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Understanding customer mobility patterns to commercial districts is crucial for urban planning, facility
management, and business strategies. Trade areas are a widely applied measure to quantify where the visitors
are from. Traditional trade area analysis is limited to small-scale or store-level studies because information
such as visits to competitor commercial entities and place of residence is collected by labour-intensive
questionnaires or heavily biased location-based social media data. In this paper, we propose CellTradeMap, a
novel district-level trade area analysis framework using mobile flow records (MFRs), a type of fine-grained
cellular network data. We show that compared to traditional cellular data and social network check-in
data, MFRs can model customer mobility patterns comprehensively at urban scale. CellTradeMap extracts
robust location information from the irregularly sampled, noisy MFRs, adapts the generic trade area analysis
framework to incorporate cellular data, and enhances the original trade area model with cellular-based features.
We evaluate CellTradeMap on two large-scale cellular network datasets covering 3.5 million and 1.8 million
mobile phone users in two metropolis in China respectively. Experimental results show that the trade areas
extracted by CellTradeMap are aligned with domain knowledge and CellTradeMap can model trade areas
with a high predictive accuracy.
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1 INTRODUCTION
The ubiquity of mobile devices and the development of cellular networks have generated un-
precedented telecommunication big data. There have been more mobile devices than humans
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Fig. 1. (a) Spatial distributions of MFRs in one hour. (b) Trade areas of all commercial districts in a city. Red
circles are commercial districts. The contour maps around circles are the corresponding trade areas.

worldwide [2]. These devices access cellular networks for various applications, such as news brows-
ing, instant messages, mobile videos, mobile games, etc. It is predicted that the annual mobile
Internet traffic will exceed half a ZB (1021Bytes) by 2021 [5].

The tremendous amounts of cellular network records contain precious business values. Cellular
data have long served as approximated locations of mobile users at the granularity of cell towers [27,
37]. Over the past decade, researchers have exploited cellular data to mine customer mobility
behaviour for various business strategies and applications such as mobile advertising [9], optimal
store location planning [17] and commercial activeness prediction [33].
One expressive, widely adopted approach to characterize customer mobility pattern is trade

areas. A trade area is “a geographically delineated region containing potential customers”, which
quantifies the distributions of visitors to a store or a commercial district [14]. In other words, the
trade area of a store or a commercial district depicts the origins (i.e., home locations) of visitors
and the corresponding visit probabilities. Understanding where the visitors come from and their
choices of competitive stores or commercial districts is vital to optimize market management and
strategies.
Despite its importance, trade area analysis has long been considered expensive and time-

consuming. The major burden is the efforts to estimate the number of visitation to a store or
commercial district and all of its competitors, as well as to collect home information of the visitors.
Traditionally, such information is manually collected from questionnaires and surveys [31]. Re-
searchers interview the residents in an area to know how often people visit commercial areas and
which commercial districts they visit. Such methods are laborious and limited in small scale.

Other studies [17, 23, 31] utilize location data from social media as alternative method for trade
area analysis. Check-in data from social media prove effective due to their ease to be collected
at large scale [23]. However, infering place of home and collecting comprehensive visitation
information of competitor businesses are very difficult based on the biased and limited check-in
data [18] Furthermore, it is difficult to aggregate the trade area of stores to obtain the trade area of
commercial districts without bias. Call Detail Records(CDR) can also provide location information,
but only when users make or receive phone calls. This make CDR data very sparse and unable to
support detailed inspection such as trade area analysis.
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To fill the void of cost-effective, urban-scale, comprehensive trade area analysis for commercial
districts, we explore mobile flow records (MFR), a fine-grained cellular network data source that
has recently attract much research attention [20]. MFRs are system logs of cellular network that
describe the Internet access behaviour of phone users. The wide spatial coverage (e.g. 3.5 million
mobile phone users in a metropolis) and high time resolution (e.g. 4-minute sampling rate) make
them suited for comprehensive district-level trade area analysis. In comparison, effective check-ins
may be sparse and contain data for limited numbers and types of stores (e.g. 4 stores in New York
with 0.1 check-in per user per day. [23]).

We propose CellTradeMap, an MFR-based framework to delineate and model trade areas for
commercial districts. We base our design upon large-scale MFR datasets covering millions of
anonymous mobile phone users in two metropolises of China, which makes urban-scale analysis
possible. Through measurement studies, we investigate the irregular sampling and frequent base
station switch problems of the MFR data. To tackle these challenges, we design a novel and practical
pipeline to extract robust location information in the form of stay points from raw MFRs. We also
adapt the generic trade area analysis framework [25] to incorporate this cellular data, extend the
scope of trade area analysis to various attractiveness metrics, and improve the accuracy of the
widely adopted trade area model [14] by adding MFR-based metrics and L1 − norm. Fig. 1a shows
the spatial distribution of our MFR dataset within an hour, and Fig. 1b illustrates the trade areas of
all the commercial districts in the city derived from CellTradeMap in the form of contour maps.

We summarize the main contributions of this work below.

• To the best of our knowledge, this is the first work that utilizes flow-level data of cellular
networks to profile and model trade areas for commercial districts. It offers a new cost-
effective data collection methodology for urban-scale district-level trade area analysis.

• We design practical processing techniques to extract stay points and home locations of users
from raw MFR data. Our solution serves as a generic pipeline to robustly derive location
information from flow-level cellular data for mobility-related studies.

• We adapt the general trade area analysis framework to incorporate MFR and conduct urban-
scale analysis on an MFR dataset. Experiments show that CellTradeMap profiles trade areas
that are explainable by prior knowledge, reveal the important metrics for commercial attrac-
tiveness, and improves the predictive accuracy of the conventional trade area model with the
help of L1 − norm and MFR-based metrics.

A preliminary version of CellTradeMap has been presented in [38]. We extend it in the following
aspects:

• We evaluate the performance of CellTradeMap on a new dataset (Sec. 7), which covers 1.8
million mobile phone users in 48 days. The results further show that CellTradeMap can
delineate and model trade areas effectively.

• We compare the results of two different cities and find that some attractive metrics are
consistent in different cities and some differ. (Sec. 7.3)

• We compare MFR with Call Detail Records (CDR) (Sec. 3.1) and check-in data (Sec. 7.4), which
are widely used in previous work [23, 28, 31]. The results show that MFRs are more suitable
to analyze customers’ behaviors.

In the rest of this paper, we review related work in Sec. 2, introduce our dataset and CellTradeMap
framework in Sec. 3, present the details of the three modules of CellTradeMap in Sec. 4, Sec. 5 and
Sec. 6, and evaluate its performance in Sec. 7. Finally we conclude this paper in Sec. 8.
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2 RELATEDWORK
Our work is inspired by the emerging trend on urban sensing with cellular networks, with a focus
on trade area analysis. We review the most relevant studies below.

2.1 Urban Sensing with Cellular Networks
High user penetration and large spatial coverage make cellular networks an ideal data source for
large-scale and comprehensive urban sensing [4, 20, 35, 36]. Different types of cellular data for
various applications has been exploited in previous studies.

Aggregated traffic data have been studied to monitor and manage urban cellular traffic. Ferrari et
al. [12] partition the urban area into grids and agglomerate cellular usage data in each grid to detect
events in city. Wang et al. [30] study at cellular tower level to predict future traffic in the city.
Call detail record (CDR) is another type of cellular data, which records a time stamp and the

connected tower ID when a phone call is made. It contains information about users’ location and
have been used to study the fundamental laws of human mobility [13, 27, 28]. [34] combile CDR
data and public transit data to infer human mobility patterns more accurately.

MFR are sampled whenever mobile phones accesses the cellular network, which contains much
more detailed information than CDR. Several previous works use MFR for fine-grained traffic
characterization [29] and mobility modeling [19, 37]. Our work is the first to devise techniques for
MFR to infer the locations of residence and visits to commercial districts for trade area analysis.

2.2 Trade Area Analysis
Trade area analysis studies questions such as “how long distance did people travel” and “what
factors attract customers” to a store or a commercial district. Understading these questions can help
with city planning and market management [24]. To do trade area analysis, researchers need to
estimate the number of visitation to stores or commercial districts. Traditionally, these information
is collected by surveys[10, 21].
User check-ins on social networks emerge as a low-cost alternative to estimate the number of

visitation [17, 23, 31]. Wang et al. [23] characterize where the customers of four popular stores
come from exploiting check-in data of the four stores in New York City. Wang et al. [31] highlight
the effects of different customer sample sets on trade area analysis by investigating check-in data of
five major commercial districts in Beijing, China. However, check-in data suffers from the sparsity
and bias problems [23], making them unfit for comprehensive trade area analysis at district level.
This also limits their ability to quantify the metrics’ impact on trade areas.

We conduct trade area analysis with MFRs, which have wider spatial coverage and finer temporal
resolution than check-ins, and design processing techniques dedicated to extract robust location
information from MFRs.

3 OVERVIEW
This section presents our mobile flow record dataset and the overall framework of CellTradeMap.

3.1 Mobile Flow Record Dataset
Mobile flow records (MFRs) are fine-grained logs of cellular networks. Each MFR consists of a user
ID, a time stamp, the base station ID, the application sending this packet, the host and the Uniform
Resource Identifier (URI) of the request, as well as other flow information like upload/download
bytes (o2r/r2o in Table 1). We use two MFR datasets (D1 and D2) to evaluate the performance of
CellTradeMap. They are from two different cities in China and both cover a broad area and a large
population. Their statistics are summarized in Table 2.
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Table 1. Example of mobile flow record.

User Time Station Host URI o2r Bytes r2o Bytes ...
user1 t1 s1 www.example.com /index/... 614 418 ...
... ... ... ... ... ... ... ...

Table 2. Dataset Statistics

D1 D2

# Records 1.7 × 1010 8 × 109
# Cell towers 2.1 × 104 1.2 × 104
# Covered users 3.5 × 106 1.8 × 106
Covered area 1.1 × 104 km2 1.3 × 104 km2

Covered period June 6 - 18, 2016 Dec. 19, 2016 - Feb. 4, 2017

The MFR datasets cover a wide spatial range and have a high time resolution. In comparison, the
check-in dataset used in [23] only contain data for 4 stores in New York City (around 100 check-ins
for each store). The average number of records per user per day of our MFR data is 694 and the
average interval is shorter than 4 minutes. In contrast, the average number of check-ins per user
per day in [23] is only 0.1.
Compared to CDR, which is commonly used in previous works (Sec. 2.1), MFR has much finer

temporal granularity and more records. We compare MFR and CDR in Fig. 2:

• Fig. 2a compares the temporal granularity of MFR and CDR by the CDF of the inter-record
intervals. Most intervals of MFR are shorter than several minutes, while the inter-record
interval of CDR can be as long as several hours. As shown in Fig. 2a, nearly all consecutive
MFRs are within 103 seconds (about 17 minutes). For CDR, there are over one forth inter-
record intervals that are longer than 104 seconds (about 3 hours).

• Fig. 2b shows the CDF of the distance between consecutive distinct location records. The
spatial granularity of CDR is close to that of MFR because it is mainly decided by the density
of base stations. The slightly coarser spatial granularity of CDR may be due to the long
inter-record intervals.

• Fig. 2c is the CDF of the number of daily records per user. 95% users have less than 1 call
detail record per day, while most users have hundreds of mobile flow records in one day on
average. This limits the capacity of CDR to characterize users’ daily activities like visiting
commercial districts.

The high user penetration and fine temporal granularity make MFR ideal to survey users’ visits to
commercial districts and their places of residence, which are the basis for the trade area analysis.
Together with other data sources such as Points of Interest (POIs), MFRs hold potential to

comprehensively analyze the trade areas for commercial districts in the entire city.

3.2 CellTradeMap Framework
CellTradeMap is a new pipeline to characterize and predict the trade areas for commercial districts
with MFRs. It consists of three major functional modules (see Fig. 3).

5



Woodstock ’18, June 03–05, 2018, Woodstock, NY Zhao et al.

100 101 102 103 104 105

Temporal Granularity (second)
0.00

0.25

0.50

0.75

1.00

CD
F

MFR
CDR

(a)

0 2000 4000 6000 8000 10000
Spatial Granularity (meter)

0.00

0.25

0.50

0.75

1.00

CD
F

MFR
CDR

(b)

0 200 400 600 800 1000
# Daily Records per user

0.00

0.25

0.50

0.75

1.00

CD
F

(1,0.95)

MFR
CDR

(c)

Fig. 2. Compare CDR and MFR on (a) temporal granularity, (b) spatial granularity, and (c) the number of
daily records per user. MFR has much finer temporal granularity, slightly finer spatial granularity and more
records per user per day. The CDF of MFR is based on D1 and the CDF of CDR is based on a CDR dataset
that covers 4.4 × 105 users in 27 days.
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Fig. 3. Overview of CellTradeMap.

• MFR Processing. In this module, we extract stay points and durations from mobile phone
users’ raw MFRs. Recent proposals exploit check-ins from social media to count visita-
tions [17], but such data is prone to sparsity and bias [23]. Techniques to extract stay points
from GPS traces [39, 40] cannot be applied to MFRs because of MFRs’ unique characteristics
(Sec. 4.1). We design novel processing pipeline including switch rectification, burst separation
and stay points extraction, to robustly extract location and visitation information from MFRs
in Sec. 4.

• Trade Area Delineation. This module visualizes the trade areas e.g., with contour maps of
visit probabilities (see Fig. 1b). We harness POI clustering to identify commercial districts,
infer home locations of visitors based on spatiotemporal patterns of MFRs, and estimate visit
probabilities to commercial districts (Sec. 5). We also explain the different patterns of trade
areas (Sec. 7.2.2).

• Trade Area Modeling. This module associates contexts such as the attractiveness of a
commercial district to its visit probability. The Huff gravity model [14] is widely used to
predict the trade area of commercial districts. However, there is no consensus on a unified
definition of the attractiveness. We extract new metrics from MFRs and POIs to quantify
the attractiveness, evaluate each metric’s contribution to attractiveness and improve the
accuracy of the original Huff model (Sec. 6).

In the next three sections, we detail each of the three functional modules in sequel.
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(a) (b) (c)

Fig. 4. (a)(b): Switches to (a) a remote base station and (b) a nearby base station. The green (bigger) dots are
the user’s connected stations at the corresponding time, and the grey (smaller) dots are all stations nearby.
(c): Bursty sampling of MFRs. Points on each horizontal line represent the occurrences of one user’s MFRs.
One of User 6’s bursts is zoomed in at the top.

4 MOBILE FLOW RECORD PROCESSING
This section presents the pipeline to robustly extract stay points of mobile phone users from MFRs.

4.1 Challenges
4.1.1 Frequent Base Station Switches. MFRs are expected to approximate users’ location by the
connected base station’s location. In practice, the phone is not always connected to the nearest
base station because of the overlap of base stations’ service areas [22]. Sometimes a phone may
suddenly connect to a remote base station, exchange several packets and switch back within a short
time. Fig. 4a shows one example of such base station switches. The user’s phone switches to a base
station nearly 6km away and then back to a nearby base station within 10 seconds.

Even when a user stays at the same place, his/her phone may switch among base stations nearby
(Fig. 4b). Consequently, it is difficult to decide whether a user is actually moving or still.

4.1.2 Bursty Sampling. Bursty sampling is another characteristic of MFRs. Mobile phone users usu-
ally access cellular network in a bursty and intermittent manner [16], i.e., heavy data traffic within
a short interval. For example, activities like watching online videos consume traffic intensively and
continuously, causing a lot MFRs in a short time.
Fig. 4c illustrates the bursty sampling of MFRs. Points on each horizontal line represent the

occurrences of a user’s records in one day. Point (t,useri ) means useri has a record at time t . Most
users have one or two intervals of dense records separated by hours of blank except for user 3, who
seems to be a heavy mobile phone user. One of User 6’s “bursts” is zoomed in at the top of Fig. 4c.
The records are sampled at a high frequency (from 0 times/min to 86 times/min, 7 times/min on
average). The bursty sampling causes redundancy in the dense intervals, and lead to sparsity during
blank intervals.

4.2 Base Station Switch Rectification
This subsection deals with the base station switch problem in MFRs. We treat switches to remote
stations and switches to nearby stations differently.

4.2.1 Switches to Remote Stations. Switches to remote stations can cause wrong location records in
MFRs (Fig. 4a).We first sort each user’sMFRs by time, and extract a sequence {pi =< location, timestamp >=<
pi .loc,pi .T >}, where pi .loc is the location of the base station that the phone connects to. Like [32]

7



Woodstock ’18, June 03–05, 2018, Woodstock, NY Zhao et al.

0 2000 4000 6000 8000
Distance (meters)

0.00

0.25

0.50

0.75

1.00

CD
F

(1739,0.9)

(a)

0 5 10 15 20
Return time (hours)

0.0

0.2

0.4

0.6

0.8

1.0

CD
F

(1.7,0.1)

(b)

0 1000 2000 3000 4000
Range (meters)

0.00

0.25

0.50

0.75

1.00

CD
F

(1763,0.9)

(c)

Fig. 5. Cumulative Distribution Function of (a) distance between users and their connected base stations, (b)
return time (The interval between users’ leaving and coming back to the same place), (c) station switch range
during stay.

dealing with station switch in CDR, we take a record pi as a remote station switch if:

Dist(pi−1.loc,pi .loc) > Dnoise

pi .T − pi−1.T < ∆Tnoise
(1)

where Dist is the Euclidian distance function. We do not use a speed threshold directly because
nearby switches can also cause high speed as shown in Fig. 4b.
We set the threshold Dnoise by analyzing the URI in MFRs (see Table 1). We observe that some

location-based services embed users’ GPS in the request URI, which can be seen as the actual
locations of users. Fig. 5a shows the distance between users and their connected stations based on
these records. For over 90% samples, the distance is below 1.8km, so we setDnoise to 2×1.8 = 3.6km.
Considering the speed limit of a highway is 120km/h in China, we set the time threshold ∆Tnoise
to 3.6/120 × 3600 = 108s.

4.2.2 Switches to Nearby Stations. Nearby base station switches do not incur obviously wrong
location records and can be considered as normal fluctuations of cellular localization. We propose
techniques to extract stay points that are robust to variations of locations caused by nearby base
station switches in Sec. 4.4.

4.3 Burst Separation
To handle the uneven sampling of MFRs, we divide the sequence of MFR logs of a user into multiple
bursty intervals and sparse intervals, and process them differently when extracting stay points and
durations (see Sec. 4.4).

A bursty interval is defined as Ib =< p1,p2, ...,pn >, where

pn .T − p1.T > ∆Tstay

pi+1.T − pi .T < ∆Tbursty (i = 1, 2...n − 1) (2)

Each interval between two neighbouring bursty intervals is a sparse interval (denoted by Is ).
To set ∆Tbursty , we consider that it should give a high probability that a user stays at the exact

place during ∆Tbursty interval. Assume the gap between two consecutive records are ∆T , and the
two records are generated at the same cellular tower. When ∆T is small enough (∆T < ∆Tbursty ),
the user is very likely to stay near the cellular tower during this interval (∆T ). Otherwise, the user
may have gone to another place and then come back. To determine the value of ∆Tbursty , we draw
the distribution of the time between mobile phone users’ two visits to the same location (return
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time). A return is identified by:
< p1,p2, ...,pi , ...,pn >

s .t . p1.loc = pn .loc,Dist(p1,pi ) > Dnoise
(3)

Then return time is pn .T − p1.T . Based on Fig. 5b, return time is over 1.7 hours for 90% cases. For
two successive records whose gap is shorter than 1.7 hours, we can infer that the user does not
visit other places confidently. So ∆Tbursty is set to 1.7 hours. In Sec. 4.4 we will discuss the value of
another threshold ∆Tstay .
In the inset of Fig. 4c, more than 82% of records are within 5 seconds after their predecessors.

This means that the MFRs inside a bursty interval can be rather redundant. Most of records inside
bursty interval can be discarded to accelerate data processing without losing information. Based on
these observations, if a record is less than 10 seconds after the last record, it is considered redundant
and removed. As a result, 69% of records are filtered out.

4.4 Stay Point Extraction
Based on MFR, we extract users stay points and then infer their homes and visits to commercial
districts. When a mobile phone user stays in the neighbourhood for some time longer than a
threshold, we call it a stay point. Stay points are a more robust way to represent users’ location
than raw location information directly from MFR, since phones can switch among nearby cellular
towers even when they donot move. Stay points can also indicate semantic meanings about users’
activities, such as visiting commercial districts and resting at home [39, 40].
We determine stay points as follows. First we split a user’s MFRs into bursty intervals ({Ib })

and sparse intervals ({Is }) as Sec. 4.3. Then stay points are extracted from each bursty interval
Ib =< p1,p2, ...,pn >. We define the neighbourhood of a record pi as a circle centered at pi .loc with
radius Dnbh .

Specifically, we first find the continuous records when a user stays in pi ’s neighbourhood, i.e.,
< ps , ...,pi , ...,pe >

s .t . Dist(pj .loc,pi .loc) <= Dnbh ∀s ≤ j ≤ e

Dist(ps−1.loc,pi .loc) > Dnbh

Dist(pe+1.loc,pi .loc) > Dnbh

(4)

Then the time the user spends in pi ’s neighbourhood is pi .st = pe .T − ps .T . We select pi with the
maximum pi .st as pmax . If pmax .st ≥ ∆Tstay , then we extract a stay point sp = (loc,arvT , levT ):

sp.loc =
e∑

k=s

pk .loc/(e − s + 1)

sp.arvT = ps .T sp.levT = pe .T

(5)

where sp.loc is the center of the stay point, sp.arvT and sp.levT are the arrival and leaving time of
sp, respectively.

After removing Isp =< ps , ...,pmax , ...,pe > from Ib , we update each remaining record’s pi .st
which are affected by the removal of Isp . Then we repeat the above process to find other stay points
until the maximum pi .st is shorter than ∆Tstay .
For sparse intervals, we only extract stay points at night and abandon the records at daytime.

Note that the time between two records in sparse intervals can be larger than ∆Tbursty = 1.7 hours,
during which a return may occur (Fig. 5b). But if the sparse interval is at night, it is highly likely
that consecutive records with the same location is a stay. This will help us extract home locations
robustly.
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Fig. 6. Example of clustered stay points. Each circle is a stay point of the user. The area of a circle is proportional
to its stay time at night. The color of the circle represents the cluster it belongs to.

The threshold ∆Tstay is the minimum time length of a stay. We set it to 20min because it suffices
to qualify as a visit to commercial districts. Bursty intervals shorter than ∆Tstay will not contain
stay points, so ∆Tstay is also used in Sec. 4.3 as the minimum length of bursty intervals.
We set the other threshold Dnbh by analyzing users’ distribution of connected stations during

stay. For GPS trajectories, Dnbh can be set manually to an appropriate value (200m [40]). But for
MFRs, owing to the low spatial granularity and nearby station switches, the fluctuation range of
connected stations is different from the range of users’ wandering. From the records with GPS
values (Sec. 4.2), we extract over 10 thousand stay points by the method of [40]. The distribution of
station fluctuation range is shown in Fig. 5c. As is shown, about 60% stay points only have one
station due to the low spatial granularity. Also, users’ wandering can cause several kilometers of
station fluctuation and 90% of them are below 1.763km. So Dnbh is set to 1.763km.

5 TRADE AREA DELINEATION
Based on the stay points extracted in Sec. 4.4, we infer the commercial districts’ trade areas. First,
we cluster Points of Interests (POI) to identify commercial districts automatically (Sec. 5.1) , then
we infer the probabilities that residents visit each commercial district (Sec. 5.3), based on which we
can quantify the trade areas.

5.1 Commercial District Identification
To find the commercial districts automatically, we adopt the method of [33]. We consider the
POIs with annotations of commercial districts and shopping malls. First, the algorithm selects
some seeds as the initial cluster centers, then assigns other POIs to their closest cluster unless the
distance is greater than a threshold. By selecting a proper threshold (evaluated by the Silhouette
Coefficient [26]), we obtain 52 commercial districts in the city of D1 and 33 in D2.

5.2 Home Location Inference
In previous studies, researchers find that human mobility exhibits high regularity [13, 27], and
human activities are usually centered around a few locations like home and work places [15].
To infer the probabilities that the residents in an area visit a commercial district, we first need
to identify users’ place of residence. We represent a user’s stay points as {sp1, sp2, ..., spn}. After
clustering with DBSCAN[11] (epsilon set to 500 meters and minimum samples set to 1), we findm
clusters {c1, c2, ..., cm}. For each cluster ci :

ci .st =
∑
sp∈ci

(sp.levT − sp.arvT )

ci .loc =
∑
sp∈ci

sp.loc × (sp.levT − sp.arvT )/ci .st
(6)
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where ci .st is the total stay time of the stay points in this cluster and ci .loc is the weighted centroid
of stay points based on their stay time. Then we take the place where users stay most at night
(20:00 to 8:00) as the users’ home. Fig. 6 shows the clusters of a user’s stay points, and the identified
home is also marked. The stay points gather at a few key locations and the stay time at night of the
home cluster is significantly larger than other clusters.

5.3 Visit Probability Estimation
First,We partition the city into 1km×1km grids (30km×30km totally). Thenwe infer the probabilities
that people in each grid area visit each commercial district. If a user pays a visit to a commercial
district between 18:00 and 23:00 on weekdays or 9:00 and 23:00 at weekends, which is the most
common shopping time, it is counted as one visit to the commercial district. The visits are identified
based on users’ stay points, thus we can exclude the people that just pass by a commercial district.
Besides, we take the place where users spend the most time at daytime (8:00 to 20:00) as their
work locations, then we exclude the people working near a commercial district when counting
the number of visits to this commercial district. Pi j is the probability that residents in area i visit
commercial district j. It is calculated as Pi j = Ci j/

∑Ni
k=1Cik , where Ci j is the total number of visits

from area i to district j and Ni is the total number of commercial districts. We admit that we are not
able to differentiate people actually purchasing something from people purchasing nothing. The
people visiting a commercial district without purchasing anything are potential customers for the
commercial district. So understanding their behaviors is also beneficial to promote business profits.

6 TRADE AREA MODELING
This section investigates the impacting factors on trade areas of commercial districts based on the
Huff model.

6.1 Basics on Huff Model
The Huff model [14] has been widely used for evaluating business geographic decisions including
defining and analyzing trade areas. It models the visit probabilities from residential areas to
commercial districts as below:

Pi j =
Ui j∑Ni
k=1Uik

(7)

where Pi j is the probability that residents in area i visit commercial district j, Ni is the number of
commercial districts, andUi j is the utility of commercial district j to area i . Specifically,

Ui j = (

H∏
h=1

A
γh
hj )D

λ
i j (8)

where Ahj is the hth metric of the attractiveness of commercial district j and γh is the sensitivity
parameter of Pi j to Ahj . Di j is the distance (travel time) between area i and commercial district j
with a negative sensitivity parameter λ to depict the distance decay effect.

We have calculated Pi j from MFRs in Sec. 5.3. The travel time Di j can also be easily obtained via
map services such as the Baidu Map API [1]. Below we describe how to determine the attractiveness
Ahj and the sensitivity parameters.

6.2 Attractiveness Determination
The area is usually used to quantify attractiveness in previous works [31], while a consensus on the
definition of attractiveness is currently absent. In this paper, we design various metrics from three
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categories of metrics to quantify the attractiveness of a commercial district in order to improve the
accuracy of the Huff model.

6.2.1 Commercial Entity Metrics. The amounts and diversity of commercial entities in a district are
important metrics that affect the attractiveness. For commercial district j , the numbers of shopping
POIs (m1), restaurant POIs (m2) and entertaining POIs (m3) are counted as the commercial entity
metrics. To assess the diversity of entities, entropy measure (m4) from information theory is applied
to the frequency of commercial POI types.

6.2.2 Urban Facility Metrics. The attractiveness of a commercial district is not only related to
commercial POIs, but also others like parking lots (m5), scenic spots (m6), bus stations (m7), subway
stations (m8) and life services (m9). They reflect the transportation accessibility and the services a
district can provide. The numbers of these POIs are collected as the urban facility metrics.

6.2.3 Human Metrics. The population density and the incoming flow may have an impact on
the trade area of a commercial district. Based on the locations of homes inferred from MFRs,
we can estimate the population of an area. The population densities in 5km (m10), 5~10km (m11)
and 10~15km (m12) range around a commercial district are extracted. From MFR, we also get the
incoming flow (m13) for each commercial district, which excludes the residents in the commercial
district.

6.3 Huff Model Fitting
Substitute Eq.(8) into Eq.(7), we get

Pi j =
(
∏H

h=1A
γh
hj )D

λ
i j∑Ni

k=1(
∏H

h=1A
γh
hk )D

λ
ik

(9)

Apply the following transformation, Eq.(9) can be transformed into a linear form:

loд(
Pi j

P̃i
) =

H∑
h=1

γh log
Ahj

Ãh
+ λ log

Di j

D̃i
=W · E

W = (γ1, ...,γH , λ)

E = (log
A1j

Ã1
, ..., log

AH j

ÃH
, log

Di j

D̃i
)⊺

(10)

where P̃i , Ãh and D̃i are respectively the geometric mean of Pi j , Ahj and Di j over all commercial
districts that residents in area i visited.
To automatically select the more relevant metrics of attractiveness, we apply L1 − norm to the

solution of Eq.(10):

Ŵ = argmin
W

{β ∥W ∥1 +
1
2n

∥loд(
Pi j

P̃i
) −W · E∥22 } (11)

where n is the number of samples and β is the weight of L1−norm. It has been shown that L1−norm
can bring sparsity to solutions that can be used to select effective metrics [33].

Once we obtain the value ofW , we can analyze how much each metric contributes to the trade
area of a commercial district (evaluated in Sec. 7.3.1), and predict the trade areas of other commercial
districts (evaluated in Sec. 7.3.2).

7 EVALUATION
This section presents the evaluations of CellTradeMap. Due to the lack of ground truth on the
actual locations of mobile phone users, it is difficult to evaluate the accuracy of the MFR processing
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Fig. 7. Correlation between the number of residents inferred by CellTradeMap and that by census for each
administrative district ((a): D1, (b): D2).

module. Hence we mainly assess the performance of CellTradeMap on trade area delineation and
modeling.

7.1 Experimental Settings
We use the same MFR dataset as in Sec. 3.1. The POI data are from Baidu Map API [1].

We store theMFR dataset in aGreenplum [6] database, an open-source data platform for massively
parallel processing. We use d3.js[7] and mapbox [8] to visualize trade areas. The remaining parts of
the system are implemented in python and the experiments are run on a CentOS server with Xeon
E5 processor and 256 GB memory. The sampled data and code are available upon request to the
corresponding author.

7.2 Performance of Trade Area Delineation
In this series of experiments, we evaluate the accuracy of CellTradeMap on home location inference
and analyze the trade areas extracted from MFRs.

7.2.1 Accuracy of Home Location Inference. In this experiment, we compare the distribution of
homes inferred by CellTradeMap with the census data published by the government for each
administrative district. We evaluate the accuracy at the administrative district level rather than for
each individual because we do not have access to the home information of each individual mobile
phone user. To get robust results, we only use the users who have more than 4(20) days’ records in
D1(D2).
For D1, Fig. 7a plots the population of residents in each administrative district estimated by

CellTradeMap (i.e., whose homes are located in the district) and that obtained from governmental
census data. We observe a strong linear correlation (r = 0.90) between the estimated population
and the actual population in each administrative district. The only two outliers are district A, a
suburban area, and district B, where the government resides. The deviation of these two points may
be due to urbanization. The linear correlation implies almost unbiased sampling of residents among
different administrative districts. The results of D2 are shown in Fig. 7b. The inferred population is
linearly related to the census data except for a few outliers (r=0.75).

7.2.2 Visualization of Trade Areas. In this experiment, we calculate the visit probabilities of res-
idents to each commercial district, and plot the (i) contour maps of visit probabilities and (ii)
heatmaps of visitors to get insights on the trade areas.
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(a) (b)

(c) (d)

Fig. 8. Contour maps of visit probabilities in D1. Circle nodes represent the center of commercial districts.
The color of an area reflects the probability that residents in this area visit a specific commercial district. The
probability is calculated in Sec. 5.3. (a) The trade area of 1 is squeezed in the south due to the competition
from district 2 and 3, but stretched in the north due to the east-west road. (b) There is no competition for this
commercial district. The trade area extends nearly uniformly except for the stretch along the east-west road.
(c) The extension of the trade area to the south is blocked by a river. (d) The trade area of district 1 is much
larger than that of district 2 owing to the different attractiveness of the two districts.

Fig. 8 and Fig. 10(a)(b) show representative contour maps of visit probabilities in D1 and D2. First,
we calculate the visit probabilities from grids to commercial districts as in Sec. 5.3, then we take
these probabilities as the samples at the center of each grid, finally we get the contour lines based
on these samples [3]. In these figures, The color of an area reflects the probability that residents in
this area visit a specific commercial district.

We obtain the following insights from the different patterns of trade areas.
(1) The competition from nearby commercial districts can compress the trade area. For example,

in Fig. 8a, the trade area of commercial district 1 is squeezed by the competition with districts
2, 3, which means that the market share of commercial district 1 in the central area is
decreased. In Fig. 10a, the trade area is squeezed horizontally by the competition from nearby
competitors.

(2) The road network is another reason for the anisotropy of the trade area. In Fig. 8b, due to the
east-west road passing by, the trade area elongates along the road. Except for this, the trade
area extends almost evenly because there are no other commercial districts nearby.

(3) The natural barriers like rivers can cut off the spread of the trade area. As shown in Fig. 8c,
a river lying in the south blocks the residents on the south bank to visit the commercial
district on the north bank, whose trade area spread much further to the north. In Fig. 10b,
the extension of trade area to the southeast is also blocked by a river.

(4) The attractiveness may lead to different sizes of trade areas. As shown in Fig. 8d, the two
closely located commercial districts have different sizes of trade areas.
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(a) (b)

(c) (d)

Fig. 9. Heatmaps showing the distribution of visitors’ homes in D1. Circle nodes represent the center of
commercial districts. The intensity of red represents the absolute number of visits from a location. (a) A and B
are both major sources of visitors, but the visit probabilities for residents in A and B to visit this commercial
district are different. (b), (c) and (d) illustrate the same three commercial districts with Fig. 8a. (b), (c) and (d)
show the distribution of visitors of commercial districts 1, 2, 3 respectively.

Fig. 9, Fig. 10c and Fig. 10d show heatmaps of commercial districts’ visitors in D1 and D2. The
intensity of color represents the number of visitors from this area.

(1) In Fig. 9a, location A and B are two major sources of visitors for the commercial district, but
the market shares at these two locations differ, 28% at A, while 12% at B.

(2) Fig. 9b, Fig. 9c and Fig. 9d illustrate the distribution of visitors for the three commercial
districts in Fig. 8a. We find that the middle area among the three commercial districts is
a major source of visitors for all the three districts, although the visit probability to each
district is relatively low owing to the competition. Such areas with low market share and
large volume of visitors should be the focus of business managers.

(3) The visitors in Fig. 10c mostly come from the left of the commercial district while the visitors
in Fig. 10d come from a much broader area.

7.3 Performance of Trade Area Modeling
In this series of experiments, we identify the key metrics of attractiveness and assess the accuracy
of the Huff model fitted by CellTradeMap to predict the trade areas of other commercial districts
using 5-fold cross validation. Specifically, the commercial districts are divided randomly and evenly
into 5 groups. In each round of cross validation, one group is used for testing and the other four
are used for training.

7.3.1 Sensitivity Analysis of Attractiveness Metrics. In this experiment, the sensitivity parameters
γ1,γ2, ...,γH are solved from Eq.(10) and each parameter corresponds to a metric of attractiveness.
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(a) (b)

(c) (d)

Fig. 10. D2: (a)(b) Contour maps of visit probabilities. (c)(d) Heatmaps showing the distribution of visitors’
homes who have visited the commercial district at the center of the figure. (a) The trade area is squeezed
horizontally by the competition from nearby competitors. (b) The extension of trade area to the southeast is
blocked by a river. (c) Most visitors come from the left of the commercial district. (d) The commercial district
at the center attracts visitors from a broad area.

The sensitivities are averaged over 5-fold cross validation and the metrics with top sensitivity are
shown in Fig. 11a and Fig. 11b:

(1) In the city of D1, abundant restaurant options and parking lots, and large crowd flows
are critical to the attractiveness of a commercial district. Besides, easy access to public
transportation and having scenic spots are also helpful.

(2) In the city of D2, the number of restaurants and crowd flows are key metrics of commercial
attractiveness, while having more shops, life services and entertainment entities are also
helpful.

The results show that the attractiveness metrics have both similarities and differences in different
cities. Large crowd flows and abundant restaurant choices are key metrics in both cities, while the
other metrics that help improve attractiveness are different. The city of D1 is a famous tourism city,
thus having scenic spots is an important metric. The other dissimilarities may be related to the
different life styles in two cities.

It should also be noted that the ubiquitous coverage of MFR is important for sensitivity analysis.
Fig. 12a and Fig. 12b show the sensitivity analysis based on 5 randomly sampled commercial districts.
Compared to Fig. 11a and Fig. 11b, the variances (error bars) are much larger for the sampled 5
districts, which means that sensitivity analysis with a small number of commercial districts tends
to be unreliable.

7.3.2 Predictive Accuracy of Trade Area Model. In this experiment, we utilize the Huff model fitted
using commercial districts in the training set to predict the visit probabilities Pi j of commercial
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Fig. 11. The top 8 attractiveness metrics with high sensitivities. The error bar is the variance over 5-fold
cross-validation. Density 1, 2 and 3 are the population densities in 5km, 5~10km and 10~15km range around a
commercial district respectively. ((a): D1, (b): D2)
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Fig. 12. The top 8 attractiveness metrics obtained from 5 commercial districts. Density 1, 2 and 3 are the
population densities in 5km, 5~10km and 10~15km range around a commercial district respectively. ((a): D1,
(b): D2)

districts in the testing set. The accuracy is measured by the root mean square error (RMSE) of Pi j :

RMSE =

√√√
1
I J

I∑
i=1

J∑
j=1

(Pi j − P̂i j )2 (12)

where I , J are the numbers of residential areas and commercial districts. P̂i j is the estimated Pi j .
We compare CellTradeMap with two baselines.

• Linear Regression. Least squares method is used to calibrate the Huff model with all 13 metrics.
• Random. Linear Regression with 5 randomly selected metrics to calibrate the Huff model.

Table 3 and Table 4 summarize the results from 5-fold cross validation in D1 and D2. The model
fitted by CellTradeMap yields the best RMSE in both cities. Linear Regression performs worst, since
too many irrelevant metrics will harm the model’s accuracy. Compared with Random, the decrease
of RMSE implies that with the help of L1 − norm, CellTradeMap can improve the accuracy by
selecting the most important attractiveness metrics like Incoming Flow based on MFR.
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Table 3. D1, Average RMSE on prediction accu-
racy.

Method RMSE
Linear Regression 0.188

Random_5 0.145
L1 − norm 0.128

Table 4. D2, Average RMSE on prediction accu-
racy.

Method RMSE
Linear Regression 0.160

Random_5 0.155
L1 − norm 0.148
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Fig. 13. Compare MFR and Weibo data, which is a superset of check-in data. (a) CDF of the averaged number
of records per user per day. (b) CDF of temporal coverage. (c) CDF of inter-record intervals.

7.4 Comparison of MFR and Check-in
We do not have check-in data, but we have the application information in MFRs. Weibo is the
application with most check-ins in China. We retrieve all the MFRs of Weibo as a superset of the
check-in data. We compare MFR and the superset of check-in from four aspects: daily records
per user, temporal coverage, temporal granularity and home inference. We do not compare their
performance in trade area analysis directly due to the lack of groundtruth.

• Daily records per user: Fig. 13a shows the CDF of the averaged number of records per
user per day. Most users have less than 10 Weibo records per day and a part of these records
correspond to users’ check-in. The network traffic of Weibo is only a part of the overall traffic
logged by MFR, not to mention the check-in data. So it is reasonable that there are much
more MFRs than check-ins.

• Temporal coverage: In Sec. 4.1.2, we discussed the redundancy in MFR. So more data do
not necessarily provide more information about users’ locations. We segment one day into
48 intervals uniformly. Then we count the number of intervals that MFR and Weibo data
cover. The temporal coverage is defined as:

temporal_coveraдe =
# of intervals covered

48
The results are shown in Fig. 13b. For most users, Weibo data cover a very small fraction of
their daily activities (less than five percent). However, MFRs cover a much larger fraction
which makes MFRs more suitable to analyze users’ home locations and shopping activities.

• Temporal granularity: Fig. 13c shows the CDF of inter-record intervals. Most intervals of
MFR are shorter than 103 s (about 17min), while many consecutive Weibo records are hours
apart. The check-in data would be even sparser. This makes check-in data very easily to miss
users’ activities like visiting commercial districts.

• Home inference: In Sec. 7.2.1, we evaluate the accuracy of home location inference by
the correlation analysis between the inferred number of residents and the census data. The
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Table 5. Correlation Coefficient of Home Location Inference

Data Correlation coefficient

MFR 0.75
Weibo 0.58

correlation coefficient measures how strong two variables are linearly correlated, thus it
can indicate the accuracy of home location inference since we do not have groundtruth for
individual home location. For D2, we infer users’ homes with MFR or Weibo data separately
and calculate the pearson correlation coefficient. The results are shown in Table 5. The lower
coefficient of Weibo data suggests that Weibo data is biased among different administrative
districts.

Compared to MFR, check-in data are sparse and biased, which makes it unable to support precise
and urban scale trade area analysis.

8 CONCLUSION AND FUTUREWORK
In this paper, we propose CellTradeMap, a novel cellular network-based trade area analysis frame-
work for commercial districts. We devise processing techniques to extract robust location informa-
tion from flow-level cellular data, and design analytical methods to adapt the conventional trade
area analysis workflow to integrate cellular data. We evaluate the performance of CellTradeMap
on trade area delineation and modeling using an urban-scale cellular network dataset covering
3.5 million mobile phone users. Experimental results show that CellTradeMap is able to extract
explainable trade areas, identify important attractiveness metrics, and predict trade areas of an
unseen commercial district with high accuracy. We envision our work as a pilot study to unlock
the full business potentials of big cellular data analysis.
Looking forward, we will investigate the practical deployment of CellTradeMap. For example,

howmany records do we need to achieve reliable results, and how to determine the tradeoff between
the data coverage and the system overhead. Another important direction is the generalization of
the results of CellTradeMap, whether the results based on the data of one city can be generalized
to other cities.
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