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Abstract—Context-awareness is getting increasingly important for a range of mobile and pervasive applications on nowadays

smartphones. Whereas human-centric contexts (e.g., indoor/ outdoor, at home/in office, driving/walking) have been extensively

researched, few attempts have studied from phones’ perspective (e.g., on table/sofa, in pocket/bag/hand). We refer to such immediate

surroundings asmicro-environment, usually several to a dozen of centimeters, around a phone. In this study, we design and implement

Sherlock, a micro-environment sensing platform that automatically records sensor hints and characterizes the micro-environment of

smartphones. The platform runs as a daemon process on a smartphone and provides finer-grained environment information to upper

layer applications via programming interfaces. Sherlock is a unified framework covering the major cases of phone usage, placement,

attitude, and interaction in practical uses with complicated user habits. As a long-term running middleware, Sherlock considers both

energy consumption and user friendship. We prototype Sherlock on Android OS and systematically evaluate its performance with data

collected on fifteen scenarios during three weeks. The preliminary results show that Sherlock achieves low energy cost, rapid system

deployment, and competitive sensing accuracy.
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1 INTRODUCTION

IN mobile systems, context-awareness is a computing tech-
nology that incorporates information about the current

environment of a mobile user to provide more relevant serv-
ices to the user. It is a key component of ubiquitous or per-
vasive computing and has attracted many research efforts
in the past decade.

Most context-aware applications (via mobile phone sens-
ing) are human-centric, recognizing contexts from users’
perspective (e.g., indoor/outdoor [9], at home/in office,
driving/walking [2]). Such information supports services
according to users’ situation. For example, when a mobile
phone detects that its user is driving, it automatically blocks
phone calls if its user is holding it in hand for safety [1].
When a user enters a building, it is unnecessary to keep his
phone’s GPS working to save energy. Similarly, WiFi is usu-
ally unavailable in the open countryside and should be
turned off there [9].

While human-centric contexts have been extensively
utilized, few works study from phones’ perspective. We
refer the immediate surroundings (i.e., several to a dozen
of centimeters around a phone) as micro-environment.
Similar to human-centric environments, being aware of

micro-environments is directly beneficial to a broad range
of phone applications. For example, if a mobile phone is
in a bag or pocket, it is useless to light up the screen
when a phone call is coming. In addition, if a phone is
placed on a sofa rather than on a desk, it is better to turn
up ring volume to avoid missing calls. Given accurate
micro-environment information, a phone can adapt its
behaviour automatically and properly.

In this paper, we design Sherlock, a micro-environment
sensing platform that automatically records sensor hints
and characterizes the immediate surroundings of smart-
phones. It runs as a daemon process on a smartphone and
provides finer-grained environment information to upper
layer applications running on the smartphone.

To implement such a platform, difficulties are triple.
First, previous context-aware solutions (especially the algo-
rithms and metrics) are assisted by human intuition; how-
ever, the micro-environments are less sensible for people.
Second, the usage, placement, attitude, and interaction of
smartphones vary across time and users, thus complicating
timely and accurate micro-environment detection. Third,
distinguishing similar micro-environments relies on sys-
tematic collaboration among multi-modal sensors.

We build the framework of Sherlock upon an investiga-
tion of phone usage and user habits. The framework covers
the majority of phones’ states, and consists of three core
modules: phone placement detection, phone interaction
detection, and backing material detection. Phone placement
refers to the location of a smartphone alongwith its user, and
we consider the situations of in bag, in chest pocket, in pants,
and in hand. Whether a user is concentrating on his smart-
phone is another key judgement for micro-environment
sensing. At last, backing material detection analyzes the
hardness of the stuff that touches (or holds) the phone.
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We implement Sherlock on three types of Android smart-
phones and run it as a background service. Other Apps can
obtain the current micro-environment information from the
platform via programming interfaces and use it accordingly.
We evaluate the platform with eight volunteers in 15 scenar-
ios during three weeks, mainly in campus areas during the
normal period 7:00 to 23:00. Preliminary results demonstrate
that Sherlock achieves average detection error of below 17
percent, with 11.4 percent additional energy cost.

In summary, the key contributions of this paper are:
First, Sherlock is a unified micro-environment sensing
framework. Although some previous works have imple-
mented part of similar functionality for simple environ-
ments, they cannot be directly combined to an applicable
level for practical use with complicated phone situations
and user habits. Second, as a middleware run on smart-
phones, Sherlock is both energy optimized and user
friendly. We design a hierarchical architecture and a set of
efficient algorithms for multi-stage micro-environment
detection to reduce working time and the types of sensors.
In addition, sensors, especially actuators,1 are carefully
selected for the purpose of effectiveness and non-intrusive-
ness. For example, Sherlock won’t trigger vibrator or
speaker when a smartphone is carried by its user.

The rest of the paper is organized as follows. We pro-
vide the motivation and architecture overview in Section
2. System design and implementation details are inter-
preted in Section 3. We present evaluation results in Sec-
tion 4. Section 5 reviews related work and Section 6
concludes this paper.

2 MOTIVATION AND OVERVIEW

2.1 Target Applications

The aim of micro-environment sensing on smartphones is to
provide a more general primitive for novel human-centric
applications, especially in healthcare and behavior monitor-
ing. For example, it is important to ensure that the health-
care monitors are attached to the target user during his
daily life, and emerging trends arise to perform such tasks
via smartphones [13], [14]. A micro-environment per-
ceivable smartphone, therefore, would remind its user if it
is not carried by its user via, e.g., its built-in speaker, and
further informs him of its location.

Identifying the phone’s micro-environment also opens
new possibilities to perform fine-grained context-aware
energy saving strategies, which is essential for battery-
powered smartphones. On detecting being placed in the
drawer, for instance, it is reasonable for the phone to
infer that it will not be used in the near future, and can
switch to certain power saving mode and turn off unnec-
essary sensors and software.

In addition, Sherlock enables more accurate inertial
based localization and navigation. In most of these schemes,
a key parameter is the count of the user’s footsteps, which is
then multiplied by the average length of one footstep to

estimate trace distance. Empirical studies [10] have shown
that the accuracy of step counter is sensitive to phone place-
ment. For instance, the counter usually generates accurate
step count (i.e., consistent with the ground truth) when the
phone is held in hand, while often doubles the output count
when the phone is placed in chest pocket. Hence knowing
the phone’s placement assists the step counter to eliminate
erroneous output.

Like GPS which helps to estimate user’s coarse-grained
macro-environment, Sherlock deduces phone’s fine-grained
micro-environment. It serves as a light-weighted middle-
ware for upper layer applications.

2.2 System Overview

As Fig. 1 shows, Sherlock runs as a daemon process in the
middleware layer. It employs sensors in the physical layer
to record nature events and provides fine-grained environ-
ment information to upper layer applications. As a long-
term middleware on smartphones, Sherlock optimizes
energy consumption via a hierarchical, multi-stage architec-
ture. Sensors, especially actuators, are carefully selected
and logically triggered. Accelerometer, for example, is
solely awaken to detect simple environment semantics, after
which more sensors are triggered for complex environment
classification. In what follows, we describe each architec-
tural module in turn, specifying a high-level view of how
the system works.

Moving & walking detection. As a first step, Sherlock looks
into the acceleration trace and identifies specific features in
time domain. These features are then utilized to determine
whether the phone is in motion. There are plenty of moving
detection schemes that can successfully detect human
motions (whether the user is moving and further if he is
walking) and we use one from [8]. This scheme first detects
whether the user is in motion by looking into acceleration
variance. if yes, it then takes advantage of the repetitive
nature of walking (Fig. 2) and applies an auto-correlation

Fig. 1. System architecture of Sherlock.

1. An actuator here stands for a type of motor that converts the
energy, typically electric current, into motion or mechanical operation.
In mobile phone, the actuator includes vibrator, camera and
microphone.
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based detection method to successfully mine the walking
pattern of the user.

The above components characterize the coarse-grained
environment around smartphones and benefit further sens-
ing processes. If a user is detected walking, for example,
then determining phone’s placement (e.g., in chest pocket
or bag) is more important than knowing its backing mate-
rial. If the phone is detected stationary, it is more likely that
it is out of its user’s perception (e.g., fell onto a wooden
desk or a leather chair). In this scenario, detecting the back-
ing material of smartphone, and further alerting the phone
user are more preferable. In what follows, we detail three
key modules of our micro-environment sensing platform.

Local placement recognition. This module determines
daily on-body phone placements such as in-hand, in-
packet, in-bag, etc. Sherlock provides a simple yet effec-
tive classification scheme with light and inertial sensors.
Specifically, the system first detects whether the phone is
in hand by referring ambient illuminative conditions
around the phone. If not, then, Sherlock characterizes the
unique moving patterns of phones in different local place-
ments with in-built accelerometer, by exploiting a
dynamic time warping (DTW) based time series matching
scheme to recognize the specific local placement. i.e., in
pants, in chest pockets or in bag.

Phone interaction detection. This module identifies whether
the user is actually using the phone, like browsing.
Although such interaction often occurs when the phone is
in-hand, the phone interaction detection module emphasizes
more on the semantic perspective. Sherlock exploits com-
mon screen-lock on smartphones and process transition on
OS to identify whether the user is actually interacting with
his phone.

Backing material detection. This module differentiates
hard/soft material via smartphone-generated vibration pat-
terns. Sherlock focuses on two aspects of the vibration pat-
terns: 1) the phone’s mechanical motion and 2) the
acoustical features, which can be captured by embedded
accelerometer and microphone, respectively. To this end,
Sherlock extracts a series of lightweight features from accel-
eration/acounstic traces in both time and frequency
domain, and classifies backing materials like leather chair,
wood desk or glass table.

3 SYSTEM DESIGN

3.1 Local Placement Recognition

We develop a simple yet effective local placement classifica-
tion scheme with light and inertial sensors. The key insights
are twofold.

� When carried by a user, the phone is mostly placed
in either semi-closed/open environments like in-hand,
or closed environments such as in-pocket and in-bag.
The extent of covering leads to different illuminative
conditions for the phone, which can be captured by
its built-in camera.

� Different local surroundings offer distinctive spatial
degree of freedom, which is magnified when the
user is moving. For instance, a phone is likely to
experience fiercer movements when put in pants
than inside a handbag. These unique movement pat-
terns can be perceived by the accelerometer.

As illustrated in Fig. 3, the local placement recognition
module is triggered once the ‘Walking’ state is determined,
and it works as follows: 1) the front-mounted proximity sen-
sor and the back-mounted camera cooperate to identify
semi-closed/open surroundings, i.e., the ‘in-hand’ state. 2) For
closed environments, accelerometer is employed to automat-
ically deliver sensory data for fine-grained placement iden-
tification. e.g., in pants, chest pockets or bags. We detail the
processes as follows.

3.1.1 Phone-in-Hand Identification

Intuitively, the ‘in-hand’ state differs from on-body place-
ments in that the phone is not completely covered by sur-
rounding objects. Although the front-mounted proximity
sensor can perceive sheltering in front, the phone is
unaware of that backwards. Thus with proximity sensor
alone, it is likely to miss some ‘in-hand’ cases, e.g., when
the user is making a phone call with his ear covers the front
end of the phone. Therefore we also employ the back-
mounted camera for proximity perception backwards. The
rationale is that the global contrast of a photo taken in a
closed environment (e.g., in-pocket) is usually low, which
is reflected in the gray-scale histogram of the photo.

As a motivating experiment, we collect photos taken by
a background photographing application for various
phone placements in diverse scenarios, including chest
pocket, pants, bags and hands in supermarkets, cafes and
streets. Fig. 4 demonstrates the gray-scale histogram dis-
tribution of photos in six different conditions. The upper
three correspond to closed environments including in
bags, chest pockets and pants, while the lower three are
in-hand situations. In general, the histogram distributes

Fig. 2. An illustration of repetitive pattern of walking.

Fig. 3. Workflow of local placement recognition.
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more spread-out when the phone is held in hand than
placed in closed environments, indicating higher global
contrast due to better lighting conditions. To quantita-
tively measure the extent of dispersion of the gray-scale
histogram, we calculate the average slope of gray-scale
pixels between two quantiles q1 and q2 in its CDF. Fig. 5
plots the CDF for the six situations. As is shown, the his-
togram CDFs w.r.t. closed environments climb steeply up
to 85 percent within a short range of gray-scales, while
those w.r.t. ‘in-hand’ states experience a sluggish growth
spanning a large portion of the gray-scale range. Putting
it all together, we develop the following image-based
phone-in-hand detection scheme (IPDS).

Image-based phone-in-hand detection scheme. First, the prox-
imity sensor identifies the sheltering condition in front, and
returns either blocked or unblocked. Meanwhile, the camera
is triggered to take a photo. After calculating the CDF of its
gray-scale histogram, we record the portion of pixels (e)
within two empirically optimized quartiles of q1 ¼ 0:2 and
q2 ¼ 0:85. If e > �h, where �h is a predefined threshold, the
global contrast tends to be high and the camera is not
blocked by other objects. We test a range of thresholds and
find 50 optimal for IPDS. By jointly considering the front-
end blocking and backward lighting conditions, four dis-
tinct cases follow:

� Case 1: [e > �h ^ blocked]: only front is blocked.

� Case 2: [e � �h ^ unblocked]: only back is blocked.

� Case 3: [e > �h ^ unblocked]: neither front nor back is
blocked.

� Case 4: [e � �h ^ blocked]: both front and back are
blocked.

These four cases are illustrated in Fig. 6, with Cases 1-3
corresponding to different in-hand states, while Case 4 indi-
cates a closed environment.

3.1.2 On-Body Placement Recognition

On-body placement recognition classifies closed environ-
ments into finer-grained on-body placements such as in
chest pocket, pants, bags, etc. As previously discussed, the
module takes advantage of human mobility induced iner-
tial patterns, which potentially limits its usage to truly
‘mobile’ phones. To compensate for this weakness, we pro-
pose a backing material recognition scheme (Section 3.3)
based on phone induced vibrations specially designed for
‘immobile’ phones when the phone-holder stays still, or
even when the phone is placed off-body (e.g., left on a
sofa). The two modules are complementary and can coop-
erate to further enhance the recognition performance. For
‘mobile’ cases, though, the on-body placement recognition
module proves to be sufficient for normal phone placement
identification.

As human induced mobility is mainly perceived by iner-
tial sensors, we take a careful scrutiny on acceleration traces
with different phone placements. Revisiting the acceleration
traces with different phone placements in Fig. 2, it is obvi-
ous that acceleration samples within a single footstep dem-
onstrate unique pattern across different phone placements,
while walking leads to a regenerative process of these

Fig. 4. Gray-scale histogram of closed/open environments.

Fig. 5. CDF of gray-scale histograms under various phone placements. Fig. 6. In-hand states versus Closed environments.
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acceleration patterns, indicating viability to take the acceler-
ation traces as fingerprints for different phone placements.
However, it remains unsettled whether the patterns of the
same phone placement stay similar when taking device and
user diversity into consideration.

Fig. 7 plots the acceleration traces sampled from three
types of phones (Samsung Galaxy S2 I9100, Samsung
Nexus3 I9250, Motorola MT788), which are put in differ-
ent users’ pants. The three traces roughly share common
variation trends, indicating stable patterns across users,
whereas certain lags are also notable. The second peak in
trace A, for example, appears at the 15th sample while it
occurs at the 13th sample in trace B, i.e., 2-unit lags after
trace A. These lags are due to different walking speed. In
general, given a fixed sampling rate, a rush stride tends to
shrink the trace pattern, while a stroll at leisure stretches
the pattern and induces random deformation as well.
Therefore, a robust and speed-independent similarity
metric is needed to compare and classify the measured
acceleration traces.

DTW-based trace matching (DTM). Dynamic time warping
[15] is a dynamic programming based similarity measure
for sequences which may vary in time or speed. In DTW,
the two sequences are first reconstructed by non-linear
”warping” in the time domain to compare their similarity
independent of non-linear temporal variations. Therefore,
DTW based trace matching is able to eliminate the effect of
different walking speed.

Given two acceleration profiles A and B with lengths of
M and N samples, DTW first constructs a distance matrix
d[M�N], where

dði; jÞ ¼ ðai � bjÞ2 (1)

and ai and bj are the ith and jth elements in A and B,
respectively. Taking d[M�N] as input, DTW returns a
warping path P ¼ fp1; p2; p3; . . . ; pkg, where pi ¼ ðx; yÞ 2
½1 : M� � ½1 : N � for i 2 ½1 : k�.

Fig. 8 illustrates the matching process. To generate the
warping path, DTW constructs a cost matrix C[M�N]
which stands for the minimum cost to reach any point (i, j)
in the matrix from (1, 1) in a dynamic programming fashion.
For instance, (i, j) can be reached from (i� 1, j� 1), (i, j� 1)
and (i� 1, j). The algorithm picks the one with minimum
cost. Formally

Cði; jÞ ¼ dði; jÞ þminðCði� 1; j� 1Þ; Cði; j� 1Þ; Cði� 1; jÞÞ:
(2)

A measured acceleration trace is compared with all
pre-stored traces collected with different phone place-
ments based on DTW and output the corresponding mini-
mum costs. The phone placement w.r.t. the smallest cost
is then identified as the phone placement for the mea-
sured acceleration trace. For example, if C(M,N) ¼ 25 for
pants, C(M,N) ¼ 36 for chest pocket and C(M, N) ¼ 19 for
bag. Then our scheme classifies this acceleration trace
into the category of in-bag.

The on-body phone placement recognition scheme does
not rely on the closed environment, and thus is orthogonal to
the ‘in-hand’ detection in Section 3.1.1. Therefore the on-
body placement detection scheme also serves as a double
verification to improve the robustness of the in-hand detec-
tion scheme. This is useful when the IPDS suffers from low
global contrast background like white walls all around or
gloomy lighting conditions.

3.2 Phone Interaction Detection

Phone interaction detection identifies whether the user is
using the phone, e.g., browsing, texting, playing games, etc.
Although such interaction often occurs when the phone is
‘in-hand’, which can be identified as in Section 3.1.1, the
phone interaction detection scheme in this section empha-
sises more on the semantic perspective.

An intuitive indicator for interaction detection is the
screen-lock on touch screen smartphones. The touch screen
is typically unlocked on an ‘interaction active’ phone. Nev-
ertheless, the opposite is not always true. According to a
questionnaire we conducted on 500 students in Tsinghua
University, around 420 lock their phones in ‘non-interactive’
states, while the other 80, for ease of operation, would like
to keep their phones unlocked all the time. Therefore, with
the screen-lock alone, we would result in high false-positive
for interaction detection.

To obtain amore accurate usage detection scheme, we uti-
lize the phone’s process queue. The on-executing process, in
general, is on top of the process queue. Therefore, if the
phone is running an application, thus ‘interaction active’, a
corresponding process ought to be running and take up the
1th position of process queue. This leads us to identify the
‘interaction active’ state by checking the current on-execut-
ing process. Fig. 9 lists the process queues of four specific
application scenarios: non-interactive, browsing Weibo,2

Fig. 7. Stability of acceleration trace over time.

Fig. 8. DTW based matching.

2. Weibo is a Chinese microblogging website. Akin to a hybrid of
Twitter and Facebook.
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searching online, and logging in facebook. As is shown, a
process com:android:home is running on the foreground
(denoted by < 002 null com:android:home > ) in non-inter-
active state. In all the other scenarios, the top on-executing
process is always the process corresponding to the specific
application. Therefore, we propose the following phone
interaction detection scheme.

Integrated interaction detection scheme (IIDS). As illustrated
in Fig. 10, IIDS first queries the screen-lock to check whether
the screen is locked. If the screen is locked, IIDS confirms a
‘non-interactive’ state and suspends; otherwise it further
refers to the process queue. If the on-executing process is
com:android:home, and the execution duration (T ) is shorter
than a predefined threshold d, IIDS announces a ‘non-inter-
active’ state as well. For other cases, IIDS returns an
‘interaction-active’ state. Here d is set to be 17 seconds,
which is slightly longer than the normal sleeping interval of
touch-screen.

3.3 Backing Material Recognition

This subsection aims at distinguishing hard/soft material
via smartphone-generated vibration patterns. We mainly
focus on two aspects of the vibration patterns: 1) the
phone’s mechanical motion and 2) the acoustic features,
which can be captured by embedded accelerometer and
microphone, respectively. More concretely, with a phone
placed on a backing surface, the vibration pattern of the
phone-surface system driven by the internal phone motor
varies with the stiffness of the backing material. The physi-
cal underpinning is that the more rigid the material is, the
smaller phone-driven deformation and shorter recovery
time it would experience, and hence less energy absorption.
Consequently, the acceleration values detected on harder
material would demonstrate larger amplitudes of fluctua-
tions due to more notable mechanical motions, while the
magnitude of dominant frequency of the vibration sound

would be higher as well. We detail our recognition schemes
as follows.

3.3.1 Acceleration-Based Recognition

In the normal course, smartphones are placed on fiber,
wood, stone or metal material. As a proof-of-concept experi-
ment, we select three representative material with different
stiffness: leather chair (soft), wooden desk and stone stool
(hard). Our scheme easily extends to other materials with a
bit extra calibration. In each scenario, the phone motor is
triggered to vibrate for 7 seconds, and the acceleration read-
ings and sounds are recorded.

The acceleration-based recognition is performed first to
roughly distinguish hard and soft material, i.e., the leather
chair or wooden desk/stone stool in our case. Fig. 11 illus-
trates the acceleration traces of the z axis sampled at 40 Hz
on the three surfaces. The amplitudes of both the envelope
and the embedded short pulses tend to be larger on hard
material. This distinction is clearer in the frequency
domain. Fig. 12 portrays the FFT amplitudes of the corre-
sponding temporal traces. As shown in the two subfigures
on the left, two notable peaks approximate the dominant
frequencies of the mechanical vibrations, while in the
rightmost figure (i.e., on the leather chair), the peaks at the
corresponding frequencies are almost invisible. One
counter-intuitive observation, however, is that the DC
component (i.e., the amplitude at 0 Hz) is strongest in the
soft material case. Note that the acceleration readings have
included the gravity as well. Hence, when removing the
effect of gravity, the DC component for soft material cases
approaches zero, which resembles a simple harmonic
motion. On hard material, in contrast, the phone is more
likely to leave and fall back to the surface periodically,
which, on average, induces larger and shorter accelerations
upwards, and thus non-zero DC component. Due to the

Fig. 10. The work-flow of phone interaction detection module.

Fig. 11. Acceleration samples over time domain.

Fig. 9. An illustration of process queues in different scenarios.

Fig. 12. Acceleration samples over frequency domain.
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irregular inclination angles when leaving the surface,
tough, the acceleration readings of the z axis do not neces-
sarily correspond to the vertical direction. Therefore it is
non-trivial to extract accurate DC component to distin-
guish hard and soft material. We leave careful calibration
of DC component in future work, and for this paper, we
adopt a multi-feature based classifier with less weights on
the DC component related features.

Soft/Hard Backing Material Classifier. We consider vari-
ous candidate features, including mean, variance, zero
crossing rate (ZCR) [5] in the time domain, and number
of peaks, sub-band energy, spectral entropy in the fre-
quency domain. Since the differences of acceleration
traces are more notable in the frequency domain, we
manually put larger weights on all candidate spectral fea-
tures. In addition, we leave out the DC component when
extracting all the features to alleviate errors incurred by
lack of calibration on gravity. We adopt support vector
machine (SVM) for feature classification to achieve satis-
factory performance while retaining moderate computa-
tion cost. The features are scaled according to their
assigned weights before input into the SVM classifier.

3.3.2 Acoustic-Based Recognition

As shown in Fig. 12a and Fig. 12b, the spectrum of accel-
erations between stone and wood resemble each other.
Hence acceleration-based recognition can only distin-
guish hard and soft material. We thus further investigate
a broader frequency range to extract unique vibration
patterns. Fig. 13 compares the spectrogram of sound cap-
tured by the microphone during the phone vibration on
two representative hard surfaces. It is clear that the dom-
inant vibration frequency peaks at around 200 Hz (the
same frequency as the phone’s vibration motor), while
the amplitude on the stone is larger than that on the
wood. This accords with the phenomenon that vibration
usually sounds louder when the phone is placed on a
flat stone surface.

Hard Backing Material Classifier. Base on the above anal-
ysis, we employ a simple threshold based classifier to
distinguish different hard material. Concretely, after per-
forming the acceleration-based recognition scheme, we
further classify hard surfaces based on the acoustic fea-
tures of their vibration pattern. In our case, if the ampli-
tude of the peak frequency (around 200 Hz) surpasses a
pre-defined threshold, it is classified into stone surface,
and wood material otherwise. The scheme easily extends
to more kinds of hard material with multi-level thresh-
olds and a bit of extra training.

4 EVALUATION

We prototype Sherlock as a daemon process that runs on
Android smartphones. In this section, we detail the experi-
ment methodology and results.

Prototype implementation. We implement Sherlock on
Android 4.0 Ice Cream Sandwich (ICS). The current ver-
sion consists of about 2,150 lines of code and leverages
LibSVM for phone local placement recognition. Once
launched, Sherlock runs as a daemon process, providing
upper layer applications with micro-environment sensing
results. In the current version, we simply trigger Sherlock
every 10 minutes, and we believe such interval is rigid to
examine phone placement transitions.

Experiment device: We implement Sherlock APK on three
different types of smartphones (Samsung Galaxy S2 I9100,
Samsung Nexus3 I9250, Motorola MT788). All types of
phones are equipped with the necessary sensors. The three
types of smartphones all have 1 GB RAM, with dual-core
1.2 GHz, dual-core 1.5 GHz, and single-core 2.0 GHz pro-
cessors, respectively. Since Sherlock is independent of plat-
forms, we envision it to be easily extended to other mobile
OS like WP8 and iOS.

Experiment environment. we experiment with eight volun-
teers (four males and four females), collect sensory data
from 15 scenarios, ranging from open football fields and
square, to crowded supermarket and cafeteria, mainly in
campus areas during the normal period from 7:00 to 23:00
in three weeks. The volunteers also record the ground truth
using memo widget.

In what follows, we first evaluate the performance of
each functional module, then measure the system overhead
by trace-driven experiments.

4.1 Micro Benchmarks

4.1.1 Performance of Local Placement Detection

To evaluate the local placement detection module, we col-
lect 8,440 labeled data from eight volunteers over three
weeks.

Phone posture classification.We denote the four phone pos-
tures in Fig. 6 as Case1, Case2, Case3 and Case4. Fig. 14
details the confusion matrix of the classification result. In
the confusion matrix, each column represents the instances
in a predicted class, while each row represents the instances
in an actual class. It is clear that the proposed local place-
ment detection module achieves a remarkable accuracy
(above 85 percent) for each of the four postures. Specifically,
the detection accuracy peaks 90 percent in Case3, slightly
higher than in Case4 (86.5 percent) and Case3 (85.8 percent).

Fig. 13. Acoustic spectrogram of phone vibrations on hard surfaces.

Fig. 14. Confusion matrix of in-hand states classification.
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For the remaining case (Case1), however, the detection
accuracy is not superior. Nevertheless, it still maintains at a
reasonable level (80 percent+). On the other hand, Sherlock
occasionally mistakes Case1, Case2, Case3 with each other.
This might be because when holding a phone in hand, the
user may unconsciously block the proximity sensor with his
thumb or forefinger.

On-body placement classification. We further examine the
performance of on-body placement classification for closed
environments, i.e., in chest pocket, waist pocket, pants and
bag. The corresponding confusion matrix is illustrated in
Fig. 15. On the whole, Sherlock achieves competitive classi-
fication result, with an accuracy of over 87 percent on aver-
age. More specifically, the classification accuracy for pants
and chest pocket are 90.7 percent and 88.3 percent, respec-
tively, much higher than that for the waist pocket and bag
cases. This stems from the phenomenon that a person’s
arms often swing back and forth rhythmically while walk-
ing. This movement then drives the chest to shake continu-
ously. The phone in chest pocket, as a result, will experience
a significant repetitive pattern. In contrast, a phone in bag
or waist pocket is “too” faraway from arms or legs, resulting
in less notable motion pattern, which exerts an adverse
effect on the classification result.

4.1.2 Performance of Phone Interaction Detection

Fig. 16 shows the detection accuracy of user-phone interac-
tion. The dark blue bars correspond to the naive screen-lock
based scheme. It achieves 82 percent detection accuracy on
average. As for the hybrid approach where Sherlock also
queries the process queue, the accuracy for all cases rises
marginally, as the red bars indicate. Even the worst case
still outperforms the best case in the simple screen-lock
based detection scheme. Therefore, it clearly verifies that
Sherlock is able to effectively distinguish interaction and
non-interaction states.

4.1.3 Performance of Backing Material Detection

To examine the accuracy of backing material detection,
eight volunteers collect over 2,000 acceleration/accoustic
traces for different backing material, with 70 percent used

for model training and 30 percent for testing. Table 1 lists
the classification result on different material. In general,
Sherlock successfully distinguishes hard/soft material with
acceleration features alone, whereas it fails to tell hard mate-
rial apart in a fine-grained fashion, i.e., with only 74.1 and
73.6 percent accuracies in Wooden material and Stone mate-
rial detection, respectively. By adding acoustic features, the
detection accuracy boosts to 83.2 percent for wooden mate-
rial, 86.2 percent for stone material and 81.8 percent for
glass material. Altogether, the chosen features prove to be
sufficient for classifying different backing materials.

4.2 System Overhead

4.2.1 CPU Share of Sherlock

We categorize the usage of phone into four groups, namely,
communications, entertainments, working/study and Sher-
lock, and measure the CPU share of Sherlock on different
phones. Fig. 17 illustrates the CPU share of these four
groups for four volunteers over a one-day study. According
to the pie chart, the CPU share for communications, enter-
tainments, working/study varies significantly from person
to person, as the usage style of smartphones is highly related
to the user’s habits. For example, some people prefer truly a
‘digital everywhere’ lifestyle and are addicted to their
phones for reading, shopping, gaming and enjoying music,
while others would rather regard phones as a communica-
tion tool only. As a result, the CPU share of entertainments
would take up the leading portion for the former groups
whereas communication usages would contribute most to
the CPU share for the latter. Despite such differences, the
CPU share of Sherlock stays at stable share of around 6 per-
cent for all the four volunteers. This indicates that our sys-
tem incurs negligible CPU share to daily smartphone usage.

4.2.2 Battery Consumption Overhead

We also systematically measure the energy consumption
of Sherlock. Fig. 18 illustrates the lifetime of a battery with
capacity of 1500 mAh on a Samgsung Nexus 3 phone. We
implement a battery tracing application to log the residual
battery once a hour for a whole day. To fairly measure the
energy consumption of Sherlock, we ask a volunteer to
carry two Samgsung Nexus 3 phones. One is launching

Fig. 15. Confusion matrix of on-body states classification. Fig. 16. An illustration of interaction detection accuracy.

TABLE 1
Backing Material Detection Result
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the Sherlock system and the other not. Then he is required
to perform the same tasks on both phones for a whole
day. The dark-blue bars illustrate the residual battery
with Sherlock open, while the jacinth bars represent the
energy savings without launching Sherlock. According to
the bar chart, Sherlock consumes negligible energy of
below 5 percent on average for most sampling periods.
With time passing by, the cumulative energy consumption
increases gradually, and finally ends up with 11.2 percent.
We also notice two energy consumption fastigium during
this 24 hour study, namely, 08:00-09:00, 18:00-19:00. Inter-
estingly, these two periods accord with commuter time.
Therefore it is reasonable to conclude that frequent human
locomotion during commuter time triggers Sherlock to
sense continuously, thus resulting in higher energy con-
sumption. The energy cost, though, remains low as a
whole, making Sherlock affordable for smartphone users,
even with occasionally continuous detection.

4.2.3 Storage Overhead

We measured the storage overhead (sensory data and
micro-environment semantics) by running Sherlock on a
phone for 24 hours. Sherlock’s overhead varies with the
phone habits of different people, and thus we ran experi-
ments with eight volunteers (four men and four women) for
one week. Table 2 details the storage overhead for three ran-
domly chosen days. As is shown, Sherlock consumes at
most 1.8 MB storage per day and 1.3 MB on average. Recall
that nowadays smartphones typically possess gigabyte of
storage capacity, thus such megabyte storage overhead
exerts little impact on smartphones. Further, the storage

overhead is even smaller in reality, because Sherlock could
delete the sensory data once the Micro-environment seman-
tics have been deduced.

5 RELATED WORK

Our concept of micro-environment sensing is built on both
context sensing and context-awareness applications, yet differs
in its emphasis on perceiving immediate surroundings from
the smartphone’s perspective. In this section, we broadly
review the state-of-art in both threads of research.

Context Sensing. Recent advances in lightweight sensors
on smartphones have spurred enormous efforts on context
sensing in a round-the-clock fashion. SoundSense [5] mod-
els sound events on mobile phones to achieve context recog-
nition. IODetector [9] provides an indoor/outdoor detection
service via collaboration of phone sensors. Jigsaw [6] con-
structs a general-purposed pipeline-based engine for con-
tinuous sensing applications on mobile phones. By
dynamically learning the relations among context attributes,
ACE [2] reports users’ current states to applications in an
energy efficient way. Our work falls in this category yet dif-
fers in two aspects. On one hand, previous efforts are
mainly human-centric, and support targeted computing
services w.r.t users’ situation. Conversely, Sherlock con-
ducts environment sensing from the phone’s perspective,
automatically records sensor hints and characterize the sur-
roundings of smartphones. On the other hand, all these
works perform coarse-grained environment sensing (e.g.,
driving, walking, riding a bus etc.), while Sherlock aims to
detect immediate surroundings, usually several to a dozen
of centimeters, around a phone.

Context-aware application. Vast works also study the usage
of context-aware sensing results. FALCON [3] exploits tem-
poral and spacial characters of user behaviors to pre-load
apps to speedup launch time. TagSense [4] takes advantage
of sensor hints to piece together environment information
about photos. Nericell [11] leverages phone sensors to

(a) (b)

(c) (d)

Fig. 17. An illustration of CPU share of Sherlock on different phones.

Fig. 18. An illustration of fine-grained battery usage.

TABLE 2
Storage Used by Sherlock
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monitor road and traffic conditions in developing cities.
Vtrack [12] constructs an accurate, energy-aware road traffic
delay estimation using smartphones. Many research efforts
have also utilized context sensing result for localization.
SurroundSense [7] exploits phone-equipped sensors to char-
acterize ambient environment features for logical localiza-
tion. Zee [8] uses inertial sensors to track phone users
indoors. These works, in general, can provide partial indica-
tion on immediate surroundings of smartphones. However,
all of them are application-oriented, thus only suitable for
specific scenarios. e.g., monitoring road conditions, localiz-
ing phone users indoors. However, Sherlock provides a
multi-dimensional, phone-oriented environment sensing
service for upper layer applications, and is orthogonal to
the efforts aforementioned.

6 CONCLUSION

In this paper, we present the design, implementation and
evaluation of Sherlock, a simple yet practical platform for
micro-environment sensing for smartphones via collabo-
ration among built-in sensors. The platform automatically
collects sensor hints and characterizes the immediate sur-
roundings of smartphones at centimeter level accuracy,
providing fine-grained environment information to upper
layer applications. We conduct comprehensive experi-
ments to evaluate our system through a prototype imple-
mentation on Android platform. Preliminary experiment
results show that Sherlock achieves low energy cost, rapid
system deployment, and competitive sensing accuracy.
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