconds are processed together at the end of the
60 seconds, each request needs to wait for about 30 seconds before being processed by PNAS. In
terms of total running time, T-share is the most efficient and our algorithm pGDP is often the

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

Unified Route Planning for Shared Mobility: An Insertion-based Framework 2:33

Fig. 5. Performance of varying the number of workers when α = 0 in Chengdu and NYC datasets.

runner-up. For instance, in NYC dataset, the total running time of pGDP is up to 4×, 7×, and 66×
shorter than Kinetic, PNAS and DAIF-DP*, respectively. DAIF-DP* is often the least efficient, since
it takes a long time to maintain its data structures such as demand number map and total supply
shift [54]. As for memory usage, all the algorithms are relatively efficient and T-share is the least
efficient.

8.2.2 Impact of the Parameter α . Figure 5 presents the results of varying the number of workers
when α = 0. Compared with the previous results (when α = 1) in Figure 4, we observe that the
results of served rate, average response time, total running time and memory usage are barely
changed. This is because all the compared algorithms still try to serve every request regardless of
α = 0 or 1. The main difference lies in the result of the unified cost. When α = 0 and ∀r ∈ R,pr = 1,

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

2:34 Y. Tong et al.

Fig. 6. Performance of varying the capacity of workers cw in Chengdu and NYC datasets.

the value of unified cost equals to the number of the rejected requests (as explained in Section 3.2).
By contrast, when α = 1, the unified cost is the sum of the total travel cost and the total penalty
of the rejected requests. Since the served rate of any algorithm does not change, we can also
derive the results of the unified cost when α = 0 from the results of served rate when α = 1, i.e.,
unified cost = (1−served rate)×number of requests. Since the number of requests in each dataset
is fixed, a higher served rate when α = 1 implies a lower unified cost under the case when α = 0.
Due to page limitations, we omit the results of varying the other parameters when α = 0.

8.2.3 Impact of the Capacity of Workers cw . Figure 6 shows the results of varying the capacity of
workers. With a larger capacity, all the algorithms incur a higher served rate and a lower unified cost

in both datasets. Our algorithm Prophet always has the highest served rate and the lowest unified
cost. For instance, in the NYC dataset, the served rate of Prophet is at least 4.6× higher than the

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

Unified Route Planning for Shared Mobility: An Insertion-based Framework 2:35

others and the unified cost of Prophet is at least 11× lower than the others. The effectiveness of
pGDP and DAIF-DP* are closed, which are worse than Prophet only. PNAS and T-share are notably
less effective than others. For example, in the Chengdu dataset, PNAS has the lowest served rate and
T-share has the highest unified cost. In terms of average response time, Kinetic becomes inefficient
when the worker’s capacity (i.e., cw) increases. In our experiments, Kinetic could on average take
longer than 5 seconds to process each request, when cw ≥ 10. As a result, Kinetic sometimes cannot
be terminated in 24 hours, so we ignore the partial results of Kinetic. T-share is always the most
efficient and pGDP is always the runner-up. For example, the average response time of pGDP is
always shorter than 0.0038 seconds, which is up to 23× and 70× faster than Kinetic and DAIF-DP*,
respectively. If the ignored cases (i.e., when cw ≥ 10 in NYC) are also considered, pGDP is up to
1320× faster than Kinetic. Our algorithm Prophet is relatively efficient, which often has a faster
average response time than DAIF-DP* and PNAS. As for total running time, T-share is the most
efficient and our algorithm pGDP is still the runner-up. Our algorithm Prophet is always faster
than DAIF-DP*. In terms of memory usage, all the algorithms are efficient, except for Kinetic. In
our experiments, when cw increases to 20, Kinetic needs more than 24GB and 88GB spaces in the
Chengdu and NYC datasets, respectively. In other words, Kinetic takes at least 30× more spaces
than those of our algorithms (pGDP and Prophet). This is because each worker needs to store
much more possible routes into the index (kinetic tree) of this baseline and consumes more spaces
when the capacity increases to 20.

8.2.4 Impact of the Delivery Deadline er . Figure 7 illustrates the results of varying the delivery
deadline er . With a larger deadline, the served rates of all the algorithms increase. The reason is
that a longer deadline allows more requests to be served, and thus a higher served rate. In terms of
served rate and unified cost, our algorithm (either Prophet or pGDP) achieves the best effectiveness.
For instance, in Chengdu dataset, the served rate of Prophet is up to 0.6× higher than all the other
algorithms. T-share and PNAS are usually less effective than others. We also observe the unified
cost of Prophet becomes higher than pGDP when the varied parameter becomes larger than 900.
This is because the delivery deadline has become long enough to serve almost all the requests under
this setting and the guidance routes in Prophet lead to the increased cost. As for average response

time and total running time, T-share is the most efficient and our algorithm pGDP is often the
runner-up. In NYC dataset, pGDP is up to 5× and 71× faster than Kinetic and DAIF-DP* in terms of
total running time, respectively. Our algorithm Prophet is more efficient than PNAS and DAIF-DP*

in terms of average response time. Besides, DAIF-DP* cannot stop in 24 hours when the delivery
deadline becomes long enough. As for memory usage, only DAIF-DP* consumes more spaces when
the delivery deadline gets longer. This may be because the data structures (e.g., demand number
map and total supply shift [54]) used in DAIF-DP* are sensitive to long delivery deadlines. The
memory usages of the other algorithms are similar to the patterns in previous results.

8.2.5 Impact of the Penalty Coefficient β . Figure 8 presents the results of varying the penalty
coefficient β . In terms of served rate, Prophet is always the highest, and pGDP and DAIF-DP* are
the runner-ups. As for unified cost, the gaps between Prophet and others become larger when the
penalty coefficient increases. For instance, in the NYC dataset, Prophet achieves the lowest unified
cost, which is up to 30× and 31× lower than DAIF-DP* and Kinetic, respectively. In terms of aver-

age response time and total running time, T-share is the most efficient and either DAIF-DP* or PNAS

is the least efficient. Our algorithm pGDP is always the runner-up in both datasets and Prophet is
efficient enough to process each request in real-time. For example, in the Chengdu dataset, the aver-
age response time of pGDP is up to 3× shorter than that of Kinetic, and the average response time
of Prophet is at least 12× shorter than that of DAIF-DP*. As for memory usage, the ranking of these
algorithms in descending order is often T-share > DAIF-DP* > Prophet > Kinetic ≈ PNAS ≈ pGDP.

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

2:36 Y. Tong et al.

Fig. 7. Performance of varying the deadlines of requests er in Chengdu and NYC datasets.

Table 7. Total Running Time (Minute) for Processing the Predicted Requests

in Chengdu Dataset

Number of requests 3 hours 6 hours 12 hours 18 hours 24 hours

Algorithm 4 + Algorithm 6 23.48 75.72 13626.46 >10 days

Algorithm 4 + Algorithm 7 0.31 0.37 5.17 13.82 20.61

8.2.6 Impact of Different Prophet-Insertions. In Tables 7 and 8, we report the time cost of pro-
cessing the predicted requests in Prophet under the default settings. Specifically, Algorithm 6 is
cubic-time prophet-insertion. Algorithm 7 is linear-time prophet-insertion, which applies dynamic
programming (DP). To demonstrate the scalability, we vary the number of requests (e.g., from

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

Unified Route Planning for Shared Mobility: An Insertion-based Framework 2:37

Fig. 8. Performance of varying the penalty coefficient β in Chengdu and NYC datasets.

Table 8. Total Running Time (Minute) for Processing the Predicted Requests

in NYC Dataset

Number of requests 3 hours 6 hours 12 hours 18 hours 24 hours

Algorithm 4 + Algorithm 6 1114.42 7247.08 >10 days

Algorithm 4 + Algorithm 7 7.03 8.60 33.44 59.20 108.67

3 hours of requests to 24 hours of requests under the default settings). Our algorithm can efficiently
process the predicted requests and the proposed DP techniques are effective to improve the time
efficiency. For instance, Algorithm 7 is faster than Algorithm 6 by 2-3 orders of magnitude. Besides,
the additional memory usage of Algorithm 7 is always less than 25KB in our experiments.

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

2:38 Y. Tong et al.

Fig. 9. Results of the number of assigned requests to individual workers (in the default setting).

Fig. 10. The (served) requests’ average waiting time in Chengdu and NYC datasets.

8.2.7 Results of the Number of Assigned Requests to Individual Workers. Figure 9 depicts the
experimental results. Specifically, the x-coordinate denotes the number x of assigned requests to
a worker, e.g., 0-250 in Figure 9(a). The y-coordinate represents the percentage of workers who
are assigned with no more than x requests. For example, in Figure 9(a), nearly 80% of workers are
assigned with no request by PNAS and T-share. In Figure 9(a), we can also observe that most of the
workers are assigned with more than 50 requests by Prophet while more than half of the workers
are assigned with fewer than 10 requests by the other algorithms. This is because (1) PNAS and
T-share have a low served rate and (2) Kinetic, pGDP, and DAIF-DP* greedily assign each request
to the worker who has the minimum increased travel cost to serve it, which makes workers in
the areas with more requests get more assignments. This pattern indicates that at least 50% of
the workers can potentially increase their salaries by using Prophet. In Figure 9(b), this pattern
becomes even more notable in the NYC dataset, where over 60% of the workers can potentially
increase their salaries by using Prophet. Although the number of workers assigned with over
200 requests by Prophet is smaller than that by pGDP, Kinetic, and DAIF-DP* in Figure 9(a), we
still think Prophet is a better solution to the URPSM problem in terms of this metric due to these
reasons: (1) Prophet has the highest served rate in all our tests; and (2) from the global point of view,
many more workers can potentially increase their salaries by averagely serving more requests by
Prophet than the other compared algorithms. Due to page limitations, we only report the results
of our default settings here.

8.2.8 Results of the Requests’ Average Waiting Time. Figure 10 presents the results of the (served)
requests’ average waiting time (“average waiting time” for short) when varying the number of
workers. We can observe the average waiting time of T-share and PNAS is shorter than that of
other algorithms. This is because T-share and PNAS serve much fewer requests than the others,
which makes delivering a request take the shorter detour. Similarly, since Kinetic also serves fewer
requests than DAIF-DP* and pGDP, the average waiting time of Kinetic is shorter than that of

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

Unified Route Planning for Shared Mobility: An Insertion-based Framework 2:39

DAIF-DP* and pGDP. In both datasets, Prophet often achieves a shorter average waiting time than
Kinetic, DAIF-DP*, and pGDP, since the workers in Prophet are guided to where new requests may
appear in advance. In Figure 10(b), we also observe that the average waiting time of DAIF-DP* and
pGDP is increasing with the increase of workers. This is still reasonable, since they only consider
the average waiting time in the constraint of a request’s deadline. In other words, a request may
take a longer detour to share with other requests, as long as it can be delivered before the deadline.
Due to page limitations, we omit the results when varying the other parameters.

8.2.9 Summary of Results. We summarize our experimental findings as follows.

• Our algorithm is always the most effective. Specifically, Prophet has the highest served rate
and lowest unified cost in most of the time (it has a lower unified cost than our algorithm
pGDP only in Figure 7). For example, the served rate of Prophet is up to 13×-32× higher than
the compared baselines. The unified cost of Prophet is up to 30×, 31×, 435×, and 188× lower
than DAIF-DP*, Kinetic, T-share, and PNAS, respectively. The effectiveness of our algorithm
pGDP is always better than Kinetic, T-share, and PNAS. For instance, the unified cost of
pGDP is 412× lower than T-share and PNAS. The effectiveness of pGDP is also comparable
with DAIF-DP*, as the difference of their served rates is only 0.03% on average.
• In terms of time efficiency, our algorithms, Prophet and pGDP, are both efficient enough to

process the requests in real-time. In particular, pGDP is up to 23× and 80× faster than Kinetic

and DAIF-DP* in terms of average response time, respectively. Although Prophet trades off
the time efficiency for the significant improvements of effectiveness, it is still often much
more efficient than DAIF-DP* and PNAS in terms of average response time.
• Considering the other two metrics in Section 8.2.7–8.2.8, our algorithm Prophet is effective to

increase the average salary of each worker, since each worker is potentially assigned with
more requests by Prophet than the other compared algorithms. In terms of the requests’
average waiting time, Prophet is often better than Kinetic, DAIF-DP*, and pGDP.
• Among the baselines, the time efficiency of Kinetic and DAIF-DP* is not robust enough. For

instance, Kinetic [25] cannot process the requests in real-time when the worker’s capacity
is large enough. DAIF-DP* [54] fails to halt in time when the request’s deadline is long
enough. Although PNAS [1] and T-share [33] are less effective than the others, they often
have shorter total time running and shorter requests’ average waiting time than Kinetic and
DAIF-DP*.
• Our DP-based techniques can significantly improve the time efficiency for processing the re-

quests by insertions in practice. For example, the linear-time prophet-insertion (Algorithm 7)
is faster than cubic-time prophet-insertion (Algorithm 6) by 2-3 orders of magnitude.

9 CONCLUSION

In this paper, we propose the URPSM problem, a unified formulation of route planning for shared
mobility. It provides a flexible multi-objective function where mainstream optimization goals in
existing studies can be reduced to special cases of the URPSM problem. Since the plain-insertion is
a basic yet inefficient operation in many existing works, we develop a novel dynamic programming
based algorithm, which reduces the time complexity of plain-insertion from cubic or quadratic time
to linear time. Then, we devise an effective and efficient framework leveraging the above DP-based
plain-insertion algorithm to address the URPSM problem approximately. To further improve the
effectiveness, we exploit how to take advantage of the prediction, when historical data is available.
Specifically, we propose a new insertion operator called prophet-insertion to plan routes for both
predictive requests and online requests. We devise a linear-time prophet-insertion and a prophet-
insertion-based framework for the URPSM problem. We prove that there is no polynomial-time

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

2:40 Y. Tong et al.

algorithm with a constant competitive ratio to solve the URPSM problem and its variants proposed
in previous studies. However, the optimality ratio of our prophet-insertion-based solution is a
constant (0.47) to maximize the number of the served requests and total revenue of the platform.
Extensive experiments on real datasets show that our solutions outperform the state-of-the-art
algorithms in both effectiveness and efficiency by a large margin. Our paper serves as a compre-
hensive theoretical reference for route planning in shared mobility and opens up new opportunities
for future research to design efficient solutions to large-scale shared mobility applications.

APPENDICES

A PROOFS IN PLAIN-INSERTION-BASED FRAMEWORK

This section lists the proofs of lemmas used in the plain-insertion algorithms (Section 5).

A.1 Proof of Lemma 4

Proof. As shown in Figure 3, condition (1) checks whether the deadline constraint of the new
request r is violated, since arr[i]+dis(li ,or) represents the arrival time at the new request’s origin
(which is inserted after li). Condition (3) also checks whether the deadline constraint of the new
request r is violated. For example, in Figures 3(b) and 3(c), arr[i]+dis(li ,or)+dis(or ,dr) represents
the arrival time at the new request’s destination, which should be earlier than the deadline er .

Conditions (2) and (4) check whether the deadlines of the original requests are violated if or and
dr are inserted after li and lj . For condition (2), the detour of inserting or after li should satisfy the
deadlines of all the requests after li , i.e., the maximal tolerable time for detour. Thus, det(li ,or , li+1)
should be smaller than slack[i]. As for condition (4), the total detour to insert or and dr should
satisfy the deadlines of all the requests after lj . Similarly, Δi, j should be smaller than slack[j].

A.2 Proof of Lemma 5

Proof. Condition (1) checks whether capacity constraint is violated if the new request is picked
up after li . After the new request has been picked up, condition (2) checks whether capacity con-
straint is violated if the following original requests are served. Here we only need to check the
original requests between li and lj since the new request will be delivered after lj .

A.3 Proof of Lemma 6

Proof. First, we assume i = plc[j] violates the capacity constraint (i.e., the first case of Equa-
tion (16) is satisfied). Based on Lemma 5, any other i ≤ j − 1 also violates the capacity constraint.

Next, we focus on the case when i = plc[j] only violates the deadline constraint in Lemma 4.
Suppose to the contrary, there exists a z (z < j and z � plc[j]) which satisfies all the constraints.
It indicates that for every k ∈ [z, j), the capacity constraint pick[k] ≤ cw − cr always holds. Based
on the definitions of dio[·] and plc[·], we have dio[j] = det(li ,or , li+1) ≤ det(lz ,or , lz+1) < ∞ and
the integer i must exist. We complete our proof based on the four conditions of Lemma 4.

When i violates Lemma 4 (1), it will also violate Lemma 4 (3), which will be proved later.
When i violates Lemma 4 (2), then we have det(li ,or , li+1) > slack[i]. In other words, the second

case of Equation (16) is satisfied and plc[i + 1] should be equal to plc[i] instead of (i + 1) − 1 = i .
Thus, plc[j] cannot be equal to i , which is contradicted to the assumption.

When i violates Lemma 4 (3), then we have arr[j] + det(li ,or , li+1) + dis(lj ,dr) > er , where
det(li ,or , li+1) can be simplified by dio[j]. Since det(li ,or , li+1) ≤ det(lz ,or , lz+1), then arr[j] +
det(lz ,or , lz+1) + dis(lj ,dr) must be larger than er . Thus, z also violates Lemma 4 (3), which is
contradicted to the assumption.

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

Unified Route Planning for Shared Mobility: An Insertion-based Framework 2:41

When i violates Lemma 4 (4), then we have Δi, j = det(lj ,dr , lj+1) + det(li ,or , li+1) > slack[j],
where det(li ,or , li+1) can be also simplified by dio[j]. Since det(li ,or , li+1) ≤ det(lz ,or , lz+1), then
Δz, j = det(lj ,dr , lj+1) + det(lz ,or , lz+1) must be larger than slack[j]. Thus, z also violates Lemma 4
(4), which is contradicted to the assumption.

A.4 Proof of Lemma 7

Proof. According to the definition, Δ is the actually increased time of workerwi and Δ↓ denotes
the lower bound of the increased time of worker wi+1. Since the workers are already sorted in
ascending order by Δ↓, it indicates that every worker afterwi+1 has a longer increased time in terms
of the lower bound. As the lower bound Δ↓ of wi+1 is already longer than the actually increased
time Δ of worker wi , he/she must have a longer increased time than Δ, which can be pruned.

A.5 Proof of Lemma 8

Proof. We can prove the correctness of Equation (18) by substituting dis(or ,dr) = L,

dis(li , li+1) = len[i + 1] and ∀u,v, dis↓(u,v) ≤ dis(u,v) into the first two cases of Equation (8).

We can prove the correctness of Equation (20) by substituting det↓(lj−1,or , lj) ≤ det(lj−1,or , lj)

into Equation (15). We can prove the correctness of Equation (19) by substituting dio↓[j] ≤ dio[j]
into Equation (14).

B PROOFS IN PROPHET-INSERTION-BASED FRAMEWORK

This section lists the proofs of lemmas and theorems used in the prophet-insertion-based frame-
work (Section 6) and the prophet-insertion algorithms (Section 7).

B.1 Proof of Lemma 9

Proof. First, as mentioned in Section 6.2, the plain-insertion is a special case of the prophet-

insertion used in Algorithm 4. In other words, if a request can be served by plain-insertion, it will
also be able to be served by prophet-insertion. Moreover, since the prophet-insertion allows the
workers to move to the request’s origin earlier than its release time, it potentially serves more
requests than plain-insertion.

Second, in Algorithm 4, we assume that there are sufficient hypothetical workers at the requests’
origins (lines 1–6). In lines 7–11, we ensure that the real workers are assigned with the top {|W |}
most profitable routes by a max-heap, where the profit of a route is either the number of served
request or the revenue of this route. Thus, each real worker is assigned to the currently most

profitable route (i.e., the guidance route of the hypothetical worker w̃∗). Suppose to the contrary,

a real worker w is assigned to S̃w , which is more profitable than the route of w̃∗ by Algorithm 4.

Then, there must be a hypothetical worker w̃ � w̃∗ corresponding to S̃w . Based on the definition

of a max-heap, w̃ must be popped earlier than w̃∗ in line 9. However, since w̃ is not matched to the
real worker w in Algorithm 4, then some other worker must serve the requests in w̃ with shorter
increased travel time in line 9. Since insertion-based online algorithm always assigns the request
to the worker with minimum increased travel time, this is contradicted to the prerequisite.

Finally, when the prediction is completely accurate, we can use Algorithm 4 to obtain the upper
bound of any insertion-based online algorithm (only in the proof below).

B.2 Proof of Theorem 3

Proof. For brevity, we use OPT to denote the optimal insertion-based online algorithm and
UB to denote the upper bound of OPT obtained by Algorithm 4. We also use ALG to denote our

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

2:42 Y. Tong et al.

framework (i.e., Algorithm 5). We will prove the (expected) optimality ratio E[ALG]/E[OPT] is a
constant and the probability of achieving this ratio (0.47) is high in practice.

We use n and m to denote the number of online requests and predicted requests, respectively.
W.l.o.g., we let n = k ·m. Under the assumption of known IID, these m predicted requests (a.k.a.,
request types) are sampled based on the distribution of the online requests in Algorithm 5. As
prediction can be wrong, each online request has the probability of 1

m
to match with a certain

request type. Thus, each predicted request has the following probability to appear in the online
requests.

1 −
(
1 − 1

m

)n

= 1 −
(
1 − 1

m

)k ·m
= 1 −

(
1

e

)k

= 1 − 1

ek
(39)

Based on the proof of Lemma 9, we have E[OPT] ≤ E[UB]. We next prove the optimality ratio
of Algorithm 5 in terms of each objective as follows.

Maximizing the number of served requests. Let xi ∈ {0, 1} be a random variable that rep-
resents the online request ri is served in UB and X =

∑
i xi be a random variable that represents

the number of served requests in UB. As E[OPT] ≤ E[UB], we can infer that E[UB] = E[X] =
E[

∑
i xi] ≥ E[OPT]. Let x̃i ∈ {0, 1} be a random variable that represents the online request ri is

served in ALG and X̃ =
∑

i x̃i be a random variable that represents the number of served requests
in ALG. Based on the probability in Equation (39), we have

E[ALG] = E[X̃] = E
[∑

i

x̃i

]
= E

[(
1 − 1

ek

) ∑
i

xi

]
=

(
1 − 1

ek

)
E
[∑

i

xi

]
≥

(
1 − 1

ek

)
E[OPT]

(40)
Thus, the (expected) optimality ratio is 1 − 1

ek . Here, we assume k ∈ [0.65, 1.35] based on the

experimental results of the prediction methods. Specifically, since the MAPEs of all the compared
methods in [20] which predict the number of future requests are lower than 35%, the value of k is
[1− 0.35, 1+ 0.35] = [0.65, 1.35]. The optimality ratio is at least 0.47 based on this choice of k . We
can derive the probability of getting this ratio by Azuma-Hoeffding inequality [35] as follows.

for any ϵ > 0, Pr
[
|ALG − E[ALG]| ≥ ϵn

]
≤ 2e−

(ϵn)2

2n = 2e−ϵ 2n/2 (41)

In other words, with a probability at least 1 − e−Ω(n) , the optimality ratio is 0.47 in practice.
Maximizing the total revenue. Let yi = xi · revri

be a random variable that represents the
revenue of the online request ri if it is served in UB, where revri

denotes the fare from serving
the request minus the income of the worker. Let Y =

∑
i yi be a random variable that represents

the total revenue in UB. As E[OPT] ≤ E[UB], we can infer that E[UB] = E[Y] = E[
∑

i yi] ≥ E[OPT].
Let ỹi = x̃i · revri

be a random variable that represents the revenue of the online request ri if it

is served in ALG and Ỹ =
∑

i ỹi be a random variable that represents the total revenue in ALG.
Similar to the deduction in Equation (40), we can infer that

E[ALG] = E[Ỹ] = E
[∑

i

(x̃i · revri
)
]
=

(
1 − 1

ek

)
E
[∑

i

(xi · revri
)
]
≥

(
1 − 1

ek

)
E[OPT] (42)

Thus, the optimality ratio is 1− 1
ek (i.e., at least 0.47 when k ∈ [0.65, 1.35]). To infer the probability

of achieving this optimality ratio, we assume that |revri
− revr j

| ≤ C for any two requests ri and
r j , whereC can be any large constant. Here, we only requireC is still bounded when n approaches
infinity. The assumption is reasonable since the fare of each request is much smaller than O (n) in
shared mobility. By Azuma-Hoeffding inequality [35], we infer the probability as:

for any ϵ > 0, Pr[|ALG − E[ALG]| ≥ ϵn] ≤ 2e−
(ϵn)2

2nC2 = 2e−ϵ 2n/2C2

(43)

Therefore, with a high probability (at least 1 − e−Ω(n)), the optimality ratio is 0.47.

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

Unified Route Planning for Shared Mobility: An Insertion-based Framework 2:43

B.3 Proof of Lemma 10

Proof. W.l.o.g., we assume the unit of travel time is second. By Equation (29), we have the
following facts: (1) the worker will be detOD(i) seconds late at the location li+1; and (2) he now
needs less time (i.e., max{wait[i + 1] − detOD(i), 0}) to wait at the location li+1. Similarly, he may
also take a longer time to arrive at any location after li+1 and wait less time there. Based on the
facts, we prove Lemma 10 from the following two aspects.

If detOD(i) > swait[i + 1], we will prove Δi, j = detOD(i) − swait[i + 1], where swait[i + 1]
is defined as wait[i + 1] + · · · + wait[n]. Based on the facts above, the worker does not need
to wait at location li+1 any more, i.e., max{wait[i + 1] − detOD(i), 0} = 0. Similarly, he will be
(detOD(i) −wait[i + 1]) seconds late at the location li+2 and does not need to wait there any more
since max{wait[i+2]− (detOD(i)−wait[i+1]), 0} = 0. Inductively, he will be (detOD(i)−wait[i+
1]− · · · −wait[n− 1]) seconds late at the location ln . Since the last location ln of any route is either
a request’s destination or a worker’s initial location, he does not need to wait at ln (i.e., wait[n] = 0
by Equation (21)). Thus, the increased travel time is exactly detOD(i) −wait[i + 1]− · · · −wait[n−
1] − wait[n] = detOD(i) − swait[i + 1].

If detOD(i) ≤ swait[i + 1], we will prove Δi, j = 0. Since detOD(i) ≤ swait[i + 1], there exists at
least one integer k ∈ [i + 1,n] such that detOD(i) ≤ wait[i + 1] + · · · + wait[k]. We also assume
k is the smallest among such integers. Based on the analysis above, we know the worker will be
(detOD(i) − wait[i + 1] − · · · − wait[k − 1]) seconds late at the location lk , and only has to wait
for (wait[k] − (detOD(i) − wait[i + 1] − · · · − wait[k − 1])) ≥ 0 seconds at the location lk . After
that, he will arrive at the location lk+1 exactly the same time as the original route before insertion.
In other words, the total travel time will not be increased, i.e., Δi, j = 0.

B.4 Proof of Lemma 11

Proof. Condition (1) checks whether the capacity constraint is violated if the new request r is
inserted, which can be directly derived from Lemma 5.

Condition (2) checks whether the deadlines of the original requests are violated if or and dr are
sequentially inserted between li and li+1. Since the new request is inserted after li , the deadlines
(ddl[·]) before the location li (including) will not be violated. Thus, we only need to verify whether
any deadline after the location li (excluded) is violated. Based on the definition of slack[i], we only
need to make sure that detOD(i) ≤ slack[i].

Condition (3) checks whether the new request’s deadline is violated. Since the LHS of this con-
dition represents the arrival time at the new request’s destination (as in Figures 3(b) and 3(c)), we
only need to check whether it is no larger than the new request’s deadline (i.e., er).

B.5 Proof of Lemma 12

Proof. By the proof of Lemma 10, we know the worker will be max{detO(i) − wait[i + 1] −
· · · −wait[k], 0} seconds late at any location lk after li+1 (i.e., k ≥ i + 1). In other words, he will be
max{detO(i) − wait[i + 1] − · · · − wait[j], 0} seconds late at the location lj . As the new request’s
destination is inserted between lj and lj+1, he may be further detD(j) seconds late at the location
lj+1, where detD(j) is defined as the detour between lj and lj+1 in Equation (32). Therefore, the late
arrival time at the location ln is

max
{

max{detO(i) − wait[i + 1] − · · · − wait[j], 0} + detD(j) − wait[j + 1] · · · − wait[n], 0
}

= max{detO(i) − wait[i + 1] − · · · − wait[n] + detD(j), detD(j) − wait[j + 1] · · · − wait[n], 0}
= max{detO(i) + detD(j) − swait[i + 1], detD(j) − swait[j + 1], 0},

where swait[k] is defined as wait[k] + · · · + wait[n] in Equation (23).

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

2:44 Y. Tong et al.

B.6 Proof of Lemma 13

Proof. Condition (1) checks the capacity constraint, which can be directly derived from
Lemma 5.

Condition (2) checks whether the deadlines of the original requests are violated if the new re-
quest’s origin is inserted between locations li and li+1. Since the deadlines before the location li are
unaffected, we only need to verify whether any deadline after the location li (excluded) is violated.
Based on the definition of slack[i], we only need to ensure that detO(i) ≤ slack[i].

Condition (3) checks whether the deadlines of the original requests are violated if the new
request’s destination is inserted between locations lj and lj+1. Similarly, we only need to ver-
ify whether any deadline after the location lj (excluded) is violated. Specifically, based on the
proof of Lemma 12, the worker will be max{detO(i) − wait[i + 1] − · · · − wait[j], 0} seconds
late at the location lj . Based on the definition of swait[·], we have wait[i + 1] + · · · + wait[j] =
swait[i + 1] − swait[j + 1] and hence the late arrival time at the location lj also equals to
max{detO(i) − (swait[i + 1] − swait[j + 1]), 0}. Thus, the late arrival time at the location lj+1

is detD(j) +max{detO(i) − (swait[i + 1]− swait[j + 1]), 0}. Based on the definition of slack[j], the
late arrival time at the location lj+1 should be no larger than slack[j].

Condition (4) checks whether the new request’s deadline is violated. Specifically, the sum of the
first three terms in the LHS of this condition represents the leaving time from the location lj . Thus,
the LHS of this condition represents the arrival time at the new request’s destination. Here, we
only need to check whether it is no larger than the new request’s deadline (i.e., er).

B.7 Proof of Lemma 14

Proof. By substituting Δi, j (in Lemma 12) into Equation (33), we can derive that

Δj = min
i<j

Δi, j = min
i<j

max{detO(i) + detD(j) − swait[i + 1], detD(j) − swait[j + 1], 0} (44)

In Equation (44), since j is fixed, the terms related to only j are constants, e.g., detD(j), swait[j+1].
Thus, we can rewrite Equation (44) by Equation (45).

Δj = min
i<j

max{F (i),C} (45)

where the function F (i) and constant C are as follows (for proof brevity only):

F (i) = detO(i) − swait[i + 1] + detD(j) (46)

C = max{detD(j) − swait[j + 1], 0} (47)

We next prove the following fact in Equation (48) from two aspects.

min
i<j

max{F (i),C} = max{min
i<j
{F (i)},C} (48)

• ∃i, F (i) ≤ C . We have both LHS and RHS of Equation (48) equal toC , since mini<j {F (i)} ≤ C .
• �i, F (i) ≤ C . In other words,∀i, F (i) > C . Thus, the LHS of Equation (48) equals mini<j {F (i)}.

The RHS of Equation (48) also equals mini<j {F (i)}, since mini<j {F (i)} is still larger than C .

Based on Equation (48), we can rewrite Equation (45) as follows:

Δj = min
i<j

max{F (i),C} = max{min
i<j
{F (i)},C} (49)

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

Unified Route Planning for Shared Mobility: An Insertion-based Framework 2:45

As a result, we then focus on efficiently calculating F (i). Since detD(j) is a constant and dio[j] =
mini<j {detO(i) − swait[i + 1]}, we can calculate mini<j {F (i)} as follows.

min
i<j
{F (i)} = min

i<j
{detO(i) − swait[i + 1] + detD(j)}

= detD(j) +min
i<j
{detO(i) − swait[i + 1]}

= detD(j) + dio[j] (50)

Finally, we prove this lemma by substituting Equation (47) and (50) into Equation (49).

Δj = max{detD(j) + dio[j],C} = max{detD(j) + dio[j], detD(j) − swait[j + 1], 0}

B.8 Proof of Lemma 15

Proof. First, we assume i = plc[j] violates the capacity constraint (i.e., the first case of Equa-
tion (38) is satisfied). By Lemma 13 (1), any other i ≤ j − 1 also violates the capacity constraint.

Next, we focus on the case when i = plc[j] only violates the deadline constraint in Lemma 13.
Suppose to the contrary, there exists a z (z < j and z � plc[j]) which satisfies all the constraints. It
indicates that for every k ∈ [z, j), the capacity constraint pick[k] ≤ cw −cr always holds. Based on
the definitions of dio[·] and plc[·], we have dio[j] = detO(i)−swait[i+1] ≤ detO(z)−swait[z+1] <
∞ and the integer i must exist. We complete our proof from the following three aspects.

When i violates Lemma 13 (2), we have detO(i) > slack[i]. In other words, the second case of
Equation (38) is satisfied and plc[i + 1] should be equal to plc[i] instead of (i + 1) − 1 = i . Thus,
plc[j] cannot be equal to i , which is contradicted to the assumption.

When i violates Lemma 13 (3), we have detD(j)+max{detO(i)− swait[i + 1]+ swait[j + 1], 0} >
slack[j], where detO(i) − swait[i + 1] can be simplified by dio[j]. Since detO(i) − swait[i + 1] ≤
detO(z) − swait[z + 1], we can infer that detD(j) +max{detO(z) − swait[z + 1] + swait[j + 1], 0}
is larger than slack[j]. Thus, z violates Lemma 13 (3), which is contradicted to the assumption.

When i violates Lemma 13 (4), we have arr[j]+wait[j]+max{detO(i) − swait[i + 1]+ swait[j +
1], 0}+dis(lj ,dr) > er and detO(i)− swait[i +1] can be simplified by dio[j]. As detO(i)− swait[i +
1] ≤ detO(z) − swait[z + 1], we derive arr[j] + wait[j] +max{detO(z) − swait[z + 1] + swait[j +
1], 0} + dis(lj ,dr) > er . Thus, z violates Lemma 13 (4), which is contradicted to the assumption.

B.9 Proof of Lemma 16

Proof. We prove (1) by assuming the contrary. If the new request’s destination is feasible to be
inserted after a location lj , where j < k . Then the arrival time at the location lk must be later than
the release time of the request. By the prerequisite, we know the deadline of rlk

must be violated,
which is contradicted to the assumption.

We prove (2) by the prerequisite. We know arr[j] > er . Thus, the new request’s deadline must be
violated when its destination is inserted after location lj . By the definition of arr[·] in Equation (22),
we know arr[j] ≤ arr[j + 1]. Thus, we can safely prune any j ≥ k .

ACKNOWLEDGMENTS

We are grateful to the reviewers for their insightful and helpful comments.

REFERENCES

[1] Javier Alonso-Mora, Samitha Samaranayake, Alex Wallar, Emilio Frazzoli, and Daniela Rus. 2017. On-demand high-

capacity ride-sharing via dynamic trip-vehicle assignment. Proc. Natl. Acad. Sci. 114, 3 (2017), 462–467.

[2] Mohammad Asghari, Dingxiong Deng, Cyrus Shahabi, Ugur Demiryurek, and Yaguang Li. 2016. Price-aware real-time

ride-sharing at scale: An auction-based approach. In SIGSPATIAL. 3:1–3:10.

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

2:46 Y. Tong et al.

[3] Mohammad Asghari and Cyrus Shahabi. 2017. An on-line truthful and individually rational pricing mechanism for

ride-sharing. In SIGSPATIAL. 7:1–7:10.

[4] Xiaohui Bei and Shengyu Zhang. 2018. Algorithms for trip-vehicle assignment in ride-sharing. In AAAI. 3–9.

[5] Allan Borodin and Ran El-Yaniv. 2005. Online Computation and Competitive Analysis. Cambridge University Press.

[6] Bin Cao, Chenyu Hou, Liwei Zhao, Louai Alarabi, Jing Fan, Mohamed F. Mokbel, and Anas Basalamah. 2020. SHAREK*:

A scalable matching method for dynamic ride sharing. GeoInformatica 24, 4 (2020).

[7] Zhiguang Cao, Siwei Jiang, Jie Zhang, and Hongliang Guo. 2017. A unified framework for vehicle rerouting and traffic

light control to reduce traffic congestion. IEEE Trans. Intell. Transp. Syst. 18, 7 (2017), 1958–1973.

[8] Moses Charikar and Balaji Raghavachari. 1998. The finite capacity dial-a-ride problem. In FOCS. 458–467.

[9] Lu Chen, Qilu Zhong, Xiaokui Xiao, Yunjun Gao, Pengfei Jin, and Christian S. Jensen. 2018. Price-and-time-aware

dynamic ridesharing. In ICDE. 1061–1072.

[10] Peng Cheng, Hao Xin, and Lei Chen. 2017. Utility-aware ridesharing on road networks. In SIGMOD. 1197–1210.

[11] Didi Chuxing. 2018. GAIA Initiative Open Dataset. Retrieved July 22, 2018 from https://gaia.didichuxing.com/.

[12] Blerim Cici, Athina Markopoulou, and Nikolaos Laoutaris. 2015. Designing an on-line ride-sharing system. In SIGSPA-

TIAL. 60:1–60:4.

[13] Michael J. Curry, John P. Dickerson, Karthik Abinav Sankararaman, Aravind Srinivasan, Yuhao Wan, and Pan Xu.

2019. Mix and match: Markov chains and mixing times for matching in rideshare. In WINE. 129–141.

[14] John P. Dickerson, Karthik Abinav Sankararaman, Aravind Srinivasan, and Pan Xu. 2018. Assigning tasks to workers

based on historical data: Online task assignment with two-sided arrivals. In AAMAS. 318–326.

[15] John P. Dickerson, Karthik Abinav Sankararaman, Aravind Srinivasan, and Pan Xu. 2019. Balancing relevance and

diversity in online bipartite matching via submodularity. In AAAI. 1877–1884.

[16] Pedro M. d’Orey, Ricardo Fernandes, and Michel Ferreira. 2012. Empirical evaluation of a dynamic and distributed

taxi-sharing system. In ITSC. 140–146.

[17] R. Fagin, A. Lotem, and M. Naor. 2001. Optimal aggregation algorithms for middleware. In PODS. 102–113.

[18] E. Feuerstein and L. Stougie. 2001. On-line single-server dial-a-ride problems. Theor. Comput. Sci. 268, 1 (2001), 91–105.

[19] Luca Foti, Jane Lin, and Ouri Wolfson. 2021. Optimum versus Nash-equilibrium in taxi ridesharing. GeoInformatica

25, 3 (2021), 423–451.

[20] Xu Geng, Yaguang Li, Leye Wang, Lingyu Zhang, Qiang Yang, Jieping Ye, and Yan Liu. 2019. Spatiotemporal multi-

graph convolution network for ride-hailing demand forecasting. In AAAI. 3656–3663.

[21] Geofabrik. 2021. OpenStreetMap Data Extracts. Retrieved July 18, 2021 from https://download.geofabrik.de/.

[22] Anupam Gupta, MohammadTaghi Hajiaghayi, Viswanath Nagarajan, and R. Ravi. 2010. Dial a ride from k-forest. ACM

Trans. Algorithms 6, 2 (2010), 41.

[23] Wesam Mohamed Herbawi and Michael Weber. 2012. A genetic and insertion heuristic algorithm for solving the

dynamic ridematching problem with time windows. In GECCO. 385–392.

[24] S. C. Ho, W. Y. Szeto, Y. H. Kuo, J. M. Y. Leung, M. Petering, and T. W. H. Tou. 2018. A survey of dial-a-ride problems:

Literature review and recent developments. Transportation Research Part B: Methodological 111 (2018).

[25] Yan Huang, Favyen Bastani, Ruoming Jin, and Xiaoyang Sean Wang. 2014. Large scale real-time ridesharing with

service guarantee on road networks. PVLDB 7, 14 (2014), 2017–2028.

[26] J. J. Jaw, A. R. Odoni, H. N. Psaraftis, and N. H. M. Wilson. 1986. A heuristic algorithm for the multi-vehicle advance

request dial-a-ride problem with time windows. Transportation Research Part B: Methodological 20, 3 (1986), 243–257.

[27] Alexander Kleiner, Bernhard Nebel, and Vittorio A. Ziparo. 2011. A mechanism for dynamic ride sharing based on

parallel auctions. In IJCAI. 266–272.

[28] Ye Li, Leong Hou U, Man Lung Yiu, and Ngai Meng Kou. 2017. An experimental study on hub labeling based shortest

path algorithms. PVLDB 11, 4 (2017), 445–457.

[29] Yafei Li, Ji Wan, Rui Chen, Jianliang Xu, Xiaoyi Fu, Hongyan Gu, Pei Lv, and Mingliang Xu. 2021. Top-k vehicle

matching in social ridesharing: A price-aware approach. IEEE Trans. Knowl. Data Eng. 33, 3 (2021), 1251–1263.

[30] Yaguang Li, Rose Yu, Cyrus Shahabi, and Yan Liu. 2018. Diffusion convolutional recurrent neural network: Data-driven

traffic forecasting. In ICLR.

[31] Z. Liu, Z. Gong, J. Li, and K. Wu. 2020. Mobility-aware dynamic taxi ridesharing. In ICDE. 961–972.

[32] Hui Luo, Zhifeng Bao, Farhana Murtaza Choudhury, and J. Shane Culpepper. 2021. Dynamic ridesharing in peak travel

periods. IEEE Trans. Knowl. Data Eng. 33, 7 (2021), 2888–2902.

[33] Shuo Ma, Yu Zheng, and Ouri Wolfson. 2013. T-share: A large-scale dynamic taxi ridesharing service. In ICDE. 410–

421.

[34] Shuo Ma, Yu Zheng, and Ouri Wolfson. 2015. Real-time city-scale taxi ridesharing. IEEE Trans. Knowl. Data Eng. 27, 7

(2015), 1782–1795.

[35] Michael Mitzenmacher and Eli Upfal. 2017. Probability and Computing: Randomization and Probabilistic Techniques in

Algorithms and Data Analysis. Cambridge University Press.

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

https://gaia.didichuxing.com/
https://download.geofabrik.de/

Unified Route Planning for Shared Mobility: An Insertion-based Framework 2:47

[36] Vedant Nanda, Pan Xu, Karthik Abinav Sankararaman, John P. Dickerson, and Aravind Srinivasan. 2020. Balancing

the tradeoff between profit and fairness in rideshare platforms during high-demand hours. In AAAI. 2210–2217.

[37] NYC. 2021. TLC Trip Record Data. Retrieved July 18, 2021 from https://www1.nyc.gov/site/tlc/index.page.

[38] Masayo Ota, Huy Vo, Claudio Silva, and Juliana Freire. 2015. A scalable approach for data-driven taxi ride-sharing

simulation. In Big Data. 888–897.

[39] Masayo Ota, Huy Vo, Claudio Silva, and Juliana Freire. 2017. STaRS: Simulating taxi ride sharing at scale. IEEE Trans.

Big Data 3, 3 (2017), 349–361.

[40] J. Pan, G. Li, and J. Hu. 2019. Ridesharing: Simulator, benchmark, and evaluation. PVLDB 12, 10 (2019), 1085–1098.

[41] Dominik Pelzer, Jiajian Xiao, Daniel Zehe, Michael H. Lees, Alois C. Knoll, and Heiko Aydt. 2015. A partition-based

match making algorithm for dynamic ridesharing. IEEE Trans. Intell. Transp. Syst. 16, 5 (2015), 2587–2598.

[42] Zachary B. Rubinstein, Stephen F. Smith, and Laura Barbulescu. 2012. Incremental management of oversubscribed

vehicle schedules in dynamic dial-a-ride problems. In AAAI. 1809–1815.

[43] Paolo Santi, Giovanni Resta, Michael Szell, Stanislav Sobolevsky, Steven H. Strogatz, and Carlo Ratti. 2014. Quantifying

the benefits of vehicle pooling with shareability networks. Proc. Natl. Acad. Sci. 111, 37 (2014), 13290–13294.

[44] Douglas Oliveira Santos and Eduardo Candido Xavier. 2013. Dynamic taxi and ridesharing: A framework and heuris-

tics for the optimization problem. In IJCAI. 2885–2891.

[45] Susan Shaheen, Adam Cohen, and Ismail Zohdy. 2016. Shared Mobility: Current Practices and Guiding Principles. Tech-

nical Report. United States. Federal Highway Administration.

[46] Bilong Shen, Yan Huang, and Ying Zhao. 2016. Dynamic ridesharing. SIGSPATIAL Special 7, 3 (2016), 3–10.

[47] R. S. Thangaraj, K. Mukherjee, G. Raravi, A. Metrewar, N. Annamaneni, and K. Chattopadhyay. 2017. Xhare-a-Ride:

A search optimized dynamic ride sharing system with approximation guarantee. In ICDE. 1117–1128.

[48] Y. Tong, Y. Chen, Z. Zhou, L. Chen, J. Wang, Q. Yang, J. Ye, and W. Lv. 2017. The simpler the better: A unified approach

to predicting original taxi demands based on large-scale online platforms. In KDD. 1653–1662.

[49] Yongxin Tong, Libin Wang, Zimu Zhou, Bolin Ding, Lei Chen, Jieping Ye, and Ke Xu. 2017. Flexible online task assign-

ment in real-time spatial data. PVLDB 10, 11 (2017), 1334–1345.

[50] Yongxin Tong, Yuxiang Zeng, Zimu Zhou, Lei Chen, Jieping Ye, and Ke Xu. 2018. A unified approach to route planning

for shared mobility. PVLDB 11, 11 (2018), 1633–1646.

[51] Yongxin Tong, Zimu Zhou, Yuxiang Zeng, Lei Chen, and Cyrus Shahabi. 2020. Spatial crowdsourcing: A survey. The

VLDB Journal 29, 1 (2020), 217–250.

[52] Paolo Toth and Daniele Vigo. 2002. The Vehicle Routing Problem. SIAM.

[53] Shared Use Mobility Center. 2021. What is Shared Mobility? Retrieved July 18, 2021 from https://goo.gl/3Jw6z7.

[54] Jiachuan Wang, Peng Cheng, Libin Zheng, Chao Feng, Lei Chen, Xuemin Lin, and Zheng Wang. 2020. Demand-aware

route planning for shared mobility services. PVLDB 13, 7 (2020), 979–991.

[55] David Wilkie, Cenk Baykal, and Ming C. Lin. 2014. Participatory route planning. In SIGSPATIAL. 213–222.

[56] D. Wilkie, J. P. Berg, M. C. Lin, and D. Manocha. 2011. Self-aware traffic route planning. In AAAI.

[57] N. H. M. Wilson, R. Weissberg, B. Higonnet, and J. Hauser. 1975. Advanced Dial-A-Ride Algorithms. Technical Report.

[58] Yi Xu, Yongxin Tong, Yexuan Shi, Qian Tao, Ke Xu, and Wei Li. 2019. An efficient insertion operator in dynamic

ridesharing services. In ICDE. 1022–1033.

[59] Y. Xu and P. Xu. 2020. Trade the system efficiency for the income equality of drivers in rideshare. In IJCAI. 4199–4205.

[60] Yifan Xu, Pan Xu, Jianping Pan, and Jun Tao. 2020. A unified model for the two-stage offline-then-online resource

allocation. In IJCAI. 4206–4212.

[61] Andrew Chi Chin Yao. 1977. Probabilistic computations: Toward a unified measure of complexity. In FOCS. 222–227.

[62] Huaxiu Yao, Fei Wu, Jintao Ke, Xianfeng Tang, Yitian Jia, Siyu Lu, Pinghua Gong, Jieping Ye, and Zhenhui Li. 2018.

Deep multi-view spatial-temporal network for taxi demand prediction. In AAAI. 2588–2595.

[63] San Yeung, Evan Miller, and Sanjay Madria. 2016. A flexible real-time ridesharing system considering current road

conditions. In MDM. 186–191.

[64] Chak Fai Yuen, Abhishek Pratap Singh, Sagar Goyal, Sayan Ranu, and Amitabha Bagchi. 2019. Beyond shortest paths:

Route recommendations for ride-sharing. In WWW. 2258–2269.

[65] Yuxiang Zeng, Yongxin Tong, and Lei Chen. 2019. Last-mile delivery made practical: An efficient route planning

framework with theoretical guarantees. PVLDB 13, 3 (2019), 320–333.

[66] Yuxiang Zeng, Yongxin Tong, Yuguang Song, and Lei Chen. 2020. The simpler the better: An indexing approach for

shared-route planning queries. PVLDB 13, 13 (2020), 3517–3530.

[67] Junbo Zhang, Yu Zheng, and Dekang Qi. 2017. Deep spatio-temporal residual networks for citywide crowd flows

prediction. In AAAI. 1655–1661.

[68] Boming Zhao, Pan Xu, Yexuan Shi, Yongxin Tong, Zimu Zhou, and Yuxiang Zeng. 2019. Preference-aware task assign-

ment in on-demand taxi dispatching: An online stable matching approach. In AAAI. 2245–2252.

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

https://www1.nyc.gov/site/tlc/index.page
https://goo.gl/3Jw6z7

2:48 Y. Tong et al.

[69] Bolong Zheng, Chenze Huang, Christian S. Jensen, Lu Chen, Nguyen Quoc Viet Hung, Guanfeng Liu, Guohui Li, and

Kai Zheng. 2020. Online trichromatic pickup and delivery scheduling in spatial crowdsourcing. In ICDE. 973–984.

[70] Libin Zheng, Lei Chen, and Jieping Ye. 2018. Order dispatch in price-aware ridesharing. PVLDB 11, 8 (2018), 853–865.

[71] L. Zheng, P. Cheng, and L. Chen. 2019. Auction-based order dispatch and pricing in ridesharing. In ICDE. 1034–1045.

Received January 2021; revised July 2021; accepted September 2021

ACM Transactions on Database Systems, Vol. 47, No. 1, Article 2. Publication date: May 2022.

