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High variability interchange times often significantly affect the reliability of metro travels.
Fine-grained measurements of interchange times during metro transfers can provide valu-
able insights on the crowdedness of stations, usage of station facilities and efficiency of
metro lines. Measuring interchange times in metro systems is challenging since agent-
operated systems like automatic fare collection systems only provide coarse-grained trip
information and popular localization services like GPS are often inaccessible underground.
In this paper, we propose a smartphone-based interchange time measuring method from
the passengers’ perspective. It leverages low-power sensors embedded in modern smart-
phones to record ambient contextual features, and utilizes a two-tier classifier to infer
interchange states during a metro trip, and further distinguishes 10 fine-grained cases dur-
ing interchanges. Experimental results within 6 months across over 14 subway lines in 3
major cities demonstrate that our approach yields an overall interchange state inference
F1-measurement of 91.0% and an average time error of less than 2 min at an inference
interval of 20 s, and an average accuracy of 89.3% to distinguish the 10 fine-grained inter-
change cases. We also conducted a series of case studies using measurements collected
from crowdsourced users during 3 months, which reveals findings previously unattainable
without fine-grained interchange time measurements, such as portions of waiting time
during interchange, interchange directions, usage of facilities (stairs/escalators/lifts), and
the root causes of long interchange times.

� 2017 Published by Elsevier Ltd.
1. Introduction

Interchange times are well-known to exhibit high variability (Zhang and Yao, 2015) and are a source of major uncertainty
for the quality of services in public transportation (Aguiléra et al., 2014). Unexpected crowds at transfer stations and
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excessive delays of prior transportation can easily lead to miss-connection to the next vehicle and long perceived waiting
time at the stations (Fan et al., 2016). Fine-grained interchange time measurements can provide transport operators and
authorities with detailed factors that may affect the traffic reliability, including congestion levels in the passages, crowded-
ness on platforms and usage dynamics in transit facilities such as stairs, escalators and elevators, among others, and better
understand the capacities of stations (Xu et al., 2014). Such information can assist in optimizing transport timetables that
minimize travel times (Sels et al., 2016; Wu et al., 2015) and improving the transit experience from a passenger’s perspective
(Parbo et al., 2015).

Measuring fine-grained interchange times at transfer stations is challenging, especially in metro systems. Agency-
operated automatic data collection systems, e.g. automatic fare collection (AFC), only provide large-scale overall trip times
suitable for metro network planning and evaluation (Pelletier et al., 2011). While research has been conducted to estimate
several interchange times (walking, waiting and transfer) via temporal modeling using AFC data (Zhang and Yao, 2015), the
prior assumptions on passenger flows and distributions might not always be valid in practice. Alternatively, extensive
research has been performed to obtain direct public transit measurements from passenger smartphones through crowd-
sourcing (Misra et al., 2014). GPS information from passengers and vehicles enables passenger tracking in road traffic
(Bierlaire et al., 2013; Carrel et al., 2015), but it is often inaccessible in underground metro systems. Some researchers lever-
age cellular networks operated underground to quantify quality of service and passenger flows in metros (Aguiléra et al.,
2014), but cell tower signaling alone is insufficient to support the measurement of fine-grained interchange times. The rich
embedded sensors on smartphones have also attracted increasing interest in extracting trip information by sensor fusion.
Various inertial sensors (Feng and Timmermans, 2013; Hemminki et al., 2013; Sankaran et al., 2014) are employed to iden-
tify transportation modes such as being stationary, walking, and riding a bus, tram, or metro and so forth. These low-cost
sensors are also utilized to robustly track stops and runs of metros (Yu et al., 2014; Lee and Han, 2014; Higuchi et al.,
2015; Stockx et al., 2014). However, none of the previous work has been able to provide information for fine-grained inter-
change times from the passengers’ perspective.

The rapid development of sensors in smartphones has triggers many advanced research works (Gu, 2017; Zhou et al.,
2013; Shangguan et al., 2014; Yang et al., 2014; Gu et al., 2014a). In this paper, we propose a smartphone-based
approach to the measurement of fine-grained interchange time. Unlike previous works (Yu et al., 2014; Lee and Han,
2014; Higuchi et al., 2015; Thiagarajan et al., 2010; Stockx et al., 2014) that track the Stop and Running of a single metro,
we focus on detecting the Interchange of passengers during a metro trip. Although some works (Ohashi et al., 2014; Gu
et al., 2016a) have explored automatically splitting trips into walking, staying and in-vehicle states, they fail to provide
detailed time information that passengers spend in passages, on platforms, or using various facilities (e.g. stairs, escala-
tors, elevators) during metro interchanges. By invoking carefully selected smartphone sensors to monitor ambient mag-
netic fields, acceleration and cell tower signal strengths, we provide a first-of-its-kind interchange time measurement
service that automatically distinguishes and measures the durations of 10 common passenger states (going up/down
by an elevator/escalator/stairs, walking up/down on an escalator, walking through a passage, waiting on platforms or
at the entrance of elevator/escalator) at a metro transfer station. We extract representative features from raw sensory
data, which are fed into a two-tier cost-sensitive Naive Bayes classifier (Elkan, 2001) and a Conditional Random Field
(CRF) (Lafferty et al., 2001).

For validation, we implemented our approach as an Android application, and conducted extensive field evaluations with
32 volunteers in 6 months, covering 14 metro lines in 3 major cities in China (Beijing, Shanghai and Shenzhen). Experimental
results demonstrate an overall interchange state identification F1-measurement (Sokolova and Lapalme, 2009) of 91.0%, an
average error in time of less than 2 min, an average accuracy of 89.3% in distinguishing the 10 common passenger states dur-
ing interchanges. We also conducted a series of case studies using measurements from crowdsourced users during 3 months
and analyzed detailed interchange times at interchange stations in the 3 major cities in China from both macro and micro
points of view.

� From a macro point of view, we find that 12 out of the 34 transfer stations in our evaluation have long interchange times
(over 360 s). Interchange times at most interchange stations have high variability, which increases during peak hours and
decreases in off-peak hours. The portion of interchange times also varies among the multiple routes for the same origin-
destination pair.
� From a micro point of view, we show that passengers can spend 50% of their interchange times waiting on the platform,
which can be optimized with metro re-scheduling. A decomposition of interchange states into 10 cases reveals the pas-
sengers’ behaviors, e.g. the transferring directions and the usage of stairs/escalators/lifts during peak and off-peak hours.
Further analysis on waiting and walking times shows that the root cause of long interchange times during peak hours is
mainly blockages at the entrances of stairs, escalators or lifts.

In the rest of the paper, we first discuss the literature review in Section 2, and then outline our methodology
in Section 3. Sections 4 and 5 detail the technical solutions to interchange state inference and fine-grained interchange case
inference. We evaluate our methods in Section 6 and present a series of case studies in Section 7. Finally we conclude the
paper in Section 8.
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2. Literature review

2.1. Passenger’s tracking

There has been active research using automatic data collection systems (e.g. fare collection) (Briand et al., 2017), geo-
graphic information systems (GIS) and smartphones for passenger activities tracking in public transportation (Gu et al.,
2016b; Vlahogianni and Barmpounakis, 2017).

A majority of these studies aim to identify transportation modes during a trip. Feng and Timmermans (2013) utilized
GPS systems and accelerometers to differentiate walking, cycling, running, and riding a motorcycle, bus, car, metro or
tram with a Bayesian belief network model. Hemminki et al. (2013) leveraged accelerometers only to identify more
transportation modes including being stationary, walking, and riding a bus, tram, metro or train. Other works focus more
on the purpose and quality of trips. Zhao et al. (2013) proposed a theoretical framework to model and estimate excess
journey times using smartcard data. Aguiléra et al. (2014) employed cell network data to estimate travel times, metro
occupancy levels and origin-destination flows. Carrel et al. (2015) harnessed fine-grained location information and auto-
matic vehicle location, fare collection and passenger count data to track passengers in detail via a location matching
scheme.

Despite these research efforts, it incurs unique challenges to track passengers and their travel experiences under-
ground, where popular GIS such as GPS becomes inaccessible. Therefore metro timetables and smartphone sensors are
commonly employed for metro state inference and tracking underground. Yu et al. (2014) employed acceleration and cell
tower signals to estimate the stop and go states of metros. However, the acceleration patterns might be significantly
reduced in modern metros. Lee and Han (2014) exploited ambient magnetic fields in metros to differentiate their motion
states. StationSense (Higuchi et al., 2015) further improved the estimation robustness by fusion acceleration and magnetic
measurements. However, they cannot distinguish stops between stations from those at stations, which can trigger false
arrival reminders and erroneous interchange time calculations. Thiagarajan et al. (2010) fed acceleration data and a fixed
timetable into an HMM model to locate metros, which is robust to in-between stops. SubwayPS (Stockx et al., 2014) added
gyroscopes to further track metros between stations. TransitLabel (Elhamshary et al., 2016) utilizes smartphone sensors to
automatically add semantic information e.g. entrance gates, platforms, waiting lines to the complicated floor plans of
metro stations.

In this work, we aim to accurately identify the interchange state of passengers during a metro trip using smartphone sen-
sors. Our method is built upon previous research on smartphone-based metro tracking, yet advances the state-of-the-art by
further classifying the interchange state into 10 fine-grained interchange cases, which facilitate to perform detailed inter-
change time analysis and mine passenger behaviors during metro transfers.

2.2. Indoor localization

Indoor localization has been extensively studied via different methods so far (Youssef, 2015). The most ubiquitous
smartphone-based solutions are either the Pedestrian Dead Reckoning (PDR) (Beauregard and Haas, 2006) or Wi-Fi finger-
printing (Xiao et al., 2011) techniques. The principle of PDR is to measure the travelled distance and walking directions using
the inertial sensors of smartphones, and to dead-reckon the user from a reference point afterwards (Zou et al., 2017a; Chen
et al., 2015; Qiu et al., 2016). It often assumes a map of the building and works best with narrow corridors. While the com-
mon presence of sensors in smartphones supports PDR to be an attractive technique for smartphone localization, its notable
limitation lies in increasing errors accumulated over time without timely adjustments in between, especially under the com-
plex and large-scale underground scenarios. There will be a significant performance degradation if the trajectories of users
are relatively unconstrained by corridors. The core of Wi-Fi fingerprinting techniques is to compare the intensity of the
received signal and the method of ‘‘fingerprinting” (Zou et al., 2017b; Xiao et al., 2016; Lu et al., 2016; Zou et al., 2016), which
requires calibration to construct a prior wireless map for the building. However, the map calibration is time consuming, and
Wi-Fi access point deployment is usually sparse underground. Any changes in the environment such as adding or removing
furniture or structures underground may disturb the ‘‘fingerprint” that corresponds to each location, degrading the localiza-
tion performance.

Compared with the indoor position systems, we focus on the semantic state detection rather than the absolute physical
coordinates. The selected features, i.e., magnetic intensity, acceleration and RSSI, are used to track a passenger’s states during
the metro trip. For example, we choose relatively simple features from the acceleration traces because we focus on the
semantic states, e.g.walk and stand, rather than the absolute physical coordinates. Therefore, the acceleration traces are only
used to differentiate whether the passenger is walking or not. Consequently, issues such as drift, inaccurate values of the
gravity, the body and navigation coordination are not major concerns in our case. As a mobile solution which tracks the
semantic states of passengers, and avoids dealing with noise in indoor localization problems (i.e., errors caused by drift, inac-
curate values of gravity, the body and navigation coordination), we believe that simple inference models are beneficial and
hold potential for implementation on commodity smartphones. They will also help to save smartphones energy and CPU
resources.
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3. Methodology

A metro trip from passengers’ perspective usually consists of two states.

� Interchange: A passenger transfers from one metro to another, including both waiting at an interchange station and walk-
ing or taking lifts/elevators to another platform.
� In-Metro: A passenger is on a metro, which can either be Running or Stop at a station or in the tunnel.

We propose a two-tier inference model to detect the state of passengers and further record the fine-grained interchange
state during transfer. The first tier model infers whether the passenger is in Interchange or In-Metro state leveraging features
extracted from multiple smartphone sensors including magnetic sensor, accelerometer and GSM. It then feeds the features
into a cost-sensitive Naive Bayes model for passenger state inference. Passenger state is inferred every 20 s, which roughly
corresponds to the shortest possible state in the metro trip. Table 1 summarizes the sensory features used and their usage to
infer passenger states during a metro trip.

Once the passenger is detected to be in the Interchange state, the second tier inference model further identifies the fine-
grained Interchange cases (including taking an elevator or escalator up/down, walking upstairs/downstairs, waiting on a plat-
form or entrance of an elevator/escalator, walking through a passage, walking up/down on the escalator) via a set of sensory
measurements from an accelerometer and barometer. The sensory data and their corresponding usages for the fine-grained
Interchange case identification are described in Table 2.

We elaborate on the feature selection and the two-tier inference models sequentially in the following sections.
4. Passenger state inference

4.1. Feature selection

Passenger state inference extracts robust features from four sensory measurements including magnetic intensity, accel-
eration, GSM RSSI and time statistics.
4.1.1. Magnetic intensity features
Features extracted from magnetic intensities are utilized to infer the start of the metro Running for the In-Metro state.
Principle: The contemporary metro operation systems are generally driven by the electric engine. These engines, which

are distributed among each cart, rely on the interaction between winding currents and magnetic fields to generate force.
During operation, significant fluctuations of the current generate strong magnetic fields, which in turn create a considerable
torque to push the metro forward (Lee and Han, 2014).

Thus the magnetic intensity during metro operations is normally greater compared to that in other phases.
Fig. 1 shows an illustrative trace of magnetic intensity of a metro trip with a sampling rate of 50Hz. The magnetic inten-

sity is calculated as M ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

x þM2
y þM2

z

q
, where Mx;My, and Mz are of the magnetic intensities on the X-, Y- and Z-axis

respectively, and lT is the unit. The trace is filtered by a moving average window of size 500 (i.e., 10 s). The time series
marked blue denotes the variation of magnetic intensities, and the colored bar at the bottom represents the ground truth
of two states during the entire trip. As is shown, the magnetic field increases abruptly when a passenger is in the train,
and stays at a relatively low and stable level during interchanges. Thus, the variation of magnetic intensities can differentiate
the two states of Interchange and In-Metro.

Magnetic features Fmag: Given a magnetic intensity sequenceM ¼ fMðt1Þ; . . . ;MðtkÞ; . . . ;MðtNÞg, we first filer the raw data

using a moving average filter of size W. Denote the mean M ¼ 1
NR

N
i¼1MðtiÞ. If M exceeds a preset threshold dmag with a larger

confidence probability P (i.e. P 50%), it implies a high level of magnetic intensity, and possibly a state of In-Metro. Other-
wise, it might be a state of Interchange. We extract the magnetic intensity features every inference interval (20 s), i.e.,
N ¼ 1000 under a sampling rate of 50 Hz. We empirically set the window size W ¼ 500 and the threshold dmag ¼ 70 lT to
optimize local experiment performance. The confidence probability P is learnt by a statistic model on the training dataset,
which can be well applied in different underground environments.
4.1.2. Acceleration features
Features extracted from acceleration are used to infer both In-Metro and Interchange states.
Principle: Acceleration has been employed to detect the running and stopping of metros (Thiagarajan et al., 2010; Stockx

et al., 2014; Yu et al., 2014), and we extend its usage to recognize passengers walking (e.g., through a passage or stairs) or
waiting (e.g., on the platform or at the entrance of an elevator/escalator) during interchanges. As an illustrative example, we
asked 20 volunteers to record accelerations during their metro trips at a sampling rate of 50Hz. We then calculate the dif-

ferences of accelerations A ¼ fa1; . . . ; ai; . . . ; ang, where ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2
xi þ a2

yi þ a2zi
q

; axi; ayi and azi represent the acceleration difference

of two successive acceleration amplitudes at each axis. The difference operation on the acceleration trace assists to eliminate



Table 1
Summary of sensory data, extracted features, and usage for passenger state inference in the first tier.

Sensory data Features Usage

Magnetic field Mean Infer Interchange and In-Metro (on a running train)
Acceleration Energy and period of acceleration difference Infer Interchange (walking and waiting) and In-Metro (on a stop and running train)
GSM RSSI Energy, standard deviation Infer Interchange and In-Metro (on a stop/running train)

Table 2
Summary of sensory data, extracted features, and usage for fine-grained interchange case inference in the second tier.

Sensory data Features Usage

Acceleration Period of acceleration difference Infer Walk and Non-walk
Pressure Height gradient Infer 10 cases of Interchange duration
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Fig. 1. Magnetic field trace during a metro trip.
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the noise interference and highlight its characteristics in temporal dynamics. Fig. 2 plots the acceleration differences for 20 s
after adopting a smoothing window of 50 samples for four states:

� Case 1: passenger walking during an interchange.
� Case 2: passenger waiting during an interchange.
� Case 3: passenger on a stopped train.
� Case 4: passenger on a running train.

We define energy as En ¼Pn
i¼1a

2
i and period as the bin corresponding to the strongest peak by performing a Fast Fourier

Transformation (FFT) on faigni¼1. As shown in Fig. 2, the repetitive pattern of walking exhibits a shortest period within the
range of [0.8 s, 1.2 s], which corresponding to the walking frequency of human being spanning from 0.5 Hz to 2 Hz (Pachi
and Ji, 2005). Such a period is hardly observed in acceleration traces for non-walking states. We also observe that the energy
of the acceleration is relatively low when passenger waits for a metro on the platform, while slightly larger (10–80) when the
passenger is on a halted metro. This notable difference in the energy, even if the passenger is stationary, comes from the
vibration of the metro’s running engine, which cannot be smoothed with a window of 50 samples. The energies for a walking
passenger and a running metro are often dramatically larger, due to the larger acceleration amplitudes. Inspired by the above
observations, we choose energy and period to distinguish Interchange (Case 1, Case 2) and In-Metro (Case 3, Case 4).

Acceleration feature Facc: The workflow of acceleration feature extraction is detailed as follows. After collecting a 1000-
sample acceleration sequence within an Inference interval, we first compute its difference, and then smooth it with a micro
rolling average window of 50 samples. Then we calculate the period and judge whether it lies within the closed interval
[0.5 s, 2 s]. If so, it is labeled as walking. Otherwise, we calculate its energy. If the energy is lower than a predefined threshold
of � ¼ 5, it is labeled as waiting. Otherwise, it is labeled to In-Metro. Both walking and waiting belong to the Interchange state.

4.1.3. GSM RSSI features
Features extracted from the GSM received signal strength index (RSSI) are used to infer both In-Metro and Interchange

states.
Principle: GSM is the main communication medium for a metro. As GSM signals can be attenuated during a metro trip,

the variance of the GSM RSSI may indicate different states during a metro trip. Generally, a metro station is installed with
several child cell-sites to guarantee communication quality underground, while few cell-sites are installed in the metro tun-
nels, leading to a weaker signal strength.

Fig. 3 shows a trace of the GSM RSSI during a metro trip. We divide the In-Metro state into Stop and Running subcases as in
the previous subsection. The blue bar plots the raw RSSI, and the red line illustrates the smoothed RSSI. As is shown, the RSSI
drops gradually as the metro departs from the station, and stays at a low level in the tunnel. When the train approaches the
next station, the RSSI climbs up and arrives at a peak when the metro halts at a station. In addition, during transfers at an
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Fig. 3. RSSI trends in a metro trip.

158 W. Gu et al. / Transportation Research Part C 81 (2017) 153–171
interchange station, the RSSI remains stable at a high value. Thus the RSSI profiles of Running, Stop and Interchange exhibit a
unique pattern.

RSSI feature Frss: Given an RSSI sequence R ¼ fr1; r2; . . . rng smoothed by a rolling window lasting for 10s, we adopt two
efficient criteria to capture the distinctive pattern of RSSI. The first is energy En ¼ Rn

i¼1r
2
i , where ri denotes the strength of the

ith sample in the sequence.
The second is the standard derivation std. Compared with In-Metro (i.e., Stop and Running), the RSSI of Interchange usually

exhibits small std.
Fig. 4 illustrates the distribution of the two criteria based on 23 metro trip records from 20 volunteers. As is shown, the

three RSSI profile classes are divided into three clusters by the two criteria, and hence can be classified with a decision tree
model.

Fig. 5 shows the decision tree model for GSM RSSI profile classification based on our evaluation. Note the subcases of Run-
ning and Stop are labeled as In-Metro in the decision tree model. Specifically, the paths from root to leaf represent classifi-
cation rules, and the splitting features and thresholds are determined depending on the information gain calculated by
entropy.

4.2. State inference model

We modify the standard Naive Bayes classifier with cost-sensitive learning for Interchange and In-Metro state inference.
We adopt this model for passenger state inference for the following reasons:



Fig. 4. RSSI feature distributions.
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� A Bayes classifier is suitable for conditional and independent contextual features extracted from smartphone sensors.
Since the three dimensional features (i.e. magnetic field, acceleration difference, and RSSI) are not correlated during
the metro trip, we can assume they are independent and apply Naive Bayes model to make a classification.
� The cost-sensitive algorithm can deal with imbalanced metro trip data. As the duration of an interchange is only a small
portion of a whole metro trip, there will be much fewer measurements collected during Interchange than In-Metro. Such
imbalances in the measurement can lead to bias when training the standard Naive Bayes model. The cost-sensitive algo-
rithm imposes a higher cost on the minority class to avoid such a bias, thus ensuring the inference accuracy with an
imbalanced training dataset.
� The cost-sensitive Naive Bayes model provides fast, scalable and efficient model building and scoring, and often outper-
forms the more sophisticated algorithms for binary classification.

4.2.1. Problem formulation

Given a set of variable features, X
!
¼ fX1; . . . ;Xi; . . . ;XNg, where Xi 2 fFmag ; Facc; Frssg is the ith attribute of feature, we con-

struct a posterior probability PðYt jX
!
Þ for a state Yt 2 fIn-Metro, Interchangeg at each inference interval t. Note that the state

might change during an inference interval. We label the state as the one with the longest duration. For instance, if a passenger
is in-metro during the first 5 s , and gets off to transfer for the last 15 s, his/her state is labeled as Interchange.

4.2.2. State inference
Traditional Naive Bayes model: According to the Bayes Theorem and conditional independence assumptions of features

Xj given Yt , the posterior probability PðYt ¼ yijX
!
Þ can be represented as:
pðYt ¼ yijX
!
Þ ¼ PðYt ¼ yiÞPðX

!
jYt ¼ yiÞP

kPðYt ¼ ykÞPðX
!
jYt ¼ ykÞ

¼
PðYt ¼ yiÞ

Y
j
PðXjjYt ¼ yiÞP

kPðYt ¼ ykÞ
Y

j
PðXjjYt ¼ ykÞ

ð1Þ
where yi denotes the ith possible value of Yt . Xj denotes the jth attribute of X
!
, and the summation in the denominator is over

all legal values of the random variable Yt . After learning the distributions PðYtÞ and PðXjjYtÞ from the training dataset, the
traditional Naive Bayes model infers the state Yt with the most probable value based on the following rule:
Fig. 5. Decision tree for GSM RSSI profile classification.
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Yt  argmax
yi

PðYt ¼ yiÞ
Y

j
PðXjjYt ¼ yiÞP

kPðYt ¼ ykÞ
Y

j
PðXjjYt ¼ ykÞ

ð2Þ
Cost-Sensitive Naive Bayes model: Instead of selecting the class with maximal probability, the cost-sensitive Naive
Bayes Model is applied to minimize the risk function, which is constructed in Eq. (3):
RðYt ¼ yjjX
!
Þ ¼

X
PðYt ¼ yijX

!
Þ � Cðyi; yjÞ ð3Þ
where PðYt ¼ yijX
!
Þ can be obtained from Eq. (1). The cost Cðyi; yjÞ denotes the cost of the sample belonging to state yi which is

misclassified to state yj, whose value is calculated as Eq. (4). pi is the percentage of training samples with state yi in the total
training samples, and pj is that of state yj in the training samples.
Cðyi; yjÞ ¼

ðpipjÞ
b
; pi > pj;

ðpjpiÞ
a
;pi < pj;

1; pi ¼ pj;

0; i ¼ j;

8>>>>><
>>>>>:

ð4Þ
The state Yt is finally predicted as the class with minimal value of risk function as follows:
Yt  argmin
yi

RðY ¼ yijX
!
Þ: ð5Þ
In the cost-sensitive Naive Bayes model, we purposely increase the cost of a sample belonging to a minority state which is
misclassified as a sample belonging to a majority state so as to boost the corresponding value of the risk function. This simple
yet efficient algorithm can handle with the problem of an imbalance in the training dataset, which is well applied on the
metro scenarios.
5. Fine-grained interchange state inference

After determining that a passenger is in the Interchange state, a fine-grained interchange case prediction module is trig-
gered to further categorize the passenger interchange process. According to the transferring modes, we summarize the fine-
grained interchange states into the following ten cases, which cover most modes that passengers transfer from one metro
line to another.

1. UEL: passenger going up by an elevator.
2. DEL: passenger going down by an elevator.
3. UES: passenger going up by an escalator.
4. DES: passenger going down by an escalator.
5. WUS: passenger walking upstairs.
6. WDS: passenger walking downstairs.
7. WAI: passenger waiting on a platform or at the entrance of an elevator/escalator.
8. WTP: passenger walking through a passage.
9. WDE: passenger walking down on an escalator.

10. WUE: passenger walking up on an escalator.

As discussed in Section 4.1.2, we can leverage the repetitive patterns in acceleration to differentiate walking-related inter-
change states (WUS, WDS, WTP, WDE, WUE) and non-walking states (UEL, DEL, UES, DES, WAI). However, acceleration alone
is insufficient to distinguish the above ten cases. Therefore, we combine the accelerometer and barometer embedded in
smartphones for a fine-grained interchange state inference. The insight is that barometer is able to measure changes in pres-
sure which correspond to changes in height. Fig. 6 shows an illustrative measurement of the height variance during 5 s for
the 10 cases. As is shown, the slope of height variance varies when passengers ascend or descend using different tools for
interchange.

Fig. 7 further plots the height gradient distributions of the above 10 cases from 8080 measurements collected at 13 main
interchange stations in Beijing, Shanghai and Shenzhen. As is shown, the absolute height gradient of taking an elevator up/-
down (0.06–0.15) and walking up/down via an escalator (0.06–0.19) are larger than those of others. This is because the ele-
vator moves perpendicularly, rising faster than escalators. When passengers are walking on the escalator, the total height
change speed is the sum of those for walking on staircases and a moving escalator. The height gradient of walking in a pas-
sage and waiting on a platform, is stable from �0.02 to 0.02. However, the height gradient of an escalator going up/down and
upstairs/downstairs are similar, ranging from 0.02 to 0.06 in absolute terms, which cannot be easily distinguished by mea-
suring the height but is distinguishable with the repetitive patterns in acceleration. Based on the above observations, we



Fig. 6. Height variance for the 10 interchange cases.

Fig. 7. Distribution of height gradient for the 10 interchange cases.
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combine the gradient of height variance with the period of acceleration to recognize the above 10 cases during interchange,
and summarize their profiles in Table 3. The thresholds are empirically set based on our experimental measurements.

5.1. Interchange case prediction model

We adopt a classic temporal graphical model, conditional random field (CRF) (Lafferty et al., 2001), to infer the inter-
change cases. Different to the previous temporal statistic models (Zhou and Spanos, 2016; Zhou and Spanos, 2016), CRF is
able to depict the temporal relations between the observable features as well as the connections in the hidden stages
(i.e., the 10 fine-grained cases during interchange), which has been widely used in numerous applications (Gu et al.,

2014b; Gu et al., 2016c). This calculates a single log-linear distribution over label sequences Y
!
based on particular observa-

tion features X
!

by maximizing the conditional probability pðY
!
jX
!
Þ. Compared to HMMs, CRFs allow features to depend on

several states to account for long-term effects. Moreover, it also outperforms Maximum Entropy Markov models
(McCallum et al., 2000) by resolving the label bias issue (Lafferty et al., 2001; Zhou et al., 2016). These advantages enable
the CRF to characterize the relations between the observable contextual features and the hidden states in more depth, mak-
ing it more suitable for fine-grained interchange case inference.

Denote the hidden variable sequence as Y
!
¼ fY1;Y2; . . . ;Ytg, where Yt belongs to the 10 cases representing the predicted

state of Interchange case recognition interval t. Similar to SubSection 4.2, the case is labeled as the one with the longest period
if multiple cases occur in an Interchange case recognition interval.

The observation sequence is represented by X
!
¼ fX1;X2; . . . ;Xtg, where each Xt is the corresponding period and height

gradient features extracted at the Inference interval t. For a label sequence Y
!
with N þ 1 variables, its conditional probability

pðY
!
jX
!
Þ on the entire observation sequence X

!
is given by the normalized form of potential functions,
pðY
!
jX
!
Þ ¼ 1

Z
k
!ðX
!
Þ
exp

XN
t¼1

XM
i¼1

kif iðYt�1;Yt ;X
!
; tÞ

 !
; ð6Þ



Table 3
The features of 10 interchange case for classification.

Category Period feature Height gradient feature Description case

Walking [0.5–2 s] <�0.06 WDE: walk down on the escalator
�0.06 to �0.02 WDS: walk downstairs
�0.02 to 0.02 WTP: walk through a passage
0.02–0.06 WUS: walk upstairs
>0.06 WUE: walk up on the escalator

Non-walking <0.5 s and >2 s <�0.06 DEL: take elevator down
�0.06 to �0.02 DES: take escalator down
�0.02 to 0.02 WAI: wait on platform or entrance of elevator/escalator
0.02–0.06 UES: take escalator up
>0.06 UEL: take elevator up
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where Z
k
!ðX
!
Þ is the normalization factor, f ðYt�1;Yt ;X

!
; tÞ is a real-valued feature function to express the empirical distribution

of the training data, and k is the weight of each feature function (Lafferty et al., 2001). Specifically, the M feature functions
consist of two parts,
XM
i¼1

kif iðYt�1;Yt ;X
!
Þ ¼

Xm
k¼1

mkfskðYt;X
!
; tÞ þ

Xn
j¼1

ljftjðYt�1;Yt ;X
!
; tÞ ð7Þ
The first part is the state feature function fsðYt;X
!
; tÞ, which describes the correlations between the entire observation feature

sequence X
!
and the label at the current phase t. The second part is the transition state function ftðYt�1;Yt ;X

!
; tÞ, which estab-

lishes the transition relations of the observation sequence X
!
with the previous and current hidden states at the intervals t � 1

and t. This function can well characterize the temporal associations of the hidden cases. The weights m and l of these feature
functions are calculated by maximizing the conditional log-likelihood of the labeled sequences. We adopt the L-BFGS (Liu
and Nocedal, 1989) for efficient training, and apply the Viterbi Algorithm (Lou, 1995) to infer the hidden states based on
the potential functions.

In summary, the work flow of fine-grained interchange case inference is as follows. After an Interchange state is identified,
we first divide its duration into 4 parts, whose duration approximately equals to the shortest possible case period in the
interchange. Second, we calculate the period and height gradient features, and feed them into a CRF model. Finally the output
label of the CRF model is treated as the current case.
6. Validation

This section presents the evaluation methodologies and validates the proposed method to accurately infer interchange
states and measure interchange times.
6.1. Experimental setup

6.1.1. Prototype implementation
We implement our two-tier interchange state inference module as an Android application, and test it on the mainstream

Android operation systems (i.e. OS 4.0, 5.0 and 6.0) in several popular commercial mobile phones (e.g. Samsung Galaxy S6,
Nexus 3, HTC Desire A6, HUAWEI 4C). Since our application is independent of platforms, we envision it to be easily extended
to other mobile OS like iOS.
6.1.2. Data collection
We install our system on the smartphones of participants, and each of them launches it at the beginning of each metro

trip. Then the application invokes the corresponding sensors to collect measurements. Participants manually label the states
of the sensory measurements every State inference interval and Interchange case recognition interval, which are sufficient to
make a good inference in our case. If more than one state/case occurs in the State inference interval/Interchange case recog-
nition interval, we label the interval with the majority one.

We use these labels as the ground truth in our evaluations. In total, 3840 sets of metro trips have been conducted by 32
volunteers in 6 months, covering 14 metro lines in Beijing, Shanghai and Shenzhen, across 37 interchange stations, where
each metro trip lasts for 40 min on average. During the measurements, the volunteers are free to stand or sit in the metro
vehicle while hold their smartphones, and put them in pockets or in bags as shown in Fig. 8. They can use their phones as per
normal while in a metro trip.



Fig. 8. Illustration of experiment cases.
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6.2. State inference accuracy

In this subsection, we details the performance of Interchange and In-Metro state inference.
Inference accuracy of states. Fig. 9 shows the results of 10-fold cross validation on Interchange and In-Metro in our exper-

imental dataset using a traditional Naive Bayes model and our cost-sensitive Naive Bayes model. As is shown, the average F1-
measurement of the cost-sensitive Naive Bayes Model on Interchange (F1 ¼ 91:0%) is higher than that of the traditional
Naive Bayes Model (F1 ¼ 82:9%). The F1-measurements of In-Metro state remain high (F1 � 92:0%) on both models. The
results validate that the cost-sensitive Naive Bayes model addresses the imbalanced training dataset problem and achieves
a high inference accuracy for Interchange even with a smaller amount of training data. We find that most inference errors
occur during state transitions, because contextual features may not change immediately when the passenger’s state changes.

Effectiveness of feature selection. To show the effectiveness of the selected features, we use the training dataset to train
our cost-sensitive Naive Bayes classifier, and evaluate its inference performance in the testing dataset by adding features.
The results are shown in Table 4. As can be seen, the precision and recall (Sokolova and Lapalme, 2009) both improve with
more features, and finally reach 89.6% and 92.4% of Interchange, and 93.6% and 91.3% of In-Metro, showing that the selected
features are helpful for inference. By integrating the multi-dimensional features, statistics models in our work enable to copy
with the sensory noise brought by the environment or personal activities (i.e. playing games).

Accumulated inference error time of two states. Fig. 10 shows the timing errors of two states during each metro trip.
97% of the timing errors for Interchange and In-Metro are about 2 min and 3.5 min, respectively. The accumulates time error
of the overall metro trip, therefore, is under 6 min given an interference interval of 20 s. Although the inference performance
of the Interchange state (F1 ¼ 92:4%) is not as good as that of In-Metro state (F1 ¼ 90:9%), its timing error is much shorter,
due to its limited proportion of a metro trip.

Baselines comparison. We compare the inference results of Interchangewith the approaches based on the analysis of the
automatic fare collection (AFC) data. This method has been widely applied on many transportation related works (Sun and
Xu, 2012; Zhang and Yao, 2015), where the interchange time (IT) can be calculated in Eq. (8) (Zhang and Yao, 2015).
IT ¼ Td � To � Tact � Tegt � TInMetro ð8Þ

Td indicates the destination time of exiting. To dedicates the origin time of entering. Tact states the access time from the

origin entrance to the platform. Tegt points to the egress time from the final platform to the destination exit. TInMetro is the
duration of in the train. Specifically, Td and To are obtained by the AFC date. TInMetro is achieved by the subway timetable.
Tact and Tegt are modeled by comparing from the origin entrance/ destination exit time with the train’s timetable. Fig. 11
Fig. 9. Traditional Naive Bayes model vs. cost-sensitive Naive Bayes model.



Table 4
Effectiveness of features on Interchange detection.

Model In-Metro Interchange

Feature Precision (%) Recall (%) Precision (%) Recall (%)

Fmag 34.1 32.5 29.9 31.1
Fmag þ Facc 77.4 68.9 74.7 78.5

Fmag þ Facc þ Frss 93.6 91.3 89.6 92.4

Fig. 10. Accumulated inference error time.
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compares the inference accuracy of our method and AFC based method. As we can see, the advantages of our methods are
more prominent with the increasing number of interchange stations in a metro trip. This is mainly because the parameters of
a temporal model in AFC-based analysis are often invalid in practice. Personal behaviors (i.e. step frequency, walking speed)
is hard to model with some specific models.
6.3. Accuracy of fine-grained interchange case inference

We extract 16,650 accurately predicted measurements of Interchange states from the first layer as the dataset to evaluate
the fine-grained interchange case inference module. We further divide the measurements of each Interchange state into 4
segments, whose periods are the same as the interchange case recognition duration. In total, 66,600 samples of 10 interchange
cases are used for evaluation. Participants manually labeled their interchange case as the ground truth in the same way as in
Section 6.1. Fine-grained interchange case inference is performed every 5 s.

Table 5 shows the confusion matrix of fine-grained interchange case inference. As is shown, our approach yields inference
accuracies of above 82% for all the 10 interchange cases. The highest accuracy peaks at 94.6% in WDS, followed by DEL
(91.1%), WTP (93.2%) and WDE (90.7%). The lowest inference accuracy is seen with DES, which is mistaken with DEL
(7.9%), UES (0.4%) and WAI (9.6%). The main reason for such errors is that the height gradient may fluctuate at different
phases of the same interchange case. For example, the height gradient is small at the start and end of going down on an esca-
lator (DEL), i.e., when passengers step onto or leave the escalator. Such height gradient patterns are similar to those at the
start and end of UES (passenger going up on an escalator). The small height gradient also leads to confusion with WAI (pas-
senger waiting). For DEL, the main misjudgements are due to passengers’ occasionally shaking their smartphones with arms
on escalators, which induces a larger height gradient.

Effectiveness of CRF model. To show the effectiveness of the CRF model, we compare the inference accuracy of CRF to
that of two other classic models: (1) HMM, a statistical model known for its applications to temporal pattern recognition; (2)
SVM, which can efficiently perform non-linear classifications using the kernel trick, implicitly mapping their inputs into
Fig. 11. Baseline comparison.



Table 5
Confusion matrix of 10 fine-grained interchange cases defined in Section 5.

Actual Inferred

UEL DEL UES DES WUS WDS WAI WTP WDE WUE

UEL (%) 86.3 3.0 4.3 0.0 0.0 0.0 0.0 0.0 2.1 4.3
DEL (%) 0.0 91.1 2.1 2.7 0.0 1.3 0.6 0.0 2.2 0.0
UES (%) 1.6 2.2 88.9 0.0 2.6 1.7 1.5 0.0 0.0 1.5
DES (%) 0.0 7.9 0.4 82.1 0.0 0.0 9.6 0.0 0.0 0.0
WUS (%) 0.0 0.0 7.5 0.0 84.3 0.0 0.1 8.1 0.0 0.0
WDS (%) 0.0 0.0 0.0 0.0 0.0 94.6 0.0 3.3 2.1 0.0
WAI (%) 0.4 0.8 3.2 2.9 3.5 1.7 83.3 3.9 0.0 0.3
WTP (%) 0.0 0.0 0.0 0.0 4.9 1.9 0.0 93.2 0.0 0.0
WDE (%) 0.0 5.8 0.0 0.0 0.0 2.7 0.0 0.8 90.7 0.0
WUE (%) 2.5 0.0 0.0 0.0 3.3 0.0 0.0 5.4 0.0 88.8

Fig. 12. Comparison of inference model.
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high-dimensional feature spaces. Fig. 12 shows the comparison of model performances over the 10 interchange cases. As is
shown, CRF outperforms both the HMM and SVM in terms of average precision and recall, and yields limited error bars
(6 10%), which verifies the advantages of the CRF model.

6.4. System overhead

Considering our application targets at continuous passenger tracking in the whole metro trip, it is crucial to evaluate the
power consumption on the energy-constrained smartphones. Four popular commercial smartphones have been selected to
test the system overhead and their configurations are summarized in Table 6.

In each testing phone, we install a battery logger to track its power consumption during the metro trips. Fig. 13 shows the
results. As we can see, only less than 2% battery is consumed every ten minutes. In specific, the remaining battery capacity
drops down as time goes by, and ends in 89.5% Galaxy S6, 92.4% for HUAWEI 4C, 90.8% for HTC Desire, and 93.2% for Lenovo
after one hour, which demonstrates our system is power efficient and feasible for continuous passenger’ tracking during the
entire trips.

7. Case studies

The smartphone-based interchange time measurement approach is suitable for crowdsourcing to users. This section
describes a set of case studies and findings in terms of metro interchange time across 34 interchange stations within 3 major
cities in China collected by crowdsourced volunteers for around 3 months.

7.1. Macro views of interchange time

This subsection describes findings of the total interchange time during an entire metro trip.
Table 6
The configurations of smartphones.

Brand CPU (GHz) RAM (GB) ROM (GB) Power capacity (mAh)

Galaxy S6 8-cores 2.1 3 32 2550
HTC Desire A6 8-cores 1.7 2 16 2600
HUAWEI 4C 8-cores 1.2 2 8 3100
LenovoK80M 4-cores 1.8 4 64 4000



Fig. 13. Power consumption.

Fig. 14. Distribution of interchange time.

Fig. 15. Stations with interchange time over 360 s.
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7.1.1. Distribution of interchange time
We calculate interchange times during a trip by continuously inferring the current trip state. State inference is performed

every 20 s, and interchange times are calculated by merging the durations of consecutive Interchange states. Fig. 14 shows
the average interchange times for all metro interchange stations collected in our testing dataset. As is shown, around 75%
interchange times take less than 360 s, while about 4% take more than 480 s. We also mark the interchange stations whose
transfer times exceed 360 s with red nodes in the three cities as shown in Fig. 15. The names of interchange stations are
reported by the users when we collect their trip data. Long average interchange times are expected at 12 interchange sta-
tions among 34 interchange stations tested in our case study. The main reasons for long interchange times are (1) long trans-
fer distances between certain subway lines and (2) crowded passages, especially at the entrances of elevators, escalators and
stairs, which will be shown in Sections 7.2.3 and 7.2.4.

7.1.2. Fluctuation of interchange time
Fig. 16 shows the interchange times during different hours of a working day at two major interchange metro stations

(Shenzhen North Station and Shanghai People’s Square Station). The average interchange time of the two stations is above
360 s (6 min). The boxes in the figure represent the range between the 25th and 75th percentiles, and the whiskers show the
highest and lowest values within 1.5 times the inter-quantile ranges. Data points beyond the whiskers are marked by ‘+’. As
expected, most passengers experience longer interchange times during peak hours. The median interchange time at Shen-
zhen North Station is 9.5 min during 8:00 to 9:00, and 17:00 to 18:00, while that at People’s Square Station is around
8.3 min. The median interchange times at both stations drop to around 6 min during off-peak hours. This variability of inter-
change time within a day might help passengers plan their metro trips and also provide guidance for traffic control.



Fig. 16. Interchange time variance of day.

Fig. 17. Interchange and In-Metro times of 4 routes for the same origin-destination pair. (In each group, the 1st bar indicates to Line 2! Line 1, and the 2ed
bar indicates to Line 2 ! Line 4 ! Line 1, and the 3rd bar indicates to Line 7 ! Line 4 ! Line 1, and the 4th bar indicates to Line 7 ! Line 12 ! Line 1.)
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7.1.3. Interchange time and In-Metro time
Given a fixed origin and destination station, there can be multiple route choices, which vary in interchange and in-metro

times. As an illustration, we plot the Interchange time and In-Metro time at different hours of a day for 4 common metro
routes from Shanghai Longyang Road Station to Shanghai Xinzhuang Station in Fig. 17 (Route 1: Line 2 ! Line 1; Route
2: Line 2! Line 4! Line 1; Route 3: Line 7! Line 4! Line 1; Route 4: Line 7! Line 12! Line 1). As is shown, the total
times of route 3 and 4 are shorter among the 4 routes, but their Interchange times are longer than those of route 1, whose trip
duration is longer with the shortest Interchange time. Since long interchange times may cause an uncomfortable experience,
some passengers may prefer longer trips with short interchange times. Therefore, by crowdsourcing interchange time mea-
surements and aggregating information for different routes, our method can provide route recommendations to passengers
based on different Interchange and In-Metro times.

7.2. Micro views of interchange time

This subsection provides micro views for the fine-grained interchange times during metro transfers.

7.2.1. Analysis of waiting time for metro
We divide Interchange times into two parts: the time taken by passengers waiting on the platform during interchanges,

and the remaining transfer time, which starts with departing from a feeder train and ends with reaching the waiting plat-
form. While the transfer times from a feeder train to the next platform are station-dependent, the waiting times on the plat-
form vary and can be minimized by adjusting the metro schedules. For instance, if the transfer time Ttransfer is known, metro

officials can modify the arrival time of the feeder train Tfeeder
arrive, and the arrival time of the receiver train Treceiver

arrival to minimize
waiting time on platform Twait by Eq. (9):
Twait ¼ Treceiver
arrival � Tfeeder

arrive � Ttransfer ð9Þ

We calculate the waiting time Twait on the platform by extracting the last continuous durations of waiting cases (WAI) of the
interchange time, and the rest interchange time is the transfer time Ttransfer . Fig. 18 plots both Twait and Ttransfer . As is shown,
most passengers spend 18% to 50% of their time waiting at the platform during the whole interchange process, which is frus-
trating if the passenger is in a hurry. According to the obtained Ttransfer , metro officials can dynamically re-schedule the met-
ros to optimize Twait .

7.2.2. Decomposing interchange time
We detail the composition of interchange times based on our fine-grained interchange case inference method. We collect

measurements of interchanges during both peak and off-peak hours at two major interchange stations. A total of 644 pieces
of interchange measurements were collected at each station, with half collected during peak hours (7:00–9:00 and 17:00–



Fig. 18. Comparison of Twait and Ttransfer during Interchange at different hours of a day.

Fig. 19. Time distributions of the 10 interchange cases during peak and off-peak hours.
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19:00) and the other half during off-peak hours. The detailed time of 10 interchange cases were inferred by the approach
described in Section 5.

Fig. 19 shows the average time costs of 10 interchange cases. At Shenzhen North Station, the average times for UEL, UES,
WUS, WAI, WTP and WUE is long but that of DEL, DES, WDS and WDE are short. This is because the usual interchange direc-
tion is going upwards to change frommetro line 5 to metro line 4 at Shenzhen North Station. The average time of UES during
peak hours is shorter than that during off-peak hours, while the average time of WUS during peak hours is longer than that
during off-peak hours. This result shows that passengers tend to take escalators to go upwards during off-peak hours but
walk upstairs during peak hours (probably because the escalators during peak hours are too crowded). At People’s Square
Station, however, both upward cases (UES, WUS, WUE) and downwards cases (WDS, WTP, WDE) take up large portions of
the interchange times. This is because there are both upwards and downwards interchange directions at the People’s Square
Station. The time costs of UES and DES decrease from off-peak times to peak times, and increase in WUS and WDS, demon-
strating that more passengers in Shanghai are willing to walk upstairs/downstairs over taking an escalator.
7.2.3. Decomposing waiting time
As the waiting times rise dramatically from off-peak hours to peak hours, we further analyze the detailed composition of

waiting times during interchanges. We classify waiting times into three categories: at the entrance of elevators, at the
entrance of escalators, and on the platform. To distinguish these three categories of waiting, we collect the waiting times
before UEL and DEL as the waiting time at the entrance of elevators. The waiting times before UES, DES, WDE and WUE
are counted as the waiting time at the entrance of escalators. The rest of the waiting times are regarded as the waiting time
on the platform.

Fig. 20 plots the distributions of the three categories of waiting time. As is shown, the waiting times on the platform take
up the majority of the total waiting time.

Even though there are fewer metros during off-peak hours, the overall waiting time is still shorter than during peak hours.
Specifically, the waiting times at the entrances of elevator/escalator grow during peak hours, indicating there may be large
crowds at the entrances during peak hours, which is a sign for metro officials to control passenger flow.



Fig. 20. Decomposed waiting time during interchange.

Fig. 21. Fine-grained walking time analysis.

Fig. 22. Fine-grained slow walk time analysis.
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7.2.4. Decomposing walking time
We classify the walking status based on walking speeds into slow walking (with period of [1.2–2 s]) and normal walking

(with period of [0.5–1.2 s]).
Fig. 21 shows the slow walking times and normal walking times for the 5 walking cases during interchanges. The times of

slow walking remain stable from off-peak hours to peak hours for WUS, WDS, WDE and WUE, but dramatically increase for
WTP. The results indicate that walking speeds of going upstairs/downstairs (WUS/WDS) and taking elevators (WDE/WUE)
are not significantly affected during peak hours. However, walking speeds in the passage drop significantly during peak
hours, indicating potential crowdedness in the passage.

To further investigate the destinations (i.e. the next interchange case) after slow walking in the passage, we look into the
subsequent cases after slowwalking inWTP. Fig. 22 summarizes the distributions of the subsequent cases after slowwalking
in the passage. From the plot we learn that most WTP (slow walking through the passage) occur before UES (going up by
escalator, 38%), DES (going down by escalator, 35%) and WAI (waiting on a platform, 18%). The results show that passengers
tend to get blocked at the entrances of escalators and sometimes even on the platform. Such results enable metro officials to
monitor the situation of metro stations.
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8. Conclusion

In this paper, we propose a smartphone-based interchange time measurement approach for underground public trans-
portation such as metros. We utilize carefully selected sensor modalities on smartphones to record ambient contextual fea-
tures, design a two-tier classifier to infer interchange states during a metro trip, and further differentiate 10 fine-grained
cases during interchanges. We implemented our system as an Android application and evaluated its performance across
14 metro lines in 3 major cities in China within 6 months. Experimental results show that our method yields an overall
F1-measurement of 91.0% for interchange state inference and a time error of 2 min with an inference interval of 20 s. We
also achieve an average accuracy of 89.3% in distinguishing 10 fine-grained interchange cases. From the case studies with
crowdsourced data collected in 3 months, we obtain detailed views of interchange times from both macro and micro per-
spectives, such as the interchange stations with long interchange times, distributions of interchange times within a day, por-
tions of waiting times during interchanges, interchange direction, usage of facilities (stairs/escalators/lifts), and the root
causes of long interchange times. Future directions include more energy-efficient sensing frameworks for long-term crowd-
sourced interchange time measurements, improving time measurement accuracy, metro schedule optimization and route
recommendation based on real-time, fine-grained interchange time measurements at an urban scale.
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