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ABSTRACT
Indoor localization is of great importance to a wide range of
applications in the era of mobile computing. Current main-
stream solutions rely on Received Signal Strength (RSS) of
wireless signals as fingerprints to distinguish and infer loca-
tions. However, those methods suffer from fingerprint am-
biguity that roots in multipath fading and temporal dynam-
ics of wireless signals. Though pioneer efforts have resorted
to motion-assisted or peer-assisted localization, they neither
work in real time nor work without the help of peer users,
which introduces extra costs and constraints, and thus de-
grades their practicality. To get over these limitations, we
propose Argus, an image-assisted localization system for mo-
bile devices. The basic idea of Argus is to extract geometric
constraints from crowdsourced photos, and to reduce finger-
print ambiguity by mapping the constraints jointly against the
fingerprint space. We devise techniques for photo selection,
geometric constraint extraction, joint location estimation, and
build a prototype that runs on commodity phones. Extensive
experiments show that Argus triples the localization accuracy
of classic RSS-based method, in time no longer than normal
WiFi scanning, with negligible energy consumption.

Author Keywords
Indoor Localization; Smart Phone; Photogrammetry

ACM Classification Keywords
H.3.4. Information Storage and Retrieval: Systems and Soft-
ware

INTRODUCTION
The popularity of mobile and pervasive computing has stim-
ulated extensive interests in indoor localization, which is a
critical enabler for location-based applications in living, pro-
duction, commence, and public services. Among various in-
door localization methodologies, Received Signal Strength
(RSS)-based localization systems have attracted much atten-
tion in recent years and have been extensively studied as the
most promising and relatively inexpensive solution for in-
door positioning [25]. Their methods basically depend on
detecting and analyzing the signals of the widely deployed
WiFi infrastructures in public indoor environment and the in-
tegrated WLAN card in most off-the-shelf mobile devices.
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Therefore, these systems require no deploying investment,
no additional hardware, and reasonable training overhead,
which make it very appealing for commercialization over
other measurement-based methods (e.g., ultrasound [20] and
visible light [12]) and pure image-based systems [7].

RSS-based localization scheme typically contains two stages:
training and operating. In the training stage, a fingerprint
database is constructed by locationally labelled fingerprints
collected from on-site survey and calibration. Next in the op-
erating stage, a user sends a location query with his/her cur-
rent RSS fingerprint, by which localization algorithms query
the fingerprint database and return the closest matched finger-
print as well as its corresponding location. However, despite
more than one decade of research [4, 5, 13, 21, 28, 33, 36],
RSS-based indoor localization has not yet been widespread so
far. Google Indoor Map, the industrial state-of-the-art, cov-
ers about 10,000 locations [1], which are only a tiny fraction
of millions of shopping malls, museums, and airports world-
wide. One major obstacle behind the sporadic availability is
that the mainstream indoor localization technologies overly
rely on wireless signal features, however, such features suf-
fer from dramatic performance degradation in complex situa-
tions on account of multipath fading and temporal dynamics
[35]. Under this context, this problem is also known as “Fin-
gerprint Ambiguity” [26], where two distinct locations may
possess similar RSS fingerprints. Therefore, a user may be
mistakenly matched to position distant from the true position.
In particular, it was reported that fingerprint ambiguity is the
root cause of large errors in WiFi-based localization [14].

In existing literature, many pioneers have been addressing the
fingerprint ambiguity and the major efforts have been made in
the following two aspects. One aspect is called Mobility In-
creases Localizability [34], where the ambiguity is reduced
by utilizing user movement. One popular way is to use par-
ticle filter together with sensor fusion [8, 11], in which the
ambiguity can be modelled by the particle behavior to some
extent. Another way is to directly eliminate candidate finger-
prints by tracking user movements [26]. And the other aspect
is called Localization with Peer Assist, where the ambiguity
is reduced by the help from other users. One representative
solution [14] is to obtain accurate acoustic ranging estimated
among peer phones, then maps their locations jointly against
WiFi signature map subjecting ranging constraints. Another
type of solution somehow utilizes the opportunistic encoun-
ters between peers [21, 23]. However, these aforementioned
works, more or less, have the following limitations that im-
pede their real-life deployment: 1) Require user movement
trace, resulting in that the user cannot obtain his/her location
immediately after launching the app [8, 11, 26]. In addition,
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accurate moving trajectory is difficult to be extracted from
smart phone built-in sensors. 2) Impose some strong assump-
tions on user behaviors such as fixed phone orientation [30]
and being stationary during acoustic ranging [14]. 3) Require
a sufficient number of willing peers [14, 21, 23].

The above limitations motivate us to design and implement
Argus 1, an image-assisted positioning scheme. The intuition
is simple: recent smart phones are all equipped with powerful
cameras and people take photos with their phones anywhere
and anytime. It is our vision to reduce the fingerprint ambi-
guity by extracting geometric constraints by utilizing visual
clues beneath those ubiquitous photos. Then by mapping the
constraints onto the fingerprint space, we are likely to dis-
tinguish multiple locations with similar fingerprints. On this
basis, Argus works as follows. When an user wants to know
the location, he/she bootstraps Argus app and takes a photo of
nearby place of interest (denoted by POI, it can be any phys-
ical feature or indoor landmark like shop logos, statues, and
billboards). The absolute POI location is not required and
users can take photos at a relatively long distance. The query
photo together with his/her current RSS fingerprint will be
sent to the server. After matching the query photo to the cor-
responding POI and handling device heterogeneity, we adopt
a photo selection mechanism to choose some supporting pho-
tos to assist localization. Then we use a Computer Vision
(CV) technique called Structure from Motion (SfM [10]) to
generate geometric constraints among those photos. Finally,
Argus maps their locations jointly against fingerprint space
subjecting the geometric constraints and our cost function.

Despite the simple idea, three major challenges underlie the
design of Argus: 1) How to effectively construct the image
database? Manual configuration requires a great amount of
time and effort, and it is a major obstacle for pure image-
based solutions [7]. Instead, we adopt crowdsourcing and ex-
tract the geometric constraints without knowing their ground
truth locations. 2) How to utilize and evaluate geometric con-
straints for accurate localization? The key here is that the
constraints obtained from photos are relative, unknown scal-
ing, translation, and rotation exist from the corresponding lo-
cations in the real world [17]. So we transform the problem
into a combinatorial optimization problem, and solve it effi-
ciently by pruning and interpolation. 3) As a mobile appli-
cation level service, Argus should execute in a real-time and
energy-efficient manner. We address these by introducing a
module driven structure and a set of efficient algorithms. The
key contributions of Argus are summarized as follows.

• We identify the opportunity of leveraging crowdsourced
unlabelled photos to resolve RSS fingerprint ambiguity.
We observe that the relative positions obtained from SfM
can act as the geometric constraints for accurate indoor lo-
calization. To our best knowledge, this is the first work that
provides image-assisted indoor localization in fingerprint
space with crowdsourced photos and commodity phones.

• We propose Argus, an easy-to-use and highly accurate
indoor localization scheme. It combines geometric con-

1Argus is a giant with 100 eyes in Greek mythology.
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Figure 1. An academic building floor plan, each dot represents a location
where the WiFi fingerprint is measured.

straints with RSS fingerprints to address fingerprint ambi-
guity. We adopt a crowdsourcing approach to construct an
unlabelled image database and design a combinatorial op-
timization to evaluate location candidates. Such scheme
provides Argus with the following desired properties: 1)
One click localization, users can be localized with a sin-
gle photo, which is natural and easy-to-follow. 2) Highly
compatible with existing RSS-based localization systems,
only extra effort is to construct an image database, which is
crowdsourced and automatic. 3) Fast and accurate, it takes
advantage of both the RSS-based method and image-based
method, improves localization accuracy while bypassing
the huge overhead of pure image-based method.

• We fully implemented Argus on Android platforms and
conducted extensive experiments in two types of large
complex indoor environments: shopping mall and food
plaza. Argus triples the localization accuracy achieved by
the mainstream RSS-based method, and limits the mean lo-
calization error to less than 1m while achieves less than 8s
localization latency.

The rest of the paper clarifies each of the above contributions,
beginning with observation of using WiFi fingerprint for in-
door localization, followed by overview, design, implemen-
tation, and evaluation of Argus. Finally, we summarize the
limitations and point out potential future work.

OBSERVATION OF USING WIFI FINGERPRINT FOR IN-
DOOR LOCALIZATION

Methodology and Experimental Setup
We conduct this observation in a similar way as classic RSS-
based localization system [5]. The major difference is the
way we weight average the locations of a few nearest fin-
gerprints in signal space [?]. Formally, for each location
query fingerprint f

i

, the N fingerprints in the database hav-
ing the smallest distances to it form its neighbor set N (i). Let
h

f
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i

, ..., f
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i
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be its set of N nearest neighbors in signal
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We conduct the observation in an academic building as in Fig-
ure 1. The building is of size 70 ⇥ 23m, which contains 16
offices, of which 5 are large rooms of 142m2 , 7 are small
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(a) Errors with different sample size (b) Large Error Case 1 (c) Large Error Case 2
Figure 2. Observation Analysis

ones with different sizes and the other 4 are inaccessible. The
phone takes 50 WiFi fingerprints at each of the 279 known lo-
cations from 26 APs. Each location can receive signals from
6�7 APs on average. 20 samples in each location are utilized
for training stage, and the remaining 30 samples are left for
operating stage. We consider the top 5 nearest neighbors in
this experiment throughout the paper.

Result Analysis
First of all, we investigate the WiFi localization performance
under different sample sizes, which are the numbers of WiFi
fingerprints the phone collects before sending a query. The
localization results are presented as a cumulative distribution
function of localization errors as illustrated in Figure 2a. Ev-
idently, more samples contribute to more reliable localization
results, but at the cost of higher energy consumption and la-
tency. Besides that, even if 10 samples are in use, large errors
occupy a considerable part (see long tails of CDF curves ex-
hibiting errors more than 5m). Large errors are troublesome
in many cases, such as leading the users into a wrong shop or
instructing them to turn at a wrong corner.

Given the above observations, we try to figure out the root
cause of large errors by examining those queries that lead
to large errors. Without loss of generality, we roughly di-
vide them into two cases. First, locations far away from the
true user position possess more similar fingerprints in sig-
nal space. An example of this scenario is illustrated in Fig-
ure 2b. The floor plan is divided into grids corresponding
to Figure 1. The color of each grid represents its RSS Eu-
clidean distance to the query WiFi fingerprint in signal space
(The redder, the closer). A query is sent from location (9, 5)
(marked by a dotted circle), its closest neighbor in signal
space is (14, 1) (marked by a dotted rectangle). It mainly
contribute to a large error of 8.6m. Second, even if the clos-
est fingerprint is correctly matched, the top closest neighbors
in signal space may scatter in physical space. An instance can
be seen in Figure 2c, where the query fingerprint is taken at
(22, 2), and its top 5 nearest neighbors in signal space are
(22, 2), (32, 5), (23, 1), (24, 4), and (24, 3). With the esti-
mated location as the weighted average of the top 5 nearest
neighbors, this instance still has a large error of 6.46m.

In summary, large errors are mainly caused by WiFi finger-
prints that are close in signal space but distant in physical
space, or in other words, fingerprint ambiguity. However,
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Figure 3. System Overview
the reasons for such ambiguity are multi-folds, both the per-
manent environmental settings (e.g., walls and furniture) and
the temporal dynamics (e.g., pedestrians and wireless inter-
ferences) can affect the radio propagation and reception [14],
thus produce similar fingerprints. These factors always exist
in reality and are impossible to eliminate by pure signal pro-
cessing technique. In this paper, we propose Argus and try to
solve the ambiguity from a different perspective by utilizing
geometric constraints induced from ubiquitous photos.

SYSTEM OVERVIEW

Working Flow from User’s Perspective
When a user needs to be localized, he/she just activates Ar-
gus’ app on his/her smart phone. The camera is automatically
turned on, along with the WiFi scanning. Then the user is in-
structed to shoot a POI near the center of his/her viewfinder
without walking near it (The user can take a photo at a rela-
tively long distance as long as the POI is clearly taken). Af-
terwards, Argus will send the photo as well as the RSS fin-
gerprint to the server. After the remote processing, a location
tag will be returned to the smart phone, and Argus displays
this location to the user.

Working Flow from Server’s Perspective
As shown in Figure 3, the input of server side are a query im-
age and its corresponding WiFi fingerprint. The server han-
dles the localization query in a pipeline manner briefed as fol-
lows. First of all, the server will figure out which POI the user
is shooting for, and the photos for the same POI will be iden-
tified by a Image Match module. Then with a Supporting
Photo Selection module, it adopts a photo selection mech-
anism to pick up the most suitable photos (termed as sup-
porting photo) among the photos for the same POI to assist
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Figure 4. Image Match Correction

human localization. The mechanism considers both the qual-
ity of supporting photos and their WiFi fingerprints. Once
the supporting photos are selected, a Geometric Constraint
Extraction module applies a CV technique called Structure
from Motion [10] in order to obtain the relative locations and
orientations of the shooting sites among these photos (sup-
porting photos + query photo), and these form the geometric
constraints for a Joint Location Estimation module. At the
same time, a rough user localization will be estimated by a
WiFi Position Estimation module in the same way as we
have introduced in the observation after handling the hard-
ware heterogeneity in a Device Gain Estimation module.
Finally, a Joint Location Estimation module estimates user
location by considering the WiFi fingerprints and the geomet-
ric constraints jointly. We model this joint localization into a
combinatorial optimization problem, the position that mini-
mizes the cost function is regarded as the user location.

IMAGE MATCHING
As illustrated in Figure 3, the first thing we do is to identify
which POI the user is taking photo for. We implement a direct
2D-to-3D matching framework motivated by the work of [22]
using visual words technique for fast image matching. Then,
we use a simple threshold-based mechanism to judge whether
the POI is correctly identified. If the image matching score
is above the threshold, Argus executes the next step directly.
However, the photos taken by the users could be unclear, un-
focused, blurred, or obstructed. So we adopt an image match
correction mechanism when the image matching score is be-
low the threshold. As illustrated in Figure 4, Argus retrieves
the top 4 candidate POIs and ask the user to identify the cor-
rect one by tapping the thumbnail images. Though the top
candidate may not accurately identify the POI, its correctness
is largely improved when considering the top 4 candidates.
The accuracy improves from 91.3% to 97.7% in the mall and
from 87.2% to 95.8% in the plaza, see Table 1. The detail of
the dataset will be introduced in the Experiment Section.

OBTAINING RELATIVE POSITION CONSTRAINTS
According to the previous observation, WiFi signal alone is
unreliable for accurate indoor localization. In this section,
we seek the potential of obtaining geometric constraints from
images using a CV technique called SfM. Then we utilize a
robust metric denoted by Shape Similarity to measure the per-
formance of using such constraints onto localization. Finally,

Table 1. Image Match Accuracy

#Candidate POIs Shopping Mall Food Plaza

Top 1 91.3% 87.2%
Top 2 95.2% 92.3%
Top 3 97.4% 94.6%
Top 4 97.7% 95.8%
Top 5 97.7% 96.1%

we propose a crowdsourced image collection mechanism to
construct the image database.

Structure from Motion
SfM [10] is a mature and classic CV technology and it is able
to derive a 3D model of objects in the visible scene. The
input of SfM is multiple photos of an object from different
locations. For each of the photo, SfM runs a feature detec-
tion algorithm (e.g., SIFT [15]) and identifies various key-
points. By matching multiple sets of keypoints, SfM attempts
to reconstruct: 1) A sparse 3D point cloud of the geometry
captured by those keypoints; 2) The relative position and ori-
entation of the camera when the original photos were taken
[17]. SfM has been utilized in many localization systems [7,
17, 22], however, users are basically localized by referencing
the 3D model. Such mechanism is not suitable in our scenario
due to two reasons: 1) Hundreds of overlapping images are
required for SfM to compute an accurate dense point cloud
for a POI [7, 24]. Without doubt, such volume of images im-
pedes SfM’s widespread for indoor localization. 2) Even if
the point cloud is completely precise, unknown relative scal-
ing, translation, roll, pitch, and tilt exist from the correspond-
ing locations in the real world [17]. Therefore, image-based
localization systems usually require a database recording the
relationship with the images and their ground truth locations.

Different from the aforementioned work, we utilize the rela-
tive positions among images and localize users by referencing
the WiFi fingerprint space. Thus we don’t need much over-
lapping images and we are free of human calibration. More
specifically, the input of SfM in our work are the query photo
and selected supporting photos. The output relative positions
form a polygon, of which the vertices represent the locations
where the original photos were taken.

Shape Similarity
The shape similarity metric plays two important roles in our
work. One is to measure how good the geometric constraints
generated by SfM are and the other one is to help photo se-
lection. As mentioned above, the SfM generates a polygon
using the query photo and selected supporting photos. Mean-
while, the ground truth locations of the photos form another
polygon with absolute physical distances. The more similar
the two polygons are, the more likely the relative position
constraints satisfy a kind of geometric constraint for accu-
rate localization. To evaluate its feasibility, we conducted an
evaluation by taking photos of POIs in a shopping mall and
a railway station. In each scenario, we chose 7 POIs and the
number of photos taken for a certain POI ranges from 40 to
120, and more than 1000 photos were taken. We manually
recorded the ground truth locations. In this evaluation, we
use half photos as training set and the other half as testing set.
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Then, each photo in the testing set follows the steps in Figure
5. Firstly, we use image matching technique to identify the
POI by retrieving the database. Secondly, among the train-
ing photos for the same POI, we randomly choose N photos
(2 ⇠ 4 in our case). Thirdly, query photo and the selected
N photos will be the input of SfM module, and their relative
positions are calculated correspondingly. Fourthly, the Shape
Similarity module will measure how similar is the polygon
formed by SfM-generated relative positions and that formed
by their ground truth locations. Finally, a score indicates the
shape similarity will be produced. To be useful in measuring
the shape similarity, the score should satisfy the following
properties: 1) numeric; 2) invariant to scaling, rotation, and
translation, since SfM only produces relative coordinates; 3)
computational efficient. Here we mainly modify the method
in [3]. There are two key steps in calculating the score:

Representation of Polygons
Instead of representing the polygon using a circular list of ver-
tices, [3] represents the polygon by giving the turning func-
tion ⇥

A

(s). Here A is the simple polygon and s is the arc
length, ⇥

A

(s) measures the angle of the counter-clockwise
tangent as a function of the arc length s, from some refer-
ence point O on A’s boundary. Thus A(0) is the angle v that
the tangent at the reference point O makes with some refer-
ence orientation associated with the polygon (x-axis in our
case). ⇥

A

(s) keeps track of the turning, increasing with left-
hand turns and decreasing with right-hand turns as in Figure
6. Without loss of generality, we rescale each polygon with
normalized perimeter length. Note that ⇥

A

(s) is invariant to
scaling and translation by definition. The rotation of A corre-
sponds to a simple shift of ⇥

A

(s) in the ✓ direction.

The Polygon Distance Function

Given two polygons A and B, and their corresponding turn-
ing functions ⇥

A

(s) and ⇥
B

(s). The shape similarity be-
tween A and B can be measured by the distance between the
turning function ⇥

A

(s) and ⇥
B

(s) using L
p

distance:

�
p

(A,B) = k⇥
A

�⇥
B

k
p

=
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Z 1

0
|⇥
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(s)�⇥
B

(s)|pds
◆( 1

p )

(1)
However, Equation (1) is sensitive to the rotation of A (or
B) and choice of reference point on the boundary of A (or
B). Here we make B stable and find the minimum distance
by adjusting A. If we rotate A by an angle ✓, then the new
turning function is given by ⇥

A

(s) + ✓. And if we move the
reference point along the boundary by a distant t, the new
function is given by ⇥

A

(s + t). Thus we are now going to
find the minimum distance by adjusting ✓ and t, and the shape
similarity between A and B is measured by:

d
p

(A,B) =

✓

min
✓2<,t2[0,1]

Z 1

0
|⇥

A

(s+ t)�⇥
B

(s) + ✓|pds
◆( 1

p )

(2)
For simple polygons, Equation (2) can be further simplified
to a one-variable minimization problem which runs in poly-
nomial time [3]. Thus the similarity score can be calculated
efficiently, and people would rate two polygons as resembling
each other when their similarity score is less than 0.5 [3].

Evaluation Result
As we can see from Figure 7, most shape similarity score is
under 0.5, so the relative positions produced by SfM is qual-
ified for constructing the geometric shape. Furthermore, no
matter how many edges (3, 4, or 5) form the polygon, the
similarity score distribution is alike, so we may design geo-
metric constraints with few edges. To give an intuitive sense,
we list several pairs of polygons in Figure 8 as well as their
corresponding similarity scores measured by our algorithm.

Crowdsourced Image Collection Mechanism
Given the above introduction, we use at least 3 photos of the
same POI (including the query photo) to construct the geo-
metric constraints. But we hope that the user can be localized
by taking a single photo, which means that Argus relies on
an established image database. However, the image collec-
tion procedure in Argus is simple, since we only need several
photos (as few as 3) of the same object from different posi-
tions and orientations without knowing their absolute loca-
tions. The photos and the WiFi fingerprints when taking the
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Figure 9. Handling Device Diversity

photos can be uploaded directly to the server. In this paper,
we assume the image collection can be crowdsourced to staffs
in shopping malls, museums, and airports. Besides that, any-
one can volunteer and some incentive mechanisms [32] can
be also applied to attract customer to contribute. Last but not
least, the first user taking a query photo of a non-exist POI in
the database can simply take 2 additional photos and localize
himself/herself by the triangle constraint. Then the following
users can query the same POI by a single photo.

HANDLING DEVICE DIVERSITY
Before localizing the users with geometric constraints, an-
other practical issue remains: device heterogeneity. Due to
the hardware difference (e.g., antenna gain), the same sig-
nal may result in different RSS using different devices [16].
Figure 9a illustrates the RSS vectors received by two devices
(Google Nexus 5 and Samsung Note 10.1) at the same place
in a mall. Figure 9b shows the histogram of RSS offsets mea-
sured by the two collocated phones at various locations in the
same mall. Such a large device bias can lead to bad localiza-
tion results if the RSS fingerprint database is constructed with
one device yet used by another [13, 16, 19]. one solution is to
calibrate the gain offset between any pair of devices offline,
which is not scalable [19]. Another solution utilizes the de-
duction [6, 16] or ratio [9] between AP signals instead of the
absolute RSSs, but suffers from large noise and fluctuation in
signal power level. In Argus, we employ a learning-based ap-
proach to jointly estimate the location and device power level
via Expectation Maximization. The idea is similar to [13], yet
we adopt different system architecture and metrics.

The detail of our method is as follows. The RSS Eu-
clidean distance between two fingerprints collected at loca-
tion x (f(x) =

⇥
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x

, RSS2
x

, ..., RSSk
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) and y (f(y) =
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Where k is the number of APs. Then in the offset estima-
tion, we simplify the transformation between a pair of de-
vices between A and B as RSS

B

= ↵RSS
A

+ �. Fur-
thermore, it was reported that ↵ is close to 1 [19]. So we
add a constant � when calculating the signal space distance,
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Figure 10. Using geometric constraints to assist localization

the corresponding � is regarded as the offset. Formally,
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The above mechanism suffices for online calibration, we eval-
uate it with data collected by three different devices. Its per-
formance will be presented and discussed in the experiment.

INDOOR LOCALIZATION WITH RELATIVE POSITION
CONSTRAINTS
As introduced above, the geometric constraints generated by
overlapping photos of the same object are highly accurate.
However, the geometric constraints are a relative shape. It
needs to be scaled, rotated, and translated to its ground truth
location. Unfortunately, there is no absolute location infor-
mation embedded in the photos, since we don’t know where
the object is and how far we are away from it. The intuition
underlying our algorithm is to construct a shape based on the
geometric constraints among supporting photos, and then su-
perimpose the shape onto the fingerprint space on the basis of
initial WiFi location estimations. Measured by our cost func-
tion, the algorithm scales, rotates, and translates the shape in
the fingerprint space, such that the vertices are placed closer
to their true locations. The locations where the vertices are
placed are regarded as new location estimations. An illustra-
tion can be seen in Figure 10. To begin with, each device
has a WiFi estimated location (vertices in the dashed-dotted-
line graph). Because the geometric constraints are highly ac-
curate to identify the physical shape formed by devices, the
solid-line polygon is rather close to that of the ground truth
(the dashed-line graph). The additional geometric constraints
drive the new user location estimation closer to his/her true
location, thus reducing large errors and improving accuracy.

Concretely, the cost function is the sum of RSS Euclidean
distances between each device’s query WiFi fingerprint and
its newly estimated location’s WiFi fingerprint (By interpo-
lating nearby training points). To some extent, the func-
tion evaluates the collective closeness of all devices jointly.
Formally, we denote the shape by G(E, V ). V is the ver-
tices of the shape, and their coordinates are generated by
SfM. E is the edges of the shape, and E

i,j

= (V
i

, V
j

). Let
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(a) Rough Location Estimation by WiFi (b) Candidate Polygon Selection by Pruning (c) Fine-grained Localization by Interpolation

Figure 11. Illustration of the heuristic two-tier shape matching
�

a1, a2, ..., a|V |
 

denote the WiFi estimated locations of ver-
tices in V , and

�

b1, b2, ..., b|V |
 

denote the new locations es-
timated by our algorithm. Then localization is transformed
into the following optimization problem.
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X
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where f (x) is the WiFi fingerprint at location x, |(b
i

, b
j

)| is
the edge length formed by newly location estimates b

i

and b
j

.
↵ is used to adjust the weight of geometric constraints. We
solve this optimization by a heuristic two-tier shape matching
algorithm. The key steps are summarized as follows:

Step 1: Rough Location Estimation by WiFi. Though
WiFi fingerprint alone is not accurate enough, it can provide
a rough location estimation. Under most circumstances, the
true device location is not too far away (say 10m) from the
location a

i

estimated by WiFi (e.g., Figure 2a). In Argus, we
assume that the true device location is within a small circle
C

i

centered at a
i

with radius r
i

during the searching process
in the following steps (illustrated in Figure 11a). We empiri-
cally set r

i

the physical distance from a
i

to the corresponding
fingerprint’s fifth nearest neighbor.

Step 2: Candidate Polygon Selection by Pruning. Af-
ter restricting the search scope of the possible locations for
each device, we try every possible combination of training
points to form a valid polygon using a pruning strategy (Fig-
ure 11b). The criteria for a valid polygon are the same as the
constraints of the above optimization, and ↵ = 0.2 in this
stage. The rationale of the pruning strategy is that, for two
combinations of training points B⇤ =

n

b⇤1, b
⇤
2, ..., b

⇤
|V |

o

and

B
0
=
n

b
0

1, b
0

2, ..., b
0

|V |

o

. If a subset of B⇤ already costs more

than B
0
, then the cost of B⇤ must be higher than B

0
. Thus we

can sort the training points inside each circle according to its
RSS Euclidean distance to the circle center. We try the com-
bination of training points from different circles ascendantly.

Training Point Shop Info Desk Stairs Super MarketPOI

(a) Shopping Mall

Training Point

Restaurant
Coffee Shop
Store
Info Desk

POI

(b) Food Plaza
Figure 12. Floor Plans for Two Experimental Scenarios
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Figure 13. Photo Distance Distribution and Impact on Localization Error

Hence we avoid a large amount of impossible polygons and
the top 10 polygons are left for fine-grained localization.

Step 3: Fine-grained Localization by Interpolation. In
practice, the consecutive training points often have a constant
interval (e.g., 2m in our experiment). It is coarse-grained if
we limit the user’s position to the training points. So we inter-
polate the fingerprint space around the top 10 polygons as in
Figure 11c. The degree of interpolation depends on specific
precision. Then, the newly interpolated points are regarded
as the training points and we repeat Step 2 with ↵ = 0.1 to
find the polygon minimizing the objective function.

IMPLEMENTATION AND EXPERIMENTS

Experimental Setup
The prototype of Argus consists of a front-end and a back-
end. We implemented the front-end on three types of mobile
devices: Google Nexus 5 phone, Huawei Honor 2 phone, and
Samsung Note 10.1 tablet, as a Java extension to the standard
Android camera program to ensure the validity and prompt-
ness of WiFi fingerprint. During the evaluation, the photos
and fingerprints are directly uploaded to our server through
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Figure 14. Overall Localization Accuracy

WiFi connection. Our back-end server is a MacbookPro run-
ning Mac OS X 10.9.2, with 2.7GHz Quad-Core Processor
and 16GB RAM. We use a mature CV solution SIFT[15] for
image feature keypoint extraction. For SfM, we use and mod-
ify Bundler [24], an online open source SfM project. And we
use VisualSFM [29] to validate and visualize the results.

We conduct localization experiments with the prototype in a
shopping mall (Figure 12a) and a food plaza ( Figure 12b).
These two sites cover diverse human activities (e.g., sitting,
eating, and hanging). In each scenario, the WiFi fingerprint
database is constructed by on-site survey. We take 10 WiFi
fingerprints at each of the training points and the consecu-
tive training points have a distance of 1.8m. We choose 50
and 41 POIs in the shopping mall and food plaza, respec-
tively, which are marked by pentagrams in Figure 12a and
Figure 12b. The number of photos taken for a certain POI
ranges from 5 to 20 during the site survey, and more than
1000 photos were taken. In addition, we recruit 2 volunteers
to take a total of 200 photos from their own perspectives with
two guidelines: One is that the POIs should be outstanding
physical features that other people may agree with, and the
other is that the POI should be clearly taken near the middle
of viewfinder. The ground truth locations when taking pho-
tos were recorded manually. The distances between the POIs
and the corresponding photos (both from our site survey and
volunteers) are illustrated in Figure 13a.

Micro Benchmarks
Overall Localization Accuracy
To measure the overall localization accuracy, we randomly
choose half of the photos taken during the site survey to form
the image database and the other half are treated as query
images (together with the photos from volunteers). We com-
pare our solution (denoted by Image Assist) with classic RSS-
based method RADAR [5] (denoted by WiFi Only and 5 sam-
ples form a query). As shown in Figure 14, with Argus, the
localization accuracy is consistently tripled. Specifically, the
50-percentile error is reduced from 2.73m to 0.78m in Mall
and from 3.01m to 0.97m in Plaza. The 80-percentile error
is reduced from 4.98m to 1.38m in Mall and from 5.02m
to 2.30m in Plaza. Figure 13b provides a scatter diagram to
illustrate the relationship between the distance and the posi-
tioning accuracy. The distance between the POI and the photo
taken has little impact on the localization accuracy. On the
other hand, we give the credit of performance improvement
to the joint effect of the following factors (4 supporting pho-
tos, with photo selection, and handling device diversity). We
evaluate the impacts of these factors subsequently.
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Figure 15. Impact of the Number of Photos

Impact of the Number of Photos
Intuitively, the more photos of the same POI we have, the
more constraints we obtain. However, more constraints im-
pose more computational complexity to the joint localization
algorithm. So we restrict the geometric constraints to poly-
gons with 3, 4, and 5 edges, and the result is shown in Figure
15. Argus benefits from more supporting photos. Yet the gain
is negligible when #Edges is more than 5. So we use poly-
gons with 5 edges during the evaluation.
Impact of Photo Selection
The reasons for photo selection are two-folds: Feasibility, the
photos and fingerprints collected by Argus’s database accu-
mulate (since the query photos by the previous users can be
utilized). Thus there could be hundreds of candidate support-
ing photos. Since polygons with 5 edges are enough for accu-
rate localization, how to choose 4 supporting photos becomes
an issue. Essentiality, the photo quality and WiFi fingerprint
quality for the same POI vary sharply (since we cannot guar-
antee the quality of crowdsourced data). The localization ac-
curacy may fall if we choose “bad” supporting photos. Since
the localization relies on both the initial WiFi position esti-
mation and geometric constraints generation, we devise the
following 3 criteria for reliable supporting photo selection.

Criterion 1: Compare the WiFi fingerprints of query photo
and potential supporting photos. If the ratio of common APs
number to all detected APs number is below a threshold, dis-
card the candidate. Then we calculate the standard deviation
of common APs after handling the device diversity. If the
standard deviation exceeds a threshold, discard the candidate.

Criterion 2: Examine the image similarity between the query
photo and candidate supporting photos. If the similarity score
is below a threshold, discard the candidate. The rationale is
that the supporting photos should have enough overlaps to
generate the relative constraints.

Criterion 3: After filtering some candidates, we examine the
remaining combinations (Forming polygons with 5 edges).
The key is that, the initial WiFi estimated locations form a
polygon and the relative position constraints generated by
SfM form another. The more similar two polygons are (us-
ing the same metric introduce before), the more likely WiFi
fingerprints and geometric constraints work fine together.

The 3 criteria not only consider the quality of WiFi and photo,
but also their collaboration. The threshold values are set de-
pend on the size of candidate supporting photos, Argus tends
to be aggressive when the size is big. As we can see in Figure
16, our mechanism (denoted by With Photo Selection) obvi-
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Figure 17. Handling Device Diversity

ously outperforms the random selection (denoted by Without
Photo Selection), especially in terms of large errors.
Handling Device Diversity
Figure 17 plots the results applying our method (Handling
Device Diversity) and using raw WiFi fingerprints (Ignoring
Device Diversity). As is shown, our scheme successfully and
consistently reduces the localization error by about 40%, in-
dicating the severity of not handling device heterogeneity in
RSS-based localization.
System Overhead
Overall Latency and Decomposition
We evaluate the overall latency by simulating consecutive
user queries. We randomly select a photo from the set of
query photos and Argus returns the estimated location. Then
we average the time delays for 1000 such queries. The time
for photo uploading is measured separately by batch. The
reason is that we want to measure the time for localization
only, without human factors like choosing angle to take pho-
tos and checking the localization result. In summary, the
file uploading takes 1.8s and image match module consumes
0.6s. The photo selection together with constraint generation
spends about 3.3s and the localization algorithm takes another
2.2s. In parallel, the WiFi fingerprint localization considering
the device diversity takes 0.5s. So in total that is 7.9s (i.e.,
1.8+0.6+max(0.5, 3.3)+2.2). Considering that classic WiFi
localization usually takes several samples (e.g., scan 5 WiFi
samples in 4.8s [14]), Argus does not introduce much latency
than WiFi localization. On the other hand, eliminating the fin-
gerprint ambiguity by motion usually relies on step detection
and particle filter [8], where convergence is not guaranteed.
Energy Overhead
We evaluate the energy overhead of Argus using the tools
and methodology in [37]. We conduct the experiments us-
ing Samsung Note 10.1 tablet, and compare the energy con-
sumption in three scenarios: running nothing, WiFi scanning
only, and consecutively using Argus. The frequency of WiFi
scanning is 2s, and the screen is active during the experiment
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Figure 18. Other Effect Factors

to prevent entering the hibernating mode. The power con-
sumptions for the first two modes are 562mW and 576mW,
respectively. Then we consecutively use Argus for localiza-
tion in groups (10 location queries as a group, and 10 groups
are measured here). The average lasting time for a group is
159s and a group consumes 116.6 Joules, or 733mW. So Ar-
gus consumes 171mW additional power, which is much less
than the average power when the screen is active (562mW).
Since users only activate Argus when in need and the energy
consuming operations are left for server, we believe that such
overhead has little impact on mobile device’s battery life.

Other Effect Factors
Illumination
Intuitively, the performance of image match is sensitive to
lighting condition change. However, according to our experi-
ments, we found that indoor illuminations are relatively stable
(since lights are always on). Thus, we simulate illumination
change by adjusting the image brightness and contrast. The
result is shown in Figure 18a. As is shown, Argus is robust to
slight illumination change (80% and 120%).
Image Resolution
To emulate the impact of photo quality, we adjust the level
of photographic detail by changing the photo resolution, and
repeat the experiment for each resolution level. As shown in
Figure 18b, Argus is most accurate with original resolution
level, with only a slight performance degeneration with fewer
photographic detail.
Human Existence
In fact, the aforementioned 1000+ images from site survey
and 200 images from volunteers were taken without avoid-
ing human existence. To analyse the effect of human exis-
tence, we conducted an additional experiment in front of a
POI, in which 50 images were taken with human existence
and 50 were without it. The key statistics are listed in Table
2. The mean localization errors using Argus were 1.29m and
0.96m for images with and without human existence, respec-
tively. To reduce computation complexity, our scheme does
not involve human detection. Consequently, our photo se-
lection mechanism may select photos both with and without
human presence. Thus the above experiment serves as refer-
ences for the upper and lower bounds of localization errors
in practical deployment sites where photos taken may occa-
sionally capture unwanted passengers. In addition, we take
an in-depth analysis on the root causes of larger error using
photos with human presence. And we conclude that the hu-
man existence has an effect on both the WiFi signal strength
and the photo quality. As we can see from Table 2, human
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Table 2. Impact of Human Existence

With Human Without Human

WiFi Positioning Error 3.44m 2.72m
Argus Positioning Error 1.29m 0.96m

Average Keypoints 3995 4221
Average Matched Pairs 168 275

existence results in less stable WiFi samples, and WiFi only
positioning method suffers from human interference. Besides
that, human existence not only decrease the number of photo
keypoints, but also the number of matched keypoint pairs be-
tween the query image and the supporting images. Since Ar-
gus localizes user using coarse WiFi localization and photo
generated geometry constraints, the human existence does de-
teriorate the localization accuracy. However, the degeneration
is acceptable as long as the majority of POI is clearly taken.

DISCUSSION
POI Selection. In Argus, we assume that users understand
which POIs are likely to be selected by the system or other
users. During the experiments, we select apparent physical
features like logos, shop entrances, and find that 50 POIs are
enough for covering the mall and plaza (similar to the result
in [27]). However, users may occasionally shoot a POI not in
the database and the database may lack of data during the ini-
tial stage. In such cases, Argus invites the user as a volunteer
to upload photos for the POI (3 photos are enough for func-
tionating the POI in Argus), or the user can simply choose to
be localized by taking a photo of another POI.
Usage Scenario. The design of Argus mainly focuses on
large open space (e.g., airports and shopping malls), where
most traditional WiFi localization methods provide unsatis-
factory performance. Argus may suffer significant perfor-
mance degradation in boring rooms in office, because we
rely on imagery features to extract geometry constraints and
it would be difficult for users to select representative POIs
inside a boring room. Things may be complicated in campus-
like environment. In areas where hallways or small offices
dominate, Argus may degenerate to multi-sample WiFi lo-
calization. On the other hand, areas where large open space
dominates like meeting room and playground are sweet spots
for Argus. In addition, Argus relies on established WiFi fin-
gerprint database and does not provide continuous localiza-
tion when the user is moving. We are seeking the solution
to inferring user motion by combining other techniques (e.g.,
dead-reckoning and particle filter [8, 34]).
Reasons of Large Errors. Though Argus triples the localiza-
tion accuracy of traditional RSS-based localization method,
large errors do exist (e.g., 25 queries have error larger than
5m in Overall Localization Accuracy as in Figure 13b). By
examining the 25 queries, we summarize the reasons of large
errors as: low quality WiFi sample(14), extreme distances or
angles(5), similar appearance of POI(4), and obstruction of
POI(2). Low quality WiFi samples and query photos lead to
large localization error. However, we believe that some large
errors can be avoided when either WiFi sample and query
photo is in high quality and we plan to improve our photo
selection mechanism in future work.

RELATED WORKS

Fingerprint-based Indoor Localization. Due to the ubiq-
uity of WiFi, extensive research efforts utilize it for indoor
localization. [5, 36] are pioneers while some recent works
take advantage of other smart phone sensors to generate var-
ious fingerprints [4, 28]. Recently, researchers have been ad-
dressing fingerprint ambiguity by motion-assistance [8, 11,
26, 34] and peer-assistance [14, 21, 23]. Using MIMO [2, 31]
is a new trend in indoor localization. The most relevant work
to Argus is [14] and [26]. [14] uses peer assist localization
and sound ranging to alleviate the WiFi fingerprint ambigu-
ity while [26] utilizes user trajectories to eliminate candidate
locations. Differently, we utilize CV techniques to generate
geometric constraints using commodity phones without the
help of peers and motion trajectory.
Image-based Indoor Localization. Image-based localiza-
tion is well studied in the robot navigation communities [18],
and there has been an increasing research interest in image-
based localization with mobile phones [7, 17, 27, 38]. OPS
[17] allows users to locate remote objects (e.g., TV tower) by
taking a few photos from different known locations, while in
Argus, the user takes one photo and localizes himself/herself.
Moreover, OPS relies on GPS to provide absolute coordi-
nates, which is infeasible indoors. Sextant [27] localizes users
by taking 3 photos from nearby physical features. Differ-
ent from their triangulation mechanism, Argus localizes users
with a single photo by mapping geometric constraints onto
the signal space. Jigsaw [7] leverages CV and crowdsourc-
ing to reconstruct the floor plan, based on which it provides
convenient localization service. In contrast, Argus works fine
without knowing the absolute POI locations or the floor plan.
Crowdsourcing in Localization. A fingerprint database is
required for RSS-based indoor localization. Some recent
work explored to reduce the laborious efforts to build and
maintain such databases. LiFS [33] leverages user motions to
construct the fingerprint database and update the database by
crowdsourcing. Zee [21] tracks inertial sensors in mobile de-
vices carried by users while simultaneously performing WiFi
scans. Similarly, by collecting photos from volunteers and ac-
cumulating query images from crowds, Argus is able to work
at very beginning and evolve with enriched image database.

CONCLUSION
With the trends towards enhanced wireless connectivity, im-
proved imaging technique, and adoption of the cloud for
low-cost, scalable computation, we envision widespread user-
friendly indoor location-based service. We developed Argus,
an image-assist indoor localization system utilizing geomet-
ric constraints from crowdsourced images. Argus makes it
possible to localize accurately and efficiently with a single
click. The experiments using real data have shown that Argus
localizes users in comparable time with classic RSS-based
methodologies while triples the localization accuracy.
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